
Structure-Driven Answer-Set Solving?

Markus Hecher

TU Wien, Austria; University of Potsdam, Germany
hecher@dbai.tuwien.ac.at

Abstract Parameterized algorithms are a way to solve hard problems
efficiently, given that a specific parameter of the input is small. A well-
studied parameter is treewidth, which roughly measures to which extent
the structure of a graph resembles a tree. In our research, we want to
exploit this parameter in the context of Answer Set Programming. In the
literature, algorithms have been proposed that are linear in the program
size assuming bounded treewidth. However, this approach works only in
case of small treewidth. In consequence, we aim at new methods “between”
traditional techniques and algorithms exploiting structural parameters.

Keywords: Tree Decompositions, Dynamic Programming, Fixed-Parameter
Tractability, Answer-Set Programming, Parameterized Complexity

1 Introduction

Parameterized algorithms [14,8] have attracted considerable interest in recent
years and allow to tackle hard problems by directly exploiting a small parameter
of the input problem. One particular goal in this field is to find guarantees that the
runtime is exponential exclusively in the parameter. A structure-based parameter
that has been researched extensively is treewidth [15,5]. Generally speaking,
treewidth measures the closeness of a graph to a tree, based on the observation
that problems on trees are often easier than on arbitrary graphs. A parameterized
algorithm exploiting small treewidth typically takes a tree decomposition (TD),
which is an arrangement of a graph into a tree, and evaluates the problem in
parts by dynamic programming (DP) on the TD.

Answer Set Programming (ASP) [6] is a logic-based declarative modelling
language and problem solving framework where solutions, so called answer sets,
of a given logic program directly represent the solutions of the modelled problem.
ASP has been successfully applied in several application domains and industrial
needs, which, in particular, accelerates the search for alternative solving methods
exploiting major aspects of relevant instances, as for example the structure
of these instances. This generally brings up the question whether structure-
based parameters as for instance treewidth aids in evaluating logic programs.
Jakl et al. [12] give a DP algorithm that is linear in the input size of the program,
double exponential in the treewidth of a certain graph representing the program

? Research was supported by the Austrian Science Fund (FWF), Grants Y698, P25607.



structure, and restricted to disjunctive rules. In our work [10], we presented an
extension on how to evaluate extended logic programs based on the full ASP-
Core-2 syntax. However, this paradigm seems to be only of use in case of small,
bounded treewidth. In consequence, the idea is to study alternative evaluation
techniques somewhere “between” traditional algorithms for ASP and algorithms
exploiting structure-based parameters of logic programs. This research topic
enables a broad range of specialization, ranging from the study of parameterized
algorithms to CDCL-based algorithms exploiting structure of logic programs.

2 Preliminaries

Tree Decompositions (TDs) & Parameterized Algorithms. TDs form a tool to
capture essential parts of the structure of a given graph instance. These de-
compositions are trees consisting of nodes, which contain (parts of) the given
graph instances. The so-called “width” of such a TD is essential for the definition
of the parameter “treewidth”, which captures in a sense, how hard the given
graph instance is when solving a certain problem. The smaller the treewidth of a
given graph, the more “tree-like” the graph and thus typically “easier” to solve
problems on the graph. TDs provide a way on how to tackle hard problems by
evaluating a certain input problem instance (represented as a graph) in parts,
thereby being sensitive to the treewidth of the instance. Of particular interest are
so-called fixed-parameter tractable (FPT) algorithms with respect to a certain
parameter k, which are capable of evaluating instances such that the runtime
depends polynomially on the instance size and on f(k) for some computable func-
tion f . If the parameter k is reasonably small, such an algorithm seems preferable
compared to an approach, which requires exponential runtime in the worst-case.
In consequence, such FPT algorithms with respect to treewidth perform well for
certain instances and are typically based on dynamic programming (DP) on TDs,
which computes parts of the problem obtained by iterating a TD of the problem
instance, and combines them accordingly. There are also open-source systems
like D-FLAT [3], which provide a general DP framework. Several techniques
incorporated in our DynASP solver [10,9] for ASP, stem from D-FLAT.

