
What should an ASP Solver output?

A Multiple Position Paper ?

Martin Brain1, Wolfgang Faber2, Marco Maratea3, Axel Polleres4, Torsten
Schaub5, and Roman Schindlauer6,2

1 Department of Computer Science, University of Bath, United Kingdom
mjb@cs.bath.ac.uk

2 Department of Mathematics, University of Calabria, 87030 Rende (CS), Italy
faber@mat.unical.it

3 DIST - University of Genova, Viale F. Causa 15, 16145, Genova, Italy
marco@dist.unige.it

4 Digital Enterprise Research Institute, National University of Ireland, Galway
axel.polleres@deri.org

5 Institut für Informatik, Univ. Potsdam, August-Bebel-Str. 89,
D-14482 Potsdam, Germany, torsten@cs.uni-potsdam.de

6 Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9–11, A–1040 Vienna, Austria, roman@kr.tuwien.ac.at

Abstract. This position paper raises some issues regarding the output
of solvers for Answer Set Programming and discusses experiences made
in several different settings. The first set of issues was raised in the con-
text of the first ASP system competition, which led to a first suggestion
for a standardised yet miniature output format. We then turn to ex-
periences made in related fields, like Satisfiability Checking, and finally
adopt an application point of view by investigating interface issues both
with simple tools and in the context of the Semantic Web and query
answering.

1 Motivation

The development of solvers for Answer Set Programming (ASP;[1]) constitutes
nowadays a major driving force of the field. This goes hand in hand with a
growing range of applications along with more and more substantial collections of
benchmark suites. The latter allow for a broad comparison among different ASP
solvers. And benchmarking as such plays a major role for progressing ASP solver
technology, as already experienced in many related areas, such as Automated
Theorem Proving [2] or Satisfiability Checking [3]. Although many benchmarks
stem from distinguished application areas, certain applications need dedicated
formats due to sophisticated interactions with ASP solvers. This is an important

? This work was partially supported by the Austrian Science Fund (FWF) under
grant P17212-N04, and by the European Commission through the IST Networks of
Excellence REWERSE (IST-2003-506779).



issue when interfacing ASP solvers with other software modules in real-world
applications.

This paper is one out of three position papers providing the basis for a dis-
cussion forum to be held on ASP languages at the occasion of the Workshop on
Software Engineering for Answer Set Programming (SEA’07), co-located with
the Ninth International Conference on Logic Programming and Nonmonotonic

Reasoning (LPNMR’07;[4]). While the two other papers offer perspectives on
input and intermediate languages7, we concentrate in what follows on issues re-
lated to the output of ASP solvers. We begin with a discussion on experiences
made during the first ASP system competition. This is complemented in Sec-
tion 3 by lessons learned in related fields, like Satisfiability Checking. Section 4
outlines the minimum requirements for an output format, based on end user
experience. In Section 5 we discuss interface issues that arise in a particular area
of application, namely the Semantic Web. Finally, in Section 6, we discuss re-
quirements for the output of query answering, a major reasoning mode for ASP
solvers.

2 Lessons from the First ASP System Competition

The first ASP system competition [5]8, held in conjunction with LPNMR’07,
provided us with a first glance at issues arising from the distinct output formats
of existing ASP solvers. For example, the original design of the underlying As-
paragus platform [6]9 was based on trust, insofar as the output of a solver was
never inspected.

This was changed when running the ASP system competition, for which the
output of solvers had to conform to the following formats (in typewriter font):

SAT : Answer Set: atom1 atom2 ... atomN

The output is one line containing the keywords ‘Answer Set:’ and the names
of the atoms in the answer set. Each atom’s name is preceded by a single
space. Spaces must not occur within atom names.

UNSAT : No Answer Set

The output is one line containing the keywords ‘No Answer Set’.

The following list comments on some issues that arose during the competition;
it also raises some further topics that might we worth considering in the future.

