
Incremental Answer Sets and Their Computation

Martin Gebser, Mona Gharib, and Torsten Schaub?

Institut für Informatik, Universität Potsdam, August-Bebel-Str. 89, D-14482 Potsdam, Germany

Abstract. In answer set programming, the existence of an answer set for a logic
program is not guaranteed. In order to remedy this problem, we utilize the alter-
native concept of ι-answer sets, which are characterized by their applied rules.
The ι-answer sets of a logic program amount to the justified extensions of the
default theory corresponding to the program. On the one hand, every logic pro-
gram has at least one ι-answer set, which can be constructed incrementally based
on applicable rules. On the other hand, a ι-answer set may lack characteristic
properties of standard answer sets, such as being a model of the given program.
We show how integrity constraints can be used to re-establish such properties,
even up to correspondence with standard answer sets. Furthermore, we introduce
a translation from logic programs to propositional formulas that modifies Clark’s
completion to preserve the ι-answer sets of a given program. Based on our no-
tion of program completion, we present a DPLL-like algorithm for computing the
ι-answer sets of a logic program that satisfy a given set of integrity constraints.

1 Introduction

Answer Set Programming (ASP; [1]) has emerged as an attractive paradigm for declar-
ative problem solving [2–4]. Originally, it was developed as a declarative branch of
logic programming [5], where the semantics of logic programs is given by their answer
sets [6]. The answer set semantics is closely related to other nonmonotonic formalisms,
such as Reiter’s default logic [7] and Clark’s completion [8]. Similar to them, the ex-
istence of an answer set for a logic program is not guaranteed. In order to remedy this
problem, a variant of default logic, called justified, has been proposed in [9]; the ap-
proach has been mapped to ASP in [10]. The respective concept of ι-answer sets is
characterized by applied rules, which can be determined one by one in the construction
of a ι-answer set. On the one hand, this incremental character of ι-answer sets guaran-
tees their existence for every logic program and facilitates computations. On the other
hand, a ι-answer set may lack characteristic properties of standard answer sets, such
as being a model of the given program. Such properties can be re-established by using
integrity constraints. Indeed, one-to-one correspondence between standard answer sets
and ι-answer sets satisfying a set of integrity constraints can be achieved by a simple
syntactic transformation. In this view, ι-answer sets are a priori less restrictive than
standard answer sets; in contrast to the latter, their existence is guaranteed for every
logic program. By additionally incorporating integrity constraints, the expressiveness
of standard answer sets can however be obtained if it is desired.
? Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada,

and IIIS at Griffith University, Brisbane, Australia.

The basic algorithms of (standard) answer set solvers, such as dlv [11] and smod-
els [12], are modifications of the Davis-Putnam-Logemann-Loveland procedure (DPLL;
[13, 14]). To our knowledge, no such algorithm has been described yet for computing
either ι-answer sets of logic programs or justified extensions of default theories. (An
analytic tableau method for the latter has been proposed in [15]; it is based on a conver-
sion into disjunctive normal form.) We present a DPLL-like algorithm for computing
the ι-answer sets of a logic program that satisfy a given set of integrity constraints. Our
algorithm is based on a modification of Clark’s completion that preserves the ι-answer
sets of a given program and on the well-founded semantics for logic programs [16].
In the absence of integrity constraints, the algorithm computes a ι-answer set in poly-
nomial time. Our algorithm also handles integrity constraints; however, the decision
problem whether there is some ι-answer set that satisfies all integrity constraints is NP-
complete. We have implemented our algorithm as a prototype in ECLiPSe-Prolog [17];
the implementation is publicly available at [18].

The outline of this paper is as follows. Section 2 provides some basic concepts. In
Section 3, we introduce ι-answer sets and compare them to (standard) answer sets. In
Section 4, we extend our framework with integrity constraints as a mechanism to filter
ι-answer sets. Section 5 characterizes ι-answer sets in terms of propositional logic via
a modification of Clark’s completion. In Section 6, we show how unit propagation can
be applied within the deterministic part of the ι-answer set computation. Based on this,
Section 7 provides a DPLL-like algorithm for computing ι-answer sets. We conclude
with Section 8.

2 Background

A (normal) logic program is a finite set of rules of the form

p0 ← p1, . . . , pm,not pm+1, . . . ,not pn (1)

where n ≥ m ≥ 0 and each pi (0 ≤ i ≤ n) is an atom. Given a rule r as in (1), we
denote the head of r by head(r) = p0 and the body of r by body(r) = {p1, . . . , pm,
not pm+1, . . . ,not pn}. Furthermore, body+(r) = {p1, . . . , pm} and body−(r) =
{pm+1, . . . , pn} are the positive and negative body of r, respectively. For a program Π ,
we let body+(Π) =

⋃
r∈Π body+(r) and body−(Π) =

⋃
r∈Π body−(r). We denote

the set of all atoms occurring in Π by At(Π).
A set X of atoms is a model of a logic program Π if, for every r ∈ Π , head(r) ∈ X

if body+(r) ⊆ X and body−(r)∩X = ∅. Program Π is called basic if body−(Π) = ∅.
The ⊆-minimal model of a basic program Π is denoted by Cn(Π). The reduct of a
logic program Π relative to a set X of atoms is

ΠX = {head(r)← body+(r) | r ∈ Π, body−(r) ∩X = ∅}.

