
An Extended Query Language for Action Languages
(and its Application to Aggregates and Preferences)

James P. Delgrande
School of Computing Science

Simon Fraser University
Burnaby, B.C.

Canada V5A 1S6
jim@cs.sfu.ca

Torsten Schaub∗

Institut für Informatik
Universität Potsdam
Postfach 90 03 27

D–14439 Potsdam, Germany
torsten@cs.uni-potsdam.de

Hans Tompits
Institut für Informationssysteme 184/3

Technische Universität Wien
Favoritenstraße 9–11

A–1040 Vienna, Austria
tompits@kr.tuwien.ac.at

Abstract

This paper continues our earlier work in representing
arbitrary preferences in causal reasoning and planning
systems, albeit in an oblique fashion. Previously, we de-
fined a very general query language relative to histories;
from this we specified a second language in which pref-
erences on histories are defined. This in turn allowed us
to define the notion of a most preferred history in a set of
histories. In this paper, we extend these languages in two
directions. First, we add a conditional construct that al-
lows one to select between terms. Second, we add a ca-
pability for defining macros. With these two added con-
structs, one can now define aggregate quantities, such as
the total cost of actions in a history, the maximum value
of a fluent in a history, or a count of the number of times
a fluent goes to zero in a history. Via the preference lan-
guage, one can then express a preference for histories
(or, plans) with minimum action cost, maximum value
of a fluent, or in which a fluent is most often zero. We
argue that this substantially increases the range of con-
cepts about which one can express preferences.

Introduction
The traditional formulation of planning involves deter-
mining how a given goal can be attained, beginning
from some initial state and by means of a given set of
actions which alter the state of the world. A plan suc-
ceeds just when it is executable and attains the goal; oth-
erwise, it fails. However, in realistic situations, things
are not quite so simple. Thus, there may be require-
ments specifying that a plan should be as short as pos-
sible or that total cost, where costs are associated with
actions, be minimised. As well, there may be preferred
conditions, that are desirable to attain, but not neces-
sary. Thus, in getting to the airport, the goal is to in-
deed arrive at the airport in good time; I may prefer to
be able to pick up a coffee en route, but this preference
is subordinate to the overall goal of getting to the air-
port. As well, there may be other preferences, such as
preferring to take transit to driving, going by a partic-
ular route, etc. Each preference partitions the space of

∗Affiliated with the School of Computing Science at Si-
mon Fraser University, Burnaby, Canada.

successful plans into those that satisfy the preference
and those that do not. The goal of a planning problem
now shifts to determining a preferred plan, in which a
maximal set of preferences is satisfied, along with the
goal. Such preferences also make sense outside of plan-
ning domains, and in fact apply to arbitrary sequences
of temporal events. Hence, it is perfectly rational to
prefer that one’s favourite sport’s team wins the cham-
pionship, even though in the typical course of events
one has no control over how the team performs.

In earlier work (Delgrande, Schaub, & Tompits 2004;
2005), we considered the problem of using general pref-
erences over (fluent and action) formulas to determine
preferences among temporal histories, or plans. While
we focussed on histories as they are used in action de-
scription languages (Gelfond & Lifschitz 1998), our ap-
proach was, and is, applicable to any planning formal-
ism. A history is defined as an interleaved sequence
of states (of the world), and actions that take one state
in a sequence to the next. We first specified a query
language, QΣ,n, (over some signature Σ and histories
of maximum length n) in which one can determine
whether an arbitrary expression is true in a given his-
tory. Given this language, we defined a preference-
specification language, PΣ,n, that allows the definition
of preference relations between histories. Via the lan-
guage PΣ,n, we showed how to specify general prefer-
ences in temporal, causal, or planning frameworks. As
well, the approach provided a very general language in
which other “higher-level” constructs could be encoded,
and in which other approaches could be expressed and
so compared.

In the present paper, our motivating interest lies
with being able to express preferences over aggregate
quantities—that is, quantities that in some sense express
a collective property of a set of fluent values. If actions
come with a measure of their cost and duration, then
two corresponding aggregate quantities of these mea-
sures would be the total action cost of a plan and the
total duration of a plan. Clearly, in many cases these
are quantities that one would want to minimise or, in a
preference framework, prefer those plans with the min-
imal action cost or duration.

Such aggregates can be defined in our query lan-
guage quite simply, given the addition of two capabil-
ities. First, we extend the query language with a con-
ditional term-forming operator. Syntactically, this op-
erator is of the form (φ ? t1 : t2). This term denotes
t1 if φ is true; otherwise, it denotes t2. Second, we
add a “macro definition” capability, external to the lan-
guage. That is, assertions in the query language can
now contain macros that look exactly like fluents; given
an appropriate set of macro definitions, these macros
“compile out” so that one obtains assertions in the orig-
inal language. Given this macro capability along with
the conditional construct, one can define complex ag-
gregate notions that can then take part in preference ex-
pressions. Thus, in our preference language we can now
express a preference for histories with minimum action
cost, maximum value of a fluent, or in which a fluent is
zero at the most time points.

