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Abstract. Many knowledge representation tasks involve trees or similar struc-
tures as abstract datatypes. However, devising compact and efficient declarative
representations of such structural properties is non-obvious and can be challeng-
ing indeed. In this paper, we take a number of acyclicity properties into consid-
eration and investigate various logic-based approaches to encode them. We use
answer set programming as the primary representation language but also consider
mappings to related formalisms, such as propositional logic, difference logic, and
linear programming. We study the compactness of encodings and the resulting
computational performance on benchmarks involving acyclic or tree structures.

1 Introduction

Numerous hard search tasks involve the construction of acyclic or tree structures, and
constraint satisfaction or related methods are an important approach for solving many
of these problems. For instance, Bayesian network structure learning, where directed
acyclic graphs provide solution candidates, can be reduced to constraint optimization
[15, 28, 16]. Constraint-based methods can also be used to infer phylogenetic trees [7,
5], describing the evolution of living organisms, languages, and other evolving systems.
Furthermore, chordal Markov network learning amounts to the task of optimizing max-
imum weight spanning trees induced by chordal graphs [14]. Since acyclicity and the
property of being a tree are no primitives in common constraint-based representation
formalisms, the challenge of formulating such conditions in terms of more basic con-
straint expressions arises. Hence, in this work, we systematically investigate logic-based
approaches to encode respective properties.

The basic problem to be solved with constraint-based formalisms is constructing an
acyclic or a tree structure subject to further conditions. Thereby, a part of the constraints
must enforce that the choice among underlying edge candidates actually results in some
graph structure with the desired properties. Straightforward formulations, however, can
become impractically large and inefficient. While exponential encodings of acyclicity
[28, 16] or chordality [14] may be acceptable for small graphs, they are prohibitive
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when the problem size increases. Such limitations also apply to polynomial formula-
tions that lack compactness, even when the given edge candidates yield sparse graphs.
For instance, acyclicity may be expressed in terms of transitive closure [7, 10, 15, 11, 6]
and formulated in first-order logic as follows:

[∀xy : Edge(x, y)→ Reach(x, y)]
∧ [∀xyz : Edge(x, y) ∧ Reach(y, z)→ Reach(x, z)]
∧ [∀x : ¬Reach(x, x)]

The main issue here is that an instantiation must in general include Reach(u, v) for
any pair u, v of vertices, thus requiring quadratic space. Unlike this, we develop encod-
ings based on least fixpoints or well-foundedness, respectively, such that conditions for
“deriving” a vertex remain local to edge candidates including the vertex. We formulate
respective conditions characterizing acyclicity in the directed and undirected case as
well as chordality. Further properties can be enforced by side constraints, e.g., in order
to assert connectedness and distinguish trees. In fact, we provide compact encodings of
the properties detailed in Section 2 that are proportional to graph size and remain linear
in the number of vertices when the edge candidates per vertex are bound by a constant.

Although we rely on answer set programming (ASP) [6] as the primary represen-
tation language for encodings, respective formulations in related formalisms, such as
propositional satisfiability (SAT) [2], difference logic (DL) [37], linear programming
(LP) [17], and the recent SAT modulo graphs framework [24] can be obtained through
automatic polynomial translations from ASP. Linear translations to SAT exist when-
ever ASP rules are tight [19], i.e., if there are no circular positive dependencies through
rules’ prerequisites on the ground level. In the non-tight case, level mappings [29] can
be used to bridge the semantic gap between ASP and SAT in subquadratic space. Com-
pact linear representations of level mappings can be achieved by means of difference
constraints available in DL [36], numerical variables in LP [33], or acyclicity checking
on top of SAT [21]. Direct encodings in these formalisms could be based on similar
principles as ASP formulations subject to translations, yet we aim at investigating the
general impact of encoding approaches on the the resulting computational performance
rather than fine-tuning to any particular application or solving method.

The rest of this paper is organized as follows. After providing definitions of acyclic-
ity and tree properties, we present encoding approaches and corresponding first-order
ASP formulations in Section 3. In Section 4, we evaluate these encodings on syn-
thetic, reachability-oriented, and application benchmarks, followed by conclusions in
Section 5. Correctness proofs for a selection of the encodings developed in Section 3
are given in Appendix A. This paper extends a preliminary workshop publication [23]
with additional encodings and experiments as well as proofs. Parts of the material on
directed acyclic graphs were also presented in a short paper [22].

2 Acyclicity Properties

This section introduces the basic concepts of graphs, forests, and trees. We consider
directed as well as undirected notions and provide alternative characterizations when
appropriate.



2.1 Directed Graphs
As usual, a directed graph G is a pair 〈V,E〉, where V is a finite set of vertices and E ⊆
V × V is a set of directed edges. For some v ∈ V , we denote the number of incoming
or outgoing edges, respectively, by deg−(v) = |{u | 〈u, v〉 ∈ E}| and deg+(v) = |{u |
〈v, u〉 ∈ E}|; v is a root (or leaf ) of G if deg−(v) = 0 (or deg+(v) = 0). A path of
length k− 1 ≥ 0 in G is a non-empty sequence v1, . . . , vk of vertices from V such that
〈vi, vi+1〉 ∈ E and vi 6= vj for all 1 ≤ i < j ≤ k. A sequence v0, v1, . . . , vk is a cycle
of length k ≥ 1 in G if 〈v0, v1〉 ∈ E, v0 = vk, and v1, . . . , vk is a path in G. Note that
v, v is a cycle of length 1 whenever 〈v, v〉 ∈ E.

A directed acyclic graph is a directed graph G such that there is no cycle in G. A
directed acyclic graph G = 〈V,E〉 is a directed forest if, for every vk ∈ V , there is
exactly one path v1, . . . , vk in G from a root v1 of G to vk. Given that any incoming
edge 〈vk−1, vk〉 can be extended to a path v1, . . . , vk−1, vk from a root v1, the former
condition is equivalent to requiring deg−(v) ≤ 1 for all vertices v ∈ V . Furthermore, a
directed tree is a directed forest G = 〈V,E〉with a unique root, i.e., deg−(v) = 0 holds
for at most one v ∈ V (for exactly one v ∈ V when V 6= ∅). Some directed example
graphs illustrating the introduced acyclicity properties are depicted in Figure 1.