A set X of atoms is an answer set of Π if X = Cn(ΠX). Note that any answer set
of Π is also a model of Π . The generating rules of X for Π are

RΠ(X) = {r ∈ Π | body+(r) ⊆ X, body−(r) ∩X = ∅}.

We have that X is a model of Π iff head(r) ∈ X for all r ∈ RΠ(X). Furthermore,
let Cn+(Π) = Cn(Π∅). Note that Π∅ = {head(r) ← body+(r) | r ∈ Π}. One can
show that X is an answer set of Π iff Cn+(RΠ(X)) = Cn(ΠX) = X .

3 ι-Answer Sets

The construction of answer sets is non-modular, that is, all rules of a program need to
be inspected. It is thus impossible to incrementally construct an answer set or to locally
validate a construction, like a proof, by only looking at a subset of the given program. In
the area of default logics, Łukaszewicz defined justified extensions [9] to remedy these
problems; they lead us to ι-answer sets [10], where ι indicates the incremental flavor.

Definition 1. A set X of atoms is a ι-answer set of a logic program Π if X = Cn+(Π ′)
for some ⊆-maximal Π ′ ⊆ Π such that

(i) body+(Π ′) ⊆ Cn+(Π ′) and
(ii) body−(Π ′) ∩ Cn+(Π ′) = ∅.

Definition 1 characterizes a ι-answer set X of Π in terms of the rules that are applied
wrt X . The set Π ′ of such rules is maximal among all subsets of Π that satisfy con-
ditions (i) and (ii). Condition (i) guarantees that the positive bodies of rules in Π ′ are
justified, while condition (ii) makes sure that the rules in Π ′ do not block one another.

For illustration, consider the following program Π1:

r1 : a← not d
r2 : b← not e
r3 : c← a, b
r4 : e← not a .

(2)

The ι-answer sets of Π1 are {a, b, c} and {e}. For {a, b, c}, the corresponding maximal
subset of Π1 is Π ′

1 = {r1, r2, r3}. We have

Cn+(Π ′
1) = {a, b, c},

body+(Π ′
1) = {a, b} ⊆ {a, b, c} = Cn+(Π ′

1), and
body−(Π ′

1) ∩ Cn+(Π ′
1) = {d, e} ∩ {a, b, c} = ∅.

Since body−(r4) ∩ Cn+(Π ′
1) = {a} ∩ {a, b, c} 6= ∅, Π ′

1 is indeed a maximal subset
of Π1 such that condition (i) and (ii) in Definition 1 hold. For the other ι-answer set {e},
one can verify that {r4} is maximal satisfying condition (i) and (ii).

For a program Π and a set X of atoms, we let the applied rules of X for Π be

AΠ(X) = {r ∈ Π | body+(r) ⊆ X, body−(r) ∩X = ∅, head(r) ∈ X}.

For a ι-answer set X of Π , the applied rules AΠ(X) correspond to Π ′ in Definition 1.
Note that AΠ(X) ⊆ RΠ(X) for any program Π and any set X of atoms, but not vice
versa. For instance, observe that AΠ1({e}) = {r4} ⊂ {r1, r4} = RΠ1({e}).

The concept of applied rules yields an alternative characterization of ι-answer sets.

Proposition 1. Let Π be a logic program and X be a set of atoms.
Then, X is a ι-answer set of Π iff X = Cn+(AΠ(X)) and, for every r ∈ Π \

AΠ(X), either

(i) body+(r) 6⊆ X ,
(ii) body−(r) ∩X 6= ∅, or

(iii) head(r) ∈ body−(AΠ(X) ∪ {r}).

The following result shows that ι-answer sets can be constructed incrementally, as
the corresponding applied rules underlie monotonicity.

Proposition 2. Let Π be a logic program and X be a set of atoms such that X =
Cn+(AΠ(X)).

Then, there is a ι-answer set X ′ of Π such that X ⊆ X ′.

For constructing a ι-answer set, we can thus start with the empty set, whose applied
rules are empty as well, and pick “applicable” rules one by one until either condition
(i), (ii), or (iii) in Proposition 1 holds for every remaining rule.

As a consequence of Proposition 2, every program has some ι-answer set.

Theorem 1. For every logic program Π , there is some ι-answer set of Π .

Since there are programs that do not have any (standard) answer sets, it is clear that
ι-answer sets are not necessarily answer sets.

The converse does however hold, that is, any answer set is as well a ι-answer set.

Proposition 3. Let Π be a logic program and X be an answer set of Π .
Then, X is a ι-answer set of Π .

The ι-answer sets of a program Π do thus form a superset of the answer sets of Π .
A ι-answer set is also an answer set if its applied and generating rules are identical.

Proposition 4. Let Π be a logic program and X be a ι-answer set of Π .
Then, X is an answer set of Π iff AΠ(X) = RΠ(X).

For ι-answer set {a, b, c} of Π1 in (2), we have AΠ1({a, b, c}) = {r1, r2, r3} =
RΠ1({a, b, c}), that is, {a, b, c} is an answer set of Π1. In contrast, we haveAΠ1({e}) =
{r4} 6= {r1, r4} = RΠ1({e}), thus, the ι-answer set {e} of Π1 is not an answer set
of Π1. In fact, {e} is not a model of Π1 because rule r1 is not satisfied.

