
1

ROSoClingo:
A ROS package for ASP-based robot control

Benjamin Andres, Philipp Obermeier, Orkunt Sabuncu and Torsten Schaub
Institute for Computer Science,

University of Potsdam, Germany
Email: {bandres,phil,orkunt,torsten}@cs.uni-potsdam.de

David Rajaratnam
School of Computer Science and Engineering
The University of New South Wales, Australia

Email: daver@cse.unsw.edu.au

Abstract—Knowledge representation and reasoning capacities
are vital to cognitive robotics because they provide higher level
cognitive functions for reasoning about actions, environments,
goals, perception, etc. Although Answer Set Programming (ASP)
is well suited for modelling such functions, there was so far no
seamless way to use ASP in a robotic environment. We address
this shortcoming and show how a recently developed reactive
ASP system can be harnessed to provide appropriate reasoning
capacities within a robotic system. To be more precise, we furnish
a package integrating the reactive ASP solver oClingo with the
popular open-source robotic middleware ROS. The resulting
system, ROSoClingo, provides a generic way by which an ASP
program can be used to control the behaviour of a robot and to
respond to the results of the robot’s actions.

I. INTRODUCTION

Knowledge representation and reasoning capacities are vital
to cognitive robotics because they provide higher level cogni-
tive functions for reasoning about actions, environments, goals,
perception, etc. Although Answer Set Programming (ASP) is
well suited for modelling such functions, there was so far no
seamless way to use ASP in a robotic environment. This is be-
cause ASP solvers were designed as one-shot problem solvers
and thus lacked any reactive capacities. So, for instance, each
time new information arrived, the solving process had to be
re-started from scratch.

In what follows, we address this shortcoming and show
how a recently developed reactive ASP system [7], [6] can be
harnessed to provide knowledge representation and reasoning
capacities within a robotic system. This is possible because
such systems allow for incorporating online information into
operative ASP solving processes. We accomplish this by
integrating our ASP approach into the popular open-source
middleware ROS (Robot Operating System; [13]1) which has
become a de facto standard in robotics over the last years. As
such, ROS provides hardware abstraction and tools supporting
the development of robot applications.

To be more precise, we furnish a ROS package integrating
the reactive ASP solver oClingo with the popular open-

0This paper is also submitted at the Knowledge Representation and Rea-
soning in Robotics Workshop at ICLP 2013

1http://www.ros.org

source ROS robotic middleware. The resulting system, called
ROSoClingo, provides a generic method by which an ASP
program can be used to control the behaviour of a robot and
to respond to the results of the robot’s actions. In this way,
the ROSoClingo package plays the central role in fulfilling the
need for high-level knowledge representation and reasoning in
cognitive robotics by making details of integrating a highly
capable reasoning framework within a ROS based system
transparent for developers. In what follows, we provide the
architecture and basic functioning of the ROSoClingo system.
And we illustrate its operation via a case-study conducted with
the ROS-based TurtleBot2 simulation in a Gazebo3 simulation
of an office floor.

The Golog programming language [11] is one of the most
widely known approaches to the development of a declarative
agent reasoning language. With a formal semantics based on
the Situation Calculus [12] it allows for the specification of
high-level agent behaviours for agents acting within dynam-
ically changing environments. The potential power of this
approach was first shown on a real robot with the implemen-
tation of the Golex system [10]. Golex extended Golog with
execution monitoring functionality to monitor and ensure the
successful execution of the primitive Golog actions.

With the success of Golog, further work has focused on
extending ASP with some of the expressive constructs found
in Golog [14], thus allowing the powerful search capabilities
of modern reasoners to be combined with the programming
ease of Golog. The development of ROSoClingo can therefore
be understood in the context of allowing Golog, and other,
ASP extensions for agent reasoning to be directly applied to
the high-level control of ROS based robots.