2.2 Undirected Graphs
An undirected graph G = 〈V,E〉 consists of a finite set V of vertices and a set E of
undirected edges {u, v} such that u, v ∈ V and u 6= v; note that excluding singletons
from E follows the standard concept of an undirected edge (cf. [18]). For some v ∈ V ,
deg(v) = |{u | {u, v} ∈ E}| denotes the number of edges including v; v is a leaf of G
if deg(v) ≤ 1. A path v1, . . . , vk of length k − 1 ≥ 0 in G is defined as in the directed
case except for replacing the requirement 〈vi, vi+1〉 ∈ E by {vi, vi+1} ∈ E for all
1 ≤ i < k. A sequence v0, v1, . . . , vk is a cycle of length k ≥ 3 in G if {v0, v1} ∈ E,
v0 = vk, and v1, . . . , vk is a path in G. Requiring the length to be at least 3 avoids that
the definition becomes trivial, given that every undirected graph with some edge were
cyclic otherwise.

An undirected forest is an undirected graph G such that there is no cycle in G.
An undirected tree is an undirected forest G such that, for every pair v1, vk ∈ V ,
there is some path from v1 to vk in G. Moreover, chordal graphs form an interesting
generalization of forests allowing for triangles as basic building blocks. More precisely,
an undirected graph G = 〈V,E〉 is chordal if, for every cycle v0, . . . , vk of length k > 3
in G, there is some edge {vi, vj} ∈ E such that 1 ≤ i < j ≤ k and 2 ≤ j − i ≤ k − 2.
For example, when k = 4, then {v1, v3} ∈ E or {v2, v4} ∈ E is required.

3 Encodings

In this section, we gradually develop encodings of the graph-theoretic concepts intro-
duced in the previous section. We illustrate different encodings by means of first-order
specifications in the input language of the ASP grounder GRINGO [26], using a subset of
the language such that deciding the existence of a solution is NP-complete [38]. The un-
derlying principles, however, are of general applicability, and we outline particularities
of respective SAT, DL, and LP formulations.
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Fig. 1: Directed example graphs with five vertices each

1 #const n=5.
2 node(1..n).
3 pair(X,Y) :- node(X;Y), X != Y.
4 { edge(X,Y) } :- pair(X,Y).

Fig. 2: Encoding part for generating directed graphs (tight; size O(|E|) = O(|V |2))

3.1 Directed Acyclic Graphs

To begin with, we consider directed graphs and their properties, focusing on the dis-
tinction of cyclic and acyclic graphs like the ones depicted in Figure 1(a) and 1(b).

Rules describing the (non-deterministic) generation of directed graphs are shown
in Figure 2. The predicate node/1 provides the labels 1, . . . , n for vertices, where n is
an integer constant standing for the number of vertices, and the symmetric predicate
pair/2 represents the domain of directed edges given by all pairs of distinct vertices.
Any subset of these pairs can be generated via the choice rule in line 4, permitting in-
stances of edge/2 to hold without further preconditions.1 For example, the atoms char-
acterizing the directed graph in Figure 1(a) are edge(1,2), edge(1,3), edge(2,4),
edge(3,2), edge(4,5), and edge(5,3).

Acyclicity Checking To make sure that a generated directed graph 〈V,E〉 is acyclic,
we may check whether there is a strict partial order < over vertices in V such that u < v
if 〈u, v〉 ∈ E. The rules in Figure 3 encode this approach in an inductive fashion, where
atoms of the form order(u,v) indicate the absence of cycles involving an edge candi-
date 〈u, v〉 and order(u) expresses the same for vertices u. Given n=5, the following
(simplified) ground instances are obtained when the label 3 is substituted for X:

order(3,1) :- not edge(3,1).
order(3,1) :- order(1).
order(3,2) :- not edge(3,2).
order(3,2) :- order(2).
order(3,4) :- not edge(3,4).
order(3,4) :- order(4).
order(3,5) :- not edge(3,5).

1 When defining pair/2 such that atoms of the form pair(v,v) are included, picking
edge(v,v) would immediately yield a cycle, and any of the acyclicity tests described below
would discard such a choice.



5 order(X,Y) :- pair(X,Y), not edge(X,Y).
6 order(X,Y) :- pair(X,Y), order(Y).
7 order(X) :- node(X), order(X,Y) : pair(X,Y).

9 :- node(X), not order(X).

Fig. 3: Inductive bottom-up encoding of acyclicity test (non-tight; size O(|E|))

5 order(X,Y,1..n) :- pair(X,Y), not edge(X,Y).
6 order(X,Y,N-1) :- pair(X,Y), order(Y,N).
7 order(X,N) :- node(X), order(X,Y,N) : pair(X,Y), N = 2..n.
8 order(X) :- node(X), order(X,Y,1) : pair(X,Y).

Fig. 4: Unfolded bottom-up derivation of order/1 (tight; size O(|E|×|V |))

order(3,5) :- order(5).
order(3) :- order(3,1), order(3,2), order(3,4), order(3,5).
:- not order(3).

As expressed by order(3,v), vertex 3 fulfills the condition of < relative to a poten-
tial successor v ∈ {1, 2, 4, 5} if there is no edge from 3 to v or if v has no path to 3.
Then, order(3) is derived once the existence of a cycle through vertex 3 can be safely
excluded for all potential successors v of 3. In turn, the positive prerequisites of cor-
responding ground rules for other vertices along with well-foundedness of derivations,
as required in ASP, prohibit order(3) to hold if 3 belongs to some cycle. Given this,
the integrity constraint denying models such that order(3) is false rejects any directed
graph with a cycle through 3, and respective ground rules establish the same for other
vertices as well.

Reconsidering the example graph in Figure 1(a), we have that order(u,v) can
be derived for distinct vertices u and v such that 〈u, v〉 is not an edge. Since each
vertex u has some successor v, there still is some atom order(u,v) for u that cannot
be concluded in this way, e.g., order(5,3) for vertex 5. Hence, order(u) remains
underivable for all u ∈ {1, 2, 3, 4, 5}, and the cyclic graph in Figure 1(a) is rejected
by means of the rules in Figure 3. Unlike this, vertex 5 has no successor in the acyclic
graph shown in Figure 1(b), so that order(5,v) is derivable for v ∈ {1, 2, 3, 4}.
This in turn yields order(5), order(4,5), and order(4), given that 5 is the only
successor of vertex 4. Similarly, the derivation of order(2,4) leads to order(2), and
the establishment of order(3,2), order(3,4), and order(3,5) for the successors
of vertex 3 allows for deriving order(3). Finally, order(1) can be concluded in view
of order(1,2) and order(1,3). As derivable atoms are compatible with (ground
instances of) the integrity constraint in line 9 of Figure 3, the graph in Figure 1(b)
passes the acyclicity test.