Based on the concept of models, we can reformulate Proposition 4 as follows.

Corollary 1. Let Π be a logic program and X be a ι-answer set of Π .
Then, X is an answer set of Π iff X is a model of Π .

Any answer set of a program is as well a model of the program, while ι-answer sets are
not necessarily models. In fact, condition (iii) in Proposition 1 allows for denying the
application of a rule if the head would block some applied rule. However, a ι-answer
set that is a model of the given program is also an answer set.

The property of being a model distinguishes answer sets from ι-answer sets. In the
next section, we extend our framework with integrity constraints, providing us with
versatile means to filter ι-answer sets. For instance, we can use integrity constraints to
deny any ι-answer set that is not a model. In this way, we can achieve a one-to-one
correspondence between ι-answer sets and answer sets.

4 Integrity Constraints

For a program Π , let ΠC = {r ∈ Π | head(r) ∈ body−(r)}, that is, ΠC contains all
“self-blocking” rules of Π . For a (standard) answer set X of Π \ΠC , we have that X is
an answer set of Π iff body+(r) 6⊆ X or body−(r)∩X 6= ∅ for all r ∈ ΠC . Thus, rules
in ΠC can effectively prune answer sets of Π \ΠC . This does not apply to ι-answer sets
because Π ′ ∩ΠC = ∅ for any Π ′ ⊆ Π satisfying condition (i) and (ii) in Definition 1.

In fact, the rules in ΠC have no effect on the ι-answer sets of Π .

Proposition 5. Let Π be a logic program and X be a set of atoms.
Then, X is a ι-answer set of Π iff X is a ι-answer set of Π \ΠC .

This shows that the standard approach to prune undesired answer sets via self-blocking
rules does not work with ι-answer sets.

For filtering ι-answer sets, we thus extend our framework: An integrity constraint
is of the form

← p1, . . . , pm,not pm+1, . . . ,not pn (3)

where n ≥ m ≥ 0 and each pi (1 ≤ i ≤ n) is an atom. Given an integrity con-
straint c as in (3), we let body(c) = {p1, . . . , pm,not pm+1, . . . ,not pn}, body+(c) =
{p1, . . . , pm}, and body−(c) = {pm+1, . . . , pn} denote the body, the positive body,
and the negative body of c, respectively. We say that c is satisfied wrt a set X of atoms
if body+(c) 6⊆ X or body−(c) ∩X 6= ∅. For a set C of integrity constraints, we denote
the set of all atoms occurring in C by At(C).

We now extend the definition of ι-answer sets to the case that integrity constraints
must be satisfied.

Definition 2. A set X of atoms is a ι-answer set of a logic program Π wrt a set C of
integrity constraints if X is a ι-answer set of Π such that every c ∈ C is satisfied wrt X .

Similar to pruning standard answer sets via ΠC , one can use C to prune ι-answer sets.
We next show how integrity constraints can be used to achieve a one-to-one cor-

respondence between ι-answer sets and answer sets. By Corollary 1, we have to deny
ι-answer sets that are no models of the given program. For a program Π , let

CΠ = {← body(r),not head(r) | r ∈ Π}.

The integrity constraints in CΠ prohibit that rules whose bodies are true are not applied.
Any ι-answer set of Π wrt CΠ is a model and thus also an answer set of Π .

Proposition 6. Let Π be a logic program and X be a set of atoms.
Then, X is an answer set of Π iff X is a ι-answer set of Π wrt CΠ .

For illustration, reconsider program Π1 in (2). We obtain the following set CΠ1 of
integrity constraints:

c1 :← not d,not a
c2 :← not e,not b
c3 :← a, b,not c
c4 :← not a,not e .

Observe that all integrity constraints in CΠ1 are satisfied wrt ι-answer set {a, b, c} of Π1,
thus, {a, b, c} is a model and an answer set of Π1. Wrt the second ι-answer set {e},
integrity constraint c1 is not satisfied, indeed, {e} is neither a model nor an answer set
of Π1.

As a second example, consider the following program Π2, which does not have any
answer sets:

a← not b
b← not c
c← not a .

(4)

The ι-answer sets of Π2 are {a}, {b}, and {c}. Neither of them satisfies all integrity
constraints in CΠ2 = {← not b,not a;← not c,not b;← not a,not c}. Thus, there
is no ι-answer set of Π2 wrt CΠ2 . This example demonstrates that ι-answer sets, whose
existence is guaranteed for every program, are a priori less restrictive than answer sets.
By additionally incorporating integrity constraints, the same expressiveness as with an-
swer sets can however be obtained if it is desired.

5 ι-Completion

In this section, we introduce a translation from logic programs to propositional for-
mulas, which we call ι-completion. The ι-completion of a program modifies Clark’s
completion [8] to preserve the ι-answer sets of the program. The models of Clark’s
completion form a superset of the program’s answer sets. In the same way, the models
of a program’s ι-completion form a superset of the program’s ι-answer sets. For some
programs, Clark’s completion does not have any models. However, every program has
some ι-answer set (as long as no integrity constraints must be satisfied); therefore, the
ι-completion must also have a model.