The next section briefly covers related work. This is
followed by a section on the history-specific query lan-
guage RΣ,n. This language extends our earlier query
language QΣ,n with the new conditional operator. The
following section describes adding a macro capability
to this language and illustrates how aggregates can now
be defined. The penultimate section describes the defi-
nition and use of our preference language PΣ,n in this
extended setting. The last section provides a brief dis-
cussion.

Background
Reasoning with preferences is an active area that is re-
ceiving increasing attention in AI. Hence, while the
main topic of this paper is expressing aggregate quanti-
ties in our extended query language, our primary goal
is the definition of a general language for specifying
preferences on histories (or plans or other temporal se-
quences). Since histories and plans (implicitly or ex-
plicitly) involve sequences of states of the world, ex-
pressing aggregates and preferences over aggregates are
of particular interest in planning systems.

In AI, Wellman & Doyle (1991) earlier suggested
that the notion of goal is a relatively crude measure for
planners to achieve, and instead that a relative prefer-
ence over possible plan outcomes constitutes (or should
constitute) a fundamental objective for planning. They
show how to define goals in terms of preferences and,
conversely, how to define (incompletely) preferences in
terms of sets of goals. Here, we maintain a strict di-
vision between (hard) goals and (soft) preferences, al-
though a framework along the lines of Wellman and
Doyle is expressible in our method simply by taking the
overarching goal as being >—i.e., all valid histories are
the subject of the preferences.

Myers & Lee (1999) assume that there is a set of
desiderata, such as affordability or time, whereby suc-
cessful plans can be ranked. A small number of plans
is generated, where the intent is to generate diver-
gent plans. The best plan is then chosen, based on a

notion of Euclidean distance between these select at-
tributes. Hence, they deal implicitly with aggregate
quantities, with a concrete, quantitative notion of pref-
erence, applied to a small set of successful and presum-
ably representative plans. In related work, Haddawy &
Hanks (1992) use a utility function to guide a planner.

One approach to preferences in planning has been
proposed by Son & Pontelli (2004), where a language
for specifying preferences between histories is pre-
sented. This language is an extension of action lan-
guage B (Gelfond & Lifschitz 1998), and is subse-
quently compiled into logic programs under the answer-
set semantics. The notion of preference explored is
based on so-called desires (what we call absolute pref-
erences in previsous work (Delgrande, Schaub, & Tom-
pits 2004)), expressed via formulas built by means of
propositional as well as temporal connectives such as
always, until, etc. From desires, preferences among his-
tories are induced as follows: Given a desire φ, a history
H is preferred to H ′ if H |= φ but H ′ 6|= φ.

Similarly, Bienvenu & McIlraith (2005) address plan-
ning with preferences in the situation calculus. Pref-
erences are founded on the notion of basic desire for-
mulas, whose members are somewhat analogous to for-
mulas in our language QΣ,n. These formulas in turn
are used in the composition of atomic preference for-
mulas (essentially chains of preferences) and general
preference formulas. As the authors note, this approach
extends and modifies that of Son & Pontelli (2004)
although expressed in terms of the situation calculus
rather than an action language. Based on a concrete
means of explicitly combining preferences, a best-first
planner is given. Fritz & McIlraith (2005) employ a
subset of this language in an approach to compile pref-
erences into DT-Golog.

Eiter et al. (2003) describe planning in an answer-set
programming framework where action costs are taken
into account. The approach allows the specification
of desiderata such as computing the shortest plan, the
cheapest plan, or some combination of these criteria.
This is achieved by employing weak constraints, which
filter answer sets, and thus plans, based on quantitative
criteria.

A General Query Language for Histories
Histories and Queries on Histories
In specifying histories, we extend the notation of Gel-
fond & Lifschitz (1998) in their discussion of transition
systems. As described, virtually any general planning
system (or indeed causal-reasoning formalism) could be
used to provide a setting for our approach; as well, the
approach is more broadly applicable than just to plan-
ning problems.

Definition 1 An action signature Σ is a quadruple
〈D,F, V, A〉, where D is a set of value names, F is a
set of fluent names, V : F → 2D \ ∅ assigns a domain
to each fluent, and A is a set of action names.

Σ is propositional iff D = {0, 1}, and it is finite iff
D, F , and A are finite. Moreover, a fluent name f ∈ F
is propositional iff V (f) = {0, 1}.
For simplicity we will assume throughout that action
signatures are finite and that D is the set of non-negative
integers.
Definition 2 Let Σ = 〈D,V, F, A〉 be an action signa-
ture.

A history, H , over Σ is a sequence
(s0, a1, s1, a2, s2, . . . , sn−1, an, sn),

where n ≥ 0, and
• each si, 0 ≤ i ≤ n, is a mapping assigning each

fluent f ∈ F a value v ∈ V (f), and
• a1, . . . , an ∈ A.

The functions s0, . . . , sn are called states, and n is
the length of history H , symbolically |H|.

The states of a history may be thought of as possi-
ble worlds, and the actions take one possible world into
another.