Answer Set Programming (ASP). ASP is typically evaluated by two involved com-
ponents, namely (i) the grounder and (ii) the solver. The grounder is responsible
for producing a ground program during the grounding, a process which eliminates
variables in an originally non-ground program containing variables. One can think
of such non-ground programs as general sets of rule schemes, whereas ground
programs are obtained by instantiating these general rule schemes into actual
ASP rules. The main interest of this research proposal concerns part (ii), i.e.,
how to efficiently evaluate a set of ASP rules forming a logic program. However,
note that in practice the performance of ASP techniques not only require efficient
solving techniques, but also rely on smart grounding tools. Hence, especially
the bridge between grounder and solver is of interest and might lead to further
investigations concerning the structure of programs. As already mentioned, there
also exist FPT algorithms for solving logic programs [10,12] by means of TDs.

2



3 Proposed Research

In this section, we first discuss the aim covered in this proposal and then give a
detailed description of the results obtained so far and planned research tasks.

3.1 Research Aim

Gutin emphasized the necessity of establishing 1 parameterized algorithmics. As it
turned out (not unexpectedly), implementing theoretical ideas in a straightforward
way does not immediately yield practically successful systems. Several obstacles
for properly handling real-world instances need to be taken into account, as we
will discuss also in Section 3.2. We therefore identify the following aims:

– Incorporate concepts exploiting structure into existing solvers (and probably
grounders) for ASP in order to make these tools more aware of the structure
present in both data and rules, and to improve solving performance.

– Develop methods for building a novel, competitive ASP system consisting
of (i) a solver that improves the DynASP system, and (ii) further methods
exploiting and capturing structure of logic programs.

– Apply our findings in a broader, general context (for instance default logic).

3.2 Lessons Learned: Unexpected Results and Obstacles

The insights gained so far indicate that a general way to turn structure-driven
answer set solving into a practical success is indeed challenging. First, we have
observed that for ASP, structure can be fruitfully exploited. In other words, the
treewidth of a ground program can be kept small when the instance has small
treewidth as well (structure in data), but this depends on the actual (problem)
encoding. Second, concerning the design of actual DP algorithms, we collected the
following insights of the literature, which will also be the basis for my research.

– The shape of the TD on which DP is performed is crucial [1].
– A quite surprising result is that alternative space-efficient storage techniques

via Binary Decision Diagrams (BDDs) can be extremely beneficial [7]. In fact,
DP over TDs with widths up to 50 can be handled with such an approach.

– If it is enough to compute one solution, the classical, naive DP approach of
computing all tables in their entirety before being able to print a solution
can be substantially improved by a lazy-evaluation technique [4].

At the same time, it seems to be hard to compete with standard ASP solvers on
the consistency problem (i.e., whether there is an answer set). In fact, we put
much effort in the development of competitive systems, which excel mainly at
counting answer sets, as we propose in [9]. We will thus aim (see Section 3.4) at
ASP extensions that allow for reasoning over the sets of answer sets (similar to a
result for monadic second-order logic [2]) and also develop new DP algorithms.

1 G. Gutin: Should We Care about Huge Imbalance in Parameterized Algorithmics? The
Parameterized Compl. Newsletter 11(2), http://fpt.wdfiles.com/local--files/
fpt-news:the-parameterized-complexity-newsletter/2015Dec.pdf.

3

http://fpt.wdfiles.com/local--files/fpt-news:the-parameterized-complexity-newsletter/2015Dec.pdf
http://fpt.wdfiles.com/local--files/fpt-news:the-parameterized-complexity-newsletter/2015Dec.pdf


3.3 Obtained Results

The results obtained cover how structural properties can be exploited with focus
on TDs and DP. First, we extended our DynASP solver [13] to the full ASP
syntax as specified in the ASP-Core-2 standard. This includes interoperation
with state-of-the-art grounders, and handling of all language constructs produced
by such grounders such as weight constraints, optimization statements, choice
rules and disjunctive rules. The implementation [10] works as follows: Ground
ASP rules are represented as a graph and a TD is prepared, which is traversed
in a bottom-up manner to evaluate the input program. We implemented several
versions of such algorithms, based on the input program’s graph representation,
e.g., primal graphs, incidence graphs or a variant of incidence graphs where
there is, in addition, a clique between weighted atoms (i.e., atoms in weight
constraints or choice heads). Second, we improved the data structures in DynASP
by using pointers to avoid duplicate data, as done in the D-FLATˆ2 [3] system.
Our technical proposal [9] also includes a thorough experimental evaluation.