Let us first provide some auxiliary definitions. For a program Π and an atom p, let
rule(p) = {r ∈ Π | head(r) = p, p /∈ body−(r)} be the rules defining p. Note that we
exclude any r ∈ Π such that p ∈ body−(r) from the rules defining p. This is justified
by the fact that self-blocking rules do not have any effect on the ι-answer sets of Π (cf.
Proposition 5). Based on rule(p), we define the support formula for p as

sup(p) =
∨

r∈rule(p)(
∧

p∈body+(r)p ∧
∧

p∈body−(r)¬p).

Assuming that head(r) /∈ body−(r) for every r ∈ Π , we let Clark’s completion of
a program Π and a set C of integrity constraints be

Clark(Π, C) = { p ≡ sup(p) | p ∈ At(Π) ∪At(C) } ∪
{

∨
p∈body+(c)¬p ∨

∨
p∈body−(c)p | c ∈ C }.

Note that a rule r such that head(r) ∈ body−(r) can be expressed as the integrity
constraint ← body(r). Self-blocking rules are therefore unnecessary with our explicit
definition of integrity constraints.

For Π2 in (4), we have Clark(Π2, ∅) = {a ≡ ¬b, b ≡ ¬c, c ≡ ¬a}; one can check
that Clark(Π2, ∅) does not have any models. As mentioned above, the ι-completion

must have a model for every program, as every program has some ι-answer set. Thus,
we cannot rely on p ≡ sup(p) in the ι-completion of a program.

In order to preserve a program’s ι-answer sets, we need to include an additional
conjunct in the equivalence defining an atom. For an atom p, let neg(p) = {r ∈ Π |
p ∈ body−(r), head(r) /∈ body−(r)}. The set neg(p) contains all rules that can be
blocked by p, again we exclude any r ∈ Π such that head(r) ∈ body−(r). Based
on neg(p), we define the block formula for p as

block(p) =
∨

r∈neg(p)(head(r) ∧
∧

p∈body+(r)p ∧
∧

p∈body−(r)¬p).

Combining sup(p) and block(p) for atoms p, we define the ι-completion of a pro-
gram Π and a set C of integrity constraints as

Comp(Π, C) = { p ≡ sup(p) ∧ ¬block(p) | p ∈ At(Π) ∪At(C) } ∪
{

∨
p∈body+(c)¬p ∨

∨
p∈body−(c)p | c ∈ C }.

(5)

Including ¬block(p) in (5) permits p being false if some r ∈ Π such that p ∈ body−(r)
is applied. In this case, satisfying the body of some rule defining p does not make p
true. This is different from Clark’s completion; the latter asserts that atoms must be
equivalent to (the disjunction of) their defining rules’ bodies.

For Π2 in (4), Comp(Π2, ∅) contains the following equivalences:

a ≡ ¬b ∧ ¬(c ∧ ¬a)
b ≡ ¬c ∧ ¬(a ∧ ¬b)
c ≡ ¬a ∧ ¬(b ∧ ¬c) .

The models of Comp(Π2, ∅) are {a}, {b}, and {c}; they correspond to the ι-answer sets
of Π2. For instance wrt model {a}, we have {a} |= block(b) = a ∧ ¬b. This makes b
false, although we have {a} |= sup(b) = ¬c. Observe that model {a} of Comp(Π2, ∅)
does not satisfy Clark(Π2, ∅); the same applies to {b} and {c}.

The above example shows that models of the ι-completion are not necessarily mod-
els of Clark’s completion. The converse however holds.

Proposition 7. Let Π be a logic program and C be a set of integrity constraints.
Then, we have Clark(Π, C) |= Comp(Π, C).

This shows that the notion of ι-completion is indeed a relaxation of Clark’s completion.
Similar to Clark’s completion and answer sets, we have the following relationship

between the models of a program’s ι-completion and the program’s ι-answer sets.

Proposition 8. Let Π be a logic program and C be a set of integrity constraints.
For every ι-answer set X of Π wrt C, we have X |= Comp(Π, C).

The following is an immediate consequence of Theorem 1 and Proposition 8.

Corollary 2. For every logic program Π , there is some model of Comp(Π, ∅).

Note that the existence of ι-answer sets or models of the ι-completion, respectively, is
only guaranteed in the absence of integrity constraints.

The converse of Proposition 8 holds if a model X of the ι-completion is justified by
the given program Π , that is, if X = Cn+(AΠ(X)) holds.

Theorem 2. Let Π be a logic program, C be a set of integrity constraints, and X be a
set of atoms.

Then, X is a ι-answer set of Π wrt C iff X |= Comp(Π, C) and X = Cn+(AΠ(X)).

Note that X = Cn+(AΠ(X)) implies that condition (i) in Definition 1 holds for
AΠ(X), and X |= Comp(Π, C) makes sure that AΠ(X) is indeed a maximal sub-
set of Π satisfying condition (i) and (ii) in Definition 1.

