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Abstract

We present the new ASP system clingo 4. Unlike its predecessors, being mere monolithic combinations of
the grounder gringo with the solver clasp, the new clingo 4 series offers high-level constructs for realiz-
ing complex reasoning processes. Among others, such processes feature advanced forms of search, as in
optimization or theory solving, or even interact with an environment, as in robotics or query-answering.
Common to them is that the problem specification evolves during the reasoning process, either because data
or constraints are added, deleted, or replaced. In fact, clingo 4 carries out such complex reasoning within
a single integrated ASP grounding and solving process. This avoids redundancies in relaunching grounder
and solver programs and benefits from the solver’s learning capacities. clingo 4 accomplishes this by com-
plementing ASP’s declarative input language by control capacities expressed via the embedded scripting
languages Lua and Python. On the declarative side, clingo 4 offers a new directive that allows for structur-
ing logic programs into named and parameterizable subprograms. The grounding and integration of these
subprograms into the solving process is completely modular and fully controllable from the procedural side,
viz. the scripting languages. By strictly separating logic and control programs, clingo 4 also abolishes the
need for dedicated systems for incremental and reactive reasoning, like iclingo and oclingo, respectively,
and its flexibility goes well beyond the advanced yet still rigid solving processes of the latter.

1 Introduction

Standard Answer Set Programming (ASP; (Baral 2003)) follows a one-shot process in comput-
ing stable models of logic programs. This view is best reflected by the input/output behavior of
monolithic ASP systems like dlv (Leone et al. 2006) and clingo (Gebser et al. 2011b). Internally,
however, both follow a fixed two-step process. First, a grounder generates a (finite) propositional
representation of the input program. Then, a solver computes the stable models of the proposi-
tional program. This rigid process stays unchanged when grounding and solving with separate
systems. In fact, up to now, clingo provided a mere combination of the grounder gringo and
the solver clasp. Although more elaborate reasoning processes are performed by the extended
systems iclingo (Gebser et al. 2008) and oclingo (Gebser et al. 2011a) for incremental and reac-
tive reasoning, respectively, they also follow a pre-defined control loop evading any user control.
Beyond this, however, there is substantial need for specifying flexible reasoning processes, for in-
stance, when it comes to interactions with an environment, as in assisted living, robotics, or with
users, advanced search, as in multi-objective optimization, planning, theory solving, or heuristic
search, or recurrent query answering, as in hardware analysis and testing or stream processing.
Common to all these advanced forms of reasoning is that the problem specification evolves dur-
ing the reasoning processes, either because data or constraints are added, deleted, or replaced.

The new clingo 4 series offers novel high-level constructs for realizing such complex reason-
ing processes. This is achieved within a single integrated ASP grounding and solving process in
order to avoid redundancies in relaunching grounder and solver programs and to benefit from the
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learning capacities of modern ASP solvers. To this end, clingo 4 complements ASP’s declarative
input language by control capacities expressed via the embedded scripting languages Lua and
Python. On the declarative side, clingo 4 offers a new directive #program that allows for struc-
turing logic programs into named and parameterizable subprograms. The grounding and integra-
tion of these subprograms into the solving process is completely modular and fully controllable
from the procedural side, viz. the scripting languages embedded via the #script directive. For
exercising control, the latter benefit from a dedicated clingo library that does not only furnish
grounding and solving instructions but moreover allows for continuously assembling the solver’s
program in combination with the directive #external. Hence, by strictly separating logic and
control programs, clingo 4 abolishes the need for special-purpose systems for incremental and
reactive reasoning, like iclingo and oclingo, respectively, and its flexibility goes well beyond the
advanced yet still rigid solving processes of the latter.

2 Background

A (normal) rule r is an expression of the form a0 ← a1, . . . , am,∼am+1, . . . ,∼an, where ai, for
0 ≤ m ≤ n, is an atom of the form p(t1, . . . , tk), p/k is a predicate symbol, and t1, . . . , tk are
terms, built from constants, variables, and functions. Letting h(r) = a0,B(r)+ = {a1, . . . , am},
and B(r)− = {am+1, . . . , an}, we also denote r by h(r) ← B(r)+ ∪ {∼a | a ∈ B(r)−}.
A (normal) logic program P is a set of rules. We write H(P ) = {h(r) | r ∈ P} and
A(P ) = H(P ) ∪

⋃
r∈P (B(r)+ ∪ B(r)−) to denote the set of all head atoms or atoms, respec-

tively, occurring in P . A term, atom, rule, or program is ground if it does not contain any variable.
The Herbrand universe of P consists of all ground terms constructible from constants, at least
including all integers, and function symbols in the (implicit) language of P . The ground instance
of P , denoted by grd(P ), is the set of all ground rules constructible from rules r ∈ P by substi-
tuting every variable in r with some element of the Herbrand universe of P . We associate P with
its positive atom dependency graph G(P ) = (A(grd(P )), {(a0, a) | r ∈ grd(P ), h(r) = a0,

a ∈ B(r)+}) and call a maximal non-empty subset of A(grd(P )) inducing a strongly connected
subgraph of G(P ) a strongly connected component of P . A set X of ground atoms is a model
of P , if h(r) ∈ X , B(r)+ * X , or B(r)− ∩X 6= ∅ holds for every r ∈ grd(P ); X is a stable
model of P , if X is a ⊆-minimal model of {h(r)← B(r)+ | r ∈ grd(P ), B(r)− ∩X = ∅}.