Given logic programs of small treewidth, our new ASP solver proved to be very
competitive in the setting of model counting (#SAT), a central problem in areas
like machine learning, statistics, probabilistic reasoning and combinatorics. When
counting answer sets (#ASP), our approach has a big advantage: It does not need
to materialize the full answer sets in order to count them. This provided huge
speed-ups against classical ASP systems like Clasp. However, our implementation
was also able to beat SAT model counters like sharpSAT or Cachet, even though
it was not specifically optimized for classical model counting. Benchmarks show
that QBF model counting performance (comp. depQBF) is competitive as well.

3.4 Future Goals

Exploiting Treewidth in Existing Solvers. Our tasks concerning this goal
cover extending CDCL-based ASP solvers like Clasp by exploiting structure of
the input instances using suitable heuristic parameterization. Further, we aim at
improving branch-and-bound algorithms used to solve an extended logic program
capable of modelling cost optimization, by incorporating the instance structure.

A way to improve existing ASP technology is to push ASP solvers into the
direction of DP on TDs by modifying solver heuristics. Heuristic modifications
in ASP solvers have recently received increasing attention to solve problems
in domains where dedicated solving strategies would have required rewriting
problem encodings entirely. A main reason is due to the observation that solving
problem instances efficiently by means of ASP solvers regularly relies on either
a dedicated encoding, which integrates a certain heuristic or exploits certain
structural properties of the problem, or controlling the solver heuristic explicitly.
Our ultimate goal here is to develop methods for combining the two worlds of
(i) state-of-the-art ASP solvers like Clasp and (ii) local approaches based on DP
on TDs. We expect that integrating aspects of DP (either in terms of heuristics or
by extending ASP solvers) can speed up CDCL-based ASP solvers on structured
instances. A corresponding, very limited proof of concept is available.2

2 https://github.com/hmarkus/dynclasp

4

https://github.com/hmarkus/dynclasp


ASP has been extended to also allow cost optimization, where solutions to
such an extended logic program can be seen as “cost-minimal” answer sets. There
exist algorithms to compute these solutions, which are based on branch-and-
bound, and also other approaches. Branch-and-bound basically is a technique
with the goal of searching for optimal answer sets in a systematic way by cutting
off parts of the search space. However, there is no guarantee that the algorithm
does not hit parts of an answer set, which might not be cost-optimal, several
times during the search. One possible idea to overcome this limitation is to exploit
the structure of these logic programs by caching parts of answer sets together
with the corresponding cost found during the search in such a way, that the
atoms of these parts reflect the content of some nodes of the TDs. In other words,
whenever a new answer set is found, we store the answer set in parts such that
each TD node remembers a table of parts of answer sets. After some potential
solutions are proposed by the branch-and-bound algorithm, we obtain a tree of
tables of answer set parts with the knowledge how these parts can be combined
(by TD properties). In the end, the TD could enable us to combine these stored
parts such that we might still obtain a valid answer set of lowest cost not found
by the algorithm so far. Ultimately, the goal is to not derive answer sets, which
contain non-optimal parts already contained in an answer set proposed before.

Building a Novel System. The goal is to develop a novel ASP system which
makes direct use of the structure provided by the data and the program. Driven by
recent success stories (see, e.g. [7,4]), the strategy is to directly improve DynASP’s
performance, and to enhance the system by certain features on the other hand.