We need to be able to refer to fluent and action names
in a history. Since a fluent’s value will vary depending
on the time point under consideration, we also need to
be able to refer to time points and their relations. To this
end, we define a query language on histories of maxi-
mum length n over an action signature Σ, named RΣ,n.
Definition 3 Let Σ = 〈D,F, V, A〉 be an action signa-
ture and n ≥ 0 a natural number.

The alphabet of RΣ,n consists of the following items:
1. a set V = {i, j, . . . } of time-stamp variables, or sim-

ply variables,
2. the set of integers,
3. the sets D, F , and A,
4. the sentential connectives ‘¬’ and ‘⊃’, and the quan-

tifier symbol ‘∃’,
5. the arithmetic function symbols ‘+’, ‘−’, and ‘·’, the

arithmetic relation symbol ‘<’, and the equality sym-
bol ‘=’, and

6. the parentheses ‘(’ and ‘)’, and the symbols ‘?’
and ‘:’.
Terms in RΣ,n are of two types: those denoting time

points and those denoting fluent values.
Definition 4 Let Σ = 〈D,F, V, A〉 be an action signa-
ture and n ≥ 0 a natural number.

The terms of RΣ,n are as follows:
1. A time term is an arithmetic term recursively built

from V ∪ {0, . . . , n}, employing + and · (as well as
parentheses) in the usual manner.

2. A (fluent) value term is either a member of D, an
expression of the form f(t), where f ∈ F and t is
a time term, or an arithmetic term recursively built
from value terms, employing +, −, and · in the usual
manner. Additionally, if φ is a formula (cf. Defini-
tion 5) and e1 and e2 are value terms, then φ ? e1 : e2

is a value term.

The intent here is that, in RΣ,n, time terms range over
the numbers 0, . . . , n only, while fluent value terms may
denote arbitrarily large integers. So, our definition of
the class of formulas of RΣ,n, given next, will accom-
modate that, for instance, f(0) = 5 is well formed,
where f is a fluent name, with intended interpretation
that f has value 5 at time point 0, whereas ∃if(0) = i
is not well formed.

Definition 5 Let Σ = 〈D,F, V, A〉 be an action signa-
ture and n ≥ 0 a natural number.

The formulas of RΣ,n are as follows:

1. A time atom is an expression of the form (t1 < t2) or
(t1 = t2), where t1, t2 are time terms.
A value atom is either an expression of form a(t),
where a ∈ A and t is a time term, or an expression
of the form (v1 < v2) or (v1 = v2), where v1, v2 are
value terms.
An atom containing no variables is ground.

2. A literal is an atom possibly preceded by the negation
sign ¬.

3. A formula is a Boolean combination of atoms, along
with quantifier expressions of form ∃v, for v ∈ V ,
formed in the usual recursive fashion.

4. A query is a closed formula, i.e., with no free time-
stamp variables.

For a propositional fluent f and time term e, we write
f(e) for f(e) = 1 and ¬f(e) for f(e) = 0; in such a
case, f(e) is said to be true or false (or equivalently true
at e or false at e), respectively.

We define the operators ∧, ∨, and ≤, and the univer-
sal quantifier ∀, in the usual way. Parentheses may be
dropped in formulas if no ambiguity arises, and we may
write quantified formulas like Qv1Qv2 α as Qv1, v2 α,
for Q ∈ {∀,∃}. For formula α, variables v1, . . . , vk,
and numbers i1, . . . , ik, α[v1/i1, . . . , vk/ik] is the re-
sult of uniformly substituting vj by ij in α, for each
j ∈ {1, . . . , k}. Thus, if v1, . . . , vk are the free vari-
ables in α, then α[v1/i1, . . . , vk/ik] is a closed formula.

Variables range over time points, and so quantifica-
tion applies to time points only. Atoms consist of ac-
tions or fluents indexed by a time point, or of a predi-
cate on arithmetic (time point) expressions. Atoms are
used to compose formulas in the standard fashion, and
queries consist of closed formulas. This means that we
remain within the realm of propositional logic, since
quantified expressions ∀v and ∃v can be replaced by
the conjunction or disjunction (respectively) of their in-
stances.

Example 1 Let pickup ∈ A, red ∈ F , and i, j ∈ V .
Then,

pickup(4), red(i + j), i < j + 2

are atoms. As well,

red(j) ∧ (∀k (k < j) ⊃ ¬red(k)),
ageJohn(t) > ageMary(t + 1)

are formulas but not queries, and

∃i, j((i + 2 < j) ∧ pickup(i) ∧ ¬red(j)),
∃i(ageJohn(i) > ageMary(i + 1)),
∃i(¬(ageJohn(i) = 35)),
(((0 = 1)?1 : 0) = 0)

are closed formulas and so queries (assuming an ap-
propriate action signature).

The intent of the first formulas above is that it be true
in a history in which pickup is true at some time point
and three or more time points later red is false. For
the last formula above, we have that 0 = 1 is false,
therefore the value of ((0 = 1)?1 : 0) is 0, and since
0 = 0 is true, the formula is true.