Following (Oikarinen and Janhunen 2006), a module P is a triple (P, I,O) consisting of a
ground logic program P along with sets I and O of ground input and output atoms such that
I ∩O = ∅, A(P ) ⊆ I ∪O, and H(P ) ⊆ O. We also denote the constituents of P = (P, I,O) by
P (P) = P , I(P) = I , and O(P) = O. A set X of ground atoms is a stable model of a module P,
if X is a (standard) stable model of P (P) ∪ {a← | a ∈ I(P) ∩ X}. Two modules P1 and P2

are compositional, if O(P1) ∩ O(P2) = ∅ and, for every strongly connected component C of
P (P1)∪P (P2), O(P1)∩C = ∅ or O(P2)∩C = ∅. Provided that P1 and P2 are compositional,
their join is defined as the module P1tP2 = (P (P1)∪P (P2), (I(P1)\O(P2))∪(I(P2)\O(P1)),

O(P1) ∪ O(P2)). The module theorem (Oikarinen and Janhunen 2006) shows that a set X of
ground atoms is a stable model of P1 t P2 iff X = X1 ∪ X2 for stable models X1 and X2

of P1 and P2, respectively, such that X1 ∩ (I(P2) ∪ O(P2)) = X2 ∩ (I(P1) ∪ O(P1)). For
example, the modules P1 = ({a ← ∼c; c ← ∼b}, {b}, {a, c}) and P2 = ({b ← a}, {a}, {b})
are compositional, and combining their stable models, {a, b} and {c} for P1 as well as {a, b}
and ∅ for P2, yields the stable models {a, b} and {c} of P1tP2 = (P (P1)∪P (P2), ∅, {a, b, c}).
Unlike that, P′1 = ({a ← b; c ← ∼a}, {b}, {a, c}) and P2 are not compositional because the
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strongly connected component {a, b} of P (P′1) ∪ P (P2) includes a ∈ O(P′1) and b ∈ O(P2).
Moreover, {a, b} is a stable model of P′1 and P2, but not of P (P′1) ∪ P (P2).

For associating (not necessarily ground) logic programs with modules, we adopt the respective
definition from (Gebser et al. 2008). That is, for a logic program P and a set X of ground atoms,
P |X = {h(r) ← B(r)+ ∪ {∼a | a ∈ B(r)− ∩ X} | r ∈ grd(P ), B(r)+ ⊆ X} denotes the
projection of P to X . Given this, the instantiation of P relative to a given set I of ground atoms
is the module P(I) = (P |I∪H(P |X), I \H(P |X), H(P |X)), where X = I ∪H(grd(P )).

3 Controlling grounding and solving in clingo 4

A key feature, distinguishing clingo 4 from its predecessors, is the possibility to structure (non-
ground) input rules into subprograms. To this end, the directive #program comes with a name
and an optional list of parameters. Once given in the clingo 4 input, it gathers all rules up to the
next such directive (or the end of file) within a subprogram identified by the supplied name and
parameter list. As an example, two subprograms base and acid(k) can be specified as follows:

1 a(1).
2 #program acid(k).
3 b(k).
4 #program base.
5 a(2).

Note that base, with an empty parameter list, is a dedicated subprogram that, in addition to rules
in the scope of a directive like the one in Line 4, gathers all rules not preceded by a #program
directive. Hence, in the above example, the base subprogram includes the facts a(1) and a(2).
Without further control instructions (see below), clingo 4 grounds and solves the base subpro-
gram only, essentially yielding the standard behavior of ASP systems. The processing of other
subprograms, such as acid(k) with the schematic fact b(k), is subject to scripting control.

For a customized control over grounding and solving, a main routine (taking a control object
representing the state of clingo 4 as argument) can be specified in either of the embedded
scripting languages Lua and Python. For illustration, let us consider two Python main routines:

6 #script(python)
7 def main(prg):
8 prg.ground("base",[])
9 prg.solve()

10 #end.

6 #script(python)
7 def main(prg):
8 prg.ground("acid",[42])
9 prg.solve()

10 #end.

While the control program on the left matches the default behavior of clingo 4, the one on the
right ignores all rules in the base program but rather, in Line 8, contains a ground instruction
for acid(k), where the parameter k is instantiated with the term 42. Accordingly, the schematic
fact b(k) is turned into b(42), and the solve command in Line 9 yields a stable model
consisting of b(42) only. Note that ground instructions apply to the subprograms given as
arguments, while solve triggers reasoning w.r.t. all accumulated ground rules. In fact, a solve
command makes clingo 4 instantiate pending subprograms and then perform reasoning. That
is, when Line 9 is replaced, e.g., by print ’Hello!’, clingo 4 merely writes out Hello! but
does neither ground any subprogram nor compute stable models.

