
Discovering and Proving Invariants
in Answer Set Programming and Planning

Patrick Lühne

University of Potsdam, Germany,
patrick.luehne@cs.uni-potsdam.de

Abstract. Answer set programming (ASP) and planning are two widely
used paradigms for solving logic programs with declarative programming.
In both cases, the quality of the input programs has a major influence on
the quality and performance of the solving or planning process. Hence,
programmers need to understand how to make their programs efficient
and still correct. In my PhD studies, I explore how input programs can
be improved and verified automatically as a means to support program-
mers. One of my research directions consists in discovering invariants in
planning programs without human support, which I implemented in a
system called ginkgo. Studying dynamic systems in greater depth, I then
developed plasp 3 with members of my research group, which is a sig-
nificant step forward in effective planning in ASP. As a second research
direction, I am concerned with automating the verification of ASP pro-
grams against formal specifications. For this joint work with Lifschitzs
group at the University of Texas, I currently develop a verification sys-
tem called anthem. In my future PhD studies, I will extend my research
concerning the discovery and verification of ASP and planning problems.

1 Introduction

Answer set programming (ASP) and planning are two widely used paradigms
for solving logic programs with declarative programming. While ASP aims to be
as general-purpose as possible, planning focuses on dynamic systems, where se-
quences of actions are searched in order to achieve specific goals. As with other
knowledge representation paradigms, quality and performance in solving and
planning not only depend on the implementations of solvers and planners but
also on the quality of the input program specifications. From the perspective
of programmers working with solvers and planners, it is, hence, fundamentally
important to understand whether their programs are efficient and, more impor-
tantly, correct with respect to their specifications.

In my PhD studies, I explore how input programs can be improved and veri-
fied automatically as a means to support programmers. Both of these objectives
relate to invariants of logic programs—properties that preserve the correctness
of a program.

My first research direction consists in discovering invariants without human
support. For this purpose, I developed the system ginkgo, which continuously



18 Patrick Lühne

discovers invariants in planning problems by generalizing conflict constraints
learned by an ASP solver (Section 2). While working with planning problems
in the planning domain definition language (PDDL [8]), I further implemented
plasp 3, the third generation of an ASP planning system. With plasp, PDDL
programs can be solved with established ASP solvers such as clingo. Based on
this effort, members of our research group and I showed how to make planning
in ASP more effective with parallel planning (Section 3).

As a second research direction, I investigate how to automate the verification
of ASP programs against formal specifications in a subset of the input language
of clingo in cooperation with Vladimir Lifschitzs group at the University of
Texas. anthem, another system that I currently develop, aims to perform this
task by translating ASP programs to first-order logic formulas to validate them
against a specification by a theorem prover (Section 4).

In future work, I will extend my research concerning the discovery and verifi-
cation of ASP and planning problems. Section 5 discusses such directions, before
Section 6 concludes this extended abstract.

2 ginkgoDiscovering Invariants in ASP Planning

Conflict learning has become a base technology in Boolean constraint solving,
and, in particular, answer set programming. However, learned constraints are
only valid for a currently solved problem instance and do not carry over to
similar instances. To address this issue, I developed a framework featuring an
integrated feedback loop that allows for reusing conflict constraints [3]. The
idea is to extract (propositional) conflict constraints, generalize and validate
them, and reuse them as integrity constraints. In this way, an input program
is continuously extended with automatically discovered invariants. Although I
explored this approach in the context of dynamic systems (specifically, PDDL
planning), the ultimate objective is to overcome the issue that learned knowledge
is bound to specific problem instances.

I implemented this workflow in two systems, namely, a variant of the ASP
solver clasp that extracts integrity constraints, along with the downstream sys-
tem ginkgo1 for generalizing and validating them. ginkgo finds invariants by first
deriving candidate properties (learned constraints that are generalized over the
temporal domain). These properties are then checked for invariance. This relies
on automated proofs that I fully implemented in ASP with meta encodings.

3 plasp 3Towards Effective ASP Planning

Emerging from my work with ASP-based planning in the ginkgo system, I im-
plemented the third installment of plasp2. While earlier versions of plasp were
pure PDDL-to-ASP translators [4], plasp 3 was conceived to provide a flexible

1 https://github.com/potassco/ginkgo
2 https://github.com/potassco/plasp



Title Suppressed Due to Excessive Length 19

platform to experiment with a variety of techniques to make planning in ASP
more effective (to be published at LPNMR 2017 [2]).

For this purpose, I reimplemented plasp, while widening the range of accepted
PDDL features in comparison to the previous versions. Further, our research
group developed novel planning encodings, some inspired by SAT planning and
others exploiting ASP features such as well-foundedness. I designed plasp 3 such
that it handles multivalued fluents and, hence, captures both PDDL as well
as SAS planning formats. Third, enabled by multishot ASP solving, advanced
planning algorithms are offered, also borrowed from SAT planning. Empirical
analyses show that these techniques have a significant impact on the performance
of ASP planning.

