
Modern Constraint Answer Set Solving

Max Ostrowski1

1University of Potsdam, Germany

1 Introduction

Answer Set Programming (ASP;[4]) is a declarative problem solving approach,
combining a rich yet simple modeling language with high-performance solving
capabilities using techniques from Satisfiability Checking (SAT;[20, 7]). This has
already resulted in various applications, among them decision support systems
for NASA shuttle controllers [22, 2], product configuration [27], scheduling [17],
timetabling [3], shift design [1] and various reasoning tools in systems biology [5,
11, 15, 23, 10, 24]. However, certain aspects of such applications are more nat-
urally modeled by additionally using non-Boolean propositions, accounting for
resources, fine timings, or functions over finite domains. Moreover, a dedicated
treatment of large domains avoids the grounding bottleneck that is, the need to
discretize large domains, inherent to all propositional solving approaches.

In SAT, this led to the subarea of Satisfiability Modulo Theories (SMT;[21]),
extending SAT solvers by theory-specific solvers for arithmetic, arrays, finite
sets, bit vectors, equality with uninterpreted functions etc. It allows SMT prob-
lems to incorporate predicates from specialized theories into propositional for-
mulas. Solving an SMT problem consists of finding a (hybrid) assignment to all
Boolean and theory-specific variables satisfying a given formula along with its
theory-specific constituents. Apart from a close solver integration, the key to ef-
ficient SMT solving lies in elaborated conflict-driven learning techniques that are
capable of combining conflict information from different solver types (cf. [21]).

To be able to handle resources and quantities within ASP, I concentrate
on one theory and extend ASP with constraints for integer arithmetics. This
paradigm is called Constraint Answer Set Programming (CASP). My goal is
to extend the modeling language of ASP with constraints while preserving its
declarative nature. This allows for fast prototyping and elaboration tolerant
problem descriptions. Furthermore, I want to preserve the raw processing speed
of the underlying inference engine.

Groundbreaking work on enhancing ASP with Constraint Processing (CP;[9,
25]) techniques was conducted in [6, 18, 19]. Based on firm semantical under-
pinnings, this approach provides a family of ASP languages parameterized by
different constraint classes. While [6] develops a high-level algorithm viewing
both ASP and CP solvers as black boxes, [19] embeds a black-boxed CP solver
into a traditional DPLL-style backtracking algorithm, similar to the one underly-
ing the ASP solver smodels [26]. Although [6, 18, 19] resulted in two consecutive
extensions of smodels with CP capabilities, they do not match the performance
of state of the art SMT solvers, simply because they cannot take advantage of



elaborated conflict-driven learning techniques. I address this problem and pro-
pose several alternative ways to combine ASP and CP solving. My thesis will
therefore capture the following topics.

2 Constraint Answer Set Programming via Conflict
Driven Nogood Learning

To define CASP, I pursue a semantic approach that is based on a propositional
language rather than a multi-sorted, first-order language, as used in [6, 18, 19].
This allows to use conflict-driven nogood learning (CDNL;[14]) technology for
solving propositional formulas. These learning algorithms are the state of the
art solution to any satisfiability problem and have been well researched since
the mid-90s. I use and extend these sophisticated algorithms for solving CASP
problems. My approach follows the so-called lazy approach of advanced SMT
solvers by abstracting from the constraints in a specialized theory [21]. The idea
is as follows. During solving, the ASP solver passes its (partial) knowledge to a
CP solver, which checks the implied constraints against its theory via constraint
propagation. As a result, it either signals that no solution exists or, if possible,
extends the knowledge base of the ASP solver. To facilitate learning within the
ASP solver, however, each inference must be justified, providing a “reason” for
the underlying algorithms. Yet, to the best of my knowledge, this is not supported
by off-the-shelf CP solvers.1

I show the correctness of my approach by proving the relation between the
definition of CASP and its characterization using nogoods. As a consequence, I
develop an algorithmic framework for conflict-driven ASP solving that integrates
CP solving capabilities while overcoming the aforementioned difficulty. An im-
plementation named clingcon is presented, outperforming previous approaches.
It is able to handle optimization functions over constraint variables and global
constraints. In a second step, the algorithmic framework is extended by filtering
techniques based on irreducible inconsistent sets (IIS;[29, 16]). This technique
strengthens the provided conflicts and improves the learning capabilities of the
whole approach.

3 Encoding Constraint Satisfaction Problems

For solving Constraint Satisfaction Problems (CSPs), the preferred method is not
so clear and new approaches developed during the last years. Having a standard,
non-learning CP solver has the benefit of supporting special (global) constraint
propagators for various kinds of constraints. An implicit variable/domain repre-
sentation supports huge or even infinite domains. Encoding finite linear CSPs as
propositional formulas and solving them by using modern solvers for SAT has
proven to be a highly effective approach by the award-winning sugar2 system.