In order to accomplish more elaborate reasoning processes, like those of iclingo and oclingo
or customized ones, it is indispensable to activate or deactivate ground rules on demand. For
instance, former initial or goal state conditions need to be relaxed or completely replaced when
modifying a planning problem, e.g., by extending its horizon. While the predecessors of clingo 4
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relied on a #volatile directive to provide a rigid mechanism for the expiration of transient
rules, clingo 4 captures the respective functionalities and customizations thereof in terms of the
directive #external. This directive goes back to lparse (Syrjänen) and was also supported by
the predecessors of clingo 4 to exempt (input) atoms from simplifications fixing them to false.
As detailed in the following, the #external directive of clingo 4 provides a generalization that,
in particular, allows for a flexible handling of yet undefined atoms.

For continuously assembling ground rules evolving at different stages of a reasoning process,
#external directives declare atoms that may still be defined by rules added later on. In terms
of modules, such atoms correspond to inputs, which (unlike undefined output atoms) must not be
simplified by fixing their truth value to false. In order to facilitate the declaration of input atoms,
clingo 4 supports schematic #external directives that are instantiated along with the rules of
their respective subprograms. To this end, a directive like

#external p(X,Y) : q(X,Z), r(Z,Y).

is treated similar to a rule r during grounding:
p(X,Y) :- q(X,Z), r(Z,Y).

However, the head atoms of resulting ground instances of r are merely collected as inputs,
whereas the ground rules as such are discarded. To reflect this distinct treatment, we associate r
with an annotated rule rε, in which ε is a distinguished atom not occurring in the clingo 4 input:

p(X,Y) :- q(X,Z), r(Z,Y), ε.

Given this, a subprogram R from the clingo 4 input consists of all rules r within the scope of
#program directives with the same name and number of parameters, where basewithout param-
eters is used by default, along with rules rε capturing #external directives in the same scope.

The instantiation of a subprogram R with a list c1, . . . , ck of parameters, such as acid(k)
above, relies on a list t1, . . . , tk of terms to replace occurrences of c1, . . . , ck with, both in origi-
nal rules r and rules rε capturing #external directives in R. The parameter replacement yields
a subprogram R(c1/t1, . . . , ck/tk), which is instantiated relative to inputs. For instance, provid-
ing the term 42 for parameter k leads to acid(k/42) consisting of the fact b(42). However,
since instances of rules rε, having ε in the body, are not supposed to be included in a ground
program, we make use of projection to dispose of them and define [R] = R|A(R)\{ε}.

Control instructions guiding the instantiation and assembly of subprograms can be under-
stood in terms of modules, where ground instructions issued before the first or in-between
two solve commands determine rules to instantiate and join with a module representing the
previous state of clingo 4. The state at the beginning, i.e., before encountering the first solve
command in a main routine, is simply an empty module P0 = (∅, ∅, ∅). Then, n ≥ 0 ground in-
structions encountered up the next, say (i+1)-th, solve command specify a collection Qi+1 =⋃

1≤m≤nRm(c1m/t1m , . . . , ckm/tkm) of (non-ground) rules by providing a subprogram name
Rm along with terms t1m , . . . , tkm for each 1 ≤ m ≤ n. InstantiatingQi+1 with input and output
atoms from the previous state, viz. I(Pi) ∪ O(Pi), along with the distinguished atom ε yields a
module Qi+1(I(Pi)∪O(Pi)∪{ε}). As its ground program may include instances of rules rε stem-
ming from #external directives, we must drop the input atom ε and instances of rules rε. At the
same time, we need to reinterpret head atoms defined by dropped instances of rules rε as inputs.
To this end, we define the module [Q] = ([Q], (I\{ε})∪(H(Q)\H([Q])), O\(H(Q)\H([Q]))),
where Q = P (Q), I = I(Q), and O = O(Q) for Q = Qi+1(I(Pi) ∪ O(Pi) ∪ {ε}). In fact,
H(Q) \ H([Q]) contains the atoms stemming from #external directives. Provided that the
module Pi, representing the previous state of clingo 4, and [Qi+1(I(Pi) ∪ O(Pi) ∪ {ε})] are
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compositional, their join Pi+1 = Pi t [Qi+1(I(Pi)∪O(Pi)∪{ε})] captures the state of clingo 4
at the (i+1)-th solve command in a main routine. When solving with Pi+1, the input atoms in
I(Pi+1) are taken to be false by default, which can still be altered as illustrated next.

Let us demonstrate the formation of modules along with input atoms on the following example:
1 #external p(1;2;3).
2 p(0) :- p(3).
3 p(0) :- not p(0).

4 #program succ(n).
5 #external p(n+3).
6 p(n) :- p(n+3).
7 p(n) :- not p(n+1), not p(n+2).

8 #script(python)
9 from gringo import Fun

10 def main(prg):
11 prg.ground("base", [])
12 prg.assignExternal(Fun("p", [3]), True)
13 prg.solve()
14 prg.assignExternal(Fun("p", [3]), False)
15 prg.solve()
16 prg.ground("succ", [1])
17 prg.ground("succ", [2])
18 prg.solve()
19 prg.ground("succ", [3])
20 prg.solve()
21 #end.