Finally, we list some related work which utilize ASP or
other declarative formalisms in cognitive robotics. The work
in [3], [2] uses ASP for representing knowledge via a natural
language based human robot interface. Additionally, ASP is
used for high level task planning. In [1], [5] action language
formalism and ASP are used to plan and coordinate multiple
robots for fulfilling an overall task. They have also integrated

2http://turtlebot.com
3http://gazebosim.org

2

Publishes
Nodes

Subscriber
Nodes

ROS topic

Fig. 1. ROS topics provide many-to-many asynchronous message passing.

task and motion planning with external calls from action
formalism to geometric reasoning modules [4]. All these
works can naturally and highly benefit from the usage of
ROSoClingo. Having stated that, ROSoClingo can be basically
used in any autonomous robotics system in which high-
level reasoning tasks are essential and steep initial integration
difficulties are desired to be avoided.

II. ROBOT OPERATING SYSTEM

ROS provides a middleware for robotic applications [13]. At
its most basic level this consists of a loosely-coupled commu-
nication framework for sending messages between processes.
ROS defines a host and language independent TCP/IP protocol
for exchanging messages, thus allowing these processes to
be written in a variety of programming languages and to be
distributed across multiple host computers.

ROS standardises methods and structures for organising
software into packages. Packages can contain a variety of
components, from definitions of message formats through to
libraries and executable programs. Executable programs that
integrate into the ROS framework are instantiated as special
processes known as nodes.

There are two basic mechanisms for communications be-
tween nodes. The publisher-subscriber mechanism provides
for asynchronous communications whereby multiple nodes
can broadcast messages on a named communication channel
(known as a topic), that are in-turn listened to by multiple
subscribers (Figure 1). Alternatively, ROS services provide
for synchronous communication via a remote procedure call
(RPC) mechanism whereby one node can call a service pro-
vided by another node.

All messages in ROS are strongly-typed, and all commu-
nications using topics or services must use these types. ROS
provides a number of primitive data types (e.g., bool, int32,
float32, string) as well as a list operator. These can be
combined to produce arbitrarily complex types in a similar
manner to structs in C and C++. These complex data types
are defined as part of the ROS package structure. To ease de-
velopment and code maintenance ROS package names inher-
ently correspond to namespaces of the same name and there-
fore the complex data types are always defined with respect
to a namespace. A typical ROS system defines a number of
common namespaces (e.g., std_msgs, geometry_msgs)
and data types (e.g., geometry_msgs/Pose).

While ROS services allow for a simple RPC mechanism,
they are not suitable for more complex behaviours, such as

cancel
Action
Client
API

Action
Server
API

Action Interface
 topics

goal

status
result

feedback

Client Node Server Node

Fig. 2. ROS actions provide preemptible client-server communications.

situations where a task may take place over an extended time
frame, may be preempted, and may require feedback through-
out its life-cycle. ROS provides for such complex behaviour
through the actionlib framework (Figure 2). This framework
allows a client-server interface to be defined whereby an action
client is able to set and cancel goals on an action server.
The action server in turn executes the goal and provides
constant feedback and progress of its attempts to fulfil the goal.
While implemented using ROS topics as a message transport
mechanism, each action interface defines a high-level API for
client-server interaction. 4

As a prototypical example of a ROS action, the
move_base package implements an action interface that
provides path-planning and robot control functionality for
moving a robot around an environment. We now briefly outline
this package, to provide both a sense of how the actionlib
framework works as well as to provide details of an important
module that we shall discuss later.

The move_base package (Figure 3) provides a highly
configurable ROS node that is an essential component of the
ROS navigation stack. The system requires a number of data
sources, such as laser sensor data, localisation information,
and map information. The laser sensor data is used to perform
basic obstacle avoidance, while localisation information allows
the robot to know where it is located within the map. A map
consists of a 2-D occupancy grid that indicates whether a
point on the grid is occupied or free. Robot navigation within
the node takes place at two distinct levels. Global planning
calculates the route from the robot’s current location to a
goal location, while local planning provides for movement
towards a general direction while allowing path flexibility to
avoid obstacles. A range of different global and local planning
algorithms are supported through a plugin architecture.