The following operators, which basically correspond
to similar ones well-known from linear temporal logic
(LTL), can be defined:

• �b = ∀i b(i);

• ♦b = ∃i b(i); and

• (b U g) = ∃i
(
g(i) ∧ ∀j((j < i) ⊃ b(j))

)
.

Here, b and g are propositional fluent names or action
names. Informally, �b expresses that b always holds,
♦b that b holds eventually, and b U g that b holds con-
tinually until g holds. Other LTL operators are likewise
expressible.

Semantics of Queries
The definition of truth of a query with respect to a his-
tory is done in two parts. First, we define an inter-
pretation function I that gives the denotation of terms;
from this we define the notion of truth. To ease detail,
we use the notation that for a ground term t, val(t) is
the value of t according to standard integer arithmetic.
Note that although the next two definitions are inter-
dependent, these definitions of denotation and truth are
strictly compositional.

Definition 6 Given query language RΣ,n and a history
H = (s0, a1, s1, . . . , ak, sk) over Σ of length k ≤ n,
the denotation IH is given by:

1. If t is a ground time term, then:

IH(t) =

{ 0 if val(t) < 0;
k if val(t) > k;
val(t) otherwise.

2. If t is a ground fluent value term, then:
(a) if t is f(t′), for f ∈ F , then IH(t) = si(f), where

i = IH(t′);
(b) if t is φ ? e1 : e2, then:

if H |=RΣ,n
φ, then IH(t) = IH(e1), otherwise

IH(t) = IH(e2);
(c) otherwise, IH(t) = val(t).

The rationale behind Part 1 in the definition above is to
allow that, while a time term calculation may refer to
a time point greater than the length of a history or less
than time point 0, its denotation should not. Hence, if
val(t) is greater than the length k of history H , then a
ground atomic query φ(t) will be satisfied by H if it is
satisfied at the last state of H .

It can be observed for a ground time term t, that
0 ≤ IH(t) ≤ n, while for a value term we do not nec-
essarily obtain that IH(t) ∈ D. This conforms to intu-
itions: fluents have value only within a history, and time
points need to refer to times within a history. On the
other hand, value terms are used (among other things)
to determine aggregate quantities. Thus, we could have
a propositional domain with D = {0, 1}; however, if
we wanted to count the number of times that a light was
on, say, we would need other integer values.

Now we can define what it means for a history to
satisfy a query expressed in RΣ,n.

Definition 7 Let H = (s0, a1, s1, . . . , ak, sk) be a his-
tory over Σ of length k ≤ n, and let Q be a query of
RΣ,n.

We define H |=RΣ,n
Q as follows:

1. If Q = a(t) is a ground action atom, then H |=RΣ,n

Q iff a = aIH(t).
2. If Q = (v1 ◦ v2), for ◦ ∈ {<,=}, is a ground (flu-

ent or time) atom, then H |=RΣ,n
Q iff (IH(v1) ◦

IH(v2)).
3. If Q = ¬α, then H |=RΣ,n Q iff H 6|=RΣ,n α.
4. If Q = α ⊃ β, then H |=RΣ,n

Q iff H 6|=RΣ,n
α or

H |=RΣ,n
β.

5. If Q = ∃vα, then H |=RΣ,n
Q iff, for some 0 ≤ i ≤

n, H |=RΣ,n
α[v/i].

If H |=RΣ,n
Q holds, then H satisfies Q. For sim-

plicity, if RΣ,n is unambiguously fixed, we also write
|= instead of |=RΣ,n

.
We have the following results concerning complexity

in RΣ,n.

Theorem 1 Let Σ be an action signature and n ≥ 0 a
natural number.

1. Given a history H = (s0, a1, s1, . . . , ak, sn) over Σ
of length n and a query

Q = (Q1i1)(Q2i2) . . . (Qmim) C

of RΣ,n, where Qi ∈ {∀,∃}, 1 ≤ i ≤ m, and C con-
tains no quantifiers, then deciding whether H |=RΣ,n

Q holds can be determined in O(|C|m) time.
2. Given a query Q of RΣ,n, then deciding whether

there is a history H over Σ of length n such that
H |=RΣ,n

Q holds is PSPACE-complete.

The proof of the first part is straightforward, since for
each quantifier expression (Qi)α, one needs to test the
n substitution instances of α conjunctively (for univer-
sal quantification) or disjunctively (for existential quan-
tification). For the second part, for showing that the

problem is at least in PSPACE, the reduction is from
satisfiability of quantified Boolean formulas to formulas
of RΣ,1; for showing that it is no worse than PSPACE,
the reduction is from formulas of RΣ,n to formulas of
linear-time temporal logic (LTL).

The languageRΣ,n is quite expressive. Indeed, it can
be shown that RΣ,n subsumes the languages P , Q, and
R due to Gelfond & Lifschitz (1998), as well as our
earlier language QΣ,n (Delgrande, Schaub, & Tompits
2005), with respect to expressivity.