In view of the ground instruction in Line 11, issued before the first solve command in Line 13,
rules and #external directives from the base subprogram in Line 1–3 yield the instantiation:

Q1({ε}) =
({

p(0)← p(3); p(0)← ∼p(0);
p(1)← ε; p(2)← ε; p(3)← ε

}
, {ε}, {p(0), p(1), p(2), p(3)}

)
Joining [Q1({ε})] with P0 = (∅, ∅, ∅) then leads to the following first state of clingo 4:

P1 = P0 t [Q1({ε})] = ({p(0)← p(3); p(0)← ∼p(0)}, {p(1), p(2), p(3)}, {p(0)})

While the input atoms p(1) and p(2) are (by default) assigned to false when solving P1, the
instruction in Line 12 switches the value of p(3) to true, so that the stable model {p(0), p(3)}
of P1 is obtained in Line 13. Next, the instruction in Line 14 turns p(3) to false, and since
no further subprograms are instantiated, no stable model is obtained when solving P2 = P1 t
(∅, {p(0), p(1), p(2), p(3)}, ∅) = P1 in view of the solve command in Line 15. Afterwards,
the ground instructions in Line 16 and 17 express that rules and #external directives from
succ(n/1) and succ(n/2), replacing the parameter of subprogram succ(n) in Line 5–7 with
terms, are to be instantiated relative to the atoms I3 = {p(0), p(1), p(2), p(3), ε}, which leads to:

Q3(I3) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3); p(4)← ε;

p(2)← p(5); p(2)← ∼p(3),∼p(4); p(5)← ε

}
,

{
p(0),

p(3), ε

}
,

{
p(1), p(2),

p(4), p(5)

})
This yields the join P3 = P2 t [Q3(I)] of [Q3(I)] and P2 = P1 from the previous clingo 4 state:

P3 =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3); p(0)← p(3);

p(2)← p(5); p(2)← ∼p(3),∼p(4); p(0)← ∼p(0)

}
,

{
p(3),

p(4), p(5)

}
,

{
p(0),

p(1), p(2)

})
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Since none of the input atoms in I(P3) is set to true at the solve command in Line 18, solving
with P3 gives no stable model. Then, clingo 4 proceeds by instantiating succ(n/3) relative to
I4 = {p(0), p(1), p(2), p(3), p(4), p(5), ε} in view of the ground instruction in Line 19:

Q4(I4) =

({
p(3)← p(6); p(6)← ε;

p(3)← ∼p(4),∼p(5)

}
,

{
p(0), p(1), p(2),

p(4), p(5), ε

}
,

{
p(3),

p(6)

})
Finally, the solve command in Line 20 leads to the stable model {p(0), p(3)} of the following
module P4 = P3 t [Q4(I4)] capturing the residual clingo 4 state:

P4 =


p(1)← p(4); p(1)← ∼p(2),∼p(3); p(0)← p(3);

p(2)← p(5); p(2)← ∼p(3),∼p(4); p(0)← ∼p(0);
p(3)← p(6); p(3)← ∼p(4),∼p(5)

 ,


p(4),

p(5),

p(6)

 ,

{
p(0), p(1),

p(2), p(3)

}
The above example illustrates the customized selection of (non-ground) subprograms to instan-
tiate in-between solve commands. For a convenient declaration of input atoms from other sub-
program instances, schematic #external directives are embedded into the grounding process.
Given that they do not contribute ground rules, but merely qualify (undefined) atoms that should
be exempted from simplifications, #external directives address the signature of subprograms’
ground instances. Hence, it is advisable to condition them by domain predicates1 (Syrjänen) only,
as this precludes any interferences between signatures and grounder implementations. As long
as input atoms remain undefined, their truth values can be freely picked and modified in-between
solve commands via assignExternal instructions, which thus allow for configuring the in-
puts to modules representing clingo 4 states in order to select among their stable models. Un-
like that, the predecessors iclingo and oclingo of clingo 4 always assigned input atoms to false,
so that the addition of rules was necessary to accomplish switching truth values as in Line 12
and 14 above. However, for a well-defined semantics, clingo 4 like its predecessors builds on the
assumption that the modules induced by subprograms’ instantiations are compositional, which
essentially requires definitions of (head) atoms and mutual positive dependencies to be local to
evolving ground programs (cf. (Gebser et al. 2008)).

4 Using clingo 4 in practice

After describing the general grounding and solving process of clingo 4, we now illustrate its ad-
vanced features and application scenarios. To begin with, we consider the well-known n-queens
problem, aiming at a reasoning process solving series of boards with different size. Given that
larger boards subsume smaller ones, an evolving problem specification can reuse ground rules
from previous clingo 4 states when the size increases. To this end, we view the increment of n by
one as the addition of one more row and column. The basic idea is to interconnect the previous
and added board cells such that any of them has a unique predecessor or successor in either of the
four attack directions of queens. The respective connection schemes are depicted in Figure 1(a)–
(d), where direct links are indicated by arrows to target cells with a (white or black) circle. The
scheme for backward diagonals, displayed in Figure 1(a), connects cells of the uppermost previ-
ous row to corresponding attacked cells in a new column; the latter are in turn linked to the new
cells they attack in the row above. Note that this scheme ensures that, starting from the middle of
any backward diagonal, all cells that are successively added are on a path. Such a path follows

1 Domain and built-in predicates have unique extensions that can be evaluated entirely by means of grounding.
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Fig. 1: Attack target links among cells of successive n-queens boards up to size 4

the board evolution and is directed from previous to newly added cells, where white circles in
arrow targets indicate the presence of attacking cells on the board when their respective target
cells are added. The schemes for attacks along forward diagonals, horizontal rows, and vertical
columns are shown in Figure 1(b), 1(c), and 1(d). Notably, the latter two (partially) link new
cells to previous ones, in which case the targets are highlighted by black circles. At the level of
modules, links from cells that may be added later on give rise to input atoms.