A navigation goal is specified in terms of a robot destination
pose (i.e., position and orientation). When a goal is sent to the
move_base server it computes a path to that goal location
and then successively generates the movement commands for
the robot base controller. If at some point the robot is unable to
proceed with its plan, for example due to a door being blocked,
then the server will undertake recovery behaviour and will re-
plan accordingly. If the recovery fails then the task will be
aborted. Throughout this process the server provides constant
feedback as to the current location of the robot, as well as the

4For more extensive information on programming with the
ROS actionlib framework the interested reader is referred to
http://www.ros.org/wiki/actionlib

3

move_base

Action Interface

goal pose

status

current pose

 input
node

map_server

 sensors

odometry

transforms

 global
planner

 global
planner

robot base controller

Fig. 3. ROS move_base provide an action interface for robot movement.

status of the navigation process, for example that the task has
been aborted. Goals are preemptible, so that a robot navigating
towards some location will give up that goal if it is given a
new destination goal.

The action interface provided by the move_base package
is arguably the most important ROS action service for mobile
robots. Furthermore, with a complex set of features, such as
the possibility of failure, it serves to highlight the potential
complexity in trying to integrate logical reasoning with a
real robotic systems. Consequently, the move_base package
forms much of the integration work that is outlined in the rest
of this paper.

A. oClingo

A classical ASP system, such as gringo/clasp [9], [8], is
designed to solve problems in a one-shot procedure: it takes a
problem encoding as input, computes the answer sets and ter-
minates afterwards. Since this approach does not fully embrace
the needs of modern dynamic domains, such as robotics, a
reactive ASP solver, oClingo [7], [6], was developed that addi-
tionally takes external data streams into account. Such a stream
is represented there by an online progression, a sequence of
events and inquiries given in the form of ASP ground facts and
integrity constraints. The general problem itself is described by
a reactive logic program, an ASP program that is partitioned
into three parts: a base part describing static knowledge, and
an incremental as well as a volatile part which both contain
rule schemata based on a discrete time (integer) parameter.
The role of the incremental part is to symbolize accumulated
knowledge over increasing time, whereas the volatile part only
holds information that specifically concerns the current point
in time. All in all, a reactive logic program formulates the
persistent knowledge and, thus, acts as the offline counterpart
to an online progression.

Technically, the oClingo system is initialized with a reactive
logic program as input. Afterwards, an application can connect
to oClingo and send a data stream, formatted as an online
progression. For each incoming stream update oClingo com-
putes all answers, returns them to the client and subsequently
waits for the next input. The oClingo system only terminates
if explicitly requested by the user.

 Actionlib API

Existing ROS
components move_base Other ROS

module

Reasoning
layer

Interface
layer

 ROS topic base
input/output

in_rosoclingo

out_rosoclingo

 oclingo

 ROSoclingo Node

input feeder

 action extractor

 task plan

 query

 Action

 Goal
Cancel

 Status
Result

Feedback

Other
interface

move_base
interface

ASP program

3

4

2

5

6

1

Fig. 4. The general architecture and main workflow of ROSoClingo.

III. ROSoClingo

In this section we describe the general architecture and
functionality of the ROSoClingo package. With the help of
reactive ASP, ROSoClingo provides a way of handling high-
level knowledge representation and reasoning tasks occurring
in autonomous robots running the ROS software.

Consider a task planning problem, a task that any au-
tonomous robot should be capable of performing. For instance,
a robot is given a goal of moving from the kitchen of a house
to the living room in order to serve food. Even if the robot
has many individual behaviours, like moving from one point
to another or holding food with the help of respective ROS
packages, computing a complete task plan requires high-level
knowledge representation and reasoning capabilities. There
might even be more than one possible path to the living room,
which may require more elaborate planning and execution.
The robot might, for instance, need to first go to the hallway
and then to the living room in case the alternative path is
blocked by an obstacle. The robotics developer can encode
such planning tasks in reactive ASP keeping only the interface
requirements of the underlying behaviour nodes in mind and
avoiding implementation details of their functionality (motion
planning for example). Then, using the resulting ASP encoding
with the ROSoClingo package the developer can readily inte-
grate task planning while details of controlling and integrating
oClingo within the ROS middleware becomes transparent.

