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Abstract

The PLATYPUS approach offers a generic platform for dis-
tributed answer set solving, accommodating a variety of dif-
ferent modes for distributing the search for answer sets over
different processes and/or processors. In this paper, we de-
scribe two major extensions of PLATYPUS. First, we present
its probing approach which provides a controlled non-linear
traversal of the search space. Second, we present its new
multi-threading architecture allowing for intra-process distri-
bution. Both contributions are underpinned by experimental
results illustrating their computational impact.

Introduction
The success of Answer Set Programming (ASP) has been
greatly enhanced by the availability of highly efficient ASP-
solvers (Simons, Niemelä, & Soininen 2002; Leone et al.
2006). But, more complex applications are requiring com-
putationally more powerful devices. Distributing parts of
the search space among cooperating sequential solvers per-
forming independent searches can provide increased compu-
tational power. To accomplish this distribution of the prob-
lem solving process, we have proposed a generic approach
to distributed answer set solving, called PLATYPUS (Gress-
mann et al. 2005).1

The PLATYPUS approach differs from other pioneering
work in distributed answer set solving (Finkel et al. 2001;
Hirsimäki 2001; Pontelli, Balduccini, & Bermudez 2003),
by accommodating in a single design a variety of different
architectures for distributing the search for answer sets over
different processes and processors. The resulting platform,2
platypus, allows one to exploit the increased computa-
tional power of clustered and/or multi-processor machines

∗Affiliated with the School of Computing Science at Simon
Fraser University, Burnaby, Canada.

1platypus, small densely furred aquatic monotreme of Australia
and Tasmania having a broad bill and tail and webbed feet.

2We use typewriter font when referring to actual systems.

via different types of inter- and intra-process distribution
techniques like MPI (Gropp, Lusk, & Thakur 1999), Unix’
fork mechanism, and (as discussed in the sequel) multi-
threading. In addition, the generic approach permits a flexi-
ble instantiation of all parts of the design.

More precisely, the PLATYPUS design incorporates two
distinguishing features: First, it modularises (and is thus
independent of) the propagation engine (currently exem-
plified by smodels’ and nomore++’ expansion proce-
dures). Second, the search space is represented explicitly.
This representation allows a flexible distribution scheme to
be incorporated, thereby accommodating different distribu-
tion policies and architectures. For instance, the previous
platypus system (Gressmann et al. 2005) supported a
multiple process (by forking) and a multiple processor (by
MPI (Gropp, Lusk, & Thakur 1999)) architecture. The
two particular contributions discussed in this paper take ad-
vantage of these two aspects of the generic design philos-
ophy. The first extension to PLATYPUS, probing, refines
the encapsulated module for propagation. Probing is akin
to the concept of restarting in the related areas of satis-
fiability checking (SAT) (Baptista & Marques-Silva 2000;
Gomes, Selman, & Kautz 1998) and constraint processing
(CSP) (Gomes et al. 2000; Walsh 1999). The introduction
of probing demonstrates one aspect of the flexibility in our
PLATYPUS design: by having a modularised generic design,
we can easily specify parts of the generic design to give
different computational properties to the platypus sys-
tem. Our second improvement to platypus is the integra-
tion of multi-threading into our software package.3 Multi-
threading expands the implemented architectural options for
delegating the search space and adds several new features to
platypus: (1) the single- and multi-threaded versions can
take advantage of new hardware innovations such as multi-
core processors, as well as primitives to implement lock-
free data structures, (2) a hybrid architecture which allows

3Available at (platypus, website undated).



the mixing of inter- and intra-process distribution, and (3)
the intra-process distribution provides a lighter parallelisa-
tion mechanism than forking.

In the remainder of this paper we highlight our two con-
tributions, probing and multi-threading, by focussing on the
appropriate aspects of the abstract PLATYPUS algorithm re-
produced from (Gressmann et al. 2005) below. As well,
their computational impact is exposed in data provided by a
series of experiments.

Definitions and notation
In Answer Set Programming, a logic program Π is asso-
ciated with a set AS (Π) of answer sets, which are distin-
guished models of the rules in the program. Since we do not
elaborate upon theoretical aspects here, we refer the reader
to the literature for a formal introduction to ASP (cf. (Gel-
fond & Lifschitz 1991; Lifschitz 1996; Baral 2003)).

For computing answer sets, we rely on partial assign-
ments, mapping atoms in an alphabet A onto true, false, or
undefined. We represent such assignments as pairs (X, Y )
of sets of atoms, in which X contains all true atoms and Y
all false ones. An answer set X is then represented by the
total assignment (X,A \ X). In general, a partial assign-
ment (X, Y ) aims at capturing a subset of the answer sets of
a logic program Π, viz.

AS (X,Y )(Π) = {Z ∈ AS (Π) | X ⊆ Z,Z ∩ Y 6= ∅} .