The clingo 4 encoding in Listing 1 is based on the links depicted in Figure 1(a)–(d). After
declaring queen/2 as the output predicate to be displayed, the (sub)program board(n) pro-
vides rules for extending a board of size n−1 to n ≥ 1. To this end, the #external directives
in Line 4 and 5 declare atoms representing horizontal and vertical attacks on cells in the n-th
column or row, respectively, as inputs. Such atoms match the targets of arrows leading to cells
with black circles in Figure 1(c) and 1(d). For instance, attack(2,1,h) and attack(2,2,h)

as well as attack(1,2,v) and attack(2,2,v) are the inputs to board(n/2), expressing
that cells at the horizontal and vertical borders can become targets of attacks once the board
is extended beyond size 2. The instances of target(X,Y,X’,Y’,D,n) specified in Line 7–13
provide links from cells (X,Y) to targets (X’,Y’) along with directions D leading from or to some
newly added cell in the n-th column or row. These instances correspond to arrows shown in
Figure 1(a)–(d), yet omitting those to border cells such that attack(X’,Y’,D) is declared as
input in Line 4 and 5, also highlighted by black circles in Figure 1(c) and 1(d). Queens at newly
added cells in the n-th column or row are enabled via the choice rule in Line 15, and the links
provided by instances of target(X,Y,X’,Y’,D,n) are utilized in Line 17 and 18 for deriving
attack(X’,Y’,D) in view of a queen at cell (X,Y) or any of its predecessors in the direction
indicated by D. For instance, the following ground rules, simplified by dropping atoms of the
domain predicate target/6, capture horizontal attacks along the first row of a board of size 4:

attack(1,1,h) :- queen(2,1). attack(1,1,h) :- attack(2,1,h).
attack(2,1,h) :- queen(3,1). attack(2,1,h) :- attack(3,1,h).
attack(3,1,h) :- queen(4,1). attack(3,1,h) :- attack(4,1,h).

Note that a queen represented by an instance of queen(X,1), for 2 ≤ X ≤ 4, propagates to
cells on its left via an implication chain deriving attack(X’,1,h) for every 1 ≤ X’ < X.
Moreover, the fact that the cell at (4,1) can be attacked from the right when increasing the board
size is reflected by the input atom attack(4,1,h) declared in board(n/4). Given that attacks
are propagated analogously for other rows and directions, instances of the integrity constraint in
Line 20 prohibit a queen at cell (X’,Y’) whenever attack(X’,Y’,D) signals that some pre-
decessor in either direction D has a queen already. The integrity constraints in Line 22 and 23
additionally require that each row and column contains some queen. In view of the orientations
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1 #show queen/2.

3 #program board(n).
4 #external attack(n,1..n,h).
5 #external attack(1..n,n,v).

7 target(n, X, X, n, b,n) :- X = 1..n-1. % diagonal b
8 target(Y, n-1,n, Y-1,b,n) :- Y = 2..n-1. % diagonal b
9 target(X, n-1,X+1,n, f,n) :- X = 1..n-1. % diagonal f

10 target(n-1,Y, n, Y+1,f,n) :- Y = 1..n-2. % diagonal f
11 target(X, n, X-1,n, h,n) :- X = 2..n. % horizontal
12 target(n, Y, n-1,Y, h,n) :- Y = 1..n-1. % horizontal
13 target(Y, X, Y, X-1,v,n) :- target(X,Y,X-1,Y,h,n). % vertical

15 { queen(1..n,n); queen(n,1..n-1) }.

17 attack(X’,Y’,D) :- target(X,Y,X’,Y’,D,n), queen(X,Y).
18 attack(X’,Y’,D) :- target(X,Y,X’,Y’,D,n), attack(X,Y,D).

20 :- target(X,Y,X’,Y’,D,n), attack(X’,Y’,D), queen(X’,Y’).

22 :- not queen(1,n), not attack(1,n,h).
23 :- not queen(n,1), not attack(n,1,v).

25 #script(python)
26 def main(prg):
27 n = 0
28 for lower, upper in prg.getConst("calls").args():
29 while n < upper:
30 n += 1
31 prg.ground("board", [n])
32 if n >= lower:
33 print ’SIZE {0}’.format(n)
34 prg.solve()
35 #end.

Listing 1: clingo 4 program for successive n-queens solving (queens.lp)

of horizontal and vertical links, as displayed in Figure 1(c) and 1(d), non-emptiness can be recog-
nized from a queen at or an attack propagated to the first position in a row or column, no matter
to which size the board is extended later on. Importantly, instantiations of board(n) with dif-
ferent terms, i.e., integers, for n define distinct (ground) atoms, and the non-circularity of paths
according to the connection schemes in Figure 1(a)–(d) excludes mutual positive dependencies
(between instances of attack(X’,Y’,D)). Hence, the modules induced by different instantia-
tions of board(n) are compositional and can be joined to successively increase the board size.