Macros
In realistic applications, one is often faced with non-
propositional fluents, such as temperature, amount of
rain, etc. Moreover, actions often have associated costs
and other measures, such as duration. Frequently too,
one is interested in aggregates of such quantities—for
example, determining the total rainfall, total cost of ac-
tions, maximum value attained over an interval, and so
on. In the next section, we will see how these types
of quantities permit preference statements expressing
certain optimisations or desiderata. In this section, we
show how, using our conditional construct (? :)
along with the addition of a macro capability, we can
express aggregates of fluent values without adding to
the overall complexity of the language.

Definition of Macros
Macros are defined as follows:
Definition 8 Let Σ = 〈D,F, V, A〉 be an action signa-
ture and n > 0. Then, the alphabet of a macro language
over Σ and n consists of the alphabet of RΣ,n, together
with

1. a set of fluent names F ′, where F ∩ F ′ = ∅, and
2. a set of parameter names P = {$1, $2, . . . }.

We refer to 〈Σ, F ′〉 as the (macro) signature for such
a macro language.

The fluent names in F ′ serve as macro names, while
the elements of P1 serve as parameters for the macros,
and for which terms will be substituted in the macro
expansion.
Definition 9 Given a macro signature 〈Σ, F ′〉 and n >
0, a macro M is a sequence

(〈ν1, µ1〉, . . . , 〈νm, µm〉),
where

1. each νi is of the form f(t), where f ∈ F ′, and either
t ∈ {0, . . . , n} or t is the parameter name $i, and

2. each µi is a value term over 〈D,F ∪ F ′, V, A〉, but
with added primitive terms P, formed in the expected
recursive manner.
1In the present paper we use only parameter $1, since we

deal just with unary macros. The inclusion of P anticipates a
possible generalization to many-placed macros (which in turn
makes conceptual sense only if the languageRΣ,n is general-
ized to allow flunets of arity greater than 1).

In a formula involving macros, µi[x/t] will be the for-
mula µi with every occurrence of parameter x replaced
by term t.

Definition 10 Let φ be a formula and

M = (〈ν1, µ1〉, . . . , 〈νm, µm〉)

a macro.

• νi matches value term t in φ, if
– νi = f(a),
– t ∈ D or

t = f(b) and if a is a constant, then a = b.
Matches will be understood to be symmetric.

• φ[νi/µi] is defined by:
for every t = f(b) in φ that matches νi = f(a),
replace t in φ by µi[$1/b].

• φM , the macro expansion of φ by M , is defined
by: ((. . . ((φ[ν1/µ1])[ν2/µ2]) . . .)[νk, µk])∗, where
θ∗ denotes iteration of the implicit operators to a
fixed point.
The macro expansion of a set of macros is defined in
the obvious manner.

Note that the definition of a macro expansion ensures,
for a macro (〈ν1, µ1〉, . . . , 〈νm, µm〉), that for i < j, νi

will be expanded before νj . Of course, the macro ex-
pansion is not always defined; for example, the macro
(〈f($1), f($1)〉) can lead to problems. Rather, with ap-
propriately defined macros, one now may express ag-
gregate functions.

Example 2 The following macro can be used to find the
maximum value that fluent f takes on in a history of
length n:

(〈maxf , maxfh(n)〉,
〈maxfh(0), f(0)〉,
〈maxfh($1), ((f($1) > maxfh($1− 1)) ?

f($1) : maxfh($1− 1))〉).

So, for example, in a history of length 2, the macro
maxf simply stands for the following expression (high-
lighting the structure by underlining):

(f(2) > (f(1) > f(0) ? f(1) : f(0)) ?

f(2) : (f(1) > f(0) ? f(1) : f(0))).

That is, neither maxf nor its “helper macro” maxfh
appear in the actual expression. Last, given the associ-
ated mappings s0 : f 7→ 2, s1 : f 7→ 3, and s2 : f 7→ 1,
the expression in Example 1 evaluates to 3.

It is important to note that aggregates like maxfh(i)
are merely macros representing nested value terms.
Thus, in particular, they are not fluents nor are they
terms in the language RΣ,n.

Example 3 The following macro sums the values of f
in a history:

(〈sumf , sumfh(n)〉,
〈sumfh(0), f(0)〉,
〈sumfh($1), f($1) + sumfh($1− 1)〉).

Example 4 A similar definition as in the previous ex-
ample can be given for counting all occurrences of
(propositional fluent) f being true:

(〈cntf , cntfh(n)〉,
〈cntfh(0), f(0) ? 1 : 0〉,
〈cntfh($1), cntfh($1− 1) + (f($1) ? 1 : 0)〉).

Further refinements are easily specified, as illustrated
next.

Example 5 Preferring histories with the globally mini-
mum number of days (states) on which it rained more
than t litres can be modelled by an extension of the
count macro:

(〈cntf , cntfh(n)〉,
〈cntfh(0), (f(0) ≤ t) ? 0 : 1〉,
〈cntfh($1), cntfh($1− 1) + ((f($1) ≤ t) ? 0 : 1)〉).

For modelling action costs, we associate with each
action a fluent yielding the cost of the corresponding ac-
tion and then sum the fluent. This is simple, and more-
over allows us to associate with an action other mea-
sures, such as duration.

