Incremental Answer Set Programming:
A Preliminary Report

Mona GhariB, Robert Mercet, and Torsten Schatib

L Institut fur Informatik, Universitat Potsdam, AuguseBel-Str. 89, D-14482 Potsdam,
Germany
2 Cognitive Engineering Laboratory, Department of Comp&eience,
The University of Western Ontario, London, Ontario, Canbié# 5B7

Abstract. An alternative approach tanswer set programminig developed in
order to remedy the problems of “relevance” and “moduldritiyanswer set se-
mantics for logic programs. The fundamental idea is to testiuce monotonic-
ity. In particular, we introduce the alternative concept.a@fnswer setswhich
are characterized by their applied rules. Furthermore, exeldp a sound and
complete theorem proving method for our incremental apgrda answer set
programming, which allows for query-oriented computasio®ur proof proce-
dure can manage negation in logic programming. Moreovenables us to deal
with variables using unification instead of grounding.

1 Introduction

Answer Set Programmin@\SP; [1]) was originally conceived as a declarative seman-
tics for logic programming [2]. This is achieved by a bottap-approach that is free of
any procedural flavor. However, now that ASP has become eacttte tool for knowl-
edge representation and reasoning, it is sometimes desicelfiave top-down construc-
tions that allow for query-answering (see eg. [3] for an aation motivated approach).
However, classical ASP and query-orientation appear toob@ptetely diametrical. As
detailed in [4], 'STABLEASP] does not allow for a goal-oriented computatioRe-
lated to this is the fact that answer set semantics is neitbvant” nor “modular”.
The principle of relevance states that the truth value oftamaonly depends on the
subprogram connected to this atom in the underlying dep®ydgraph [5]. Accord-
ingly, modularity stipulates that the semantics of the allggrogram can be composed
of the semantics of subprograms (connected in the depeyndeagh [5]).

In this paper, we investigate an alternative approach to th&Pallows for query-
oriented computation. In particular, we are interesteith@nementakonstructions sup-
porting relevance and modularity. This is accomplishedi&definition of a-answer
set The respective concept cinswer sets is characterized by applied rules, which can
be determined one by one in the construction ofamswer set. This incremental char-
acter guarantees the existence-a@hswer sets for every logic program and facilitates
their computation.

* Affiliated with Simon Fraser University, Canada, and Gifiiffifniversity, Australia.



Moreover, our incremental approach to ASP allows us to avaeanother bottle-
neck given by ground instantiation. We introduce a soundcamdplete theorem prov-
ing method for our incremental approach to ASP, which allvgjuery-oriented com-
putations. Furthermore, we consider logic programs wittiaides and show how our
proof procedure enables us to deal with variables usingaati€in instead of grounding.
Also, it can manage negation in logic programming. Thaths, grocedure can return
an answer also in cases where SLDNF resolution would floujggler

The outline of the paper is as follows. Section 2 providesedrasic concepts.
In Section 3, we introduceanswer sets and compare them to (standard) answer sets.
In Section 4, we introduce a proof procedure feanswer sets. In Section 5, we con-
sider logic programs with variables and show how our proafcpdure enables us to
deal with variables using unification instead of groundiRimally, we conclude with
Section 6.

2 Background

A (normal) logic progranis a finite set ofulesof the form

DO < Pls- -y Pms MO Dy, - ., NOL Dy (1)

wheren > m > 0, and eaclp; (0 < i < n) is anatom Given a ruler as in (1), we
denote théodyof r by body(r) = {p1,...,Pm, not Pm+1, ..., not p,} and thehead
of r by head(r) = po. Furthermore, we letody™ () = {p1, ..., pm} andbody ™~ (r) =
{Pm+1,--.,pn} be thepositiveandnegativebody of r, respectively. For a logic pro-
gram I, we letbody™* (1) = U,z body™ (r), body™ (II) = U,y body™ (r), and
head(IT) = {head(r) | » € II'}. A literal is either an atom or a negated atom. We
denote the set of all atoms occurringlihby Atm(IT).