Encoding Variants The encoding in Figure 3 is non-tight, i.e., it relies on well-
foundedness in the presence of circular positive dependencies on the ground level. Level
mappings (cf. [29, 36, 33]) furnish an alternative mechanism to express well-founded
derivations, where difference constraints or numerical variables allow for linear em-



beddings in DL and LP. A respective approach is taken by the tight ASP formulation
of the predicate order/1 in Figure 4. In order to eliminate circular positive dependen-
cies between rules’ prerequisites and conclusions, the auxiliary predicates order/3 and
order/2 include an additional argument for “step counting” that unfolds the derivation
of a partial vertex order < witnessing acyclicity. If such an order exists, its construction
must be completed in at most n steps. For instance, the (total) order 1 < 3 < 2 < 4 < 5

over vertices of the acyclic graph in Figure 1(b) is represented in terms of the atoms
order(5,2. . . 5), order(4,2. . . 4), order(2,2. . . 3), and order(3,2) along with
order(u) for u ∈ {1, 2, 3, 4, 5}. On the one hand, explicit step counting eliminates
the potential of circular derivations, so that straightforward translations like comple-
tion [13] can be used to map the encoding in Figure 4 to SAT, DL, or LP. In fact, the
tight ASP formulation of order/1 can be viewed as a directed counterpart of the SAT
encoding for the undirected case in [14]. On the other hand, the step argument intro-
duces an additional dimension increasing the number of atoms as well as constraints.
For directed graphs 〈V,E〉, the size of ground instances grows from O(|E|) for the
encoding in Figure 3 to O(|E|×|V |), thus shifting from linear to quadratic space.

Variants of the encodings presented so far can be obtained by replacing the uncon-
ditional generation of edges in line 4 of Figure 2 by the following (non-deterministic)
choice rule:

{ edge(X,Y) } :- pair(X,Y), order(Y).

The additional prerequisite order(Y) necessitates the absence of cycles through a ver-
tex substituted for Y before admitting any edge from a predecessor substituted for X.
Hence, the generation of edges with the above choice rule progresses successively from
the leaves of a directed acyclic graph. Whether such conditional edge generation is ad-
vantageous or not is empirically investigated in Section 4. While the leaf encodings in
Figure 3 and 4 describe “bottom-up” traversals starting from the leaves of a directed
graph, acyclicity tests can likewise be performed “top-down” from roots, and a con-
ditional choice rule similar to the one above can optionally be used in root encodings
instead of line 4 in Figure 2. Without other side constraints, bottom-up and top-down
traversals appear fully symmetric, but in the contexts of forests and trees, considered in
the following subsections, the orientation of acyclicity tests may interact or interfere.

For a complement, we also consider acyclicity checking via the transitive closure
of edge/2. In fact, the inductive formulation in Figure 5 is similar to encodings pro-
posed in the literature [7, 10, 11, 6]. The rule in line 6 provides the base case for de-
riving the full transitive closure, represented in terms of the predicate trans/2, via the
rule in line 7. Then, order(v) is derived in line 8 when there is no cycle connect-
ing a vertex v ∈ V to itself. Given this, the integrity constraint in line 9 of Figure 3
can be used as is for rejecting cyclic graphs. A tight formulation of the acyclicity test
based on transitive closure is given in Figure 6. Observe that the integrity constraints in
line 6 and 7 resemble respective inductive rules and require trans(v0,vk) to hold if
there is some cycle v0, v1, . . . , vk. Since integrity constraints do not provide derivations
for atoms, the choice rule in line 5 additionally expresses that instances of the predi-
cate trans/2 may be generated unconditionally. As a consequence, a directed acyclic
graph can have several corresponding (stable) models. For instance, 160 models de-
scribe the directed tree displayed in Figure 1(d). All of them entail trans(1,u) for



6 trans(X,Y) :- edge(X,Y).
7 trans(X,Z) :- edge(X,Y), trans(Y,Z).
8 order(X) :- node(X), not trans(X,X).

Fig. 5: Inductive transitivity encoding of acyclicity test (non-tight; size O(|E|×|V |))

5 { trans(X,Y) } :- node(X), node(Y).
6 :- edge(X,Y), not trans(X,Y).
7 :- edge(X,Y), trans(Y,Z), not trans(X,Z).
8 order(X) :- node(X), not trans(X,X).

Fig. 6: Flattened transitivity encoding of acyclicity test (tight; size O(|E|×|V |))

u ∈ {2, 3, 4, 5}, trans(3,4), and trans(3,5), whereas different combinations of
the atoms trans(2,v) and trans(v,2) for v ∈ {3, 4, 5} as well as trans(4,5)
and trans(5,4) are admissible in addition. Regarding space complexity, the transi-
tivity encodings in Figure 5 and 6 yield the same as the unfolded bottom-up derivation
of order/1 in Figure 4, i.e., O(|E|×|V |). In particular, note that the non-tight ASP
formulation in Figure 5 is less compact than the one in Figure 3.

Unlike the flattened transitivity encoding in Figure 6, the predicate definitions in
Figure 3, 4, and 5 are stratified (cf. [1]). That is, when instances of the predicate edge/2
are fixed, there is at most one (well-founded) model that can be deterministically deter-
mined. In the absence of circular positive dependencies, as with ground instances of the
rules in Figure 4, the unique model or unsatisfiability is also obtained by evaluating (via
unit propagation) the rules’ completion. Except for variants based on Figure 6 or the in-
troduction of prerequisites for conditional edge generation, all encoding parts in the
sequel are stratified, so that the choice of edges is the only source of non-determinism.

3.2 Directed Forests

In order to switch from directed acyclic graphs 〈V,E〉 to the more restrictive notion
of directed forests, we have to make sure that deg−(v) ≤ 1 holds for every vertex
v ∈ V . For instance, the acyclic graph shown in Figure 1(b) is not a forest because
deg−(2) = deg−(4) = deg−(5) = 2. The (sub)graph in Figure 1(c), however, is
a forest with roots 1 and 3, given that deg−(1) = deg−(3) = 0 and deg−(2) =
deg−(4) = deg−(5) = 1.

Five alternative approaches to test the additional requirement of at most one incom-
ing edge per vertex are encoded by the rules in Figure 7(a)–(e). The integrity constraint
shown in Figure 7(a) checks pairwise mutual exclusion by, for every vertex, enumerat-
ing distinct predecessor candidates and denying the joint occurrence of incoming edges
for each pair of potential predecessors. While this approach is straightforward, its cubic
space complexity, i.e., O(|E|×|V |) = O(|V |3), is a major bottleneck for scalability.
The usage of one cardinality constraint per vertex in Figure 7(b) allows for a more com-
pact (quadratic) representation since pairs of predecessor candidates are not explicitly
enumerated. However, cardinality constraints of arbitrary arity are not directly available
in SAT and DL input languages, and the rules in Figure 7(c)–(e) encode normalizations



10 :- node(Z), edge(X;Y,Z), X < Y.

(a) Pairwise mutual exclusion (tight; size O(|E|×|V |))

10 :- node(Y), 2 { edge(X,Y) }.