Result. The definition of the above basic output format was a big step forward
in accessing the result of a solver’s computation in a uniform way.

However, the distinction between satisfiable and unsatisfiable results quickly
turned out to be insufficient. In future, we definitely need (at least) a third
indicating string, say UNKNOWN, signalling that the solver terminated without

7 That is, a language format for communication among grounders and solvers.
8 http://asparagus.cs.uni-potsdam.de/contest/
9 http://asparagus.cs.uni-potsdam.de/



finding a solution, although there might exist one. In fact, in the competition,
we only had to deal with a single incomplete solver, whose output had then to be
checked by hand. However, such an indicator also makes sense, for instance, in
view of error handling (see below), where an encountered error should not lead
to an indicative output (for instance, of UNSAT), simply because the wrapping
script defaults to it.

Moreover, the competition only required the computation of a single answer
set; hence, no format for producing all answer sets was put forward. On the other
hand, printing a combinatorial elevated number of solutions is time consuming
and presumably not necessarily desired in the context of a system competition.
Also, it is unclear how the result could be verified in a reasonable amount of
time (see below). Unlike this, however, it may be interesting to simply count
the number of answer sets and have solvers report the number of answer sets
they were able to compute within an allotted time. The number of solutions is
actually relevant in some applications, like bio-informatics. On the other hand,
it is unclear how such a result ought to be verified.

Certification. The second major advancement of the ASP competition was the
verification of solutions. This worked, however, only for satisfiable instances, and
it is yet an open problem how unsatisfiability should be certified.

The verification process builds upon the output of a certificate, given by an
entire answer set or simply a subset of distinguished predicate instances repre-
senting a solution. (The latter was needed in the modelling track of the compe-
tition.) However, what should a solver output in case it treats an unsatisfiable
instance? During the system competition, this issue was resolved pragmatically
by trusting the majority of outcomes; and of course, whenever a single solver
found a solution, we were able to check whether it was right.

Another major hurdle is given by the computational complexity underlying
the verification problem. While it is easy for normal logic programs, it becomes
significantly more difficult for disjunctive logic programs. But even in case of
normal logic programs, we faced problem instances where the certificate became
simply too large to be treated in a pragmatic fashion.

In a nutshell, the output of a certificate is essential for trusting the result
of an ASP solver, however, there are still cases where it is yet unclear what
constitutes a good certificate or at least a good approximation of it.

Performance. During the ASP competition, the performance of ASP solvers was
measured externally by regarding the number of timeouts and, in case of ties,
the run time of the respective solvers.

For a more fine-grained comparison among ASP solvers, one might be inter-
ested in some information that can only be gathered by the solvers itself. One
such piece of information is the number of assignments, or to be more precise, the
number of assignments due to propagation and the one due to heuristic choice
operations, which could provide a much more detailed picture of the traversed
search space. But apart from finding an agreement on the output format of such
information, we first need solver developers to agree on collecting information



in the same way. For instance, systems like smodels or dlv report information
about choice points, while having different definitions of what constitutes a choice
point. Moreover, a system based on learning and back-jumping like clasp does
not even (explicitly) flip assignments at choice points. Other solvers like cmodels,
using SAT solvers as search engine, may not even have easy access to this type
of information. So, this is an example where an agreement on an output format
has to be preceded by a consideration of the underlying concepts.

Error handling. Asparagus controls the execution of each solver run by limiting
it in time and space. An excess of either limit is detected and recorded by
Asparagus.

In fact, some solvers, or to be more precise, their wrapping scripts, output
UNSAT by default, even though they get interrupted by the run time system of
Asparagus. Similarly, we had situations in which solvers returned within time and
space limits, despite having encountered internal (e.g., input) errors. It becomes
tricky when this happens with a solver whose wrapper reports UNSAT by
default and which actually attempted to solve an unsatisfiable problem instance.

What is needed here is a systematic way of treating errors (or even termi-
nation) through appropriate signals. We need to define different error categories
and how errors should be signalled (for instance, to standard error as opposed
to standard output).