The PLATYPUS approach and its probing mode
To begin, we recapitulate the major features of the PLATY-
PUS approach (Gressmann et al. 2005). To enable a dis-
tributed search for answer sets, the search space is decom-
posed by means of partial assignments. This method works
because partial assignments that differ with respect to atoms
not in the undefined set represent different parts of the search
space. To this end, Algorithm 1 is based on an explicit rep-

Algorithm 1: PLATYPUS

Global : A logic program Π over alphabet A.
Input : A nonempty set S of partial assignments.
Output: Print a subset of the answer sets of Π.

repeat
(X, Y ) ← CHOOSE(S )1
S ← S \ {(X, Y )}2
(X ′, Y ′) ← EXPAND((X, Y ))3
if X ′ ∩ Y ′ = ∅ then4

if X ′ ∪ Y ′ = A then5
print X ′6

else
A ← CHOOSE(A \ (X ′ ∪ Y ′))7
S ← S∪{ (X ′∪{A}, Y ′), (X ′, Y ′∪{A}) }8

S ← DELEGATE(S )9

until S = ∅

resentation of the search space in terms of a set S of partial
assignments, on which it iterates until S becomes empty.
The algorithm relies on the omnipresence of a given logic

program Π and the program’s alphabet A as global param-
eters. Communication between PLATYPUS instances is lim-
ited to delegating partial assignments as representatives of
parts of the search space. The set of partial assignments
provided in the input variable S delineates the search space
given to a specific instance of PLATYPUS. Although this
explicit representation offers an extremely flexible access to
the search space, it must be handled with care since it grows
exponentially in the worst case. Without Line 9, Algo-
rithm 1 computes all answer sets in

⋃
(X,Y )∈S AS (X,Y )(Π).

With Line 9 each PLATYPUS instance generates a subset of
the answer sets. CHOOSE and DELEGATE are in principle
non-deterministic selection functions: CHOOSE yields a sin-
gle element, DELEGATE communicates a subset of S to a
PLATYPUS instance and returns a subset of S . Clearly, de-
pending on what these subsets are, this algorithm is subject
to incomplete and redundant search behaviours. The EX-
PAND function hosts the deterministic part of Algorithm 1.
This function is meant to be implemented with an off-the-
shelf ASP-expander that is used as a black-box providing
both sufficiently strong as well as efficient propagation op-
erations. See (Gressmann et al. 2005) for further details.

Let us now turn to specific design issues beyond the
generic description of Algorithm 1. To reduce the size of
partial assignments and thus that of passed messages, we fol-
low (Pontelli, Balduccini, & Bermudez 2003) in represent-
ing partial assignments only by atoms4 whose truth values
were assigned by choice operations (cf. atom A in Lines 7
and 8). Given an assignment (X, Y ) along with its sub-
sets Xc ⊆ X and Yc ⊆ Y of atoms assigned by a choice
operation, we have (X, Y ) = EXPAND((Xc, Yc)). Conse-
quently, the expansion of assignment (X, Y ) to (X ′, Y ′) in
Line 3 does not affect the representation of the search space
in S .5 Furthermore, the design includes the option of using
a choice proposed by the EXPAND component for imple-
menting Line 7. Additionally, the currently used expanders,
smodels and nomore++, also supply a polarity, indicat-
ing a preference for assigning true or false.6

Thread architecture.
The overall design of the platypus platform splits Algo-
rithm 1 into two salient components: the distribution
and the core. While the former encapsulates inter-process
distribution, the latter handles intra-process distribution and
all (sequential) answer set computation methods. For better
hardware adaption, the core comes in a single- and multi-
threaded version. A thread amounts to a sequential PLATY-
PUS instance. Since multi-threading and all other distribu-
tion aspects are dealt with in the next section, we concentrate
in what follows on the non-distributive features of the core
(equivalent to the single-threaded version).

Each (answer set computing) thread inside the core of
a platypus process has an explicit representation of its

4Assignments are not a priori restricted to atoms. This is ex-
ploited when using nomore++.

5Also, some care must be taken when implementing the tests in
Lines 4 and 5; see (Gressmann et al. 2005).

6We rely on this information in Algorithm 3.



(part of the) search space in its variable S . This set of par-
tial assignments is implemented as a tree. Whenever more
convenient, we describe S in terms of a set of assignments
or a search tree and its branches. In contrast to stack-based
ASP-solvers, like smodels or nomore++, whose search
space contains a single branch at a time, this tree normally
contains several independent branches. The two major com-
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Figure 1: Inner structure of a (single-threaded) core mod-
ule.

ponents of a (single-threaded) core along with their inter-
relationship are depicted in Figure 1. The triangle on the left
hand side represents the search tree contained in variable S
of Algorithm 1. The vector represents the active partial as-
signment (or branch, respectively) selected in Line 1, and
being currently treated by the expander (see below). The
square on the right hand side stands for the EXPAND mod-
ule; the state of the expander is characterised by the con-
tents of its stack, given on the left within the square. The
contents of the stack corresponds to the active branch in the
search tree (indicated by the usage of an arrow within the
stack). While the stack contains the full assignment (X, Y ),
the search tree’s active branch only contains the pair of sub-
sets (Xc, Yc) having been assigned by choice operations.
The box A symbolises the fact that expanders (relying on
smodels or nomore++) also provide a candidate for the
choice A made in Line 7 of Algorithm 1.