Figure 4 depicts the main components and workflow of the
ROSoClingo system. It consists of a three layered architecture.
The first layer consists of the core ROSoClingo component
and the definition of an actionlib API. This API allows other
components to use the services provided by the ROSoClingo
node. The package also defines the message structure for
communication between the core ROSoClingo node and the
various nodes of the interface layer. The interface layer, on
the other hand, provides the data translations between what is
required by the ROSoClingo node and any ROS components
for which it needs to integrate. This architecture provides for
a clean separation of duties, with the well-defined abstract
reasoning tasks handled by the core node and the integration
details handled by the interface nodes.

4

_request(Goal,C) Specifying a Goal request at cycle C.
Cancellations are send in the same way.

_action_lib(A,P,C) Commanding actionlib A to run with parameters P at cycle C.
_return(A,V,C) Specifying the return value V of actionlib A run in cycle C.

Fig. 5. Keywords used for communicating between ROSoClingoand oClingo.

A. The ROSoClingo Core

The main ROSoClingo node is composed of the reactive
answer set solver oClingo, an action extractor, and an input
feeder. Through its actionlib API, it can receive goal and
cancellation requests as well as send result, feedback, and
status messages to a client node (marked by 1 in the fig-
ure). The reactive ASP program, encoding the high-level task
planning problem, is given to the ROSoClingo node at system
initialization (marked by 2). During initialization, ROSoClingo
sets the current logical time point to 1. This time point is
incremented at the end of each cycle.

A cycle of ROSoClingo’s workflow may start with a goal
for the robot arriving via the actionlib interface (marked by
1). For instance, commanding the robot to go to the living
room can be a goal request. This request is transformed into
an input stream update before feeding to oClingo (marked by
3) by the input feeder. oClingo receives the goal as a stream
update and searches for an answer set representing a task plan
for the robot to follow. Each action of the plan, in principle,
should be executed by a respective ROS node. For instance, an
action of moving to the door connecting kitchen and hallway
can be executed by the move_base ROS action node. The
keywords of table 5 allow for a communication protocol
between ROSoClingoand oClingo. The action extractor takes
the action at the current logical time point, prepares it as a
goal request (marked by 4) and sends it to be executed by
the respective ROS node (marked by 5). The result of the
execution is received by the input feeder component of the
ROSoClingo node (marked by 6). The communication between
ROSoClingo and other ROS nodes is detailed in Section III-B.
The result is processed and transformed into a new input input
stream update for oClingo, which completes the current and
initiates a new cycle of ROSoClingo. The (un)successful result
may generate new knowledge for the robot about the world
(for example, the fact that a doorway is blocked or a new
object is sensed). Additionally, the next input update includes
a fact so that the action executed is committed by oClingo
during further searches for a plan.

Note that the ROSoClingo package supports multiple goal
requests at a time. Each time a new goal received, the input
feeder appends the goal to a list and feeds it to oClingo in
the next cycle. The status of each goal is also tracked by
ROSoClingo.

B. Integrating with Existing ROS Components

The core ROSoClingo node needs to issue commands to,
and receive feedback from, existing robotics components. The
complexity of this interaction is handled by the nodes at
the interface layer (Figure 4). Unlike the components of the
reasoning layer it is, unfortunately, not possible to define

a single ROS interface to capture all interactions that may
need to take place. Firstly, there will need to be data type
conversions between the individual modules. For example, the
move_base node expects a robot pose as its goal, while an
action to move a robot arm might require more a complex
goal structure consisting of a set of joint-trajectories. Turning
ROS messages into a suitable set of oClingo statements will
therefore require data type conversions that are specific for
each action or service type.