The Python main routine in Line 25–35 of Listing 1 implements control for the successive
grounding and solving of a series of boards. To this end, an ordered list of integer intervals
is to be provided on the command-line, e.g., -c calls="list((1,1),(3,5),(8,9))". As
long as the upper limit of some interval is yet unreached, the board size is incremented by one
in Line 30 and, in view of the ground instruction in Line 31, taken as a term for instantiating
board(n). However, solving is only invoked in Line 34 if the current size lies within the interval
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1 #script(python)
2 from gringo import Fun, SolveResult

4 def init(val, default):
5 return val if val != None else default

7 def main(prg):
8 stop = str(init(prg.getConst("istop"), "SAT"))
9 step = int(init(prg.getConst("iinit"), 0))

11 prg.ground("base", [])
12 while True:
13 step += 1
14 prg.ground("cumulative", [step])
15 prg.assignExternal(Fun("query", [step]), True)
16 print ’STEP {0}’.format(step)
17 ret = prg.solve()
18 if (stop == "SAT" and ret == SolveResult.SAT) or \
19 (stop == "UNSAT" and ret == SolveResult.UNSAT): break

20 prg.releaseExternal(Fun("query", [step]))
21 #end.

Listing 2: Python script implementing iclingo functionality in clingo (iclingo.lp)

of interest. Provided that this is the case for any particular n ≥ 1, the sequence of issued ground
instructions makes sure that the current clingo 4 state corresponds to the module obtained by
instantiating and joining the subprograms board(n/i), for 1 ≤ i ≤ n, in increasing order. Since
all ground rules accumulated in such a state are relevant (and not superseded by permanently
falsifying the body) for n-queens solving, there is no redundancy in instantiating board(n/i)

for each 1 ≤ i ≤ n, even when the provided integer intervals do not include i and i-queens
solving is skipped. For instance, -c calls="list((1,1),(3,5),(8,9))" specifies a series
of six boards to solve, while the subprogram board(n) is successively instantiated with nine
different terms for parameter n. In fact, the main routine in Line 25–35 automates the assembly
of subprograms needed to process an arbitrary yet increasing sequence of board sizes.

As mentioned above, clingo 4 fully supersedes its special-purpose predecessors iclingo and
oclingo. To illustrate this, we give in Listing 2 a slightly simplified version of iclingo’s control
loop in Python. The full control loop (included in the release) mainly adds handling of further
iclingo options. Roughly speaking, iclingo offers a step-oriented, incremental approach to ASP
that avoids redundancies by gradually processing the extensions to a problem rather than repeat-
edly re-processing the entire extended problem (as in iterative deepening search). To this end, a
program is partitioned into a base part, describing static knowledge independent of the step pa-
rameter t, a cumulative part, capturing knowledge accumulating with increasing t, and a volatile
part specific for each value of t. These parts were delineated in iclingo by the directives #base,
#cumulative t, and #volatile t. In clingo 4, all three directives are captured by #program
declarations along with #external for volatile rules.

We illustrate this by adapting the Towers of Hanoi encoding from (Gebser et al. 2012) in Fig-
ure 2. The problem instance in Figure 2(a) as well as Line 2 in 2(b) constitute static knowledge
and thus belong to the base part. The transition function is described in the cumulative part in
Line 5–15 of Figure 2(b). Finally, the query is expressed in Line 18; its volatility is realized
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1 #program base.
2 peg(a;b;c).
3 disk(1..4).
4 init_on(1..4,a).
5 goal_on(1..4,c).

(a) Towers of Hanoi instance

1 #program base.
2 on(D,P,0) :- init_on(D,P).

4 #program cumulative(t).
5 1 { move(D,P,t) : disk(D), peg(P) } 1.

7 move(D,t) :- move(D,P,t).
8 on(D,P,t) :- move(D,P,t).
9 on(D,P,t) :- on(D,P,t-1), not move(D,t).

10 blocked(D-1,P,t) :- on(D,P,t-1).
11 blocked(D-1,P,t) :- blocked(D,P,t), disk(D).

13 :- move(D,P,t), blocked(D-1,P,t).
14 :- move(D,t), on(D,P,t-1), blocked(D,P,t).
15 :- disk(D), not 1 { on(D,P,t) } 1.

17 #external query(t).
18 :- query(t), goal_on(D,P), not on(D,P,t).

(b) Towers of Hanoi incremental encoding

Fig. 2: Towers of Hanoi instance (tohI.lp) and incremental encoding (tohE.lp)

by making the actual goal condition goal_on(D,P), not on(D,P,t) subject to the truth as-
signment to the external atom query(t). Grounding and solving of the program in Figure 2(a)
and 2(b) is controlled by the Python script in Listing 2. Line 4–9 fix the stop criterion and initial
value of the step variable. Both can be supplied as constants istop and iinit when invoking
clingo 4. Once the base part is grounded in Line 11, the script loops until the stop criterion
is met in Line 18–19. In each iteration, the current value of step is used in Line 14 and 15 to
instantiate the subprogram cumulative(t) and to set the respective external atom query(t)

to true. If the stop condition is yet unfulfilled w.r.t. the result of solving the extended program,
the current query(t) atom is permanently falsified (cf. Line 17–20), thus annulling the corre-
sponding instances of the integrity constraint in Line 18 of Figure 2(b) before they are replaced
in the next iteration.