Probing.
The explicit representation of the (partial) search space, al-
though originally devised to enable the use of a variety of
strategies for delegating parts of the search space in the dis-
tributed setting, appears to be beneficial in some sequential
contexts, as well. Of particular interest, when looking for
a single answer set, is limiting fruitless searches in parts of
the search tree that are sparsely populated with answer sets.
In such cases, it seems advantageous to leave a putatively
sparsely populated part and continue at another location in
the search space. In platypus, this decision is governed
by two command line options, #c and #j. A part of the
search is regarded as fruitless, whenever the number of con-
flicts (as encountered in Line 4) exceeds the value of #c.
The corresponding conflict counter7 c is incremented each
time a conflict is detected in Line 4 in Algorithm 1. The
counter c is reset to zero whenever an answer set is found
in Line 5 or the active branch in S is switched (and thus
the expander is reinitialised; see Algorithm 2). The number

7Each thread has its own conflict and jump counters.

of jumps in the search space is limited by #j; each jump
changes the active branch in the search space. We use a bi-
nary exponential back-off (cf. (Tanenbaum 2001)) scheme
to heed unsuccessful jumps. The idea is as follows. Initially,
probing initiates a jump in the search space whenever the ini-
tial conflict limit #c is reached. If no solution is found after
#j jumps, then the problem appears to be harder than ex-
pected. In this case, the permissible number of conflicts #c
is doubled and the allowed number of jumps #j is halved.
The former is done to prolong systematic search, the lat-
ter to reduce gradually to zero the number of jumps in the
search space. We refer to this treatment of the search space
as probing. Probing is made precise in Algorithm 2, which
is a refinement of the CHOOSE operation in Line 1 of Al-
gorithm 1. Note that probing continues until the parameter

Algorithm 2: CHOOSE (in Line 1 of Algorithm 1) in
probing mode.

Global : Positive integers #c,#j, initially supplied via
command line.
Integers c, j, initially c = 0 and j = #j.
Selection policy P , supplied via command
line.

Input : A set S of partial assignments with an active
assignment b ∈ S .

Output: A partial assignment.

begin
// Counter c is incremented by one in Line 4 of
Algorithm 1.
if (c ≤ #c) then // no jumping

return b
if (#j = 0) then // no jumping

return b
else

c← 0
j ← j − 1
if (j = 0) then

#c← (#c× 2)
#j ← (#j div 2)
j ← #j

let b′ ← SELECT(P,S ) in
make b′ the active partial assignment in S
return b′

end

#j becomes zero. When probing stops, search proceeds in
the usual depth-first manner by considering only one branch
at a time by means of the expander’s stack. Clearly, this is
also the case during the phases when the conflict limit has
not been reached (c ≤ #c).

At the level of implementation, the expander must be
reinitialised whenever the active branch of the search space
changes. Reinitialisation is unnecessary when extending the
active branch by the choice (obtained in Line 7) in Line 8
of Algorithm 1 or when backtracking is possible in case a
conflict or an answer set is obtained. In the first case, the ex-
pander’s choice (that is, an atom along with a truth value) is
simply pushed on top of the expander’s stack (and marked as



a possible backtracking point). At the same time, the active
branch in S is extended by the choice and a copy of the ac-
tive branch extended by the complementary choice is added
to S . The probing refinement of Line 8 in Algorithm 1 is
made precise in Algorithm 3.

Algorithm 3: Assignment (in Line 8 of Algorithm 1) in
probing mode.

Global : A set S of partial assignments with active
assignment (X ′, Y ′).

Input : An atom A and a constant P ∈ {true, false}.
begin

S ← S ∪ { (X ′ ∪ {A}, Y ′), (X ′, Y ′ ∪ {A}) }
if P = true then

make (X ′ ∪ {A}, Y ′) the active partial
assignment in S

else
make (X ′, Y ′ ∪ {A}) the active partial
assignment in S

end

In the case that a conflict occurs or an answer set is ob-
tained, the active branch in S is replaced by the branch cor-
responding to the expander’s stack after backtracking. If it
exists, this is the largest branch in S that equals a subbranch
of the active branch after switching the truth value of its leaf
element. If backtracking is impossible, the active branch
is chosen by means of the given policy P .8 If this, too, is
impossible, S must be empty and the PLATYPUS instance
terminates.

The policy-driven selection of a branch, expressed by SE-
LECT(P,S ) in Algorithm 2, is governed by another com-
mand line option 9 #n and works in two steps.

1. Among all existing branches,10 the #n best ones,
b1, . . . , b#n, are identified according to policy P .
To be precise, let p be a mapping of branches to or-
dinal values, used by P for evaluating branches. For
b ∈ {b1, . . . , b#n} and b′ ∈ S \ {b1, . . . , b#n}, we then
have that11 p(b) ≤ p(b′).

2. A branch b is randomly selected from {b1, . . . , b#n}.
The random selection from the best #n branches counter-
acts the effect of a rigid policy by arbitrarily choosing some
close alternatives.

