
Incremental Answer Set Programming:
A Preliminary Report

Mona Gharib1, Robert Mercer2, and Torsten Schaub1⋆

1 Institut für Informatik, Universität Potsdam, August-Bebel-Str. 89, D-14482 Potsdam,
Germany

2 Cognitive Engineering Laboratory, Department of ComputerScience,
The University of Western Ontario, London, Ontario, CanadaN6A 5B7

Abstract. An alternative approach toanswer set programmingis developed in
order to remedy the problems of “relevance” and “modularity” of answer set se-
mantics for logic programs. The fundamental idea is to re-introduce monotonic-
ity. In particular, we introduce the alternative concept ofι-answer sets, which
are characterized by their applied rules. Furthermore, we develop a sound and
complete theorem proving method for our incremental approach to answer set
programming, which allows for query-oriented computations. Our proof proce-
dure can manage negation in logic programming. Moreover, itenables us to deal
with variables using unification instead of grounding.

1 Introduction

Answer Set Programming(ASP; [1]) was originally conceived as a declarative seman-
tics for logic programming [2]. This is achieved by a bottom-up approach that is free of
any procedural flavor. However, now that ASP has become an attractive tool for knowl-
edge representation and reasoning, it is sometimes desirable to have top-down construc-
tions that allow for query-answering (see eg. [3] for an application motivated approach).
However, classical ASP and query-orientation appear to be completely diametrical. As
detailed in [4], “STABLE[ASP] does not allow for a goal-oriented computation”. Re-
lated to this is the fact that answer set semantics is neither“relevant” nor “modular”.
The principle of relevance states that the truth value of an atom only depends on the
subprogram connected to this atom in the underlying dependency graph [5]. Accord-
ingly, modularity stipulates that the semantics of the overall program can be composed
of the semantics of subprograms (connected in the dependency graph [5]).

In this paper, we investigate an alternative approach to ASPthat allows for query-
oriented computation. In particular, we are interested inincrementalconstructions sup-
porting relevance and modularity. This is accomplished viathe definition of aι-answer
set. The respective concept ofι-answer sets is characterized by applied rules, which can
be determined one by one in the construction of aι-answer set. This incremental char-
acter guarantees the existence ofι-answer sets for every logic program and facilitates
their computation.

⋆ Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.



Moreover, our incremental approach to ASP allows us to overcome another bottle-
neck given by ground instantiation. We introduce a sound andcomplete theorem prov-
ing method for our incremental approach to ASP, which allowsfor query-oriented com-
putations. Furthermore, we consider logic programs with variables and show how our
proof procedure enables us to deal with variables using unification instead of grounding.
Also, it can manage negation in logic programming. That is, the procedure can return
an answer also in cases where SLDNF resolution would flounder[6].

The outline of the paper is as follows. Section 2 provides some basic concepts.
In Section 3, we introduceι-answer sets and compare them to (standard) answer sets.
In Section 4, we introduce a proof procedure forι-answer sets. In Section 5, we con-
sider logic programs with variables and show how our proof procedure enables us to
deal with variables using unification instead of grounding.Finally, we conclude with
Section 6.

2 Background

A (normal) logic programis a finite set ofrulesof the form

p0 ← p1, . . . , pm,not pm+1, . . . ,not pn (1)

wheren ≥ m ≥ 0, and eachpi (0 ≤ i ≤ n) is anatom. Given a ruler as in (1), we
denote thebodyof r by body(r) = {p1, . . . , pm,not pm+1, . . . ,not pn} and thehead
of r by head(r) = p0. Furthermore, we letbody+(r) = {p1, . . . , pm} andbody−(r) =
{pm+1, . . . , pn} be thepositiveandnegativebody of r, respectively. For a logic pro-
gramΠ , we let body+(Π) =

⋃
r∈Π

body+(r), body−(Π) =
⋃

r∈Π
body−(r), and

head(Π) = {head(r) | r ∈ Π}. A literal is either an atom or a negated atom. We
denote the set of all atoms occurring inΠ by Atm(Π).