A second complicating issue is that the level of abstrac-
tion of a ROS action may not be at the appropriate level
required by the ASP program. For example, the pose goal
for moving a robot consists of a Cartesian coordinate and
orientation. However, it is unlikely that one would want a
logical reasoner to have to reason about Cartesian coordinates.
Instead one would hope to reason about abstract locations and
the relationship between these locations; for example that the
robot should navigate from the kitchen to the bedroom via
the hallway. Furthermore, the desired orientation of the robot
when it arrives in the bedroom may not be something that is
of interest to the reasoner.

While it is not possible to provide a single generic interface
to all ROS components, it is however possible to outline a
common pattern for such integration. The rest of this section
outlines the integration of ROSoClingo with ROS actions, and
in particular the move_base action outlined in Section II.
ROS actions typically encapsulate the high-level behaviour
and functionality of a robot, and are therefore the most natural
level at which a high-level robot controller would expect to
communicate with the rest of the robotic system. Furthermore,
they are arguably the most complex components of a ROS
system. Consequently, showing how ROSoClingo integrates
with existing ROS actions encapsulates all the complexity
that one would expect of integration with any other ROS
component.

For each existing ROS component that needs to be inte-
grated with ROSoClingo there will need to be a corresponding
interface component. In some cases interface components
can be combined into a single ROS node to communicate
with multiple lower-level ROS nodes, but in general one can
imagine a mostly one-to-one correspondence between nodes
of these two layers.

An important consequence of our architecture is that every
interface node needs to read every message that is published
by the ROSoClingo node on the output topic. It is therefore
important that the message format for the out rosoclingo topic
allows the interface components to easily parse the messages
and discard those messages that are intended for a different
component.

The inputs to, and outputs from, a running oClingo rea-
soner consist of sets of facts. It is therefore the role of

5

Fig. 6. The mailbot simulation in progress as seen in Gazebo.

the ROS interface layer to perform any data conversions
between the ASP world of facts and the low-level ROS
commands. We adopt a straightforward message type (named
rosoclingo/InterfaceIO) to facilitate this process.
This type consists of an interface name and a list of text
formatted facts.

When a message is sent from ROSoClingo to the interface
layer, individual interface components can quickly parse the
interface name to determine the intended recipient and discard
non-relevant messages. On the other hand, when sent from an
interface component to the ROSoClingo node, the interface
name indicates the origin of the fact, which may be useful,
even if only as a debugging aid.

For the sake of simplicity and presentation it is useful
to make some assumptions, in showing how the system
integrates with the move_base action. A common assump-
tion in robotic applications is to identify tagged points with
an abstract location. For example some coordinate location
specifying a point in a bedroom, say (10.5,11.2), will be
associated with the label “bedroom”. Navigation can then take
place with reference to the tagged locations. This technique
works for a broad range of behaviours, such as sending the
robot to specific locations.

IV. CASE STUDY

We demonstrate the application of our ROSoClingo package
on a mail delivery scenario running ROS software. The sce-
nario consists of a robot, whose task is to pick up and deliver
mail packages exchanged among offices [15]. Whenever a mail
delivery request is received, the robot has to go to the office
requesting the delivery, pick up the mail package, and go
to the destination office in order to do the delivery. In this
scenario the robot is able to carry up to three packages and
handle multiple requests at a time. Delivery requests can also
be cancelled during task execution. If a request is cancelled
when the package has already been picked up, it is delivered
back to its origin for disposal. The task has a highly dynamic
nature and requires reasoning capacity for detailed planning.

The robot we use is a TurtleBot, which is well supported
within the ROS community and commonly used for small
delivery tasks. Offering a mobile platform with an integrated

Microsoft Kinect as a three dimensional sensor. Our office
building is provided by Gazebo, a simulator supported by
ROS, able to realistically simulate three dimensional environ-
ments. This allows us to run the TurtleBot in a controlled,
yet physically plausible environment, while avoiding all too
common problems associated with hardware, e.g. short battery
life, defunct components, etc.

We use the ROS move_base action library for robot
movement among offices. For picking up and delivering pack-
ages, two dedicated action libraries are used (pickup and
deliver). Figure 6 shows the Gazebo environment used in
our case study. It consists of 4 consecutive offices on one floor;
office1 to office4 appearing from left to right.