To see that this approach guarantees completeness, it is
sufficient to see that no partial assignment is ever eliminated
from the search space. Also, when probing, the number of
different branches in the search space S cannot exceed twice
the number of initially permitted jumps, viz. 2 × #j. For
instance, if the command line option sets #j to 13, we may
develop at most 13 + 6 + 3 + 1 different branches in S ,

8To this end, platypus supports three policies, picking a
largest, a smallest, or a random assignment.

9Option #n can be zero, indicating the use of all branches.
10This includes all backtracking points.
11That is, branches sharing the worst value among the ones in

{b1, . . . , b#n} may also occur in S \ {b1, . . . , b#n}.

which is bound by 2 × 13. Thereby, a branch is considered
as different if it is not obtainable from another’s subbranch
by switching the assigned value of a single element.12

Thread Architecture
In the PLATYPUS algorithm, DELEGATE allows the assign-
ing of answer set computation tasks to other PLATYPUS in-
stances. In the following, we detail the multi-threaded ar-
chitecture extension to the platypus platform which adds
intra-process distribution delegation capacities to the exist-
ing inter-process distribution delegation capabilities, which
are optionally realised via Unix’ forking mechanism13 or
MPI (Gropp, Lusk, & Thakur 1999) (described in (Gress-
mann et al. 2005)). This enlarged architecture opens up the
possibility of hybrid delegation methods, for instance, dele-
gating platypus via MPI on a cluster of multi-processor
workstations, with delegation among the multi-processors of
the workstation accomplished by means of multi-threading.

The architecture is split into more or less two parts:
the core and the distribution components. The
configuration of both components inside a process is de-
picted in Figure 2. The core encapsulates the search
for answer sets, and the DELEGATE function is encapsu-
lated in the distribution component. The core and
distribution components have well-defined interfaces
that localize the communication between the components.
This design allows us to incorporate, for instance, single-
and multi-threaded cores, as well as inter-process distribu-
tion schemes, like MPI and forking, with ease.

Each platypus process hosts an instance of the core,
the core object, which cooperates with one instance of the
distribution component, the distribution object. Com-
munication is directed from core to distribution objects and
is initiated by the core object. During execution the major
flow of control lies with the core objects.

The multi-threaded core flow of control works according
to the master/slave principle. The master coordinates a num-
ber of slave threads (viz. thread0 and thread1 to threadn,
respectively, in Figure 2). Each slave thread executes the
PLATYPUS algorithm on its thread-local search space, in-
dicated by the respective triangles and boxes as was done in
the previous section. The master thread handles communica-
tion (through the distribution object) with other platypus
processes on behalf of the slave threads. Communication
between the master thread and its slave threads is based
on counters (symbolised by �) and queues (represented by

). Similarly to the previous section, we use ar-
rows to indicate partial assignments. Events of interest (e.g.
statistics, answer sets, etc.) are communicated by the slave
threads to the master thread by incrementing the appropriate
counter or adding to the respective queue. The master thread
periodically polls the counters and queues for any change.
If the change requires information to be transmitted to other
platypus processes the master thread forwards this infor-

12This would simply be a backtracking point.
13Forking creates duplicate platypus processes, collaborating

in the search. Communication among them is done using POSIX
IPC (handling shared memory and message queues).
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Figure 2: Inner structure of a single process with a multi-
threaded core.

mation via the distribution object. The search ends (followed
by termination of the platypus program) if there is agree-
ment among the distribution objects that either all participat-
ing processes are in need of work (indicating all the work is
done) or the requested number of answer sets has been com-
puted.

Let us now illustrate the communication among core and
distribution objects by detailing the major counters and
queues. In the core, the idle thread counter of the master
thread (indicated by i in Figure 2) serves two purposes: It
indicates the number of idle slave threads in the core object,
and it shows the number of partial assignments in the thread
delegation queue of the master thread (indicated by t). Slave
threads share their search space automatically among them-
selves as long as one thread has some work left. A slave
thread running out of work (reaching an empty search space
S ) checks the availability of work via the idle thread counter
and if possible removes a partial assignment from the thread
delegation queue. Otherwise, it waits until new work is as-
signed to it.

A slave thread can become aware of the existence of an
idle thread by noting that the idle thread counter exceeds

zero during one of its periodic checks. If this is the case,
it splits off a subpart of its local search space according to
a distribution policy14, puts the partial assignment that rep-
resents the subspace into the thread delegation queue, and
decrements the idle thread counter. As this may happen si-
multaneously in several working slave threads, more partial
assignments can end up in the thread delegation queue than
there exist idle slaves. These extras are used subsequently
by idle threads.

When all slave threads are idle (that is, the idle thread
counter equals the number of slave threads.) the master
thread initiates communication via the distribution object to
acquire more work from other PLATYPUS processes. To this
end, the master thread operates in a polling model: The mas-
ter thread periodically queries the associated distribution ob-
ject for work until it either gets some work or is requested
to terminate.15 Once work is available, the master thread
adds it to the thread delegation queue, decrements the idle
thread counter,16 and wakes up a slave thread. The awoken
slave thread will find the branch there, take it out, and start
working again. From there on, the core enters its normal
thread-to-thread mode of work sharing.