In view of [16], we can characterize the ι-answer sets X of a program Π by un-
founded sets. A set U ⊆ At(Π) is unfounded for Π wrt a set X of atoms if, for
any r ∈ Π such that head(r) ∈ U , either body+(r) 6⊆ X , body−(r) ∩ X 6= ∅, or
body+(r)∩U 6= ∅. For all r ∈ AΠ(X), we have body+(r) ⊆ X and body−(r)∩X = ∅.
If we have X = Cn+(AΠ(X)), then, for any nonempty U ⊆ X , there is some
r ∈ AΠ(X) such that head(r) ∈ U and body+(r) ∩ U = ∅. Thus, the only un-
founded set contained in a ι-answer set X of Π is the empty set, which is unfounded
by definition.

Based on unfounded sets, we can reformulate Theorem 2 as follows.

Proposition 9. Let Π be a logic program, C be a set of integrity constraints, and X ⊆
At(Π).

Then, X is a ι-answer set of Π wrt C iff X |= Comp(Π, C) and no nonempty subset
of X is unfounded for Π wrt X .

For a program Π and a set X of atoms, one can show that the union U1 ∪ U2 of
two unfounded sets U1 and U2 for Π wrt X is also unfounded for Π wrt X . Thus,
the union of all unfounded sets for Π wrt X yields the greatest unfounded set for Π
wrt X , denoted by UΠ(X). As shown in [16], X is an answer set of Π iff UΠ(X) =
At(Π)\X . This does not apply to ι-answer sets. For Π1 in (2) and the ι-answer set {e}
of Π1, we have UΠ1({e}) = {b, c, d} ⊂ {a, b, c, d} = At(Π1) \ {e}.

The following is a reformulation of Proposition 9 in terms of greatest unfounded
sets.

Proposition 10. Let Π be a logic program, C be a set of integrity constraints, and
X ⊆ At(Π).

Then, X is a ι-answer set of Π wrt C iff X |= Comp(Π, C) and UΠ(X) ⊆ At(Π)\
X .

In contrast to answer sets, we may have UΠ(X) ⊂ At(Π) \X for a ι-answer set X .
Finally, Proposition 9 allows us to provide a modification of the Lin-Zhao theo-

rem [19] for ι-answer sets. For a program Π , the (positive) dependency graph of Π is
(At(Π), {(p, p′) | r ∈ Π, head(r) = p, p′ ∈ body+(r)}). A set L ⊆ At(Π) is a loop
of Π if, for every pair p1 ∈ L, p2 ∈ L, there is a path of non-zero length from p1 to p2

in the dependency graph of Π such that all atoms in the path belong to L. For a loop L
of Π , we define the loop formula of L for Π as

LFΠ(L) =
∨

p∈Lp→
∨

r∈Π,head(r)∈L,body+(r)∩L=∅(
∧

p∈body+(r)p∧
∧

p∈body−(r)¬p).

Intuitively, LFΠ(L) enforces non-circular support if some atom of L is true. We denote
by LF (Π) the set of loop formulas LFΠ(L) for all loops L of Π .

For a program Π , a set C of integrity constraints, and X ⊆ At(Π), the Lin-Zhao
theorem states that X is an answer of Π such that every c ∈ C is satisfied wrt X iff
X |= Clark(Π, C) ∪ LF (Π).1 By replacing Clark’s completion with ι-completion, we
obtain a modification of the Lin-Zhao theorem for ι-answer sets.

Theorem 3. Let Π be a logic program, C be a set of integrity constraints, and X ⊆
At(Π).

Then, X is a ι-answer set of Π wrt C iff X |= Comp(Π, C) ∪ LF (Π).

Note that the number of loop formulas in LF (Π) is exponential in the worst case [20].
Thus, it is impractical to explicitly construct LF (Π). Fortunately, constructing LF (Π)
is unnecessary since violations wrt a set X of atoms can be detected efficiently, for
instance, using Cn+(AΠ(X)).

6 Unit Propagation

We now exploit the concept of ι-completion for identifying deterministic propagation
steps to be applied in the computation of ι-answer sets. This paves the way for the
DPLL-like algorithm, presented in the next section, that combines deterministic prop-
agation and non-deterministic splitting. To our knowledge, no such algorithm has been
described yet for computing either ι-answer sets of logic programs or the closely related
justified extensions of default theories [9]. Also, the propagation within (standard) an-
swer set solvers, such as clasp [21], dlv [11], and smodels [12], is based on Clark’s
completion and can thus not be used for computing ι-answer sets. Though we can-
not directly use existent propagation frameworks, the fact that the ι-completion of a
program is a propositional theory allows us to identify propagation principles for the
ι-answer set computation within the setting of DPLL [13, 14].

The DPLL procedure works on propositional formulas in conjunctive normal form
(CNF). A formula in CNF is a set {C1, . . . , Cm} representing a conjunction of clauses
Ci = {l1, . . . , ln} (1 ≤ i ≤ m), where every lj (1 ≤ j ≤ n) is a (propositional)
literal. That is, either lj = p or lj = ¬p for some proposition p, and Ci expresses the
disjunction of its literals. We denote the complement of a literal l by l where l = ¬p
if l = p and, respectively, l = p if l = ¬p. We extend this notation to clauses C =
{l1, . . . , ln} and let C = {l1, . . . , ln}.