(b) Cardinality constraint (tight; size O(|E|))

10 unique(X,1,1) :- node(X).
11 unique(X,n,-1) :- node(X).

12 unique(X,Y+D,D) :- unique(X,Y,D), node(Y+D), not edge(Y,X).
13 unique(X) :- unique(X,Y,1;-1), n-2 < n*|X-Y|.
14 :- node(X), not unique(X).

(c) Bidirectional traversal (tight; size O(|E|))

10 unique(X,n,0) :- node(X).
11 unique(X,n,1) :- node(X), not edge(n,X).
12 unique(X,Y-1,0) :- unique(X,Y,1), node(Y-1), X != Y-1.
13 unique(X,Y-1,C) :- unique(X,Y,C), node(Y-1), not edge(Y-1,X).

14 :- node(X), not unique(X,1,0).

(d) Linear traversal (tight; size O(|E|))

10 unique(X,n,Y,0) :- node(X;Y).

11 unique(X,n,Y,1) :- node(X;Y), not edge(Y,X).

12 unique(X,I,I,C) :- unique(X,J,J,C), I = (J+1)/2,
1 < J, J < 2*I.

13 unique(X,I,Y/2,C/2) :- unique(X,J,Y,C1), I = (J+1)/2, 0 < C,
unique(X,J,Y-1,C2), C = C1+C2, Y\2 == 0.

14 :- node(X), not unique(X,1,1,0).

(e) Tournament traversal (tight; size O(|E|))

Fig. 7: Forest property tests for directed acyclic graphs

(cf. [4]) for the purpose of checking mutual exclusion. To this end, it is sufficient to
propagate the existence of some element with a certain property, here the property to be
a predecessor, to other potential candidates. In fact, the schemes described in the fol-
lowing are rather simple, and the required space is directly proportional to graph size in
terms of edge candidates, while generalizations [39, 20] of the encodings in Figure 7(d)
and 7(e) are applicable to arbitrary cardinality constraints. On the other hand, the ap-
proach in Figure 7(c) addresses mutual exclusion testing in a dedicated fashion, and we
are unaware of any corresponding proposal in the literature.

Bidirectional Traversal The basic idea of the encoding in Figure 7(c) is to traverse
the potential predecessors of a vertex from both ends of an (arbitrary) order. For con-
venience, we here rely on the natural order given by vertex indexes along with the
background information that any pair of distinct vertices may possibly be connected by
an edge (cf. line 3 of Figure 2). In case of a more restrictive predecessor selection, the



candidates to be traversed and the order among them can of course be localized. How-
ever, the entry points for traversing potential predecessors of a vertex substituted for X
are in line 10 and 11 of Figure 7(c) taken to be the vertices with the smallest and the
greatest label, i.e., 1 and the integer constant represented by n. Starting from them, the
rule in line 12 expresses that proceeding “upwards” or “downwards”, respectively, to
the next vertex in direction D is admissible if a current vertex substituted for Y does not
have an edge to X. That is, a vertex substituted for X has at most one incoming edge if
and only if some Y is encountered from both ends of the underlying order, as indicated
by the atoms unique(X,Y,1) and unique(X,Y,-1). Except for the corner case n=1
(in which X=Y is admitted by the condition n− 2 < n ∗ |X− Y|), a respective Y can be
assumed to be different from X, which per X eliminates one ground instance of the rule
in line 13 for deriving unique(X). Finally, the integrity constraint in line 14 requires
ground instances of unique(X) for X=1, . . . , X=n to hold, thus denying any graph
with more than one incoming edge for some vertex.

The test based on bidirectional traversal filters the example graph in Figure 1(b)
as follows. While unique(1,u,d) for u ∈ {1, 2, 3, 4, 5} and d ∈ {1, -1},
unique(3,1,1), unique(3,1,-1), and thus unique(1) and unique(3) are deriv-
able, such atoms remain underivable for other vertices. For instance, traversing the
potential predecessors of vertex 2 yields unique(2,1,1) and unique(2,u,-1) for
u ∈ {3, 4, 5} only, so that unique(2) cannot be concluded from unique(2,Y,1)

and unique(2,Y,-1) for any common ground substitution of Y. Unlike this, the
test succeeds for the forest shown in Figure 1(c). In particular, unique(2) as
well as unique(v) for v ∈ {4, 5} are derived in view of unique(2,1,1) and
unique(2,1,-1) or unique(v,3,1) and unique(v,3,-1), respectively.

Linear Traversal The approach encoded in Figure 7(d) inspects potential predecessors
of a vertex substituted for X “downwards” from n while maintaining a counter flag in
the third argument of the predicate unique/3. The latter is unconditionally initialized
with 0 in line 10, and the rule in line 12 expresses that the flag can be decreased from 1

to 0 at any point (other than X) in traversing the indexes of vertices. Atoms of the
form unique(v,u,1) indicate the absence of edges leading to v for the vertices with
labels u, . . . , n, which is in line 11 checked for n, as well as when proceeding to any
predecessor candidate with the next smaller label by applying the rule in line 13. The
latter rule also forwards flag 0 to indicate the existence of at most one predecessor for
a vertex v among u, . . . , n, and requiring unique(v,1,0) to hold by means of the
integrity constraint in line 14 thus restricts the number of incoming edges per vertex
to one or none. Note that the encoding in Figure 7(d) provides an ASP formulation of
the well-known sequential counter approach from SAT [39] for the particular case of
cardinality limited to at most one (cf. [34, 20]).

Tournament Traversal While linear traversal inspects vertices in (lexicographical)
order, the encoding in Figure 7(e) aims at a symmetric partitioning of predecessor can-
didates. To this end, potential predecessors are viewed as leaves of a binary tree of depth
dlog2(n)e, where unique(X,n,Y,0) and unique(X,n,Y,1) in line 10 and 11 pro-
vide base cases indicating whether the vertex substituted for Y may have an edge to X



or not, respectively. The rule in line 13 then combines two such atoms, inspecting an
even label Y along with Y-1 to derive unique(X,(J+1)/2,Y/2,c) for c ∈ {0, 1}:
the numbers (J+1)/2 and Y/2 denote the round of traversal as well as the position
of an outcome, and c=0 or c=1 represents again that the investigated predecessor
candidates may have some or no edge to X. If the number of positions in a round
is odd, the rule in line 12 additionally forwards previous outcomes for the last po-
sition, lacking an even partner, to the next round. Considering for instance vertex 5

and its incoming edge from 3 in Figure 1(c), the atom unique(5,3,2,0) is derived
from unique(5,5,3,0) and unique(5,5,4,1). In addition, unique(5,3,1,0)
and unique(5,3,1,1) jointly indicate that the vertices with labels 1 and 2 have no
edge to 5. Further combining successive outcomes yields unique(5,2,1,0) as well as
unique(5,2,2,1) to eventually derive unique(5,1,1,0), expressing that (at most)
one edge to 5 has been encountered in traversing all candidates. In general, the integrity
constraint in line 14 checks the respective condition for every vertex to filter directed
acyclic graphs that are no forests. The presented tournament traversal approach to pair-
wisely compare elements as well as their aggregated outcomes resembles the so-called
“commander encoding” from SAT [32], whose generalization [20] is applicable to ar-
bitrary cardinality constraints.