Correctness of Macros
The correctness of a macro (that is to say, the macro
does what it is supposed to do) can be determined infor-
mally by inspection, or by an inductive argument. An-
other approach is to define a term corresponding to a
macro as an extension to the language RΣ,n, and then
prove that this new term corresponds to the value com-
puted by the macro. This as well gives a means for
specifying the semantics of a macro (after a fashion)
and also the semantics of aggregates. We illustrate with
two examples.

To begin with, consider where we wish to define a flu-
ent that will correspond to the maximum value of some
other fluent obtained so far in a history. Specifically, for
fluent f , we want to define a fluent fmaxfh , where

fmaxfh(i) = max
0≤j≤i

f(j).

We can do this by extending Definition 6 as follows:

IH(fmaxfh(i)) ={ IH(f(0)), if i = 0;
IH(f(i) > fmaxfh(i− 1) ?

f(i) : fmaxfh(i− 1)), otherwise.

We can now define fluent fmaxf to correspond to
fmaxfh(n) – that is, extend the interpretation function
so that IH(fmaxf) = IH(fmaxfh(n)). It is now a

straightforward, albeit tedious, task to show that any
formula φ that mentions fluent fmaxf has precisely the
same truth value in any history as does the macro ex-
pansion of macro maxf in the formula φ with all occur-
rences of fmaxf replaced by maxf .

Similarly, we can define a fluent fsumf that will cor-
respond to the sum of the values of fluent f obtained so
far in a history; i.e., we can define

fsumf (i) =
∑

0≤j≤i

f(j).

We do this by extending Definition 6 as follows:

IH(fsumf (i)) ={
IH(f(0)), if i = 0;
IH(f(i) + fsumf (i− 1)), otherwise. (1)

Again, we can show that the truth value of formulas
mentioning fsumf will correspond to the macro ex-
pansion of corresponding formulas mentioning macro
sumf .

The overall structure of these correspondences is
clear. In the case of macros, we typically have a recur-
sive expansion based on time points, and that terminates
at time point 0 or n. In the case of the interpretation
function IH (relative to history H), this recursive ex-
pansion is mirrored in a recursive definition of the value
of intermediate fluents. Thus, in this case, the value of a
defined fluent (such as fmaxf) can be determined from
the underlying fluent (viz. f) by a process akin to macro
expansion.

The overall scheme can be obviously extended to
more than one fluent, and more than a single time point
for each step. For example, we can define a fluent ex
that counts the number of times the value of fluent f
exceeds that of g two time points ago, as follows:

IH(ex (i)) ={ 0, if i = 0 or i = 1
IH(f(i) > g(i− 2) ?

ex (1− i) + 1 : ex (1− i)) , otherwise.

From this, a corresponding macro can straightfor-
wardly be defined. This in turn suggests a methodol-
ogy for constructing macros: First, give a mathematical
definition for the desired mathematical concept, for ex-
ample, the sum of fluent f is given by max0≤j≤n f(j).
This can then be defined within our language RΣ,n, as
done in (1), and then essentially discharged from the
language by the macro definition in Example 3.

Application: Expressing Preferences on
Histories

In this section, we sketch a major application of our lan-
guage, and in particular of the conditional construct and
macros, to expressing preferences between histories.

A Preference Language
We briefly summarise our earlier work on preferences
and a preference language; for formal details see (Del-
grande, Schaub, & Tompits 2005). The central notion
of this approach is of a preference frame, consisting of
a pair (H,P), where
• H is a set of histories and
• P is a set of preferences on histories.
Histories are as in the preceding sections. A prefer-
ence specifies an individual criterion for distinguishing
among histories. A preference defines a binary relation,
consisting of pairs of histories where one history is pre-
ferred to the other, according to the preference. We de-
fine a preference among two histories directly in terms
of a formula φ; this formula is in a language PΣ,n that
extends QΣ,n so that one can now also refer to his-
tories, in the following sense. We define that Hh is
not less preferred than Hl, written Hl �φ Hh, just if
〈Hl,Hh〉 |= φ, where φ expresses a preference condi-
tion between these two histories in PΣ,n. Hl �φ Hh

holds if φ is true by evaluating it with respect to Hl and
Hh. This requires that we are able to refer to fluent and
action names at time points and in histories. Preferences
are expressed by means of a formula composed of
• Boolean combinations of fluents and actions indexed

by time points and by a history, and
• quantifications over time points.
Indexing with respect to time points and histories is
achieved via labelled atoms of form ` : b(i). Here, ` is
a label, either l or h, referring to a history which is con-
sidered to be lower or higher ranked, respectively, b is
an action or fluent name, and i is a time point. Semanti-
cally, 〈Hl,Hh〉 |= l : b(i) holds if b holds at time point i
in history Hl; and analogously for 〈Hl,Hh〉 |= h : b(i).
This is extended to labelled formulas in the expected
fashion.

For example, we can express that history Hh is pre-
ferred to history Hl if fluent f is true at some point in
Hh but never true in Hl by the formula

φ = (h : ∃if(i)) ∧ (l : ∀i¬f(i)), (2)

providing 〈Hl,Hh〉 |= φ holds.
Each preference φ ∈ P induces a binary relation �φ

on H . Depending on the type of preference encoded
in P , one would supply a strategy from which a maxi-
mally preferred history is selected. Thus for preferences
only of the form (2), indicating which fluents are desir-
able, the maximally preferred history might be the one
which was ranked as “preferred” by the greatest number
of preferences in P .