A program is calledbasic if body−(r) = ∅ for all r ∈ Π . A setX of atoms is
closedunder a basic programΠ if, for any r ∈ Π , head(r) ∈ X if body+(r) ⊆ X .
The smallest set of atoms closed under a basic programΠ is denoted byCn(Π). The
reductof a logic programΠ relative to a setX of atoms is

ΠX = {head(r)← body+(r) | r ∈ Π, body−(r) ∩X = ∅}.

A set X of atoms is ananswer setof Π if X = Cn(ΠX). For a programΠ , we
let Cn+(Π) = Cn(Π∅). Note thatΠ∅ = {head(r) ← body+(r) | r ∈ Π}. For a
programΠ and a setX of atoms, thegenerating rulesof X for Π are

RΠ(X) = {r ∈ Π | body+(r) ⊆ X, body−(r) ∩X = ∅}.

One can show thatX is an answer set ofΠ iff Cn+(RΠ(X)) = Cn(ΠX) = X . A set
X of atoms is amodelof Π if, for all r ∈ Π , we havehead(r) ∈ X if body+(r) ⊆ X

andbody−(r) ∩X = ∅.

3 ι-Answer Sets

The construction of answer sets is non-modular, that is, allrules of a program need to
be inspected. It is thus impossible to incrementally construct an answer set or to locally
validate a construction, like a proof, by only looking at a subset of the given program.



In the area of default logics, Łukaszewicz defined justified extensions [7] to over-
come these problems. This leads us toι-answer sets[8], whereι indicates the incre-
mental flavor.

Definition 1. LetΠ be a logic program.
A setX of atoms is aι-answer set ofΠ if X = Cn+(Π ′) for some⊆-maximal

Π ′ ⊆ Π such that

(i) body+(Π ′) ⊆ Cn+(Π ′) and
(ii) body−(Π ′) ∩Cn+(Π ′) = ∅.

Definition 1 characterizes aι-answer setX of Π in terms of the rules that are applied
wrt X . The setΠ ′ of such rules is maximal among all subsets ofΠ that satisfy con-
ditions (i) and (ii). Condition (i) guarantees that the positive bodies of rules inΠ ′ are
justified, while condition (ii) makes sure that the rules inΠ ′ do not block one another.

For illustration, consider the following programΠ1:

r1 : a← not d

r2 : b← not e

r3 : c← a, b

r4 : e← not a

(2)

Theι-answer sets ofΠ1 are{a, b, c} and{e}. For{a, b, c}, the corresponding maximal
subset ofΠ1 is Π ′

1 = {r1, r2, r3}. We have

body+(Π ′
1) = {a, b} ⊆ {a, b, c} = Cn+(Π ′

1), and
body−(Π ′

1) ∩ Cn+(Π ′
1) = {d, e} ∩ {a, b, c} = ∅.

Sincebody−(r4) ∩ Cn+(Π ′
1) = {a} ∩ {a, b, c} = {a} 6= ∅, Π ′

1 is indeed a maximal
subset ofΠ1 such that condition (i) and (ii) in Definition 1 hold. For the otherι-answer
set{e}, one can verify that{r4} is maximal satisfying condition (i) and (ii).

For a programΠ and a setX of atoms, we let theapplied rulesof X for Π be

AΠ(X) = {r ∈ Π | body+(r) ⊆ X, body−(r) ∩X = ∅, head(r) ∈ X}.

For aι-answer setX of Π , the applied rulesAΠ(X) correspond toΠ ′ in Definition 1.
Note thatAΠ(X) ⊆ RΠ(X) for any programΠ and any setX of atoms, but not vice
versa. For instance, observe thatAΠ1

({e}) = {r4} ⊂ {r1, r4} = RΠ1
({e}).

The following result shows thatι-answer sets can be constructed incrementally, as
the corresponding applied rules underlie monotonicity.