An assignment A is a consistent set of literals, that is, p /∈ A or ¬p /∈ A for every
proposition p. For a clause C, the unit clause rule implies a literal l ∈ C wrt A if
C \ A = {l}, that is, all literals of C except for l are false wrt A. If l is implied wrt A,
it is the only literal that can satisfy C; in order to construct a model, DPLL thus adds l
to A. Such an application of the unit clause rule is called unit propagation.

For a formula Γ in CNF, an assignment A is a fixpoint of unit propagation if either

(i) C ⊆ A for some clause C ∈ Γ or
(ii) l ∈ A for every clause C ∈ Γ such that C \A = {l}.

1 We assume head(r) /∈ body−(r) for every r ∈ Π .

In case (i), clause C is violated wrt A, and thus A cannot be extended to a model of Γ .
In case (ii), all implied literals are already contained in A, that is, A cannot be extended
further by unit propagation. For an assignment A′, we say that A is a unit fixpoint of A′

if A is a fixpoint of unit propagation such that A′ ⊆ A and all literals in A \ A′ have
successively been added to A′ by unit propagation.

In order to use unit propagation in the computation of ι-answer sets, we have to
represent the ι-completion of a program in CNF. For avoiding an exponential blow-up,
our CNF representation uses structural propositions in addition to the atoms of the given
program, as usually introduced in CNF conversions [22]. Given a program Π and a set C
of integrity constraints, we uniquely associate every rule r ∈ Π with a proposition pr

and every body b ∈ {body(r) | r ∈ Π ∪ C} with a proposition pb. We below assert
pr ≡ head(r) ∧ pbody(r) as well as pb ≡ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn for
b = {p1, . . . , pm,not pm+1, . . . ,not pn}.

For a program Π and a set C of integrity constraints, we use the following clause
sets to represent Comp(Π, C) in CNF:

Γr(Π) =
{
{pr,¬head(r),¬pbody(r)}, {¬pr, head(r)}, {¬pr, pbody(r)} |

r ∈ Π, head(r) /∈ body−(r)
}

(6)

Γb(Π, C) =
{
{pb,¬p1, . . . ,¬pm, pm+1, . . . , pn},
{¬pb, p1}, . . . , {¬pb, pm}, {¬pb,¬pm+1}, . . . , {¬pb,¬pn} |

(b = {p1, . . . , pm,not pm+1, . . . ,not pn}) ∈ {body(r) | r ∈ Π ∪ C}
}

(7)

Γp(Π, C) =
{
{p,¬pbody(r1), pn1 , . . . , pnm}, . . . ,
{p,¬pbody(rk), pn1 , . . . , pnm}, {¬p, pr1 , . . . , prk

} |
p ∈ At(Π) ∪At(C), rule(p) = {r1, . . . , rk},neg(p) = {n1, . . . , nm}

}
(8)

ΓComp(Π, C) = Γr(Π) ∪ Γb(Π, C) ∪ Γp(Π, C) ∪
{
{¬pbody(c)} | c ∈ C

}
. (9)

For r ∈ Π and b ∈ {body(r) | r ∈ Π ∪ C}, respectively, the clauses Γr(Π) in (6)
and Γb(Π, C) in (7) assert the equivalences mentioned above.2 For p ∈ At(Π)∪At(C),
the clauses Γp(Π, C) in (8) reflect the equivalence p ≡ sup(p) ∧ ¬block(p) in the
definition of Comp(Π, C) (cf. (5)). Finally, ΓComp(Π, C) in (9) represents Comp(Π, C)
in CNF. In addition to the clauses described above, it asserts that integrity constraints
c ∈ C must be satisfied, that is, pbody(c) must be false. This fact can potentially be
exploited by unit propagation, even if no literal of body(c) can be falsified immediately
(using the first clause in (7)), because there might be rules r ∈ Π such that body(r) =
body(c), in which case we have pbody(r) = pbody(c).

The following result shows that, for a program Π and a set C of integrity constraints,
ΓComp(Π, C) is indeed a conservative extension of Comp(Π, C).
Proposition 11. Let Π be a logic program, C be a set of integrity constraints, and
X ⊆ At(Π).

Then, X |= Comp(Π, C) iff X = Y ∩ At(Π) for a (unique) Y ⊆ At(Π) ∪ {pr |
r ∈ Π, head(r) /∈ body−(r)} ∪ {pbody(r) | r ∈ Π} such that Y |= ΓComp(Π, C).

2 By Proposition 5, we can in (7) ignore rules r ∈ Π such that head(r) ∈ body−(r). Our
prototype implementation, described in the next section, removes such rules in preprocessing.

The clauses in ΓComp(Π, C) have the desirable property that, for an assignment A
such that p ∈ A or ¬p ∈ A for either all p ∈ At(Π), all p ∈ {pr | r ∈ Π, head(r) /∈
body−(r)}, or all p ∈ {pbody(r) | r ∈ Π, head(r) /∈ body−(r)}, a unit fixpoint of A
either violates some clause in ΓComp(Π, C) or decides all atoms, bodies, and applied
rules of Π . (In the latter case, A ∩ At(Π) is a ι-answer set of Π wrt C, provided that
Cn+(AΠ(A ∩ At(Π))) = A ∩ At(Π).) Thus, we can restrict the search space for
ι-answer sets to either atoms, bodies, or rules of Π . In the next section, we detail an
algorithm that exploits this property for efficiently computing ι-answer sets (at least in
the absence of integrity constraints).