Moreover, it would be a great help, if solvers could receive termination signals,
output some relevant information, and terminate by themselves.

Optimisation. The first edition of the ASP system competition dealt exclusively
with decision problems, although more and more solvers allow for dealing with
optimisation problems as well.

Although one may treat optimisation problems as decision problems, by ask-
ing whether a solution with optimal value of the objective function has been
found, it is also of interest to regard the value of the best solution a solver came
up with, even though it did not terminate within the allotted time. This is dif-
ficult because one needs an output from an externally terminated program (see
above).

As with error handling, it makes sense to find a consensus of how to handle
this problem in a uniform way.

3 Experiences from Related Areas

In this section, we will see how the issues that came up in the ASP Competition,
and pointed out in Section 2, have been raised (assuming they are) in other
research areas. It is interesting to note that also in other areas these issues showed
up together with the definition and organization of Competitions/Evaluations.

SAT. Propositional Satisfiability (SAT) is one of the most studied problems in
Artificial Intelligence and Computer Science. SAT Competitions10 are organized

10 http://www.satcompetition.org/



by years, with a great impact on the performance of SAT solvers. SAT out-
put format already fixed the point about an UNKNOWN result by explicitly
allowing it as a “valid” output, other than SATISFIABLE and UNSATIS-

FIABLE. These words have to be put in a new line starting with “s” followed
by a space, e.g., “s SATISFIABLE”. Then, if a formula is satisfiable, a bunch
of 0-terminated lines starting with “v” and representing a satisfying assignment
has to be printed as certificate.

Moreover, in order to automatically check the correctness of solvers’ answers,
all solvers must also exit with an error code which characterizes its answer on the
considered instance. This is done in addition to the automatic syntactic analysis
of solvers’ output. The error code must be:

– 10 for SATISFIABLE
– 20 for UNSATISFIABLE
– 0 for UNKNOWN
– any other error code for internal errors (considered as UNKNOWN)

The issue of certifying an unsatisfiable formula is not raised in the SAT
Competitions (last year, SAT race11). Nonetheless, the need to cope with this
problem is evident in the community and has opened the way to significant
research efforts in this direction.

QSAT. Quantified SAT (QSAT) is the extension of SAT where variables are
to be explicitly quantified, universally or existentially. QSAT is the prototypical
PSPACE-complete problem. QBF Evaluations and Competitions12 are organized
since five years and have significantly contributed to this emerging research area.
The output format requested to QBF solvers is very similar to the one for SAT
solvers (the output must be 1, 0 or -1 instead of SATISFIABLE, UNSATISFI-
ABLE and UNKNOWN, respectively). A main difference arises when certifying a
formula: given the complexity of the problem, no compact certification is known.
At the moment, QBF solvers output just a partial certificate of the input QBF’s
truth or falsity.

Beyond the already detailed explanation of the output format, the organizers
of the QBF events have made available a “formal” description of such an output
format, using a BNF grammar.13 This document can be very useful for both
competitors and organizers, in particular, when the “complexity” of the output
increases, which is the direction a future output format is likely to follow for
expressing a non-trivial form of certification.

PB. In Pseudo-Boolean (PB) (optimization) problems, solvers have to satisfy
a set of on linear inequalities (with Boolean variables), while optimizing an
objective function. The PB07 Evaluation14 is the third event of the series. Given

11 http://fmv.jku.at/sat-race-2006/
12 http://www.qbflib.org/
13 http://www.qbflib.org/qdimacs.html
14 http://www.cril.univ-artois.fr/PB07/



the nature of the problem, solvers can output a new type of solution line, i.e.,
“s OPTIMUM FOUND”, when they claim to have found the optimal value
for the objective function. PB Evaluations introduced a nice idea related to the
optimization of solutions: each solver is asked to output a line starting with
’o’ each time it finds a solution with a better value of the objective function,
even if it might not be optimal. This line should only contain the value of the
objective function for the new solution. This enables an analysis of the way
solvers progress toward the best solution. The utility of this information is (at
least) twofold: given the simplicity, a graphical view on the progression toward
the best solution can be provided, it is easy to (i) better understand a solver’s
behavior, and (ii) perform a deep analysis that can be used, for example, in the
report of the competition.