Conversely, when a platypus process receives notifica-
tion that another process has run out of work, it attempts to
delegate a piece of its search space. To this end, it sets the
other-process-needs-work flag (indicated by o ) of the mas-
ter thread in its core object. All slave threads noticing this
flag clear the flag and delegate a piece of their search space
according to the delegation policy by adding it to the remote
delegation queue (indicated by r). The master thread takes
one branch out of the queue and forwards it to the requesting
platypus process (via the distribution object). Because of
the multi-threaded nature any number of threads can end up
delegating. Items left in the remote delegation queue are
used by the master thread to fulfil subsequent requests for
work by other platypus processes or work requests by its
slave threads.

The conceptual difference between the thread delegation
and the remote delegation queues is that the former handles
intra-core delegations, while the latter deals with extra-core
delegation, although non-delegated work can return to the
core. This is reflected by the fact that master and slave
threads are allowed to insert partial assignments into the
thread delegation queue, whereas only slave threads remove
items from this queue. In contrast, only the master thread
is allowed to eliminate items from the remote delegation
queue, while insertions are performed only by slave threads.

Implementation
An important aspect of the multi-threaded core implementa-
tion is the use of lock-free data structures (Valois 1995; Her-
lihy 1991; 1993) for synchronizing communication among

14Currently, platypus supports three policies, picking a
largest, a smallest, or a random assignment.

15For instance, if the required number of answer sets has already
been computed.

16The inserting thread is always responsible for decrementing
the idle thread counter.



master and slave threads. To be more precise,

• queues (such as the answer set, the thread delegation, and
the remote delegation queues) are based on Michael and
Scott’s FIFO queue (Michael & Scott 1996), and

• counters utilize atomic primitives to implement lock-
freedom.

The major benefits of lock-free data structures are that,
first, they avoid well-known problems of lock-based ap-
proaches such as deadlock, livelock, starvation, and the
priority inversion problem (Tanenbaum 2001) and, second,
they often provide better performance when contention is
high (Michael & Scott 1996). A drawback is that they need
hardware support in the form of universal atomic primi-
tives (Herlihy 1993). Although not all known data struc-
tures have efficient and general-purpose implementations
since they require rather powerful atomic primitives (Her-
lihy 1993), the lock-free data structures used in platypus
support Intel IA-32, IA-32 with AMD64/EM64T exten-
sions, and SPARC V8/V9 architectures running Linux, So-
laris, or Windows, ensuring a broad coverage of major hard-
ware architectures and operating systems.

Experimental Results
The following experiments aim at providing some indica-
tions on the computational value of probing and multi-
threading. A more detailed empirical evaluation can be
found in (Gressmann 2005), being partly mirrored at (platy-
pus, website undated).

All experiments were conducted with some fixed param-
eters.

• smodels (2.28) was used as propagation engine and for
delivering the (signed) choice in Line 7 of Algorithm 1,

• the choice in Line 1 of Algorithm 1 was fixed to the pol-
icy selecting assignments with the largest number of unas-
signed atoms,

• all such selections were done in a deterministic way by
setting command-line option #n to 1 (cf. the previous
section).

All tests were conducted with platypus ver-
sion 0.2.2 (platypus, website undated). Our results
reflect the average times of 5 runs for finding the first or all
answer sets, respectively, of the considered instance. Timing
excludes parsing and printing. The data was obtained on a
quad processor (4 Opteron 2.2GHz processors, 8 GB shared
RAM) under Linux.

For illustrating the advantage of probing, we have chosen
the search for one Hamiltonian cycle in clumpy graphs, pro-
posed in (Ward & Schlipf 2004) as a problem set being prob-
lematic for systematic backtracking. These benchmarks are
available at (platypus, website undated). Table 1 shows the
timings for probing running the single-threaded core, with
all combinations of settings for the numbers of conflicts #c
(10, 50, 100, 200) and jumps #j (32, 64, 128, 256, 512),
respectively. The entries give the aforementioned average
time. For comparison, we also provide the corresponding

smodels times.17 as well as the ones for single-threaded
platypus without probing in the first two columns, la-
belled sm and st. The remaining columns are labelled with
the used command line options, viz. #c,#j. A blank entry
represents a timeout after 240 seconds.

First of all, we notice that the systems using standard
depth first-search are unable to solve 12 instances within
the given time limit, whereas when using probing, apart
for a few exceptions, all instances are solved. We see that
platypus without probing does best 8 times,18 as indi-
cated in boldface, and worst 24 times, whereas smodels
does best 2 times and worst 24 times. Compared to each
specific probing configuration, platypus without probing
performs better among 9 to 15 (smodels, 6 to 8) times out
of 38. In fact, there seems to be no clear pattern indicat-
ing a best probing configuration. However, looking at the
lower part of Table 1, we observe that platypus without
probing (smodels) times out 12 times, while probing still
gives a solution under all but three configurations. In all, we
see that probing allows for a significant speed-up for finding
the first answer set. This is particularly valuable whenever
answer sets are hard to find with a systematic backtracking
procedure, as witnessed by the entries in the lower part of
Table 1.