In our scenario the robot stands in front of office1 and
after some time receives a request to deliver a package from
office3 to office2. This request is later cancelled and a
new request to deliver a package from office3 to office4
is issued.

Since there are no pending requests just after the start
of the simulation, oClingo returns an empty task plan. This
results in ROSoClingo awaiting a new request to be issued.
When the first request is received, the input feeder transforms
said request into an input stream update for oClingo :

s t e p 1 .
r e q u e s t (g o a l (o f f i c e 3 , o f f i c e 2 , 1) , 2) .

end s t e p .

With “#step 1.“ identifying the start of an input stream
update and the cycle the request is send to oClingo. The
keyword predicate “_request“ identifies the transformed
goal request issued to ROSoClingo with its first parameter
and the cycle the request becomes active with its second.
The parameters of ”goal” state the sending office, the des-
tination office and an unique package identifier, in that order.
“#end step.“ closes the input stream update.

oClingo now adapts the task plan to ensure the execution of
the request as shown in Table I under plan 1. In more detail
the plan involves to use the move_base action library to
move the robot from office1 over office2 to office3
at the cycles 1 and 2, respectively. Then, the robot shall use
the pickup action library to pick up the package in cycle 3
and move back to office2 in cycle 4. Lastly, the package is
to be handed over by means of the deliver action library in
the 5. cycle. Note, that both the pickup and the deliver
action require the package identifier as parameter.

ROSoClingo’s action extractor takes the task plan from
oClingo and publishes the action planned for the cur-
rent (first) cycle on the out rosoclingo topic as a
rosoclingo/InterfaceIO message. The move_base
interface reacts to the message, transforms the label office2
into a coordinate location and sends the result of the action
back to ROSoClingo via the in rosoclingo topic.

In the next cycle the result is feed back into oClingo using
the keyword predicate ”_return“. Assuming move_base
was successful, the input feeder generates the following input
stream update for the second cycle:

6

TABLE I
TASK PLANS RETURNED BY oClingo FOR VARYING REQUESTS.

plan 1 2 3
step

1 _action_lib(move_base,office2,1) _action_lib(move_base,office2,1) _action_lib(move_base,office2,1)
2 _action_lib(move_base,office3,2) _action_lib(move_base,office3,2) _action_lib(move_base,office3,2)
3 _action_lib(pickup,1,3)
4 _action_lib(move_base,office2,4) _action_lib(pickup,2,4)
5 _action_lib(deliver,1,5) _action_lib(move_base,office4,5)
6 _action_lib(deliver,2,6)

s t e p 2 .
:− n o t a c t i o n l i b (move base , o f f i c e 2 , 1) .

r e t u r n (move base , o f f i c e 2 , 1) .
end s t e p .

The integrity constraint after the input stream header en-
forces oClingo to include the action just taken into future
action plans. Otherwise, oClingo might abolish actions taken
in the past in order to minimize the task plan. The rest
of the cycle runs analogous to the first cycle shown. At
sometime between the 2 and 3 cycle ROSoClingo receives
the cancellation of the first request:

s t e p 3 .
:− n o t a c t i o n l i b (move base , o f f i c e 3 , 2) .

r e q u e s t (c a n c e l (1) , 3) .
r e t u r n (move base , o f f i c e 3 , 2) .

end s t e p .

With ”cancel(1)“ identifying the delivery to be can-
celled via its package identifier. This forces oClingo to change
the task plan to the one presented in Table I under plan 2.
Since now there are no actions planned for the current (third)
cycle the robot waits idly at office3 for new requests. When
ROSoClingo receives the second request, the input feeder
generates a new input stream update for oClingo initiating the
fourth cycle. The task plan generated by oClingo for satisfying
the request is shown in Table I under plan 3. Again, assuming
the actions are executed without complications the following
cycles run analogous to the ones above. After the sixth cycle
the robot delivered the package to office4 and enters the
idle mode again, awaiting new requests.