A program is calledbasicif body™ (r) = 0 forall r € II. A set X of atoms is
closedunder a basic prograrf if, for any » € IT, head(r) € X if body™ (r) C X.
The smallest set of atoms closed under a basic prodfasidenoted byCn(II). The
reductof a logic program/7 relative to a sefX of atoms is

I~ = {head(r) — body™ (r) | r € I, body~ (r) N X = (}.
A set X of atoms is ananswer seof IT if X = Cn(IIX). For a program/I, we

let Cnt(IT) = COn(I1°). Note thatlT® = {head(r) < body™ (r) | r € IT}. For a
programl/I and a sefX of atoms, thegenerating ruleof X for IT are

R (X) = {r eIl |body™(r) C X,body™ (r)N X = 0}.

One can show thaX is an answer set off iff Cnt(R;7(X)) = Cn(II*) = X. Aset
X of atoms is anodelof 17 if, for all » € IT, we havehead(r) € X if body™ (r) C X
andbody ™ (r) N X = 0.

3 -Answer Sets

The construction of answer sets is non-modular, that isusls of a program need to
be inspected. It is thus impossible to incrementally carcstan answer set or to locally
validate a construction, like a proof, by only looking at #set of the given program.



In the area of default logics, Lukaszewicz defined justifietbesions [7] to over-
come these problems. This leads us-&nswer set$8], where. indicates the incre-
mental flavor.

Definition 1. Let IT be a logic program.
A setX of atoms is a-answer set of if X = Cn*(II") for someC-maximal
IT’ C IT such that

(i) body™(IT") C Cn™*(I1') and
(i) body~(IT"Yy N Cn*(II") = 0.

Definition 1 characterizes maanswer sefX of IT in terms of the rules that are applied

wrt X. The setll’ of such rules is maximal among all subsets/bfthat satisfy con-

ditions (i) and (ii). Condition (i) guarantees that the pisi bodies of rules i1’ are

justified, while condition (ii) makes sure that the ruledifdo not block one another.
For illustration, consider the following progran :

r1:a <+ notd
re : b+ note
r3:c<—a,b

T4 €< nota

(2)

Thec-answer sets ofl; are{a, b, c} and{e}. For{a,b, c}, the corresponding maximal
subset ofl1; is I1] = {ry,rs,r3}. We have

body™*(I1}) = {a,b} € {a,b,c} = Cn*(IT}),and
body™ (II]) N Cn™(I1}) = {d,e} N {a,b,c} = 0.

Sincebody ™ (r4) N Cn™(I17) = {a} N {a,b,c} = {a} # 0, II] is indeed a maximal
subset of/7; such that condition (i) and (ii) in Definition 1 hold. For thther.-answer
set{e}, one can verify thafr, } is maximal satisfying condition (i) and (ii).

For a programiT and a sefX of atoms, we let thapplied rulesof X for IT be

Ar(X) = {r € II | body™(r) C X, body™ (r) N X =0, head(r) € X }.

For ac-answer seX of I7, the applied rulesA; (X) correspond td!’ in Definition 1.
Note thatA; (X) C R (X) for any programi and any seiX of atoms, but not vice
versa. For instance, observe tby, ({e}) = {ra} C {r1,74} = R, {e}).

The following result shows thatanswer sets can be constructed incrementally, as
the corresponding applied rules underlie monotonicity.

Theorem 1. Let IT be a logic program andX be a set of atoms such th&f =
Cnt(Ap(X)).
Then, there is a-answer sefX’ of IT such thatX C X’.

For constructing a-answer set, we can thus start with the empty set, whoseeappli
rules are empty as well, and pick “applicable” rules one by ontil no further rule can
be added without violating either condition (i) or (ii) in Dwition 1.



For illustration, consider the following prograng,:

T . a<—

3)

ro : b+ nota

This program has twe-answer sets{a} and{b}. As we see, the monotonic inference
of a does not override the nonmonotonic inferencé wf eliminate the secondanswer
set{b} of IIs.

As a consequence of Theorem 1, every program yields sesmewer set.

Corollary 1. For every logic progranil, there is some-answer sefX of I7.

To see this, consider the progrdin= {a < not a}. This program has no answer sets,
but it hasf) as its unique-answer set.

As there are programs that do not have any (standard) angigritsis clear that
(-answer sets are not necessarily answer sets.

The converse does however hold, that is, any answer set islha wanswer set.

Theorem 2. Let IT be a logic program and( be an answer set df .
Then,X is at-answer set of[.

The-answer sets of a prograff do thus form a superset of the answer set&lof
A -answer set is also an answer set if its applied and gengnaiies are identical.