This improvement is even more impressive when using
multi-threading,19 where further speed-ups were observed
on 20 benchmarks, most of which were among the more sub-
stantial ones in the lower part of Table 1. The most signifi-
cant one was observed on clumpy graph 09,09,04 which was
solved in 4.66 and 4.26 seconds, respectively, when setting
#c,#j to 10,512 and using 3 and 4 slave threads, respec-
tively. Interestingly, even the multi-threaded variant without
probing cannot solve the last seven benchmarks within the
time limit, except for clumpy 09,09,07, which platypus
with 4 slave threads was able to solve in 13.8 seconds. This
illustrates that probing and multi-threading are two comple-
mentary techniques that can be used for accelerating the per-
formance of standard ASP-solvers. A way to tackle bench-
marks that are even beyond the reach of probing with multi-
threading is to use randomisation via command-line option
#n. Unlike the search for a single answer set, probing has
generally no positive effect on the computation of all answer
sets. In fact, on more common benchmarks (cf. (asparagus,
website undated)) probing rarely kicks in because the con-
flict counter is reset to zero whenever an answer set is found.

Table 2 displays the effect of multi-threading. For consis-
tency, we have taken a subset of the benchmarks20 in (Gress-
mann et al. 2005), used when evaluating the speed-
ups obtained with the (initial) forking and MPI variant of

17These times are only of an indicative nature since they include
printing one answer set; this cannot be disabled in smodels.

18The six cases differ by only 0.01sec which is due to slightly
different timing methods (see Footnote 17).

19The complete set of tests on multi-threading with and without
probing are provided at (platypus, website undated).

20These benchmarks stem mainly from (asparagus, website un-
dated).



clumpy sm st 10,32 10,64 10,128 10,256 10,512 50,32 50,64 50,128 50,256 50,512 100,32 100,64 100,128 100,256 100,512 200,32 200,64 200,128 200,256 200,512