Finally, note that (ground instances of) the encoding variants in Figure 7 do not in-
volve circular positive dependencies, so that well-foundedness is not a bottleneck for
corresponding SAT, DL, and LP formulations. However, SAT and DL input languages
lack native support for cardinality constraints like the one in Figure 7(b),2 and the scala-
bility of explicit predecessor candidate pair enumeration, as in Figure 7(a), suffers from
(cubic) space complexity. The normalizations in Figure 7(c)–(e) exemplify ways to en-
code cardinality limitations to at most one compactly, where the linear and tournament
traversal formulations amount to ASP counterparts of respective approaches from SAT.

3.3 Directed Trees

Directed trees are directed forests 〈V,E〉 with (at most) one root. That is, all but one
vertex in V must have some incoming edge, and since there may be at most one incom-
ing edge per vertex, |V | − 1 edges are required. In fact, either condition is sufficient to
check that 〈V,E〉 is a tree. Moreover, |V | − 1 edges are needed to connect the undi-
rected version 〈V, {{u, v} | 〈u, v〉 ∈ E}〉 of 〈V,E〉, so that connectedness provides a
third criterion to distinguish trees. Figure 8 displays encodings of these equivalent con-
ditions.

Edge Counting The cardinality constraint in Figure 8(a) holds if a directed forest
〈V,E〉 includes |V | − 1 edges, and the (ground instance of the) integrity constraint
in line 15 checks this condition. In view of n=5, the three edges of the directed forest
shown in Figure 1(c) are insufficient to pass the test, whereas it succeeds for the directed
tree with four edges in Figure 1(d). Given that any pair of distinct vertices provides an
edge candidate according to the declaration in line 3 of Figure 2, a ground instance of

2 Cardinality constraints can be linearly translated to DL, e.g., by adopting the mapping in [35].



15 :- not n-1 { edge(X,Y) }.

(a) Edge counting (tight; size O(|E|))

15 child(Y) :- edge(X,Y).
16 :- 2 { not child(X) : node(X) }.

(b) Root counting (tight; size O(|E|))

15 reach(1) :- 0 < n.
16 reach(X) :- reach(Y), edge(X,Y).
17 reach(Y) :- reach(X), edge(X,Y).
18 :- node(X), not reach(X).

(c) Connectedness (non-tight; size O(|E|))

Fig. 8: Tree property tests for directed forests

the cardinality constraint over edges involves |V |2 − |V | atoms, and the bound |V | − 1
goes beyond mutual exclusion testing, as encoded by the normalizations in Figure 7(c)–
(e). While generalizations of the linear and tournament traversal approaches allow for
dealing with greater cardinalities too, growing in space proportionally to the cardinality
bound (cf. [39, 20]), we omit them here for brevity. However, since the number of edges
cannot exceed |V | − 1, the following integrity constraint is valid as well (if V 6= ∅):

:- n { edge(X,Y) }.

This can be viewed as a redundant formulation of an implied property of directed
forests, and auxiliary atoms introduced in normalizations of the cardinality constraint in
line 15 of Figure 8(a) may be reused to redundantly test the implied condition too. The
effect of bounding the number of edges explicitly from above is assessed in Section 4.

Unique Root The second approach encoded in Figure 8(b) focuses on the uniqueness
of a root. To this end, the predicate child/1 is derived from edge/2 in line 15 to in-
dicate vertices targeted by some edge. The (ground instance of the) integrity constraint
in line 16 then denies graphs in which several vertices have no incoming edge, thus
limiting the number of roots to (at most) one. For instance, the atoms child(1) and
child(3) are not derived from edge(1,2), edge(3,4), and edge(3,5), represent-
ing the edges of the forest shown in Figure 1(c), so that it is rejected by means of

:- 2 { not child(1), not child(2),
not child(3), not child(4), not child(5) }.

For the tree in Figure 1(d), child(3) is additionally derivable from edge(1,3), and
thus the respective test succeeds. Similarly to the cardinality constraint in Figure 7(b),
limiting incoming edges to at most one per vertex, the requirement of a unique root ad-
dresses mutual exclusion. Hence, normalizations analogous to those in Figure 7(c)–(e)
are applicable. Notably, the auxiliary atoms introduced in either of the latter normaliza-
tions can also be explored to replace the rule in line 15 by these:



child(X) :- node(X), not unique(X,X, 1).
child(X) :- node(X), not unique(X,X,-1).

(1)

child(X) :- node(X), not unique(X,1,1). (2)

child(X) :- node(X), not unique(X,1,1,1). (3)

In combination with the bidirectional traversal encoding in Figure 7(c), the rules in (1)
conclude the existence of some edge to a vertex substituted for X from a predecessor
that blocks proceeding “upwards” or “downwards” to X along the order of candidates.
With the linear and tournament traversal approaches in Figure 7(d) and 7(e), vertex X

must have some predecessor if the counter flag 1 remains underivable as an outcome
of inspecting all predecessor candidates, which is checked in the prerequisite of the
rule in (2) or (3), respectively. Either of the alternative derivations preserves the role
of the predicate child/1 to indicate the vertices with some predecessor, so that the
integrity constraint in line 16 of Figure 8(b) or corresponding normalizations can be
used unmodified to test the uniqueness of a root.

Connectedness The encoding in Figure 8(c) checks that the undirected version of a
(directed) graph 〈V,E〉 is connected. As a matter of fact, |V |−1 edges are necessary to
connect all vertices in V , so that connectedness provides a criterion for testing whether
a forest is a tree. In order to inductively explore connected vertices, the rule in line 15
picks the vertex with label 1 (if V 6= ∅) as an (arbitrary) starting point to proceed in
either direction along edges by applying the rules in line 16 and 17. As a consequence,
the predicate reach/1 provides the vertices connected to 1, and (ground instances of)
the integrity constraint in line 18 require all vertices of a graph to be connected. Recon-
sidering the forest in Figure 1(c), disconnectedness is revealed by deriving reach(1)

and reach(2) but lacking reach(v) for v ∈ {3, 4, 5}. As the undirected versions of
the other three graphs depicted in Figure 1 are connected, such atoms reach(v) are
derivable in addition from the instances of edge/2 characterizing these graphs, so that
they are compatible with the integrity constraint in line 18. Like the inductive derivation
of order/1 in Figure 3, the connectedness encoding in Figure 8(c) induces circular pos-
itive dependencies, and a step argument ranging from 1 to n, similar to the one added in
Figure 4, can be introduced for obtaining a tight variant. Finally, note that the orthogo-
nal tests encoded in Figure 8 are not mutually exclusive but may be freely combined in
order to inspect several complementary properties of a directed tree at once.