Expressing Preferences among Histories
We define a preference among two histories, Hl and
Hh, directly in terms of a formula φ:

Hl �φ Hh iff 〈Hl,Hh〉 |= φ. (3)

The intent with 〈Hl,Hh〉 |= φ is that φ expresses a
condition in which Hh is at least as preferred as Hl.
This requires that we be able to talk about the truth val-
ues of fluents and actions in Hl and Hh. Using our
query language on histories, RΣ,n, and the notion of
truth in a history for a query, we can define a preference-
specification language, enabling the definition of pref-
erence relations between histories, as in (3).
Definition 11 Let Σ = 〈D,F, V, A〉 be an action sig-
nature and n ≥ 0 a natural number.

We define the preference-specification language PΣ,n

over RΣ,n as follows:
1. The alphabet of PΣ,n consists of the alphabet of the

query language RΣ,n, together with the symbols l
and h, called history labels, or simply labels.

2. Atoms of PΣ,n are either time atoms of RΣ,n or ex-
pressions of the form ` : q, where ` ∈ {l,h} is a label
and q is an action or value atom of RΣ,n.
Atoms of the form ` : p are also called labelled atoms,
with ` being the label of ` : p. We call ` : p ground iff
p is ground.

3. Formulas of PΣ,n are built from atoms, as introduced
above, in a similar fashion as formulas of RΣ,n. We
call formulas of PΣ,n also preference formulas.

4. A preference axiom, or simply axiom, is a closed
preference formula, i.e., containing no free time-
stamp variables.
For a formula α of RΣ,n and a history label ` ∈

{l,h}, by ` : α we understand the formula resulting
from α by replacing each action or value atom b(t) of
α by the labelled atom ` : b(t). Informally, a labelled
atom ` : p expresses that p holds in a history associated
with label `. This is made precise as follows.

Definition 12 Let Σ be an action signature and n ≥
0. Let φ be a preference axiom of PΣ,n and Hl,Hh

histories over Σ with |Hi| ≤ n, for i = l, h.
The relation 〈Hl,Hh〉 |=PΣ,n

φ is recursively defined
as follows:

1. If φ = ` : p is a ground labelled atom, for ` ∈ {l,h},
then 〈Hl,Hh〉 |=PΣ,n φ iff

(a) Hl |=RΣ,n
p, for ` = l, and

(b) Hh |=RΣ,n
p, for ` = h.

2. Otherwise, 〈Hl,Hh〉 |=PΣ,n
φ is defined analogously

as the truth conditions for |=RΣ,n
.

If 〈Hl,Hh〉 |=PΣ,n
φ holds, then 〈Hl,Hh〉 is said to

satisfy φ. If Σ and n are clear from the context, we may
simply write |= instead of |=PΣ,n .

Definition 13 Let φ be a preference axiom ofPΣ,n. For
histories Hl,Hh over Σ of maximum length n, we define

Hl �φ Hh iff 〈Hl,Hh〉 |=PΣ,n φ.

Note that the employment of the symbol�φ is purely
suggestive at this point, since �φ may have none of the
properties of an ordering.

We give some illustrations next.

Example 6 The formula(
h : (∃if1(i) ∧ ∀i¬f2(i))

)
∧(

l : (∃if2(i) ∧ ∀i¬f1(i))
)

expresses a preference of f1 over f2 in the sense that,
for all histories Hl,Hh, we prefer Hh over Hl when-
ever it holds that Hh satisfies f1 but not f2, whilst Hl

satisfies f2 but not f1.

Given this, we can now state a preference for histories
where the fluent f is maximum (as defined in Exam-
ple 2). In place of macro maxf , we employ two macros,
h:maxf and l :maxf .

In the former case, we have the macro definition:2

(〈h:maxf , h:maxfh(n)〉,
〈h:maxfh(0), h : f(0)〉,
〈h:maxfh($1),

((h : f($1) > h:maxfh($1− 1)) ?
(h : f($1)) : (h:maxfh($1− 1))〉).

The macro l :maxf is defined analogously. This enables
the expression of the preference:

h:maxf ≤ l :maxf . (4)

Similarly, we can state a preference for histories
where the values for f are maximum over every subin-
terval [0, i] where 0 ≤ i ≤ n by:

∀i(h:maxfh(i) ≤ l :maxfh(i)).

Since our designated fluent f could in fact be mea-
suring a quantity such as action cost or action duration,
the preceding examples show how one can express pref-
erences for plans (assuming that the histories are pro-
duced by a planner) that maximize certain quality mea-
sures.

As a last example, we can express a preference for
the range of values of f being maximal in one of (at
least) three ways. This can be directly expressed, given
our macro maxf and a suitable definition of minf by:

(h:maxf − h:minf) ≤ (l :maxf − l :minf).