06,06,02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
06,06,03 0.10 0.10 0.05 0.05 0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.07 0.11 0.11 0.11 0.11 0.11 0.17 0.16 0.16 0.16 0.16
06,06,04 0.61 0.63 0.08 0.08 0.08 0.08 0.08 0.14 0.14 0.14 0.14 0.14 0.24 0.24 0.24 0.24 0.24 0.34 0.34 0.34 0.34 0.34
06,06,05 6.30 6.61 1.24 1.79 0.95 0.84 0.84 0.78 0.66 0.66 0.66 0.66 0.96 0.96 0.96 0.96 0.96 2.29 2.14 2.14 2.14 2.14
06,06,06 0.38 0.39 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.06 0.06 0.06 0.10 0.10 0.10 0.10 0.10
06,06,07 0.04 0.03 0.14 0.14 0.14 0.14 0.14 0.08 0.08 0.08 0.08 0.08 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
06,06,08 0.08 0.08 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03
06,06,09 11.3 11.8 0.47 0.52 0.62 0.62 0.62 1.07 1.01 1.01 1.01 1.01 2.23 2.06 2.06 2.06 2.06 3.06 3.46 3.46 3.46 3.46
06,06,10 0.06 0.05 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.05 0.05 0.05 0.05 0.05
07,07,01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
07,07,02 0.05 0.04 0.61 0.74 0.71 0.71 0.71 1.76 1.45 1.45 1.45 1.45 2.01 2.92 2.91 2.91 2.90 0.04 0.04 0.04 0.04 0.04
07,07,03 8.98 9.60 18.7 9.56 14.5 3.75 3.26 4.79 4.72 16.9 6.11 6.05 5.02 33.8 18.4 9.71 10.3 23.3 9.75 22.1 14.5 14.5
07,07,04 1.37 1.38 0.98 2.05 2.01 3.49 3.38 1.57 1.79 1.54 1.54 1.53 2.87 2.19 2.19 2.20 2.19 2.76 3.30 3.30 3.30 3.28
07,07,05 0.03 0.02 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02
07,07,06 0.38 0.38 0.41 0.38 0.38 0.38 0.38 0.61 0.61 0.61 0.61 0.61 0.69 0.69 0.69 0.69 0.69 0.86 0.86 0.86 0.86 0.86
07,07,07 0.04 0.03 0.08 0.08 0.08 0.08 0.08 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
07,07,08 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.14 0.14 0.14 0.14 0.14
07,07,09 0.40 0.40 0.08 0.08 0.08 0.08 0.08 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.55 0.55 0.55 0.55 0.55
07,07,10 124.5 126.4 15.8 6.32 2.17 1.96 1.97 31.7 13.4 6.01 5.27 5.27 59.3 72.0 9.49 8.74 8.74 18.8 21.5 20.4 14.1 14.1
08,08,01 5.07 1.64 2.44 4.68 5.23 22.5 2.84 3.21 3.22 3.20 10.9 4.81 4.76 4.72 4.68 45.1 15.4 10.3 10.2 10.0
08,08,02 7.04 11.1 2.42 2.44 2.43 8.01 6.22 5.61 6.64 6.61 23.0 12.0 9.74 9.05 8.98 44.0 15.5 13.7 13.8 13.7
08,08,03 14.8 9.39 13.1 5.31 5.52 61.9 84.9 7.57 14.0 13.1 105.8 51.8 9.17 8.71 8.66 32.8 205.8 15.9 15.3 15.3
08,08,05 36.7 37.0 231.2 16.1 33.6 43.6 176.6 24.1 36.1 53.5 96.5 48.3 29.2 47.7 84.1 129.2 70.0 39.4 87.3 189 240
08,08,06 8.15 8.22 0.05 0.05 0.05 0.05 0.05 0.10 0.10 0.10 0.10 0.10 0.16 0.17 0.17 0.17 0.16 0.26 0.26 0.26 0.26 0.26
08,08,07 4.17 4.10 0.44 0.44 0.44 0.44 0.43 1.23 1.24 1.23 1.23 1.23 0.48 0.48 0.48 0.48 0.47 0.89 0.90 0.90 0.90 0.89
08,08,08 0.85 71.6 14.5 6.33 13.5 2.16 1.73 1.73 1.72 1.72 3.69 2.77 2.77 2.77 2.76 6.40 4.76 4.76 4.77 4.75
08,08,09 1.29 0.87 0.88 0.88 0.87 1.07 1.08 1.08 1.08 1.07 2.03 2.03 2.03 2.03 2.02 3.02 3.04 3.03 3.03 3.02
08,08,10 1.66 1.67 17.3 11.5 4.24 4.37 4.02 1.87 2.24 2.24 2.24 2.23 4.93 2.72 2.72 2.72 2.72 5.97 7.41 7.41 7.40 7.37
09,09,01 24.9 25.0 0.34 0.34 0.34 0.34 0.34 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.12
09,09,02 1.66 1.82 2.84 2.64 2.63 0.85 0.85 0.85 0.85 0.84 1.48 1.49 1.49 1.49 1.48 2.31 2.32 2.33 2.32 2.31
09,09,03 13.3 4.24 7.33 74.3 0.82 0.82 0.82 0.82 0.82 1.67 1.68 1.68 1.68 1.68 2.51 2.52 2.52 2.52 2.51
09,09,04 143.8 50.9 81.6 95.7
09,09,05 2.60 2.08 2.66 2.66 2.66 4.03 3.98 4.68 4.68 4.67 3.96 4.80 4.81 4.80 4.79 6.49 6.32 6.31 6.33 6.31
09,09,06 4.00 2.59 159.6 6.40 5.89 11.5 8.62 5.51 5.51 5.50 7.35 21.5 6.45 6.46 6.44 12.8 20.1 17.4 17.4 17.4
09,09,07 0.75 28.4 3.23 3.01 3.01 2.16 2.03 2.04 2.03 2.03 3.05 3.07 3.07 3.06 3.05 6.70 5.95 5.95 5.95 5.90
09,09,09 0.73 0.71 0.71 0.71 0.71 1.95 2.40 2.40 2.40 2.39 3.91 3.50 3.51 3.50 3.48 12.5 9.68 9.67 9.69 9.63

Table 1: Experimental results for probing (with the single-threaded core).

platypus.21 Unlike above, we measure the average time
(of 5 runs) for computing all answer sets. Comparing the
sum of the average times, the current platypus variant
running multi-threading is 2.64 times faster than its prede-
cessor using forking, reported in (Gressmann et al. 2005). In
more detail, the columns reflect the times of platypus run
with the multi-threaded core restricted to 1, 2, 3, and 4 slave
threads, (with probing disabled).22 When looking at each
benchmark, the experiments show a qualitatively consistent
2-, 3-, and 4-times speed-up when doubling, tripling, and
quadrupling the number of processors, with only minor ex-
ceptions. For instance, the smallest speed-up was observed
on schur-11-5 (1.52, 1.73, 1.75); among the highest speed-
ups, we find schur-19-4 (2.17, 3.43, 4.75) and pigeon-7-11

21The forking tests were also run on the same machine.
22The numbers in column ‘mt #1’ are comparable with the ones

obtained with smodels or the single-threaded core, respectively.
To be more precise, when running smodels and platypus in
mode ‘mt #1’ while printing to /dev/null, we observe an over-
all factor of 1.59 on the benchmarks in Table 2.

(2.24, 3.43, 4.6). The average speed-ups observed on this set
of benchmarks is 1.96, 2.89, and 3.75. However, when tak-
ing the weighted average, whose weight is given by the re-
spective average time, we obtain even a slightly super-linear
speed-up: 2.07, 3.18, 4.24. Such super-linear speed-ups are
observed primarily on time-demanding benchmarks and, al-
though less significant, have also been observed in (Gress-
mann et al. 2005) when forking. In all, we observe that
the more substantial the benchmark, the more clear-cut the
speed-up. Given that the experiments were run on a quad
processor, it is worth noting that we observe no drop in per-
formance when increasing the number of slave threads from
3 to 4, despite having a fifth (master) thread. Finally, we
note that the multi-threaded core, when restricted to a single
slave thread, exhibits only slightly poorer performance than
the single-threaded version: the latter is on average about
2% faster than the former.