4 anthemVerifying the Correctness of ASP Programs

In their recent work (to be published [5,6]), Harrison, Lifschitz, and Raju have
extended the definition of program completion to a subset of the input language
of clingo. The aim of their work is to extend the applicability of formal verifica-
tion methods to ASP by turning logic programs into completed definitions. This
can also be understood as a translation from clingos input language to first-order
logic formulas.

In cooperation with their research group at the University of Texas, I started
developing a system called anthem,3 which performs the completion of logic
programs automatically. After translating and simplifying formulas with anthem,
programmers can see more clearly what exactly their program solves.

Furthermore, the first-order logic representation allows us to perform auto-
mated proofs by employing established theorem provers, which commonly oper-
ate on similar input formats. Popular theorem provers include E [10], Coq [1],
and Prover9 [7]. Our goal is to extend anthem such that it can be used to quickly
test whether ASP programs fulfill given invariants. With such a tool, program-
mers could start writing programs by first making a formal specification, against
which their code is later verified.

5 Future Work

As stated before, my most recent work focuses on using theorem provers to ver-
ify that logic programs comply with a given specification. This indirection of
proving invariants through first-order logic might turn out particularly useful
when coming back to my earlier research on the ginkgo system. This is because
there are many established first-order theorem provers, which might make for
a stronger proof system than the counterexample-based validation method cur-
rently employed by ginkgo.

Furthermore, I will expand my research in the field of PDDL planning. Build-
ing on plasp 3, I want to explore how far planning in ASP can be pushed, with

3 https://github.com/potassco/anthem



20 Patrick Lühne

the objective of achieving performance on par with state-of-the-art SAT planners
such as Madagascar [9].

Finally, I am always exploring opportunities to apply the planning-related
techniques to the broader scope of general ASP programs. This involves the
research areas of automatic modeling, program synthesis, and superoptimization,
which I want to further familiarize myself in my upcoming PhD studies.

6 Conclusions

Concerning the automatic discovery and verification of invariants in logic pro-
grams, I already made insightful progress. In my early PhD projects, I showed
the feasibility of reusing learned conflict constraints in ASP planning by means
of generalization with my ginkgo system. I further studied dynamic systems
as such and helped making ASP planning much more effective with plasp 3
and performance-wise closer to state-of-the-art SAT planners than previous at-
tempts. I believe that these two systems I developed could make use of refined
invariant finding techniques, which is one of the things I want to study in the
remainder of my PhD studies.

Furthermore, I am researching automated verification techniques in multiple
contexts. First, as a means to validate potential candidate invariants within
ginkgo. Second, to completely automate the process of testing ASP programs
against formal specifications, which is the objective of my currently work-in-
progress system anthem. This is a technique that could later be useful for other
parts of my research as well.

To my mind, there are many interesting aspects of discovering and verifying
invariants ahead that I want to address in my PhD studies. This also includes
more practical applications such as making ASP planning yet more effective.

References

1. Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe
Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan
Murthy, et al. The Coq proof assistant reference manual: Version 8.6. https:
//coq.inria.fr/distrib/current/refman/, 2016.

2. Y. Dimopoulos, M. Gebser, P. Lhne, J. Romero, and T. Schaub. plasp 3: Towards
effective ASP planning (to appear). In Proceedings of the Fourteenth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’17),
Lecture Notes in Artificial Intelligence. Springer-Verlag, 2017.

3. M. Gebser, R. Kaminski, B. Kaufmann, P. Lhne, J. Romero, and T. Schaub. An-
swer set solving with generalized learned constraints. In M. Carro and A. King,
editors, Technical Communications of the Thirty-second International Conference
on Logic Programming (ICLP’16), volume 52, pages 9:1–9:15. Open Access Series
in Informatics (OASIcs), 2016.

4. M. Gebser, R. Kaminski, M. Knecht, and T. Schaub. plasp: A prototype for PDDL-
based planning in ASP. In J. Delgrande and W. Faber, editors, Proceedings of
the Eleventh International Conference on Logic Programming and Nonmonotonic



Title Suppressed Due to Excessive Length 21

Reasoning (LPNMR’11), volume 6645 of Lecture Notes in Artificial Intelligence,
pages 358–363. Springer-Verlag, 2011.

5. Amelia Harrison, Vladimir Lifschitz, and Dhananjay Raju. Program completion
in the input language of gringo. Submitted for publication, 2017.

6. Vladimir Lifschitz. Achievements in answer set programming (preliminary report).
In Working Notes of the Workshop on Answer Set Programming and Other Com-
puting Paradigms, 2016.

7. W. McCune. Prover9 and Mace4. http://www.cs.unm.edu/∼mccune/prover9/,
2005–2010.

8. D. McDermott. PDDL—the planning domain definition language. Technical Re-
port CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and
Control, 1998.

9. J. Rintanen. Madagascar: Scalable planning with SAT. In M. Vallati, L. Chrpa,
and T. McCluskey, editors, Proceedings of the Eighth International Planning Com-
petition (IPC’14), pages 66–70. University of Huddersfield, 2014.

10. Stephan Schulz. System Description: E 1.8. In Ken McMillan, Aart Middeldorp,
and Andrei Voronkov, editors, Proc. of the 19th LPAR, Stellenbosch, volume 8312
of LNCS. Springer, 2013.