Other series of Competitions/Evaluations can be interesting in the way they
(try to) certify solutions, often related to the “complexity” of the problems.

In the Deterministic track of the International Planning Competition (IPC)
competitions (the last being IPC-515), the found plan is printed into a solution
file and then checked by a plan validator made available by the IPC organizers.
In the SMT Competitions16 (SMT-COMP), a solver has to find solutions to
formulas from decidable (quantifier-free) fragments of first-order logic, allowing
for theories, like arithmetic, uninterpreted function, arrays, bit vectors, and
their combinations. The SMT-COMP organizers ask for “suitable evidence” of
the results, allowing for a “third-party proof checker publicly available, or a
source code for it”, and asking for an explicit option of the solver (‘−−evidence’)
to dump the proof/model into a file because of the possibly huge size. Then
“the verification is let to a Competition panel, separately to the main part of
the competition” and “check is to be performed on small formulas”. The CADE
ATP System Competition (CASC) is related to first-order Automated Theorem
Proving. Given the complexity of the problems, the organizers just “look for
‘acceptable’ proof/model”.

Finally, the International Competition of Constraint Satisfaction Problems
(CSP)17 uses XML format, in this case to represent input instances. It could be
fruitful to broaden the use of such a format: a motivating example for such a
direction can be found in the next section.

4 An End User Perspective

From the point of view of an end user of answer set solvers, a standardised output
format is highly desirable but raises two important questions: what output from
a solver is needed and what is commonly done with this information? Output
can be broken into three categories:

15 http://zeus.ing.unibs.it/ipc-5/
16 http://www.csl.sri.com/users/demoura/smt-comp/
17 http://www.cril.univ-artois.fr/CPAI06/



1. Zero or more answer sets or a message saying that there aren’t any answer
sets.

2. Optionally an error message of some sort (most commonly out of time or
out of memory).

3. Optionally some statistics.

Obviously as more sophisticated approaches to computing answer sets are
developed, new types of information may be output (for example, problem spe-
cific analysis results of tuning parameters), but most applications current use
only these three areas.

In turn, there are three common uses of this information (and thus three key
requirements for the output format):

1. Answer sets are read by a human. Either to find out the answer to the initial
problem, or to diagnose problems with the encoding. Thus a human readable
format would seem to be a requirement.

2. Answer sets are ignored (or quickly checked), only the statistics are used.
This is the common case in the development and benchmarking of solvers.
Thus some way of quickly extracting the statistics would seem to be a good
idea.

3. The output is parsed into another program18 for further interpretation /
application. Thus a format which is easy to parse would seem to be a re-
quirement.

Additionally, there are practical arguments for keeping the output format as
simple as possible (so more complex output formats can be layered over them
with minimal overhead) and for minimising the amount of modification required
for existing solvers.

Given these options, the simplest output standard seem to be roughly as
follows:

– The success of the solver is given by it’s system return code. 0 for 1 or more
answer sets given, 1 for a program with no answer sets and any other return
code constituting an error. This is in keeping with the POSIX standard,
GNU/Linux implementations (a process killed due to signals, i.e. out of time,
out of memory, etc. can be recognised from it’s return code) and requires
little to no extra implementation.

– Output is divided into lines, each prefixed by one of a number of codes.
The actual codes aren’t particularly important, but keeping to either the
existing convention of human readable strings (i.e. Answer Set) or the SAT
convention of single letters, seems sensible.
Answer Set : Indicates the solver has found an answer set, which is given

as a space separated list literals in the answer set. If any lines of this
kind are present, the return value of the solver must be 0 and no lines
starting No Answer Sets should be present.