Theorem 3. Let IT be a logic program and be a.-answer set of .
Then,X is an answer set off iff A (X) =R (X).

For c-answer set{a, b, c} of II; in (2), we haveAy, ({a,b,c}) = {ri,re,m3} =
R, ({a,b,c}), thatis{a, b, c} is an answer set dff; . In contrast, we havd 7, ({e}) =
{ra} # {r1,ra} = R, ({e}), thus, thec-answer sefe} of II; is not an answer set
of IT;. In fact, set{e} is not a model of1; because rule, is not satisfied.

Based on the concept of models, we can reformulate Theorenid@lews.

Theorem 4. Let IT be a logic program and( be a.-answer set of1.
Then,X is an answer set off iff X is a model of/].

Any answer set of a program is as well a model of the progranilewkanswer sets
are not necessarily models. In fact, condition (ii) in Defon 1 allows for denying the
application of a rule if the head would block some applie@ ridowever, a-answer
set that is a model of the given program is also an answer betpfioperty of being a
model distinguishes answer sets froranswer sets.

In[9], we have extended our framework witttegrity constraintsproviding us with
versatile means to filtaranswer sets. For instance, we can use integrity constraint
deny any.-answer set that is not a model. But, in this work we concémtva devel-
oping a sound and complete theorem proving method for oueiental approach to
answer set programming, which allows for query-orientemhpotations.



4 Query-Answering

Our primary goal is to furnish a theory for answer set prograng that allows for
local computations based on top-down query answering. &6r8t question is how to
identify a substructure of a given program that allows forivdeg a query. To answer
it, we introduce the concept ofigproof.

Definition 2. Let IT be a logic program ang be an atom.
We defindI’ as a.-proof forp from IT iff I’ C IT such that

(i) p € head(II'),
(i)) body™ (IT") C Cnt(II"), and
(iii) body~ (IT") N Cnt(IT') = (.

That is, any-proof for an atonp consists of rules allowing to deriye
Reconsider programy; in (2) having two.-answer setsfa, b, c} and{e}. Atoma
has.-proof I7] = {r1} = {a < not d}. We have

a € head(II7),
body™ (IT]) =0 C {a} = Cn*(I1}),and
body ™ (II1) N Cnt(I1]) = {d} N {a} = 0.

Also, we get thafll), = {ro}, IT; = {r1,r2, 73}, andIl} = {r,} are.-proofs ford, c,
ande from I1;, respectively.

The existence of aproof for an atonp from a programi/I furnishes a necessary
and sufficient condition for guaranteeing the existence.ediaswer set of I containing
p.

Theorem 5. Let IT be a logic program ang be an atom.
Then,p has ac-proof fromIT iff p € X for somes-answer setX of I1.

For example, reconsider prografh= {a < not a}. According to Definition 2a has
no (-proof from IT. Thus,IT has no.-answer set containing. Indeed,/T hasf as its
uniquec-answer set.

We now introduce a calculus along with the concept of a déauauch that, given
a logic program/I and a goaly, the derivation succeeds iff holds with respect to a
t-answer set of7. A goal g is of the form «— py,...,p,, wherep; (1 <i < n)isan
atom. AcontextC is a set of literals.

Definition 3. Letg be a goal and” be a context.
We define the ordered pafy, C) as a contextual goaly is said to be a goal in
contextC'.

We denote the set of positive atoms@hby C* and the set of atoms precededshyt
by C'~. A selection functiofis a function from a set of goals to a set of atoms that maps
a goal to one of its contained atoms.

In the following, we introduce a proof procedure analogauSktD resolution [6].



Definition 4. Let II be a logic program,f be a selection function, ang, C) be a
contextual goal.

Then, a contextual godly’, C”) is derivable from(g, C') and aruler € II via f, if
the following conditions hold:

W) »=/(9),
(i) p = head(r),

(i) g’ = « (body(g)\{p}) U body™ (r),
(iv) C" = (CUbody™(r) U{p}),

V) C'TneT =0

Definition 5. Let IT be a logic program,f be a selection function, ang@, C) be a
contextual goal.

A (-derivation ofg from IT in contextC via f consists of a finite sequence
((g0, Cv), - -, (gn, Cy)) of contextual goals and a finite sequence of ryles. .., r,)
such that eaclig;+1, C;+1) is derived from(g;, C;) andr;41 € II via f, where0 <
i <mnand(go, Co) = (g, C).