3.4 Undirected Forests and Trees

When switching from directed edges 〈u, v〉 to undirected edges {u, v}, several directed
paths connecting two vertices yield an undirected cycle. Therefore, acyclic graphs co-
incide with forests in the undirected case. However, given that roots cannot (necessar-
ily) be identified unambiguously when edges lack orientation, only leaves v satisfying
deg(v) ≤ 1 can be distinguished. For instance, the undirected version (ignoring edge
orientation) of the example graph in Figure 1(d) has the leaves 2, 4, and 5, whereas
no unique root can be determined among the inner vertices 1 and 3. In what follows,



5 order(X,Y) :- pair(X,Y), not edge(X,Y).
6 order(X,Y) :- pair(X,Y), order(X).
7 order(X,Y) :- pair(X,Y), order(Y).

8 order(X) :- node(X), n-2 { order(X,Y) : pair(X,Y),
order(Y,X) : pair(Y,X) }.

9 :- node(X), not order(X).

Fig. 9: Inductive encoding of undirected acyclicity test (non-tight; size O(|E|))

we focus on the description of encoding modifications allowing for a transition from
directed to undirected graphs.

As edge candidates represented by the atoms pair(u,v) and pair(v,u) refer to
the same set {u, v} of distinct vertices, first of all, a canonical edge representation is
established by replacing the rule in line 3 of Figure 2 as follows:

3 pair(X,Y) :- node(X;Y), X < Y.

In this way, redundant representations are resolved via labels of vertices, e.g., the atom
edge(1,2), but not edge(2,1), may be generated by applying the (non-deterministic)
choice rule in line 4 of Figure 2. Beyond that, checking that an undirected graph is
acyclic and thus a forest can be accomplished by rearranging the approach of the
bottom-up acyclicity test in Figure 3 to handling leaves of an undirected graph. The
basic idea of the encoding in Figure 9 is to successively derive order(v) for vertices v
that do not belong to any cycle, as witnessed by order(u) for all but (at most) one
vertex u in an edge {u, v}. Conversely, when each remaining vertex v has two or more
edges {u, v} such that order(u) does not hold, there must be some cycle through v.

Apart from line 8, the rules in Figure 9 are similar to those of the directed acyclicity
test in Figure 3. The additional case in line 6 takes care of asymmetric edge repre-
sentation in deriving an instance of order(X,Y) for an edge candidate {X, Y} when
order(X) or order(Y) indicates the absence of cycles involving {X, Y}. In view of
n-1 edge candidates per vertex substituted for X, the rule in line 8 applies once the ex-
istence of a cycle through X can be safely excluded. Its respective ground instance for
n=5 and X=3 is as follows:

order(3) :- 3 { order(1,3), order(2,3),
order(3,4), order(3,5) }.

That is, when all but one among the edge candidates including vertex 3 do not belong
to any cycle, then 3 cannot be part of a cycle either. Corresponding ground instances
first allow for deriving order(2), order(4), and order(5) from instances of edge/2
characterizing the undirected version of the example graph in Figure 1(d). After con-
cluding that the leaves along with edges including them do not contribute to any cycle,
merely the atom order(1,3) remains open, so that order(1) and order(3) are de-
rived in turn. In general, instances of order/1 are derivable for all vertices, as required
in view of the integrity constraint in line 9, if and only if an undirected graph is acyclic
and thus a forest.



Encoding Variants The cardinality constraint in line 8 of Figure 9 applies when all
but one edge candidate including a vertex substituted for X cannot belong to any cy-
cle. Given the uniqueness of a remaining edge candidate, normalizations analogous to
those in Figure 7(c)–(e) can be used again. To this end, a rule indicating the absence of
an edge for a candidate {X, Y} is augmented with a second case based on order(Y),
expressing that there is no cycle through a vertex substituted for Y. In view of such
positive prerequisites, neither the rule in line 8 of Figure 9 nor normalizations of this
non-tight ASP formulation admit well-founded derivations of order(vi) for vertices
in a cycle v0, . . . , vk, since each vi is included in two (distinct) edges connecting it to its
predecessor and successor along the cycle. However, an additional step argument like
the one in Figure 4 allows for a tight encoding, simulating well-founded derivations
without relying on circular positive dependencies, where dn/2e steps are sufficient in
the undirected case. In fact, in any but the final step of such a construction, the graph
obtained by eliminating edges that include leaves from previous steps must yield at least
two new leaves, or there certainly is some cycle otherwise. Moreover, the unconditional
choice rule in line 4 of Figure 2 can likewise be replaced by the following two rules:

{ edge(X,Y) } :- pair(X,Y), order(Y).
{ edge(X,Y) } :- pair(X,Y), order(X).

The prerequisite order(Y) or order(X), respectively, directs the generation of edges
to proceed successively from leaves. The effect of such conditional edge generation is
empirically assessed in Section 4.

Trees In order to distinguish undirected trees among forests, the approach to allow for
one root only, available in the directed case, is no longer applicable. To see this, note that
the undirected version of the tree depicted in Figure 1(d) has the inner vertices 1 and 3
along with the leaves 2, 4, and 5. However, when the edge {3, 4} is removed, the graph
becomes a disconnected forest with the same inner vertices and leaves. Hence, merely
counting inner vertices or leaves does not provide sufficient information to identify trees
or disconnected forests, respectively. Unlike this, the fact that |V |−1 edges are required
to connect the vertices of a forest 〈V,E〉 applies both in the directed and the undirected
case. Therefore, edge counting or checking connectedness are adequate approaches to
distinguish undirected trees, and the respective encodings in Figure 8(a) and 8(c) as
well as variants thereof can be used unmodified for this purpose.

3.5 Chordal Graphs

While cycles were not permitted in the directed and undirected graphs considered so
far, chordal graphs may contain cycles, provided that they can be broken down into
triangles. For instance, the undirected version of the example graph in Figure 1(a) is
not chordal because the cycle 2, 4, 5, 3, 2 of length 4 is accompanied by neither edge
{2, 5} nor {3, 4}. Since the latter is included in the undirected version of the graph in
Figure 1(b), this graph is chordal. In fact, the other two cycles of length 4 or 5, i.e.,
1, 2, 4, 3, 1 and 1, 2, 4, 5, 3, 1, are both broken by the edge {2, 3}.