18 In this case, often the solver is being called from another program thus a standard
calling convention and some standard option flags would be useful.



No Answer Sets Indicates the solver has shown that the program contains
no answer sets. The line should contain nothing else. If any lines of this
kind are present, the return value of the solver must be 1 and no lines
starting Answer Set : should be present.

Statistic : Indicates a solver generated statistic, which should be given
on the rest of the line, preferably in a form that could be easily parsed.
As an appendix to the standard, a list of statistic names and how they
are computed would make analysis easier.

Comment : A catch all field for other solver output intended for humans.

Any other line would be a considered an error message and the solver must
return something other than 0 or 1.

5 Interfacing the Semantic Web

In recent years, several endeavours have been undertaken to deploy ASP in the
area of the Semantic Web, as a powerful rule language to complement and extend
the possibilities of established formalisms such as RDF and ontology languages.
This development requires ASP solvers to interoperate with other software in a
complex reasoning framework. Due to the heterogeneity of data in the domain of
the Semantic Web, the most straightforward approach to such interfacing tasks
is usually to use an XML-based language as data interchange format.

A prominent attempt to create a Web-suitable syntax for rule languages in
general is the RuleML initiative [7], which aims at providing a Rule-Markup Lan-
guage based on XML and/or RDF, in order to facilitate a common representation
and exchange of rules. Also, the chosen format allows the possibility of annotat-
ing further information, as needed in the Semantic-Web context. However, it is
not trivial to embed in a general framework the wide number of pre-existing rule-
based formalisms, each of which provides its own variety of syntactic features.
Thus, different classes of RuleML languages have been gradually introduced, in
order to support constructs such as default negation or constraints.

One particular such branch of RuleML tailored to ASP and its extensions
has been presented in [9]. There, the authors integrate a general construct into
the framework of RuleML that can be used to express features such as built-
in predicates, external atoms, or cardinality constraints. However, in this work
the authors do not explicitly consider to encode the output of an ASP solver in
RuleML. This can in fact be accomplished by using the notions of RuleML atoms,
conjunction, disjunction, and negation. In general, RuleML does not impose
specific semantics on its constructs; however, for the subset of operators needed
to represent answer sets and our purposes, the intuition is rather straightforward.
Atoms within the same answer set are connected by conjunction, while multiple
answer sets are joined by disjunction.

For instance, a single atom edge(a, b), i.e., a positive literal, is expressed in
RuleML as follows:



<Atom>

<Rel>edge</Rel>

<Ind>a</Ind>

<Ind>b</Ind>

</Atom>

The Tag <Rel> denotes the atom’s predicate name, while <Ind> surrounds
individual constants.19 An atom is negated by embedding it into a <Neg> tag.
A conjunction of atoms is expressed by an enclosing <And> tag, a disjunction by
<Or>. Thus, the single answer set {edge(a, b), edge(a, c), color(a, blue)} would
be written as

<Assert>

<And>

<Atom>

<Rel>edge</Rel>

<Ind>a</Ind> <Ind>b</Ind>

</Atom>

<Atom>

<Rel>edge</Rel>

<Ind>a</Ind> <Ind>c</Ind>

</Atom>

<Atom>

<Rel>color</Rel>

<Ind>a</Ind> <Ind>blue</Ind>

</Atom>

</And>

</Assert>

The outermost <Assert> tag acts as a wrapper and denotes a declarative con-
tent.20 A complete result by an ASP solver comprises several answer sets, joined
by a disjunction:

<Assert>

<Or>

<And> ... </And>

<And> ... </And>

</Or>

</Assert>

An empty answer set corresponds to an empty <And> tag, while an empty <Or>

clause denotes an empty result, i.e., no answer set.

19 In the context of the Semantic Web, individual names might well contain special
chars, for example URIs of resources. In XML we can simply encapsulate such strings
within CDATA sections.