1 Advanced SMT solvers, like [21], address this through handcrafted theory solvers.
2 http://bach.istc.kobe-u.ac.jp/sugar



The CP solver sugar reads a CSP instance and transforms it into a propositional
formula in Conjunctive Normal Form (CNF). The translation relies on the order
encoding [8, 28], and the resulting CNF formula can be solved by an off-the-shelf
SAT solver. I elaborate upon an alternative approach based on ASP and present
the resulting aspartame3 framework. It constitutes an ASP-based CP solver sim-
ilar to sugar. The major difference between sugar and aspartame rests upon the
implementation of the translation of CSPs into Boolean constraint problems.
While sugar implements a translation into CNF in Java, aspartame starts with
a translation into a set of facts. These facts are combined with a general-purpose
ASP encoding for CP solving (also based on the order encoding). Extending the
used techniques, I define CASP using nogoods and provide an ASP library for
solving it.

4 Lazy Nogood and Variable Creation

The first approach used to handle CASP consists of a learning ASP solver in
combination with a non-learning CP solver. Without learning facilities, these CP
solvers rest upon an implicit variable representation. It permits huge domains
and avoids the grounding bottleneck, but also restricts information exchange
which impedes the CDNL algorithm. The presented translation approach, en-
coding CASP using ASP, explicitly represents integer variables and therefore
benefits from the full power of CDNL. The granularity induced by this repre-
sentation provides accurate conflict and propagation information. On the other
hand, it limits scalability due to the size of the translation. I therefore present an
approach, combining the use of CDNL with an explicit representation, overcom-
ing the named weaknesses of the two approaches. I use dedicated propagators to
implicitly represent the encoding of the constraints and create the necessary no-
goods and variables whenever needed. This means that we neither need to make
the constraints nor the variables explicit a priori, but create them on demand.
In combination with a generic, declarative theory language and sophisticated
preprocessing techniques I provide a full fledged implementation of a modern
CASP solver, named clingcon 3. I evaluate my system and compare it with state
of the art CP and CASP solvers, thereby providing a tool for translating CP
benchmarks in the minizinc format into the internal ASP format. This enables
the CASP community to take advantage of a whole new class of benchmarks.

5 Multi-Shot Constraint Answer Set Programming

Multi-shot ASP solving [12, 13] is about solving continuously changing logic pro-
grams in an operative way. This can be controlled via reactive procedures that
loop on solving while reacting, for instance, to outside changes or previous solv-
ing results. These reactions may entail the addition or retraction of rules that the
operative approach can accommodate by leaving the unaffected program parts

3 https://potassco.org/labs/2016/09/20/aspartame.html



intact within the solver. This avoids re-grounding and benefits from heuristic
scores and constraints learned over time. Evolving constraint logic programs can
be extremely useful in dynamic applications to add new resources, set observed
variables, and add or relieve restrictions on capacities. To extend multi-shot solv-
ing to CASP, clingcon 3 is able to add and delete constraints in order to capture
evolving CSPs. New resources can be added using additional constraint variables
and domains. While restricting variables by adding constraints and rules to the
constraint logic program is easy, increasing their capacity is not. The key to this
is lazy variable creation, to avoid making huge domains explicit. For this pur-
pose, I start with a virtually maximum domain that is restrained by retractable
constraints. The domain is then increased by relaxing these constraints. This
avoids introducing a large amount of atoms. I exemplify this approach using the
well known n-queens and the yale shooting problem.

References

1. M. Abseher, M. Gebser, N. Musliu, T. Schaub, and S. Woltran. Shift design with
answer set programming. Fundamenta Informaticae, 147(1):1–25, 2016.

2. M. Balduccini, M. Gelfond, and M. Nogueira. Answer set based design of knowledge
systems. Annals of Mathematics and Artificial Intelligence, 47(1-2):183–219, 2006.

3. M. Banbara, K. Inoue, B. Kaufmann, T. Schaub, T. Soh, N. Tamura, and P. Wanko.
teaspoon: Solving the curriculum-based course timetabling problems with answer
set programming. In E. Burke, L. Di Gaspero, B. McCollum, A. Schaerf, and
E. Özcan, editors, Proceedings of the Eleventh International Conference of the
Practice and Theory of Automated Timetabling (PATAT’16), pages 13–32, 2016.

4. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

5. C. Baral, K. Chancellor, N. Tran, N. Tran, A. Joy, and M. Berens. A knowl-
edge based approach for representing and reasoning about signaling networks.
In Proceedings of the Twelfth International Conference on Intelligent Systems
for Molecular Biology/Third European Conference on Computational Biology
(ISMB’04/ECCB’04), pages 15–22. Oxford University Press, 2004.

6. S. Baselice, P. Bonatti, and M. Gelfond. Towards an integration of answer set
and constraint solving. In M. Gabbrielli and G. Gupta, editors, Proceedings of the
Twenty-first International Conference on Logic Programming (ICLP’05), volume
3668 of Lecture Notes in Computer Science, pages 52–66. Springer-Verlag, 2005.

7. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiabil-
ity, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

8. J. Crawford and A. Baker. Experimental results on the application of satisfiability
algorithms to scheduling problems. In B. Hayes-Roth and R. Korf, editors, Pro-
ceedings of the Twelfth National Conference on Artificial Intelligence (AAAI’94),
pages 1092–1097. AAAI Press, 1994.

9. R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.

10. M. Durzinsky, W. Marwan, M. Ostrowski, T. Schaub, and A. Wagler. Automatic
network reconstruction using ASP. Theory and Practice of Logic Programming,
11(4-5):749–766, 2011.



11. S. Dworschak, T. Grote, A. König, T. Schaub, and P. Veber. Tools for representing
and reasoning about biological models in action language C. In M. Pagnucco
and M. Thielscher, editors, Proceedings of the Twelfth International Workshop on
Nonmonotonic Reasoning (NMR’08), number UNSW-CSE-TR-0819 in School of
Computer Science and Engineering, The University of New South Wales, Technical
Report Series, pages 94–102, 2008.

12. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP + control:
Extended report. Technical report, Universität Potsdam, 2014.

13. M. Gebser, R. Kaminski, P. Obermeier, and T. Schaub. Ricochet robots reloaded: A
case-study in multi-shot ASP solving. In T. Eiter, H. Strass, M. Truszczyński, and
S. Woltran, editors, Advances in Knowledge Representation, Logic Programming,
and Abstract Argumentation: Essays Dedicated to Gerhard Brewka on the Occasion
of His 60th Birthday, volume 9060 of Lecture Notes in Artificial Intelligence, pages
17–32. Springer-Verlag, 2015.

14. M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence, 187-188:52–89, 2012.

15. M. Gebser, T. Schaub, S. Thiele, B. Usadel, and P. Veber. Detecting inconsistencies
in large biological networks with answer set programming. In M. Garcia de la
Banda and E. Pontelli, editors, Proceedings of the Twenty-fourth International
Conference on Logic Programming (ICLP’08), volume 5366 of Lecture Notes in
Computer Science, pages 130–144. Springer-Verlag, 2008.

16. J. Gleeson and J. Ryan. Identifying minimally infeasible subsystems of inequalities.
In ORSA Journal On Computing, volume 2, pages 61–63. Operations Research
Society of America, 1990.

17. G. Grasso, S. Iiritano, N. Leone, V. Lio, F. Ricca, and F. Scalise. An ASP-based
system for team-building in the Gioia-Tauro seaport. In M. Carro and R. Peña,
editors, Proceedings of the Twelfth International Symposium on Practical Aspects
of Declarative Languages (PADL’10), volume 5937 of Lecture Notes in Computer
Science, pages 40–42. Springer-Verlag, 2010.

18. V. Mellarkod and M. Gelfond. Integrating answer set reasoning with constraint
solving techniques. In J. Garrigue and M. Hermenegildo, editors, Proceedings
of the Ninth International Symposium on Functional and Logic Programming
(FLOPS’08), volume 4989 of Lecture Notes in Computer Science, pages 15–31.
Springer-Verlag, 2008.

19. V. Mellarkod, M. Gelfond, and Y. Zhang. Integrating answer set programming and
constraint logic programming. Annals of Mathematics and Artificial Intelligence,
53(1-4):251–287, 2008.

20. D. Mitchell. A SAT solver primer. Bulletin of the European Association for The-
oretical Computer Science, 85:112–133, 2005.

21. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theo-
ries: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

22. M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-prolog
decision support system for the space shuttle. In I. Ramakrishnan, editor, Pro-
ceedings of the Third International Symposium on Practical Aspects of Declarative
Languages (PADL’01), volume 1990 of Lecture Notes in Computer Science, pages
169–183. Springer-Verlag, 2001.

23. M. Ostrowski, G. Flouris, T. Schaub, and G. Antoniou. Evolution of ontologies
using ASP. In J. Gallagher and M. Gelfond, editors, Technical Communications
of the Twenty-seventh International Conference on Logic Programming (ICLP’11),



volume 11, pages 16–27. Leibniz International Proceedings in Informatics (LIPIcs),
2011.

24. M. Ostrowski, L. Paulevé, T. Schaub, A. Siegel, and C. Guziolowski. Boolean
network identification from perturbation time series data combining dynamics ab-
straction and logic programming. Biosystems, 149:139–153, 2016.

25. F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming.
Elsevier Science, 2006.

26. P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

27. T. Soininen and I. Niemelä. Developing a declarative rule language for applications
in product configuration. In G. Gupta, editor, Proceedings of the First International
Workshop on Practical Aspects of Declarative Languages (PADL’99), volume 1551
of Lecture Notes in Computer Science, pages 305–319. Springer-Verlag, 1999.

28. N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling finite linear CSP
into SAT. Constraints, 14(2):254–272, 2009.

29. J. van Loon. Irreducibly inconsistent systems of linear inequalities. European
Journal of Operational Research, 8(3):283–288, 1981.