Theorem 1. Let Π be a logic program andX be a set of atoms such thatX =
Cn+(AΠ(X)).

Then, there is aι-answer setX ′ of Π such thatX ⊆ X ′.

For constructing aι-answer set, we can thus start with the empty set, whose applied
rules are empty as well, and pick “applicable” rules one by one until no further rule can
be added without violating either condition (i) or (ii) in Definition 1.



For illustration, consider the following programΠ2:

r1 : a←
r2 : b← not a

(3)

This program has twoι-answer sets:{a} and{b}. As we see, the monotonic inference
of a does not override the nonmonotonic inference ofb to eliminate the secondι-answer
set{b} of Π2.

As a consequence of Theorem 1, every program yields someι-answer set.

Corollary 1. For every logic programΠ , there is someι-answer setX of Π .

To see this, consider the programΠ = {a← not a}. This program has no answer sets,
but it has∅ as its uniqueι-answer set.

As there are programs that do not have any (standard) answer sets, it is clear that
ι-answer sets are not necessarily answer sets.

The converse does however hold, that is, any answer set is as well a ι-answer set.

Theorem 2. LetΠ be a logic program andX be an answer set ofΠ .
Then,X is a ι-answer set ofΠ .

Theι-answer sets of a programΠ do thus form a superset of the answer sets ofΠ .
A ι-answer set is also an answer set if its applied and generating rules are identical.

Theorem 3. LetΠ be a logic program andX be aι-answer set ofΠ .
Then,X is an answer set ofΠ iff AΠ(X) = RΠ(X).

For ι-answer set{a, b, c} of Π1 in (2), we haveAΠ1
({a, b, c}) = {r1, r2, r3} =

RΠ1
({a, b, c}), that is,{a, b, c} is an answer set ofΠ1. In contrast, we haveAΠ1

({e}) =
{r4} 6= {r1, r4} = RΠ1

({e}), thus, theι-answer set{e} of Π1 is not an answer set
of Π1. In fact, set{e} is not a model ofΠ1 because ruler1 is not satisfied.

Based on the concept of models, we can reformulate Theorem 3 as follows.

Theorem 4. LetΠ be a logic program andX be aι-answer set ofΠ .
Then,X is an answer set ofΠ iff X is a model ofΠ .

Any answer set of a program is as well a model of the program, while ι-answer sets
are not necessarily models. In fact, condition (ii) in Definition 1 allows for denying the
application of a rule if the head would block some applied rule. However, aι-answer
set that is a model of the given program is also an answer set. The property of being a
model distinguishes answer sets fromι-answer sets.

In [9], we have extended our framework withintegrity constraints, providing us with
versatile means to filterι-answer sets. For instance, we can use integrity constraints to
deny anyι-answer set that is not a model. But, in this work we concentrate on devel-
oping a sound and complete theorem proving method for our incremental approach to
answer set programming, which allows for query-oriented computations.



4 Query-Answering

Our primary goal is to furnish a theory for answer set programming that allows for
local computations based on top-down query answering. So the first question is how to
identify a substructure of a given program that allows for deriving a query. To answer
it, we introduce the concept of aι-proof.

Definition 2. LetΠ be a logic program andp be an atom.
We defineΠ ′ as aι-proof forp fromΠ iff Π ′ ⊆ Π such that

(i) p ∈ head(Π ′),
(ii) body+(Π ′) ⊆ Cn+(Π ′), and
(iii) body−(Π ′) ∩Cn+(Π ′) = ∅.

That is, anyι-proof for an atomp consists of rules allowing to derivep.
Reconsider programΠ1 in (2) having twoι-answer sets:{a, b, c} and{e}. Atom a

hasι-proofΠ ′
1 = {r1} = {a← not d}. We have

a ∈ head(Π ′
1),

body+(Π ′
1) = ∅ ⊆ {a} = Cn+(Π ′

1), and
body−(Π ′

1) ∩ Cn+(Π ′
1) = {d} ∩ {a} = ∅.