Another innovative feature of clingo 4 is its incremental optimization. This allows for adapting
objective functions along the evolution of a program at hand. A simple example is the search
for shortest plans when increasing the horizon in non-consecutive steps. To see this, recall that
literals in minimize statements (and analogously weak constraints) are supplied with a sequence
of terms of the form w@p,~t, where w and p are integers providing a weight and a priority level
and~t is a sequence of terms (cf. (Calimeri et al. 2012)). As an example, consider the subprogram:

#program cumulativeObjective(t).
#minimize{ W@P,X,Y,t : move(X,Y,W,P,t) }.
% or :˜ move(X,Y,W,P,t). [W@P,X,Y,t]

When grounding and solving cumulativeObjective(t) for successive values of t, the
solver’s objective function (per priority level P) is gradually extended with new atoms over
move/5, and all previous ones are kept.

Moreover, for enabling the removal of literals from objective functions, we can use externals:
#program volatileObjective(t).
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#external activateObjective(t).
#minimize{ W@P,X,Y,t : move(X,Y,W,P,t), activateObjective(t) }.

The subprogram volatileObjective(t) behaves like cumulativeObjective(t) as long
as the external atom activateObjective(t) is true. Once it is set to false, all atoms over
move/5 with the corresponding term for t are dismissed from objective functions.

A reasoning process in clingo 4 is partitioned into a sequence of solver invocations. We have
seen how easily the solver’s logic program can be altered at each step. Sometimes it is useful
to do this in view of a previously obtained stable model. For this purpose, the solve command
can be equipped with an (optional) callback function onModel. For each stable model found
during a call to solve(onModel), an object encompassing the model is passed to onModel,
whose implementation can then access and inspect the model. A typical example is the addition
of constraints based on the last model that are then supplied to the solver before computing
the next one. An application is theory solving by passing (parts of) the last model to a theory
solver for theory-based consistency checking or for providing the value of an externally evaluated
objective function. Moreover, clingo 4 also furnishes an asynchronous solving function asolve

that launches an interruptable solving process in the background. This is particularly useful in
reactive settings in order to stop solving upon the arrival of new external information.

Similarly, the configuration of clasp can be changed at each step via the function setConf,
taking a string including command line options along with a flag indicating whether the previ-
ous configuration is updated or replaced as arguments. For instance, this allows for changing
search parameters, reasoning modes, number of threads, etc. Changing search parameters is of
interest when addressing computational tasks involving the generation of several models, like
optimal planning, multi-criteria optimization, or heuristic search. Apart from analyzing the pre-
vious model via the onModel callback, one can also monitor the search progress by means of
the function getStats, returning an object encapsulating up to 135 attributes of the previous
search process. Furthermore, clingo 4 allows for customizing the heuristic values of variables,
as described in (Gebser et al. 2013a). At a higher level, a user may simply want to explore the
set of models, and decide to compute first one, then all, and then the intersection or union of all
models. This can be interleaved with the addition of subprograms via the function add, which
may in turn include #external directives to declare temporary hypotheses. The experienced
reader may note that this can be done fully interactively by means of IPython. Practical examples
for the mentioned features can be found in the releases at (potassco).

5 Related work

Although clingo 3 (Gebser et al. 2011c) already featured Lua as an embedded scripting language,
its usage was limited to (deterministic) computations during grounding; neither were library
functions furnished by clingo 3.

Of particular interest is dlvhex (Fink et al. 2013), an ASP system aiming at the integration
of external computation sources. For this purpose, dlvhex relies on higher-order logic programs
using external higher-order atoms for software interoperability. Such external atoms should not
be confused with clingo’s #external directive because they are evaluated via procedural means
during solving. Given this, dlvhex can be seen as an ASP modulo Theory solver, similar to SAT
modulo Theory solvers (Nieuwenhuis et al. 2006). In fact, dlvhex uses gringo and clasp as back-
ends and follows the design of the ASP modulo CSP solver clingcon (Ostrowski and Schaub
2012) in communicating with external “oracles” through clasp’s post propagation mechanism.



12 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub

In this way, theory solvers are tightly integrated into the ASP system and have access to the
solver’s partial assignments. Unlike this, the light-weighted theory solving approach offered by
clingo 4 can only provide access to total (stable) assignments. It is thus interesting future work to
investigate in how far dlvhex can benefit from lifting its current low-level integration into clasp
to a higher level in combination with clingo 4. Clearly, the above considerations also apply to
extensions of dlvhex, such as acthex (Fink et al. 2013). Furthermore, jdlv (Febbraro et al. 2012)
encapsulates the dlv system to facilitate one-shot ASP solving in Java environments by providing
means to generate and process logic programs, and to afterwards extract their stable models.

The procedural attachment to the idp system (De Pooter et al. 2013; De Cat et al. 2014) builds
on interfaces to C++ and Lua. Like clingo 4, it allows for evaluating functions during grounding,
calling the grounder and solver multiple times, inspecting solutions, and reacting to external input
after search. The emphasis, however, lies on high-level control blending in with idp’s modeling
language, while clingo 4 offers more fine-grained control over the grounding and solving process,
particularly aiming at a flexible incremental assembly of programs from subprograms.