As stated in [12], every chordal graph 〈V,E〉 is a clique, i.e., E = {{u, v} |
u, v ∈ V, u 6= v}, or there are at least two vertices v ∈ V such that (V ′ × V ′) ⊆ E



5 scope(X,Y,Z) :- node(X;Y;Z), pair(Y,X) : not pair(X,Y),
Y < Z, pair(Z,X) : not pair(X,Z).

6 order(X,Y,Z) :- scope(X,Y,Z), not edge(X,Y), not edge(Y,X).
7 order(X,Y,Z) :- scope(X,Y,Z), not edge(X,Z), not edge(Z,X).
8 order(X,Y,Z) :- scope(X,Y,Z), edge(Y,Z).
9 order(X,Y,Z) :- scope(X,Y,Z), edge(Z,Y).

10 order(X,Y,Z) :- scope(X,Y,Z), order(Y).
11 order(X,Y,Z) :- scope(X,Y,Z), order(Z).
12 order(X) :- node(X), order(X,Y,Z) : scope(X,Y,Z).
13 :- node(X), not order(X).

Fig. 10: Inductive encoding of chordality test (non-tight; size O(|E|×|V |))

for V ′ = {u | {u, v} ∈ E}, which means that the vertices u sharing some edge with v
form a clique. Moreover, a graph is chordal if and only if the successive elimination of
vertices “connected to a clique” leads to an empty graph. Reconsidering the undirected
version of the graph in Figure 1(b), the neighbors 2 and 3 of 1 as well as the neigh-
bors 3 and 4 of 5 form cliques, so that the vertices 1 and 5 can be eliminated. Since
the remaining vertices 2, 3, and 4 induce a clique, they can be eliminated afterwards,
thus certifying that the graph at hand is chordal. Unlike this, only vertex 1 can be elimi-
nated when starting from the graph depicted in Figure 1(a), given that each of the other
vertices has two remaining neighbors that do not share an edge.

The rules in Figure 10 encode the described approach to test chordality. For con-
venience, the auxiliary predicate scope/3 provides all pairs of distinct potential neigh-
bors of a vertex substituted for X in line 5, i.e., lexicographically ordered pairs such
that (asymmetric representations of) edges with X are among the candidates given by
the predicate pair/2. For n=5 along with potential edges between any pair of dis-
tinct vertices, we thus obtain six instances of scope(X,Y,Z) per vertex X. In fact,
the consideration of triples rather than isolated edges increases the required space to
O(|E|×|V |). However, note that the rule in line 5 adapts to the edge candidates rep-
resented by pair/2, so that the chordality test (as well as similar encoding parts pre-
sented above) can easily be narrowed in case of a more restrictive selection of edges.
Like acyclicity tests in the previous sections, the rules from line 6 to 12 focus on the
inductive derivation of order/1 to indicate vertices that become connected to a clique
and can be eliminated successively. To this end, for any pair {Y, Z} in the scope of a
vertex X, some of the base cases encoded by the rules from line 6 to 9 applies if one
of the edges {X, Y} or {X, Z} is excluded or if the edge {Y, Z} is included in a graph.3

Otherwise, the elimination of Y or Z is required as a prerequisite to derive a respec-
tive instance of order(X,Y,Z) via the rules in line 10 and 11. Given this, the rule
in line 12 applies once Y or Z is eliminated for every pair {Y, Z} such that the graph
at hand includes both {X, Y} and {X, Z}, whereas the edge {Y, Z} is excluded. That is,
the well-founded derivation of an instance of order(X) expresses that the vertex sub-
stituted for X becomes connected to a clique in the successive elimination of vertices

3 The rule in line 9, provided for symmetry, could actually be skipped, given that Y and Z are
lexicographically ordered in derivable instances of scope(X,Y,Z) as well as edge(Y,Z).



fulfilling this condition. An incomplete elimination of vertices otherwise indicates that
a graph is not chordal, in which case it is rejected in view of the integrity constraint in
line 13. The non-tight encoding in Figure 10 induces circular positive dependencies on
the ground level, which can again be eliminated by means of step counting in a tight
variant, where dn/2e steps are sufficient for any chordal graph with n vertices.

4 Evaluation

To test our encodings, we ran CLASP (3.1.0), both as an ASP and SAT solver, a pro-
totype version of CLASP (3.2.0-R45682) implementing acyclicity checking [24, 3], the
SAT solver LINGELING (ayv-86bf266-140429), the DL solver Z3 (4.3.2), and the LP
solver CPLEX (12.6.0.0), all single-threaded and with default settings, on a cluster of
Linux machines equipped with 2.6GHz AMD Opteron 2435 processors. (The imposed
memory limit of 8GB has not been exceeded in any run.) We used GRINGO (3.0.5)
to ground first-order ASP formulations and the translators LP2ACYC (1.13), LP2SAT
(1.24), and ACYC2SOLVER (1.7), as utilized by translation-based systems that partic-
ipated in the 2014 ASP competition [9], for converting ground instances to ASP with
acyclicity checking [21], SAT [30], DL [31], or LP [33], respectively; grounding and
translations were performed offline and are not included in the runtimes reported be-
low. Note that the translations are based on completion [13] and straightforward for
tight ASP formulations, while well-foundedness needs to be addressed in the non-tight
case. The translations then introduce level mappings [29] to express inductive deriva-
tions, either by adding an encoding part of subquadratic size in SAT or in terms of
linear representations relying on acyclicity checking on top of ASP or SAT, difference
constraints in DL, or numerical variables in LP. That is, the automatic translations of
non-tight ASP formulations are in most cases indeed more compact than their unfolded
tight counterparts given in Section 3. Of course, it would be possible to formulate direct
encodings in ASP with acyclicity checking, SAT, DL, or LP, yet we aim at investigating
the general impact of encoding approaches (rather than fine-tuning) on the performance
of solvers for ASP and related formalisms. Our experiments took synthetic benchmarks,
reachability-oriented Hamiltonian cycle problems, and application-driven optimization
tasks into account,4 which are discussed in the following subsections.

4.1 Synthetic Benchmarks

In the first series of experiments, we perturbed the search space for graphs with desired
properties by adding randomly generated XOR-constraints over edges, systematically
varying both the length and the number of such constraints. The tables presented in
the following provide average runtimes in seconds for 25 instances with n=25 vertices
each. Runs were limited to 1000 seconds, and timeouts are counted as 1000 seconds
within average runtimes. An entry “—” marks that no run completed in time.