Also, we get thatΠ ′
2 = {r2}, Π ′

3 = {r1, r2, r3}, andΠ ′
4 = {r4} areι-proofs forb, c,

ande from Π1, respectively.
The existence of aι-proof for an atomp from a programΠ furnishes a necessary

and sufficient condition for guaranteeing the existence of aι-answer set ofΠ containing
p.

Theorem 5. LetΠ be a logic program andp be an atom.
Then,p has aι-proof fromΠ iff p ∈ X for someι-answer setX of Π .

For example, reconsider programΠ = {a← not a}. According to Definition 2,a has
no ι-proof fromΠ . Thus,Π has noι-answer set containinga. Indeed,Π has∅ as its
uniqueι-answer set.

We now introduce a calculus along with the concept of a derivation such that, given
a logic programΠ and a goalg, the derivation succeeds iffg holds with respect to a
ι-answer set ofΠ . A goalg is of the form ← p1, . . . , pn, wherepi (1 ≤ i ≤ n) is an
atom. AcontextC is a set of literals.

Definition 3. Letg be a goal andC be a context.
We define the ordered pair(g,C ) as a contextual goal;g is said to be a goal in

contextC .

We denote the set of positive atoms inC by C+ and the set of atoms preceded bynot

by C−. A selection functionis a function from a set of goals to a set of atoms that maps
a goal to one of its contained atoms.

In the following, we introduce a proof procedure analogous to SLD resolution [6].



Definition 4. Let Π be a logic program,f be a selection function, and(g,C ) be a
contextual goal.

Then, a contextual goal(g ′,C ′) is derivable from(g,C ) and a ruler ∈ Π via f , if
the following conditions hold:

(i) p = f(g),
(ii) p = head(r),
(iii) g ′ = ← (body(g)\{p}) ∪ body+(r),
(iv) C ′ = (C ∪ body−(r) ∪ {p}),
(v) C ′+ ∩C ′− = ∅.

Definition 5. Let Π be a logic program,f be a selection function, and(g,C ) be a
contextual goal.

A ι-derivation ofg fromΠ in contextC via f consists of a finite sequence
〈(g0,C0), . . . , (gn,Cn)〉 of contextual goals and a finite sequence of rules〈r1, . . . , rn〉
such that each(gi+1,Ci+1) is derived from(gi,Ci) andri+1 ∈ Π via f , where0 ≤
i < n and(g0,C0) = (g,C ).

A successfulι-derivation is one that ends in an ordered pair with an empty goal (i.e.
body(g) = ∅), otherwise, it is called afailed ι-derivation. We refer to the last ordered
pair in a successfulι-derivation ofg from Π in contextC via f by (�,C�), whereC�

is the projective mapping

C� : 〈(g0,C0), . . . , (�,Cn)〉 7→ Cn.

For illustration, consider the following logic programΠ3:

r1 : p←
r2 : q ← p,not r

r3 : q ← r,not p

r4 : r ← p,not s

(4)

and the contextual goal(← q, ∅). A successfulι-derivation forq from Π3 in context∅
is:

(1) (← q, ∅)
(2) (← p, {q,not r}) derived from (1) andr2

(3) (← �, {p, q,not r}) derived from (2) andr1

success.

A failed ι-derivation forq from Π3 in context∅ is:

(1) (← q, ∅)
(2) (← r, {q,not p}) derived from (1) andr3

(3) (← p, {r, q,not s,not p}) derived from (2) andr4

. . . failure.

The following result shows the soundness and completeness of our derivation pro-
cedure.



Theorem 6. LetΠ be a logic program,f be a selection function, andp be an atom.
Then, there exists aι-proof ofp from Π iff there exists a successfulι-derivation of

p fromΠ in context∅ via f .

The following result is obtained from Theorems 5 and 6.

Corollary 2. LetΠ be a logic program,f be a selection function, andp be an atom.
Then,p has a successfulι-derivation fromΠ in context∅ via f iff p ∈ X for some

ι-answer setX of Π .