7 ι-Answer Set Computation

We now provide a DPLL-like algorithm for computing the ι-answer sets of a pro-
gram Π that satisfy a set C of integrity constraints. By Proposition 8 and 11, we
can use unit propagation on ΓComp(Π, C) for deterministically extending an assign-
ment A. In addition, we have to make sure that true atoms are not unfounded, that is,
A∩At(Π) ⊆ Cn+({r ∈ Π | head(r) /∈ body−(r),¬pr /∈ A}) must hold. Conversely,
all atoms p ∈ At(Π) \Cn+({r ∈ Π | head(r) /∈ body−(r),¬pr /∈ A}) must be false,
and we can add ¬p to A. Thus, there are two kinds of deterministic inferences: literals
implied by unit propagation on ΓComp(Π, C) and unfounded atoms.

If deterministic propagation does neither yield a total assignment nor a conflict,
DPLL splits on some undecided proposition. As mentioned above, it for ΓComp(Π, C)
is sufficient to split either only on atoms, bodies, or rules. In the algorithm below, we
only split on rules or their corresponding propositions, respectively. We even go further
and stipulate body+(r) ⊆ Cn+({r ∈ Π | pr ∈ A}), for a rule r ∈ Π used for splitting.
Indeed, such a rule r must exist if there are rules whose application is not yet decided.

Our strategy is motivated by the desire to efficiently compute ι-answer sets in the
absence of integrity constraints. By Proposition 2, ι-answer sets can be constructed
incrementally based on their applied rules. For a model Y of ΓComp(Π, C) and X =
Y ∩At(Π), we haveAΠ(X) = {r ∈ Π | pr ∈ Y }. If we choose to apply a rule r ∈ Π
such that body+(r) ⊆ Cn+({r ∈ Π | pr ∈ A}) for an assignment A, we make sure
that head(r) ∈ Cn+(AΠ(X)), as stipulated in Theorem 2. In the absence of integrity
constraints, our splitting strategy thus allows for directly constructing ι-answer sets. In
fact, we can compute one ι-answer set of a program without any backtracking.

Our algorithm for computing the ι-answer sets of a program Π satisfying a set C of
integrity constraints is shown in Algorithm 1. In lines 1–7, we deterministically extend
assignment A until either a conflict is encountered or no further literals can be inferred.
A conflict occurs if either a clause in ΓComp(Π, C) is violated (line 3) or a true atom is
unfounded (line 6). If no conflict has been encountered, we in line 8 determine all rules
r ∈ Π such that head(r) /∈ body−(r), the corresponding proposition pr is undecided
wrt A (that is, {pr,¬pr} ∩ A = ∅), and body+(r) ⊆ Cn+({r ∈ Π | pr ∈ A}). If
no such rule exists, then the true atoms in A form a ι-answer set of Π wrt C and are
printed in line 9. Otherwise, if propagation yields a partial assignment, we in line 11
non-deterministically select one of the rules determined in line 8. We then first analyze
the case that r is applied (line 12) and afterwards the case that r is not applied (line 13).

Algorithm 1: ι-ANSWER-SETS

Input : A logic program Π , a set C of integrity constraints, and an assignment A.
repeat1

A← some unit fixpoint of A for ΓComp(Π, C)2

if C ⊆ A for some C ∈ ΓComp(Π, C) then return3
A′ ← A4
A← A ∪ {¬p | p ∈ At(Π) \ Cn+({r ∈ Π | head(r)/∈body−(r),¬pr /∈A})}5
if {p ∈ At(Π) | p ∈ A} ∩ {p ∈ At(Π) | ¬p ∈ A} 6= ∅ then return6

until A = A′7
π ← {r ∈ Π | head(r) /∈ body−(r), {pr,¬pr} ∩A = ∅,

body+(r) ⊆ Cn+({r ∈ Π | pr ∈ A})}8

if π = ∅ then print A ∩At(Π)9
else10

r ← select(π)11
ι-ANSWER-SETS(Π, C, A ∪ {pr})12
ι-ANSWER-SETS(Π, C, A ∪ {¬pr})13

All ι-answer sets of a program Π that satisfy a set C of integrity constraints are
computed by ι-ANSWER-SETS(Π, C, ∅). It is straightforward to modify Algorithm 1 to
compute a desired number of ι-answer sets, if they exist. If C = ∅, our splitting strategy
allows us to construct one ι-answer set without any backtracks (without ever executing
line 13 in Algorithm 1). If C 6= ∅, we cannot guarantee this any longer. Though the
decision problem whether Π has a ι-answer set is trivial, deciding whether there is
some ι-answer set of Π wrt C is NP-complete. The latter is a direct consequence of
Proposition 1 and 6.

We have implemented Algorithm 1 as a prototype in ECLiPSe-Prolog [17]. Our
implementation is publicly available at [18]. For illustrating its usage, assume that file
pi.lp contains the following program Π3 (in Prolog syntax):

a :- not d.
b :- not a.
b :- c, not d.
c :- b.
d :- not c.