At last, we would like to mention that the performance
of platypus is currently—under similar circumstances—
slightly better when using Unix’ fork (along with POSIX
IPC for communication) than when using multi-threading.



problem mt #1 mt #2 mt #3 mt #4
color-5-10 1.53 0.84 0.62 0.53
color-5-15 60.9 31.1 20.5 15.7
ham comp 8 3.66 1.99 1.38 1.10
ham comp 9 85.2 43.6 29.0 22.5
pigeon-7-8 1.38 0.73 0.57 0.48
pigeon-7-9 4.22 2.19 1.46 1.17
pigeon-7-10 13.2 6.31 4.12 3.08
pigeon-7-11 36.5 16.3 10.6 7.94
pigeon-7-12 88.2 39.9 25.8 19.0
pigeon-8-9 11.6 5.77 3.80 2.84
pigeon-8-10 48.3 22.3 14.2 10.4
pigeon-9-10 128.4 61.8 39.5 29.4
schur-14-4 1.00 0.63 0.47 0.42
schur-15-4 2.38 1.30 0.91 0.73
schur-16-4 4.04 2.14 1.41 1.11
schur-17-4 9.13 4.58 3.04 2.28
schur-18-4 16.7 8.34 5.31 3.92
schur-19-4 39.3 18.1 11.5 8.28
schur-20-4 44.1 21.9 13.8 10.1
schur-11-5 0.56 0.37 0.32 0.32
schur-12-5 1.49 0.83 0.63 0.54
schur-13-5 5.69 2.90 1.97 1.51
schur-14-5 18.6 9.05 6.00 4.42

Table 2: Experimental results on multi-threading.

We see two reasons for this. First, forking does not need
a master. Second, the current implementation of forking
also utilises lock-free data structures where possible (and it
thus improves over the one described in (Gressmann et al.
2005)).

Discussion
At the heart of the PLATYPUS design is its generality and
modularity. These two features allow a great deal of flexi-
bility in any instantiation of the algorithm, making it unique
among related approaches. Up to now, this flexibility
was witnessed by the possibility to use different off-the-
shelf solvers, different process-oriented distribution mech-
anisms, and a variety of choice policies. In this paper we
have presented two significant configurable enhancements
to platypus.

First, we have described its probing mode, relying on
an explicit yet restricted representation of the search space.
This provides us with a global view of the search space
and allows us to have different threads working on differ-
ent subspaces. Although probing does not aim at a sequen-
tial setting, we have experimentally demonstrated its com-
putational value on a specific class of benchmarks, which
is problematic for standard ASP-solvers. Probing offers a
non-linear23 exploration of the search space that can be ran-
domised while remaining complete. Unlike restart strategies
in SAT, which usually draw on learnt information (Baptista

23That is, the traversal of the search space does not follow a
given strategy like depth-first search.

& Marques-Silva 2000; Gomes, Selman, & Kautz 1998),
probing keeps previously abandoned parts of the search
space, so that they can be revisited subsequently. Hence,
the principal difference between our probing scheme and
restarting, known from SAT and CSP, is that probing is com-
plete in the sense that it allows the enumeration of all solu-
tions and the detection of no solution. Nonetheless, it would
be interesting to see how the various restart strategies in SAT
and CSP could be adapted for probing. Restart is imple-
mented in smodels and investigated in the context of lo-
cal search in ASP in (Dimopoulos & Sideris 2002). SAT-
based ASP-solvers, such as assat (Lin & Zhao 2004) and
cmodels (Giunchiglia, Lierler, & Maratea 2004), can take
advantage of restarts via their embedded SAT-solver.

Second, we have presented platypus’ multi-threaded
architecture. Multi-threading complements the previous
process-oriented distribution schemes of platypus by
providing further intra-process distribution capacities. This
is of great practical value since it allows us to take advan-
tage of recent hardware developments, offering multi-core
processors. In a hybrid setting, consisting of clusters of
such machines, we may use multi-threading for distribu-
tion on the multi-core processors, while distribution among
different workstations is done with previously established
distribution techniques in platypus, like MPI. Further-
more, the modular implementation of the core and distribu-
tion component allow for easy modifications in view of new
distribution concepts, like grid computing, for instance. The
platypus platform is freely available on the web (platy-
pus, website undated).

Our experiments have concentrated on highlighting the
individual merits of probing and multi-threading. Further
systematic studies are needed to investigate their interplay
in addition to experiments with different strategies which
would include approaches similar to those found in SAT and
CSP. Similarly, the relationship between our approach and
the work described in (Finkel et al. 2001; Hirsimäki 2001;
Pontelli, Balduccini, & Bermudez 2003) needs to be studied
in more detail.
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