The derivations from(g,C ) to (�,C�) can be viewed as search trees, which we
call ι-trees. These trees are obtained as follows.

Definition 6. Let Π be a logic program,f be a selection function, and(g,C ) be a
contextual goal.

A ι-tree ofg fromΠ in contextC via f is a tree satisfying the following conditions:

(i) Each node of the tree is a contextual goal.
(ii) The root node is(g,C ).
(iii) If (g ′,C ′) is a node of the tree and(g ′′,C ′′) is a child of(g ′,C ′), then(g ′′,C ′′) is

derivable from(g ′,C ′) and some ruler ∈ Π via f .

Each branch of aι-tree is a derivation ofg from Π in contextC via f . Branches cor-
responding to successful derivations are calledsuccessbranches and branches corre-
sponding to failed derivations are calledfailure branches.

Reconsider programΠ3 in (4) and contextual goal(← q, ∅). Figure 1 shows the
ι-tree of q from Π3 in context∅. Note that in Figure 1, we identify one successful
ι-derivation ofq from Π3 in context∅.

(← q, ∅)

(← p, {q, not r})

(← �, {q, p,not r})

success

(← r, {q,not p})

(← p, {q, r,not p,not s})

failure

Fig. 1.Theι-tree of(← q, ∅) from Π3 in (4).



5 Logic Programs with Variables

In this section, we show howι-proofs can serve as a basis for query answering on
(non-ground) logic programs with variables by using unification instead of ground in-
stantiations.

For a logic programΠ , its Herbrand universeUΠ is the set of constants inΠ and
its Herbrand baseBΠ is the set of ground atoms constructible fromUΠ . Theground
instancesof a ruler ∈ Π are the ground rules obtained by replacing all variables inr

by elements fromUΠ :

ground(r) = {rθ | θ : var (r)→ UΠ}

wherevar(r) stands for the set of all variables occurring inr; θ is a (ground) substitu-
tion. We define theground instantiationof Π as:

ground(Π) = {ground(r) | r ∈ Π}.

We use the logic programming convention that terms beginning with a capital letter are
variables.

For illustration, consider the following (non-ground) logic programΠ4:

arc(a, b)←
nonterminal(X)← arc(X, Y )

(5)

We have
UΠ4 = {a, b} and
BΠ4 = {arc(a, a), arc(a, b), arc(b, a), arc(b, b),nonterminal(a),nonterminal(b)}.

By instantiating all variables in the second rule, we obtainground(Π4) as follows:

arc(a, b)←
nonterminal(a)← arc(a, a)
nonterminal(a)← arc(a, b)
nonterminal(b)← arc(b, a)
nonterminal(b)← arc(b, b)

For computing answer sets of (non-ground) logic programs with variables, the size
of ground instantiations is critical because the availablemethods for computing answer
sets, e.g., [10–16], require ground rules. Clearly, producing ground instantiations can
lead to space problems.

In the following, we generalize the definition of aι-derivation to non-ground pro-
grams as follows.

Definition 7. Let Π be a (non-ground) logic program,f be a selection function, and
(g,C ) be a contextual goal.

Then, a contextual goal(g ′,C ′) is derivable from(g,C ) and a variantv of a rule
r ∈ Π via f using the most general unifierθ (mgu for short) if the following conditions
hold:



(i) p = f(g),
(ii) θ is the mgu ofp andhead(v),
(iii) g ′ = ← ((body(g)\{p}) ∪ body+(v))θ,
(iv) C ′ = (C ∪ body−(v) ∪ {p})θ,
(v) C ′+ ∩C ′− = ∅.

Definition 8. Let Π be a (non-ground) logic program,f be a selection function, and
(g,C ) be a contextual goal.