A successful-derivation is one that ends in an ordered pair with an empl §i.e.
body(g) = 0), otherwise, it is called &ailed .-derivation. We refer to the last ordered
pair in a successfulderivation ofg from IT in contextC via f by (O, C), whereC

is the projective mapping

Crv: (g0, Co)s -+, (T, Cu)) = Ci.
For illustration, consider the following logic prograff:

r1Lip <

Tro i q < p,notr
r3:q < 1,n0tp
r4:T — p,nots

(4)

and the contextual go&+ ¢, ). A successful-derivation forg from I75 in context()

(1) (< q,0)

(2) (< p,{g,notr}) derived from (1) ana,
(3) (—0O,{p,q,not r}) derived from (2) and;

success.
A failed .-derivation forg from I3 in context() is:

(1) (< q,0)

(2) (< r,{q, not p}) derived from (1) and';
(3)  (« p,{r,q, not s,not p}) derived from (2) and,

e failure.

The following result shows the soundness and completeriesg aerivation pro-
cedure.



Theorem 6. Let IT be a logic program/ be a selection function, andbe an atom.

Then, there exists aproof ofp from IT iff there exists a successfublerivation of
p from IT in context) via f.

The following result is obtained from Theorems 5 and 6.

Corollary 2. LetII be a logic program/ be a selection function, angdbe an atom.

Then,p has a successfutderivation fromI7 in context) via f iff p € X for some
t-answer setX of I1.

The derivations fron{g, C) to (O, Co) can be viewed as search trees, which we
call .-trees These trees are obtained as follows.

Definition 6. Let IT be a logic program,f be a selection function, an@;, C) be a
contextual goal.
A -tree ofg from IT in contextC' via f is a tree satisfying the following conditions:

(i) Each node of the tree is a contextual goal.
(i) The root nodeigg, C).
(iii) If (¢, C")is anode of the tree ang@”, C") is a child of(¢’, C’), then(g¢”, C") is
derivable from(¢’, C’) and some rule € IT via f.

Each branch of a-tree is a derivation o§ from II in contextC' via f. Branches cor-
responding to successful derivations are caadcessranches and branches corre-
sponding to failed derivations are call&dlure branches.

Reconsider prograni/; in (4) and contextual godk— ¢, (). Figure 1 shows the
-tree of ¢ from I73 in context. Note that in Figure 1, we identify one successful
«~derivation ofg from I15 in contextf.

(—4q0)

N

(< p,{g, not r}) (« 7, {q, not p})

(«0,{q,p,not r}) (« p,{q, 7, not p, not s})

success failure

Fig. 1. The-tree of («— ¢, 0) from II3 in (4).



5 Logic Programs with Variables

In this section, we show howproofs can serve as a basis for query answering on
(non-ground) logic programs with variables by using uniiima instead of ground in-
stantiations.

For a logic progranil, its Herbrand universé/” is the set of constants il and
its Herbrand baseB” is the set of ground atoms constructible fré”¥. Theground
instanceof a ruler € IT are the ground rules obtained by replacing all variables in
by elements front/:

ground(r) = {rf | 0 : var(r) — U™}

wherevar(r) stands for the set of all variables occurring-rd is a (ground) substitu-
tion. We define thground instantiatiorof I7 as:

ground(IT) = {ground(r) | r € IT}.

We use the logic programming convention that terms beggwiith a capital letter are
variables.
For illustration, consider the following (non-ground) logprogram/,:

arc(a,b) «— (5)
nonterminal(X) «— arc(X,Y)

We have

Ui = {a,b}  and

B!+ = {arc(a,a), arc(a,b), arc(b, a), arc(b, b), nonterminal(a), nonterminal (b)}.
By instantiating all variables in the second rule, we obtaiwund(I1,) as follows:

arc(a
nonterminal
nonterminal
nonterminal
nonterminal

a

)
)
a) < arc
)
)

—~—

—~~
o O

For computing answer sets of (non-ground) logic prograntk wariables, the size
of ground instantiations is critical because the availatdthods for computing answer
sets, e.g., [10-16], require ground rules. Clearly, pragyground instantiations can
lead to space problems.

In the following, we generalize the definition of.aderivation to non-ground pro-
grams as follows.

Definition 7. Let IT be a (non-ground) logic prograny, be a selection function, and
(g, C) be a contextual goal.