V. CONCLUSION

Higher level cognitive functions such as reasoning about
actions, environment, goals, or perceptions are crucial in
cognitive robotics. They necessitate knowledge representation
and reasoning capacities for autonomous robots. We developed
a ROS package integrating oClingo, a reactive ASP solver,
with the robotics middleware ROS. The resulting system,
called ROSoClingo, fulfils the need for high-level knowledge
representation and reasoning in cognitive robotics by providing
a highly expressive and capable reasoning framework. It also
makes details of integrating oClingo transparent for the devel-
oper. Using reactive ASP and ROSoClingo, one can control
the behaviour of a robot within one framework and in a fully
declarative way. This is particularly important compared to
Golog based approaches where the developer should take care
of implementation (usually in Prolog) details of the control
knowledge and the underlying action formalism separately.

We illustrated the usage of ROSoClingo via a case-study
conducted with a ROS-based simulation of a robot delivering
mail packages in an office environment using Gazebo.

The resulting work is publicly available and we are com-
mitted to submit the ROSoClingo package to the public ROS
repository.
Acknowledgments. This research was partly supported under
ARC Discovery Projects funding scheme (project number DP
120102144) and the DFG grant SCHA 550/9-1.

REFERENCES

[1] E. Aker, A. Erdogan, E. Erdem, and V. Patoglu. Causal reasoning for
planning and coordination of multiple housekeeping robots. pages 311–
316.

[2] X. Chen, J. Ji, J. Jiang, G. Jin, F. Wang, and J. Xie. Developing high-
level cognitive functions for service robots. pages 989–996.

[3] X. Chen, J. Jiang, J. Ji, G. Jin, and F. Wang. Integrating NLP with
reasoning about actions for autonomous agents communicating with
humans. pages 137–140.

[4] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras. Com-
bining high-level causal reasoning with low-level geometric reasoning
and motion planning for robotic manipulation. pages 4575–4581.

[5] Esra Erdem, Erdi Aker, and Volkan Patoglu. Answer set programming
for collaborative housekeeping robotics: representation, reasoning, and
execution. Intelligent Service Robotics, 5(4):275–291, 2012.

[6] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, and
T. Schaub. Stream reasoning with answer set programming: Preliminary
report. pages 613–617.

[7] M. Gebser, T. Grote, R. Kaminski, and T. Schaub. Reactive answer set
programming. pages 54–66.

[8] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-
driven answer set solver. pages 260–265.

[9] M. Gebser, T. Schaub, and S. Thiele. Gringo: A new grounder for
answer set programming. pages 266–271.

[10] Dirk Hähnel, Wolfram Burgard, and Gerhard Lakemeyer. GOLEX -
bridging the gap between logic (GOLOG) and a real robot. In Otthein
Herzog and Andreas Günter, editors, KI, volume 1504 of Lecture Notes
in Computer Science, pages 165–176. Springer, 1998.

[11] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin,
and Richard B. Scherl. GOLOG: A logic programming language for
dynamic domains. J. Log. Program., 31(1-3):59–83, 1997.

[12] John McCarthy and Patrick J. Hayes. Some philosophical problems from
the standpoint of artificial intelligence. In B. Meltzer and D. Michie,
editors, Machine Intelligence 4, pages 463–502. Edinburgh University
Press, 1969. reprinted in McC90.

[13] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler A., and Ng. ROS: an open-source robot operating system.
In ICRA Workshop on OSS, 2009.

[14] Tran Cao Son, Chitta Baral, and Sheila A. McIlraith. Extending answer
set planning with sequence, conditional, loop, non-deterministic choice,
and procedure constructs. In Alessandro Provetti and Tran Cao Son,
editors, Answer Set Programming, 2001.

[15] Michael Thielscher. Logic-based agents and the frame problem: A case
for progression. In V. Hendricks, editor, First-Order Logic Revisited:
Proceedings of the Conference 75 Years of First Order Logic (FOL75),
pages 323–336, 2004.