Otherwise, one could directly encode a macro express-
ing this notion, or, third, one could define a macro
maxdiff that expands to maxf −minf .

The preference frame with the preference (4) induces
a total preorder on the set of histories H . It is then
a simple matter to select the most preferred history or
histories. Of course, things may get much more com-
plicated, particularly in the presence of different forms
of preferences or multiple types of preferences. For de-
tails on such issues, see (Delgrande, Schaub, & Tompits
2005).

2To be sure, this isn’t great notation. On the one hand,
h:maxf is a macro name (composed of 6 characters) while
h : f($1) is a semantic entity in our language PΣ,n once a
term is substituted in for $1 in the macro expansion.

Conclusion
We have addressed the problem of expressing general
preferences that include aggregate quantities over his-
tories. Thus, inter alia, we addressed adding prefer-
ences, including preferences on aggregates, in planning
systems. We first defined a query language, RΣ,n, that
extended our earlier query language QΣ,n (Delgrande,
Schaub, & Tompits 2005) by the addition of a condi-
tional term-forming operator. In addition, we defined
the notion of macros for this language. Given this, we
showed how our second language PΣ,n could be em-
ployed for defining general preferences including pref-
erences on aggregate quantities. As before, the frame-
work allows the expression of conditional preferences,
or preferences holding in a given context, as well as
(trivially) absolute preferences, expressing a general de-
sirability that a formula hold in a history.

We have argued previously that the overall approach
is very general and flexible; specifically, we argued that
previous approaches to preferences in planning are ex-
pressible in our formalism. With the added aggregate
capability we can now express aggregate preferences
like those discussed by Eiter et al. (2003), but notably
within our broader preference framework. As well,
while the approach is formulated within the framework
of action languages, our results are applicable to general
planning formalisms.

In a planning context, our approach would amount to
generating plans and selecting the most preferred plan
based on the preferences. As such, the approach is read-
ily adaptable to an anytime algorithm, in which one may
select the currently-best plan(s), but with the hope of a
more-preferred plan being generated. An obvious topic
for future work is to directly generate a preferred plan
(rather than selecting from candidate plans); however,
this appears to be a significantly difficult problem. An-
other topic for future work is to generalize our notion
of macro, perhaps allowing for fluent arguments. Thus,
if it can be carried out with no additional computational
overhead, rather than having a macro maxf for the max-
imum value of fluent f , it would be more convenient to
express this as max (f) where f is now an argument for
a general max macro.

Acknowledgements The first author was partially
supported by a Canadian NSERC Discovery Grant. The
second author was partially supported by DFG under
grant SCHA 550/6, TP C. The authors are grateful to
Yannis Dimopoulos for getting them interested in pref-
erences on aggregrates.

References
Bienvenu, M., and McIlraith, S. 2005. Specifying
and generating preferred plans. In McIlraith, S.; Pep-
pas, P.; and Thielscher, M., eds., Seventh International
Symposium on Logical Formalizations of Common-
sense Reasoning, 25–32.

Delgrande, J.; Schaub, T.; and Tompits, H. 2004.
Domain-specific preferences for causal reasoning and
planning. In Dubois, D.; Welty, C.; and Williams, M.,
eds., Proceedings of the Ninth International Confer-
ence on the Principles of Knowledge Representation
and Reasoning, 673–682. Whistler, BC: The AAAI
Press/The MIT Press.
Delgrande, J.; Schaub, T.; and Tompits, H. 2005.
A general framework for expressing preferences in
causal reasoning and planning. In McIlraith, S.; Pep-
pas, P.; and Thielscher, M., eds., Seventh International
Symposium on Logical Formalizations of Common-
sense Reasoning, 46–54.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and
Polleres, A. 2003. Answer set planning under ac-
tion costs. Journal of Artificial Intelligence Research
19:25–71.
Fritz, C., and McIlraith, S. 2005. Compiling qual-
itative preferences into decision-theoretic Golog pro-
grams. In IJCAI’05 Workshop on Nonmonotonic Rea-
soning, Action and Change, 45–52.
Gelfond, M., and Lifschitz, V. 1998. Action lan-
guages. Electronic Transactions on AI 3. Available
at http://www.ep.liu.se/ej/etai/.
Haddawy, P., and Hanks, S. 1992. Representations
for decision-theoretic planning: Utility functions for
deadline goals. In Proceedings of the Third Inter-
national Conference on the Principles of Knowledge
Representation and Reasoning, 71–82.
Myers, K., and Lee, T. 1999. Generating qualitatively
different plans through metatheoretic biases. In Pro-
ceedings of the AAAI National Conference on Artifi-
cial Intelligence, 570–576.
Son, T., and Pontelli, E. 2004. Planning with
preferences in logic programming. In Lifschitz, V.,
and Niemelä, I., eds., Proceedings of the Seventh In-
ternational Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’04), volume 2923
of Lecture Notes in Artificial Intelligence, 247–260.
Springer Verlag.
Wellman, M., and Doyle, J. 1991. Preferential seman-
tics for goals. In Proceedings of the AAAI National
Conference on Artificial Intelligence, 698–703.