Then, a contextual godl’, C) is derivable from(g, C') and a variantv of a rule
r € II via f using the most general unifié(mgu for short) if the following conditions
hold:



0 p=f(9),
(i) 6 isthe mgu op andhead (v),
(i) g' =« ((body(g)\{p}) U body™ (v))6,
(iv) C" = (CUbody™ (v)U{p})o,
v) ¢’tneT =0

Definition 8. Let IT be a (non-ground) logic prograny; be a selection function, and
(g, C') be a contextual goal.

A (-derivation ofg from IT in contextC via f consists of a finite sequence
{(90, Co), - - - (gn, Cn)) of contextual goals, a finite sequence of variapts . . ., v,,)
of rules inl, and a finite sequend@,, . .., 0,) of mgus such that eadty; 1, Ci+1)
is derivable from(g;, C;) andwv;1 via f usingd;;1, where0 < i < n and(go, Co) =
(9,C).

A (~derivation issuccessfuif the last goal is empty; in this case, we say that the goal
has a successfulderivation fromII in contextC' via f using mgu. The composition
of the mgus computed during the derivation, restricted éovidiriables of;, is called an
answer substitution

We extend the definition aftrees to non-ground logic programs as follows.

Definition 9. Let IT be a (non-ground) logic prograny, be a selection function, and
(g9, C) be a contextual goal.

A .-tree ofg from I1 in contextC' via f is a tree satisfying the following conditions:

(i) Each node of the tree is a contextual goal.
(i) The root nodeigg, C).
(iii) If (¢’, C")is anode of the tree an@’’, C") is a child of(¢’, C’), then(g”, C") is
derivable from(¢’, C') and a variant of some rule iff via f using an mgy.

For illustration, consider the (non-ground) progréfy:

1 :p(s,t) —
ro:  q(t) « not r(X) (6)
r3: r(Y) « p(X,Y), not q(X)

and ground atom(t). Figure 2 shows the-tree ofr(t) from IT5 in context(). Thus,

we conclude that aproof I7; of r(t) from II5 is

p(s,t) «
r(t) <« p(s,t), not q(s)

which contains all ground rules used in the successfldrivation. By adding the rule
q(t) < not r(s) to II, we obtain the consequencgss, t), r(t), ¢(t)}, which is the
uniquec-answer set of 75 containingr(t).

The results for the ground setting can be extended to therglerase as follows.

Theorem 7. (Soundnessl)et IT be a (hon-ground) logic prograng, be a goal, andf
be a selection function.

If g has a successfulderivation fromIT in context) via f with answer substitution
0, then, for all ground substitutions, we haveyfo € X for somes-answer setX of
1I.



(=0, {p(s, 1), 7(t), not q(s)})

Success

Fig. 2. The-tree of (< r(t), 0) from II5 in (6).

Theorem 8. (Completenesd)et IT be a (non-ground) logic prograng,be a goal, and
f be a selection function.

If for some ground substitution, we havego € X for somes-answer setX of
11, theng has a successfutderivation fromI7 in context() via f and some answer
substitutiord more general thawm.

Finally, we want to stress the ability of owiderivation procedure to manage nega-
tion in logic programming. For instance, consider the failog logic programil =
{a < not b; b — not a}. By applying a solver based on SLDNF resolution [6], the
goal— a produces an infinite loop because of the circularity of rteis defined by
andb is defined byz). This circularity does not lead to an infinite loop in atoterivation
procedure because it uses a context for storing positivenagdtive sub-goals, and for
identifying contradictions. A meta-interpreter based mipie .-derivation calculus has
been implemented iBCLiPSeProlog [17].

6 Conclusion

In this work, we have introduced an alternative approachmsner set programming.
This is accomplished via the definition ofiaanswer set. Every logic program has at
least ones-answer set, which can be constructed incrementally baseapplicable
rules. Thec-answer sets of a logic program form a superset of its (stadaswer
sets. Based on the concept of models, we have shown thatswer set that is a model
of the given program is also an answer set.

We have furnished a theory for answer set programming tratiges local com-
putations via top-down query answering. We have developsduad and complete
proof procedure for our incremental approach to answer segrpmming that allows
for query-oriented computations. Important propertied advantages of our procedure
are: It can be used to decide whether an atom belongs to samgwer set of a pro-
gram. It is able to manage negation in logic programmingti@rmore, it enables us
to deal with logic programs containing variables by usindioation instead of ground
instantiation.