A ι-derivation ofg fromΠ in contextC via f consists of a finite sequence
〈(g0,C0), . . . , (gn,Cn)〉 of contextual goals, a finite sequence of variants〈v1, . . . , vn〉
of rules inΠ , and a finite sequence〈θ1, . . . , θn〉 of mgus such that each(gi+1,Ci+1)
is derivable from(gi,Ci) andvi+1 via f usingθi+1, where0 ≤ i < n and(g0,C0) =
(g,C ).

A ι-derivation issuccessfulif the last goal is empty; in this case, we say that the goalg

has a successfulι-derivation fromΠ in contextC via f using mguθ. The composition
of the mgus computed during the derivation, restricted to the variables ofg, is called an
answer substitution.

We extend the definition ofι-trees to non-ground logic programs as follows.

Definition 9. Let Π be a (non-ground) logic program,f be a selection function, and
(g,C ) be a contextual goal.

A ι-tree ofg fromΠ in contextC via f is a tree satisfying the following conditions:

(i) Each node of the tree is a contextual goal.
(ii) The root node is(g,C ).
(iii) If (g ′,C ′) is a node of the tree and(g ′′,C ′′) is a child of(g ′,C ′), then(g ′′,C ′′) is

derivable from(g ′,C ′) and a variant of some rule inΠ via f using an mguθ.

For illustration, consider the (non-ground) programΠ5:

r1 : p(s, t)←
r2 : q(t)← not r(X)
r3 : r(Y )← p(X, Y ),not q(X)

(6)

and ground atomr(t). Figure 2 shows theι-tree ofr(t) from Π5 in context∅. Thus,

we conclude that aι-proofΠ ′
5 of r(t) from Π5 is

p(s, t)←
r(t)← p(s, t),not q(s)

which contains all ground rules used in the successfulι-derivation. By adding the rule
q(t) ← not r(s) to Π ′

5, we obtain the consequences{p(s, t), r(t), q(t)}, which is the
uniqueι-answer set ofΠ5 containingr(t).

The results for the ground setting can be extended to the general case as follows.

Theorem 7. (Soundness)Let Π be a (non-ground) logic program,g be a goal, andf
be a selection function.

If g has a successfulι-derivation fromΠ in context∅ via f with answer substitution
θ, then, for all ground substitutionsσ, we havegθσ ∈ X for someι-answer setX of
Π .



(← r(t), ∅)

(← p(X, t), {r(t),not q(X)})

(← �, {p(s, t), r(t),not q(s)})

success

Fig. 2. Theι-tree of(← r(t), ∅) from Π5 in (6).

Theorem 8. (Completeness)LetΠ be a (non-ground) logic program,g be a goal, and
f be a selection function.

If for some ground substitutionσ, we havegσ ∈ X for someι-answer setX of
Π , theng has a successfulι-derivation fromΠ in context∅ via f and some answer
substitutionθ more general thanσ.

Finally, we want to stress the ability of ourι-derivation procedure to manage nega-
tion in logic programming. For instance, consider the following logic programΠ =
{a ← not b; b ← not a}. By applying a solver based on SLDNF resolution [6], the
goal← a produces an infinite loop because of the circularity of rules(a is defined byb
andb is defined bya). This circularity does not lead to an infinite loop in ourι-derivation
procedure because it uses a context for storing positive andnegative sub-goals, and for
identifying contradictions. A meta-interpreter based upon theι-derivation calculus has
been implemented inECLiPSe-Prolog [17].

6 Conclusion

In this work, we have introduced an alternative approach to answer set programming.
This is accomplished via the definition of aι-answer set. Every logic program has at
least oneι-answer set, which can be constructed incrementally based on applicable
rules. Theι-answer sets of a logic program form a superset of its (standard) answer
sets. Based on the concept of models, we have shown that aι-answer set that is a model
of the given program is also an answer set.

We have furnished a theory for answer set programming that provides local com-
putations via top-down query answering. We have developed asound and complete
proof procedure for our incremental approach to answer set programming that allows
for query-oriented computations. Important properties and advantages of our procedure
are: It can be used to decide whether an atom belongs to someι-answer set of a pro-
gram. It is able to manage negation in logic programming. Furthermore, it enables us
to deal with logic programs containing variables by using unification instead of ground
instantiation.