In SAT, incremental solver interfaces from low-level APIs are common practice. Pioneering
work was done in minisat (Eén and Sörensson 2004), furnishing a C++ interface for solving
under assumptions. In fact, the clasp library underlying clingo 4 builds upon this functionality to
implement incremental search (see (Gebser et al. 2008)). Given that SAT deals with propositional
formulas only, solvers and their APIs lack support for modeling languages and grounding. Unlike
this, the SAT modulo Theory solver z3 (de Moura and Bjørner 2008) comes with a Python API
that, similar to clingo 4, provides a library for controlling the solver as well as language bindings
for constraint handling. In this way, Python can be used as a modeling language for z3.

6 Discussion

The new clingo 4 system complements ASP’s declarative input language by control capacities ex-
pressed by embedded scripting languages. This is accomplished within a single integrated ASP
grounding and solving process in which a logic program may evolve over time. The addition,
deletion, and replacement of programs is controlled procedurally by means of clingo’s dedi-
cated library. The incentives for evolving a logic program are manifold and cannot be captured
with the standard one-shot approach of ASP. Examples include unrolling a transition function,
as in planning, interacting with an environment, as in assisted living, robotics, or stream reason-
ing, interacting with a user exploring a domain, theory solving, and advanced forms of search.
Addressing these demands by embedded scripting languages provides us with a generic and
transparent approach. Unlike this, previous systems, like iclingo and oclingo, had a dedicated
purpose involving rigid control capacities buried in monolithic programs. Rather than that, the
basic technology of clingo 4 allows us to instantiate subprograms in-between solver invocations
in a fully customizable way. On the declarative side, the availability of program parameters and
the embedding of #external directives into the grounding process provide great flexibility in
modeling schematic subprograms. In addition, the possibility of assigning input atoms facilitates
the implementation of applications such as query answering or sliding window reasoning, as
truth values can now be switched without manipulating a logic program.

The semantic underpinnings of our framework in terms of module theory capture the dynamic
combination of logic programs in a generic way. It is interesting future work to investigate how
dedicated change operations whose interest was so far mainly theoretic, like updating (Alferes
et al. 2002) or forgetting (Zhang and Foo 2006), can be put into practice within this framework.
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The input language of clingo 4 extends the ASP-Core-2 standard (Calimeri et al. 2012). Al-
though we have presented clingo 4 for normal logic programs, we mention that it accepts (ex-
tended) disjunctive logic programs, processed via the multi-threaded solving approach described
in (Gebser et al. 2013b). In version 4.3, clingo moreover embeds clasp 3, featuring domain-
specific heuristics (Gebser et al. 2013a) and optimization using unsatisfiable cores (Andres et al.
2012). clingo 4 is freely available at (potassco), and its releases include many best practice ex-
amples illustrating the aforementioned application scenarios.
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Appendix A Running clingo 4 on n-Queens example

1 $ clingo queens.lp -c calls="list((1,1),(3,5),(8,9))"
2 clingo version 4.3.0
3 Reading from queens.lp
4 SIZE 1
5 Solving...
6 Answer: 1
7 queen(1,1)
8 SIZE 3
9 Solving...

10 SIZE 4
11 Solving...
12 Answer: 1
13 queen(2,1) queen(1,3) queen(4,2) queen(3,4)
14 SIZE 5
15 Solving...
16 Answer: 1
17 queen(2,1) queen(3,3) queen(1,4) queen(5,2) queen(4,5)
18 SIZE 8
19 Solving...
20 Answer: 1
21 queen(2,1) queen(1,4) queen(5,2) queen(3,5) queen(7,3) \
22 queen(6,7) queen(8,6) queen(4,8)
23 SIZE 9
24 Solving...
25 Answer: 1
26 queen(3,2) queen(1,3) queen(6,4) queen(5,6) queen(7,1) \
27 queen(2,7) queen(8,5) queen(4,8) queen(9,9)
28 SATISFIABLE

30 Models : 5+
31 Calls : 6
32 Time : 0.031s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
33 CPU Time : 0.020s
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Appendix B Running clingo 4 on Towers of Hanoi example

1 $ clingo iclingo.lp tohI.lp tohE.lp
2 clingo version 4.3.0
3 Reading from iclingo.lp ...
4 STEP 1
5 Solving...
6 STEP 2
7 Solving...
8 STEP 3
9 Solving...

10 STEP 4
11 Solving...
12 STEP 5
13 Solving...
14 STEP 6
15 Solving...
16 STEP 7
17 Solving...
18 STEP 8
19 Solving...
20 STEP 9
21 Solving...
22 STEP 10
23 Solving...
24 STEP 11
25 Solving...
26 STEP 12
27 Solving...
28 STEP 13
29 Solving...
30 STEP 14
31 Solving...
32 STEP 15
33 Solving...
34 Answer: 1
35 move(4,b,1) move(3,c,2) move(4,c,3) move(2,b,4) move(4,a,5) move(3,b,6) \
36 move(4,b,7) move(1,c,8) move(4,c,9) move(3,a,10) move(4,a,11) move(2,c,12) \
37 move(4,b,13) move(3,c,14) move(4,c,15)
38 SATISFIABLE

40 Models : 1+
41 Calls : 15
42 Time : 0.042s (Solving: 0.01s 1st Model: 0.00s Unsat: 0.00s)
43 CPU Time : 0.030s