20 <Assert> provides an attribute mapClosure to specify existential or universal closure
within the assertion, but since ASP results are currently always ground, we can omit
this information.



Currently, this output format is supported by the hex-program solver
dlvhex.21 hex-programs are an extension of ASP towards interoperability in the
Semantic Web [8], providing a mechanism to exchange knowledge with external
sources of information.

Other ongoing streams in the Semantic Web realm

Standard formats. Apart from RuleML, there are other ongoing efforts worth-
while to monitor in the context of how we could interface with the Semantic
Web. First of all, the Rule Interchange Format (RIF) working group22 is pro-
ducing first results toward channeling various proposals, of which RuleML is
only one into a real standard for exchanging rules. Emerging formats from this
group will likely replace attempts like RuleML which were not governed by an
official standardization body. Whereas RIF will likely be a good candidate for
Web exchange of answer set programs, the exchange of results of the evaluation
of rules though is not (yet) an explicit goal yet in RIF, but will likely arise as
soon as people start to pick up these formats to a larger extent.

Standard formats. The Semantic Web and Web 2.0 ideas go towards piping re-
sults between different distributed applications. Such applications do not only
require standard input and output formats, but moreover standard protocols
and interfaces to be used. A good example for the definition of such normative
interfaces and protocols is provided by W3C’s Data access working group, who
are in charge of defining SPARQL23, a standard query language for RDF. How-
ever, they also went one step further, defining a protocol along with defining
both the concrete message formats for sending a query and receiving the results
to a SPARQL endpoint, ie. an online interface for a SPARQL-capable query
engine. The definiton of such standard interfaces, makes smooth interplay of se-
mantic Web interfaces possible which can be invoked via standard Web Service
interfaces in the Web Services Definition Language (WSDL24).

When we think about defining defined standard input and output formats for
ASP-solvers, we also might think about extending such interface definitions like
the one defined for SPARQL toward standard Web service interfaces for ASP
solvers in order to make them accessible within the service-oriented world [10].

6 Query Answering

While many answer set solvers currently focus on computing answer sets, there
are applications that require query answering, among them Information Integra-
tion [11], Enterprise Information Systems [12], and Text Classification [13]. In
this section, we will mainly discuss in which way the output requirements for

21 http://www.kr.tuwien.ac.at/research/dlvhex/
22 http://www.w3.org/2005/rules/
23 http://www.w3.org/TR/rdf-sparql-query/
24 http://www.w3.org/TR/wsdl



query answering differ from those for answer set generation. In particular, we
shall argue that calculating query answers from a standard answer set output
in an easy way is not feasible in all cases, thus giving rise to a native query
answering output mode.

Given the fact that there may be any number of stable models, there is no
unique way of defining the consequence relation which is used for answering
queries. Traditionally, there are two major reasoning modes: Brave (also known
as credulous) and cautious (also known as skeptical) reasoning. For brave rea-
soning, a formula follows from a program if it holds in one of the answer sets
of the program, while for cautious reasoning a formula follows if it holds in all
answer sets.

Query answering is then defined as the set of ground substitutions over vari-
ables in the query formula, such that the substituted formula follows (bravely or
cautiously) from the program. For ground queries, this means that the answer
is either the empty set (corresponding to “no”) or a set containing the empty
substitution (corresponding to “yes”). Usually, as for rules, queries are required
to be domain independent, that is, the query answer must not depend on the
domain chosen to interpret the program. In practice, queries are required to be
safe (cf. [14]).

An important observation is that complex query formulas can be rewritten by
means of additional fresh predicates and rules to programs with an atomic query,
which does not contain constants (or function symbols). Ground queries therefore
are reduced to a query containing a predicate of arity 0. Let this predicate be p,
one can simulate brave reasoning by adding a constraint ← notp to the program
and checking whether this program has an answer set, answering with the empty
substitution if it does. For cautious reasoning, one may add ← p to the program
and check whether this program has an answer set, answering with the empty
substitution if it does not.