A resolution calculus for skeptical stable model semanticsis given in [18]. Inter-
estingly, this calculus is not derived from credulous inference; also, it does not require
the given program to be instantiated before reasoning.

We remark also that our theorem prover can be the basis of a method for comput-
ing ι-answer sets of logic programs. The idea is based onι-proofs. Suppose that we are
interested in checking whether aι-answer set of a programΠ contains a given atom
p. Then, in the first step, we can determine aι-proof Π ′ for p from Π . In the second
step, we can add rules toΠ ′ until we obtain the set of rules generating someι-answer
set containingp. This approach has the advantage to focus only onι-answer sets that
contain the desired atom.

References

1. Baral, C.: Knowledge representation, reasoning and declarative problem solving with An-
swer sets. Cambridge University Press (2003)

2. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Proceedings of the
International Conference on Logic Programming. (1990) 579–597

3. Cumbo, C., Faber, W., Greco, G.: Improving query optimization for disjunctive datalog.
In Buccafurri, F., ed.: Proceedings of the Joint Conferenceon Declarative Programming
(AGP’03). (2003) 252–262

4. Dix, J., Furbach, U., Niemelä, I.: Nonmonotonic reasoning: Towards efficient calculi and
implementations. In Voronkov, A., Robinson, A., eds.: Handbook of Automated Reasoning,
Elselvier and MIT Press (2001) 1241–1354

5. Dix, J.: A framework for representing and characterizingsemantics of logic programs. In
Nebel, B., Rich, C., Swartout, W., eds.: Proceedings of the Third International Conference on
the Principles of Knowledge Representation and Reasoning,Morgan Kaufmann Publishers
(1992) 591–602

6. Lloyd, J.: Foundations of Logic Programming. Springer-Verlag (1987)
7. Łukaszewicz, W.: Considerations on default logic: An alternative approach. Computational

Intelligence4 (1988) 1–16
8. Delgrande, J., Gharib, M., Mercer, R., Risch, V., Schaub,T.: Łukaszewicz-style answer

set programming: A preliminary report. In De Vos, M., Provetti, A., eds.: Proceedings of
the Second International Workshop on Answer Set Programming (ASP’03). Volume 78 of
CEUR Workshop Proceedings. (2003)

9. Gebser, M., Gharib, M., Schaub, T.: Incremental answer sets and their computation. In:
Proceedings of the Fourth International Workshop on AnswerSet Programming (ASP’07).
(2007) To appear.

10. Cholewiński, P., Marek, V., Truszczyński, M.: Default reasoning system DeReS. In: Pro-
ceedings of the Fifth International Conference on the Principles of Knowledge Representa-
tion and Reasoning, Morgan Kaufmann Publishers (1996) 518–528

11. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence138(1-2) (2002) 181–234

12. Leone, N., Faber, W., Pfeifer, G., Eiter, T., Gottlob, G., Koch, C., Mateis, C., Perri, S., Scar-
cello, F.: The dlv system for knowledge representation and reasoning. ACM Transactions
on Computational Logic7(3) (2006) 499–562

13. Lin, F., Zhao, Y.: Assat: computing answer sets of a logicprogram by sat solvers. Artificial
Intelligence157(1-2) (2004) 115–137

14. Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. Jour-
nal of Automated Reasoning36(4) (2006) 345–377



15. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ approach to
answer set solving. In Sutcliffe, G., Voronkov, A., eds.: Proceedings of the 12th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2005),
Springer-Verlag (2005) 95–109

16. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.
In Veloso, M., ed.: Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI’07), AAAI Press/The MIT Press (2007) 386–392

17. http://eclipse.crosscoreop.com/
18. Bonatti, P.: Resolution for skeptical stable model semantics. Journal of Automated Reason-

ing 27(4) (2001) 391–421