Via the query
?- lsolve(’pi.lp’, R, X, Y).

we can compute all ι-answer sets X of Π3, where R is the set AΠ3(X) of applied rules
and Y is the set body−(AΠ3(X)). By backtracking, we get the following answers:

R=[a:-not d] X=[a] Y=[d]; (10)
R=[b:-not a, c:-b, b:-(c, not d)] X=[b,c] Y=[a,d]; (11)
R=[b:-not a, d:-not c] X=[b,d] Y=[a,c]; (12)
No.

Indeed, the ι-answer sets of Π3 are {a}, {b, c}, and {b, d}. (Observe that Π3 does
not have any standard answer sets.) All solutions found by backtracking correspond to
distinct ι-answer sets, thanks to splitting in Algorithm 1.

Assume next that file ic.lp contains Π3 augmented with the following integrity
constraint:

:- b, not c. (13)

As expected, the query

?- lsolve(’ic.lp’, R, X, Y).

yields solutions (10) and (11), but not (12). In fact, (13) is satisfied wrt the ι-answer sets
{a} and {b, c}, but not wrt {b, d}.

8 Conclusion

In this work, we have elaborated upon the concept of ι-answer sets, providing an alter-
native incremental approach to answer set programming. The ι-answer sets of a logic
program amount to the justified extensions of the default theory corresponding to the
program. Similar to justified extensions of default theories but different from (standard)
answer sets, every logic program has at least one ι-answer set. In comparison to answer
sets, the distinguishing feature of ι-answer sets is the possibility to construct them in-
crementally. In fact, the rules of a logic program can be applied one by one in order
to eventually obtain a ι-answer set of the program. A ι-answer set may however lack
characteristic properties of answer sets, such as being a model of the given program. We
have seen how integrity constraints can be used to re-establish such properties. Indeed,
a one-to-one correspondence between ι-answer sets and answer sets can be achieved by
a simple syntactic transformation. Thus, ι-answer sets are a priori less restrictive than
answer sets; by using integrity constraints, the same expressiveness as with answer sets
can however be obtained if it is desired.

The Clark’s completion of a logic program preserves the answer sets of the program.
We have provided a translation from logic programs into propositional logic that modi-
fies Clark’s completion to preserve the ι-answer sets of a given logic program. Parallel-
ing the models of Clark’s completion and answer sets, the models of the ι-completion
approximate ι-answer sets. That is, every ι-answer set satisfies the ι-completion, but a
model of the ι-completion must be non-circularly supported for being a ι-answer set. In
fact, the ι-answer sets of a logic program can be captured in terms of propositional logic
by replacing Clark’s completion with ι-completion in the Lin-Zhao theorem. In contrast
to answer sets, the set of atoms outside a ι-answer set does not have to be unfounded.
Given that the ι-answer sets of a logic program are not necessarily models, some false
atoms might actually be (non-circularly) supported by the program.

Based on the ι-completion, we have provided a DPLL-like algorithm for comput-
ing the ι-answer sets of a logic program satisfying a given set of integrity constraints.
To our knowledge, no such algorithm has been described yet for computing either ι-
answer sets of logic programs or justified extensions of default theories. In the absence
of integrity constraints, the algorithm computes one ι-answer set in polynomial time,

without any backtracking. Our algorithm also handles integrity constraints, but the de-
cision problem whether there is some ι-answer set that satisfies all integrity constraints
is NP-complete. Thus, the construction of a ι-answer set loses its incremental character
if some constraints must eventually be satisfied.

References
1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press (2003)
2. Niemelä, I.: Logic programs with stable model semantics as a constraint programming

paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4) (1999) 241–273
3. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.

In Apt, K., Marek, W., Truszczyński, M., Warren, D., eds.: The Logic Programming
Paradigm: a 25-Year Perspective. Springer-Verlag (1999) 375–398

4. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1-2)
(2002) 39–54

5. Lloyd, J.: Foundations of Logic Programming. Springer-Verlag (1987)
6. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.

New Generation Computing 9 (1991) 365–385
7. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2) (1980) 81–132
8. Clark, K.: Negation as failure. In: Logic and Data Bases. Plenum Press (1978) 293–322
9. Łukaszewicz, W.: Considerations on default logic: an alternative approach. Computational

Intelligence 4 (1988) 1–16
10. Delgrande, J., Gharib, M., Mercer, R., Risch, V., Schaub, T.: Łukaszewicz-style answer set

programming: A preliminary report. In De Vos, M., Provetti, A., eds.: Proceedings of the
Second International Workshop on Answer Set Programming (ASP’03). (2003)

11. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3) (2006) 499–562

12. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181–234

13. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the
ACM 7 (1960) 201–215

14. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commu-
nications of the ACM 5 (1962) 394–397

15. Risch, V.: Analytic tableaux for default logics. Journal of Applied Non-Classical Logics
6(1) (1996) 71–88

16. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.
Journal of the ACM 38(3) (1991) 620–650

17. http://eclipse.crosscoreop.com/
18. http://www.cs.uni-potsdam.de/˜gebser/lsolve.tar.gz
19. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artifi-

cial Intelligence 157(1-2) (2004) 115–137
20. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on

Computational Logic 7(2) (2006) 261–268
21. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.

In Veloso, M., ed.: Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI’07). AAAI Press/MIT Press (2007) 386–392

22. Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation. Journal of
Symbolic Computation 2(3) (1986) 293–304