For nonground queries, such a simple simulation is not easily possible. For
brave reasoning, one could compute the answer sets projected onto the query
predicate by eliminating duplicates and extracting the substitutions from the
resulting set. For cautious reasoning, things are not as easy; for example, if
there is no answer set, the answer should comprise all possible substitutions
over the Herbrand Universe. As a result, especially for cautious reasoning, just
providing all answer sets does not appear like an acceptable solution.

Concerning the representation of the output for query answering, the query
language SPARQL, which has already been mentioned in Section 5, also defines
a format for query results25. As an example, two substitutions for variables X

and Y, where one substitutes a for X and b for Y, and the other one substitutes
b for X and c for Y, would be represented as follows:

<?xml version="1.0"?>

<sparql xmlns="http://www.w3.org/2005/sparql-results#">

<head>

25 http://www.w3.org/TR/rdf-sparql-XMLres/



<variable name="X"/>

<variable name="Y"/>

</head>

<results ordered="false" distinct="true">

<result>

<binding name="X">a</binding>

<binding name="Y">b</binding>

</result>

<result>

<binding name="X">b</binding>

<binding name="Y">c</binding>

</result>

</results>

</sparql>

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

2. Sutcliffe, G.: CASC-J3 — The 3rd IJCAR ATP System Competition. In Furbach,
U., Shankar, N., eds.: Proceedings of IJCAR. Springer (2006) 572–573

3. Berre, D.L., Simon, L., eds.: In Berre, D.L., Simon, L., eds.: Special Volume on the
SAT 2005 Competitions and Evaluations. Journal on Satisfiability, Boolean Model-
ing and Computation, IOS Press (2006)

4. Baral, C., Brewka, G., Schlipf, J., eds.: Proceedings of the Ninth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07),
Springer (2007) To appear.

5. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.:
The first answer set programming system competition. In [4] To appear.

6. Borchert, P., Anger, C., Schaub, T., Truszczyński, M.: Towards systematic bench-
marking in answer set programming: The Dagstuhl initiative. In Lifschitz, V.,
Niemelä, I., eds.: Proceedings of the Seventh International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’04). Springer (2004) 3–7

7. Boley, H., Tabet, S., Wagner, G.: Design Rationale for RuleML: A Markup Lan-
guage for Semantic Web Rules. In: Proceedings of the first Semantic Web Working
Symposium (SWWS’01). (2001) 381–401. See also http://www.ruleml.org.

8. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-
Order Reasoning and External Evaluations in Answer Set Programming. In: Proc.
IJCAI 2005, Morgan Kaufmann (2005) 90–97

9. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A RuleML Syntax for Answer-Set
Programming. In Polleres, A., Decker, S., Gupta, G., de Bruijn, J., eds.: Informal
Proceedings of the Workshop on Applications of Logic Programming in the Semantic
Web and Semantic Web Services (ALPSWS’06). (2006) 107–108

10. Papazoglou, M.P., Georgakopoulos, D.: Service Oriented Computing. Comm.
ACM, vol. 46, no. 10, (2003) 25–28

11. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni,
G., KaÃlka, E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis,
W., Terracina, G.: The INFOMIX System for Advanced Integration of Incomplete



and Inconsistent Data In: Proceedings of the 24th ACM SIGMOD International
Conference on Management of Data (SIGMOD 2005). (2005) 915–917

12. Ruffolo, M., Manna, M.: A Logic-Based Approach to Semantic Information Ex-
traction In: ICEIS 2006 - Proceedings of the Eighth International Conference on
Enterprise Information Systems: Databases and Information Systems Integration.
(2006) 115–123

13. Cumbo, C., Iiritano, S., Rullo, P.: OLEX - A Reasoning-Based Text Classifier In:
Logics in Artificial Intelligence, 9th European Conference, JELIA 2004, Proceedings.
(2004) 722–725

14. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases Addison-Wesley
(1995)