A resolution calculus for skeptical stable model semariiagven in [18]. Inter-

estingly, this calculus is not derived from credulous iefese; also, it does not require
the given program to be instantiated before reasoning.

We remark also that our theorem prover can be the basis of laouiébr comput-

ing t-answer sets of logic programs. The idea is basedfmoofs. Suppose that we are
interested in checking whether.eanswer set of a prografl contains a given atom
p. Then, in the first step, we can determinejaroof 11’ for p from II. In the second
step, we can add rules 1@’ until we obtain the set of rules generating soranswer
set containing. This approach has the advantage to focus only-answer sets that
contain the desired atom.

References

1.

2.

10.

11.

12.

13.

14.

Baral, C.: Knowledge representation, reasoning andadetdle problem solving with An-
swer sets. Cambridge University Press (2003)

Gelfond, M., Lifschitz, V.: Logic programs with classiggegation. In: Proceedings of the
International Conference on Logic Programming. (199057

. Cumbo, C., Faber, W., Greco, G.: Improving query optiriafor disjunctive datalog.

In Buccafurri, F., ed.: Proceedings of the Joint ConfereaseDeclarative Programming
(AGP’03). (2003) 252-262

. Dix, J., Furbach, U., Niemela, |.: Nonmonotonic reasgniTowards efficient calculi and

implementations. In Voronkov, A., Robinson, A., eds.: Haook of Automated Reasoning,
Elselvier and MIT Press (2001) 1241-1354

. Dix, J.: A framework for representing and characterizéggnantics of logic programs. In

Nebel, B., Rich, C., Swartout, W., eds.: Proceedings of thiedTinternational Conference on
the Principles of Knowledge Representation and ReasoMioggan Kaufmann Publishers
(1992) 591-602

. Lloyd, J.: Foundations of Logic Programming. Springersg (1987)
. Lukaszewicz, W.: Considerations on default logic: Araittive approach. Computational

Intelligence4 (1988) 1-16

. Delgrande, J., Gharib, M., Mercer, R., Risch, V., Schaub, tukaszewicz-style answer

set programming: A preliminary report. In De Vos, M., Prdijed.., eds.: Proceedings of
the Second International Workshop on Answer Set ProgramitdsP’'03). Volume 78 of
CEUR Workshop Proceedings. (2003)

. Gebser, M., Gharib, M., Schaub, T.: Incremental answes &ed their computation. In:

Proceedings of the Fourth International Workshop on Ans3etrProgramming (ASP’07).
(2007) To appear.

Cholewinski, P., Marek, V., Truszczyhski, M.: Defardasoning system DeReS. In: Pro-
ceedings of the Fifth International Conference on the Blas of Knowledge Representa-
tion and Reasoning, Morgan Kaufmann Publishers (1996) 5A8—

Simons, P., Niemela, 1., Soininen, T.: Extending andl@menting the stable model seman-
tics. Artificial Intelligencel3§1-2) (2002) 181-234

Leone, N., Faber, W., Pfeifer, G., Eiter, T., Gottlob, Koch, C., Mateis, C., Perri, S., Scar-
cello, F.: The dlv system for knowledge representation aadoning. ACM Transactions
on Computational Logi@(3) (2006) 499-562

Lin, F., Zhao, Y.: Assat: computing answer sets of a Ipgagram by sat solvers. Atrtificial
Intelligencel57(1-2) (2004) 115-137

Lierler, Y., Maratea, M.: Answer set programming baseg@mpositional satisfiability. Jour-
nal of Automated Reasonirf(4) (2006) 345-377



15.

16.

17.
18.

Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, The nomore++ approach to
answer set solving. In Sutcliffe, G., Voronkov, A., eds oégedings of the 12th International
Conference on Logic for Programming, Artificial Intelliggsy and Reasoning (LPAR 2005),
Springer-Verlag (2005) 95-109

Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Gurdliven answer set solving.
In Veloso, M., ed.: Proceedings of the Twentieth Internalaoint Conference on Atrtificial
Intelligence (IJCAI'07), AAAI Press/The MIT Press (2009&-392
http://eclipse.crosscoreop.com

Bonatti, P.: Resolution for skeptical stable model saios. Journal of Automated Reason-
ing 27(4) (2001) 391-421