The current implementation of DynASP provides (compared to Clasp) good
results for solving ASP counting and enumeration problems in case of problem
instances of sufficiently low treewidth, and is not yet competitive when solving the
consistency problem. The reason is that DynASP does not apply preprocessing
and constraint handling techniques and does not have a counterpart for conflict
learning yet. Some of these disadvantages can be handled by integrating one
or several lightweight CDCL-solvers for SAT or ASP into DynASP, which then
solve the sub-problems induced by the TD nodes (during bottom-up solving),
as implemented in our system D-FLAT [4]. Since the computation in each TD
node works on an autonomic basis and only pushes new findings to the successor
node(s), this leaves room for improving the interplay between these nodes. We
believe that with the knowledge on how the (local) sub-programs evolve during
the solving process (bottom-up traversal), there is a smart way to combine
these lightweight solvers and improve their interplay by taking certain shortcuts.
Especially learning failing solution paths could greatly improve the resulting
solving performance. Learning might be promising in combination with lazy-
evaluation [4], which proved valuable for optimization problems and aims at
deriving answer sets without completely evaluating all the TD nodes.

Since DynASP turned out to be competitive for counting answer sets [10]
(#ASP), our plan is to further improve by significantly reducing time spent on
invalidating ⊂-optimality of answer set candidates (see [9] for more details). One
can easily identify instances with an exponential number (w.r.t. the treewidth)

5



of ⊂-smaller model candidates and although this still suffices for the algorithm
to be FPT, it is a performance bottleneck in practice. Recent approaches suggest
Binary Decision Diagrams [7] with the benefits of compact representation.

Given the already explored correspondence between model counting and
advanced reasoning tasks (e.g., Bayesian inference [16]), our future plan for
DynASP includes a query language for Bayesian reasoning on top of it. This new
language should be able to reduce queries to #ASP problems including, but not
limited to “How plausible is it to assume that a given atom belongs to an answer
set?”, “If an atom is believed, what is the probability of another atom belonging
to an answer set?” or “Is it safe to assume that one atom is more reasonable than
an other atom?”. Considerations also include solving Problog [11] programs.

References

1. M. Abseher, F. Dusberger, N. Musliu, and S. Woltran. Improving the Efficiency of
Dynamic Programming on Tree Decompositions via Machine Learning. In IJCAI,
pages 275–282. AAAI, 2015.

2. S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. JAlg, 12(2):308–340, 1991.

3. B. Bliem, G. Charwat, M. Hecher, and S. Woltran. D-FLATˆ2: Subset minimization
in dynamic programming on tree decompositions made easy. FI, 147(1):27–61, 2016.

4. B. Bliem, B. Kaufmann, T. Schaub, and S. Woltran. ASP for Anytime Dynamic
Programming on Tree Decompositions. In IJCAI, pages 979–986. AAAI, 2016.

5. H. Bodlaender and A. M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. TCJ, 51(3):255–269, 2008.

6. G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

7. G. Charwat and S. Woltran. Dynamic programming-based QBF solving. In QBF,
pages 27–40, 2016.

8. M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015.

9. J. K. Fichte, M. Hecher, M. Morak, and S. Woltran. Answer Set Solving using Tree
Decompositions and Dynamic Programming - The DynASP2 System -. Technical
Report DBAI-TR-2016-101, TU Wien, 2016.

10. J. K. Fichte, M. Hecher, M. Morak, and S. Woltran. Answer set solving with
bounded treewidth revisited. In LPNMR, 2017. To appear.

11. D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann, I. Thon,
G. Janssens, and L. De Raedt. Inference and learning in probabilistic logic programs
using weighted Boolean formulas. TPLP, 15(3):358–401, 2015.

12. M. Jakl, R. Pichler, and S. Woltran. Answer-set programming with bounded
treewidth. In IJCAI. AAAI, 2009.

13. M. Morak, N. Musliu, R. Pichler, S. Rümmele, and S. Woltran. A New Tree-
Decomposition Based Algorithm for Answer Set Programming. In ICTAI, pages
916–918, 2011.

14. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. OUP, 2006.
15. N. Robertson and P. D. Seymour. Graph minors. II. algorithmic aspects of tree-

width. JAlg, 7(3):309–322, 1986.
16. T. Sang, P. Beame, and H. A. Kautz. Performing Bayesian Inference by Weighted

Model Counting. In AAAI, pages 475–482. AAAI, 2005.

6


	Structure-Driven Answer-Set Solving 