Table 1 gives average runtimes and numbers of solved instances in parentheses for
deciding whether there is a solution subject to XOR-constraints, comparing the perfor-
mance of the considered solvers on six different encodings of directed acyclic graphs,

4 http://research.ics.aalto.fi/software/asp/bench/



directed leaf encoding root encoding transitivity encoding
acyclic graphs non-tight tight non-tight tight non-tight tight
CLASP 0.31 (25) 80.26 (23) 0.34 (25) 0.39 (25) 0.33 (25) 0.28 (25)
CLASP/ACYC 0.25 (25) 40.21 (24) 0.23 (25) 40.24 (24) 1.51 (25) 0.22 (25)
CLASP/SAT 1.03 (25) 0.86 (25) 2.38 (25) 1.37 (25) 6.36 (25) 0.75 (25)
LINGELING 2.62 (25) 1.78 (25) 1.82 (25) 1.70 (25) 20.36 (25) 0.50 (25)
Z3 1.12 (25) — (0) 1.48 (25) — (0) 160.94 (25) 1.76 (25)
CPLEX 681.47 (11) 261.90 (20) 655.29 (13) 333.47 (20) 165.37 (22) 13.73 (25)

Table 1: Average runtimes for directed acyclic graphs

where the shortest average runtime of each solver is highlighted in boldface. The non-
tight and tight variants of the leaf encoding consist of the rules shown in Figure 2
along with the inductive or unfolded bottom-up acyclicity test, respectively, encoded in
Figure 3 and 4. Their counterparts denoted by root encoding swap the orientation of
acyclicity tests by traversing vertices top-down from roots instead of bottom-up from
leaves. Moreover, the non-tight and the tight transitivity encoding utilize the rules in
Figure 5 or 6, respectively, instead of bottom-up or top-down traversals. The runtimes of
CLASP on ASP formulations in the first row exhibit no significant differences between
the three non-tight encoding variants, and the performance on the tight root and the
tight transitivity encoding is also comparable, whereas the average runtime on the tight
leaf encoding is two orders of magnitude longer. Given that bottom-up and top-down
acyclicity tests (without further side constraints) are symmetric, we attribute this per-
formance gap to search heuristics of CLASP, also taking into account that the additional
atoms for step counting in the tight case may mislead the search. Similar effects can be
observed in the second row showing the runtimes of CLASP with acyclicity checking.
The performance of this prototype version suffers likewise on the tight leaf and root
encoding variants (one timeout each), where acyclicity checking is not utilized at all.
On the corresponding non-tight instances, acyclicity checking turns out to be compet-
itive to the standard mechanism of CLASP for guaranteeing well-founded derivations,
while it produces some unnecessary overhead on the non-tight transitivity encoding.
The latter is not incurred by the tight transitivity encoding, which again leads to robust
performance. The runtimes of CLASP as SAT solver and LINGELING in the third and
fourth row indicate the competitiveness of translations to SAT, where the tight ASP for-
mulations have some advantage over the level mappings introduced when translating
non-tight instances. In fact, investigating search parameters like conflicts and decisions
yields a payoff between smaller size and more exposed problem structure, and the latter
turns out to be beneficial. Moreover, the tight transitivity encoding is particularly ad-
vantageous here, but its non-tight counterpart that is more intricate to translate without
being more compact is the worst option. A similar effect can be observed when com-
paring the average runtimes of Z3 and CPLEX on DL or LP translations, respectively,
on the tight and the non-tight transitivity encoding. The performances of both systems,
however, diverge on the encodings of bottom-up or top-down acyclicity tests, where
Z3 copes much better with non-tight ASP formulations while CPLEX behaves the other
way round. A likely explanation is that DL reasoning merely checks the existence of



directed leaf encoding root encoding leaf encoding root encoding
forests trees non-tight tight non-tight tight non-tight tight non-tight tight
pairwise 5.93 8.18 7.44 8.95 2.29 3.73 2.78 3.02
cardinality 3.69 6.41 5.30 5.11 2.14 4.09 2.77 5.38
bidirectional 4.68 6.44 6.14 6.94 5.46 6.47 2.87 3.99
linear 7.29 8.47 8.50 7.08 8.42 11.06 8.93 46.92
tournament 12.36 8.56 8.41 8.61 11.56 5.09 11.68 7.81

counting 10.16 28.25 15.86 7.82
counting/ub 12.81 16.43 12.18 38.47
connectedness 2.30 5.85 2.72 46.07

Table 2: Average runtimes for directed forests and trees

numerical values such that all difference constraints can be satisfied, whereas numerical
variables are indeed assigned in LP.

Average runtimes of CLASP on ASP formulations of directed forests are shown on
the left-hand side of Table 2. We do not apply translators here to confine the amount of
data and in view of their nonuniform treatment of cardinality constraints used in some
encoding variants,5 whereas CLASP handles cardinality constraints in ground instances
of ASP rules natively. Moreover, we concentrate on bottom-up and top-down acyclicity
tests, as the experiments in Section 4.2 demonstrate that encodings based on transitive
closure, in particular, the non-tight ASP formulation, do not scale up well when the
graph size increases. Given that CLASP solved all 25 instances in time with each encod-
ing variant, we omit this number but only highlight the shortest average runtime per row
in boldface. The first five columns provide runtime results on the leaf and root encoding
variants of directed acyclic graphs augmented with either set of rules in Figure 7(a)–(e)
for limiting predecessors to at most one per vertex. Although switching to the more
restrictive notion of directed forests reduces the admissible outcomes and makes the
search for a solution harder, CLASP performs well on all encoding variants. The aver-
age runtimes, however, indicate some advantage of the most compact formulation in
Figure 7(b), relying on cardinality constraints for limiting incoming edges to at most
one per vertex, while the overhead of normalizations is not dramatically large either.
Similarly, non-tight and tight encoding variants are at eye level, and the latter some-
times outweigh the increased size of ground instances by search improvements in view
of the unfolded structure, for instance, on the root encodings augmented with cardinal-
ity constraints. In general, the bottom-up and top-down acyclicity tests described by the
leaf and root encoding variants have some impact on search performance, but there is
no clear winner among them. Given that the effect of interactions or interferences be-
tween encoding parts and search heuristics is difficult to predict, systematic empirical
investigation seems indispensable for fine-tuning encodings to specific applications.

The right-hand side of Table 2 provides average runtimes for the encoding ap-
proaches in Figure 8(a)–(c) to distinguish directed trees among forests. Since the cardi-
nality constraint in Figure 7(b) turned out to be effective for ruling out directed acyclic
graphs that are no forests, unless noted otherwise, we use it as basis for the encoding

5 The LP2NORMAL2 tool [4] allows for normalizing cardinality constraints before translations.



variants investigated in the following. Although the approach of counting over all edge
candidates, encoded in Figure 8(a), could be expected to yield poor performance, the
average runtime of CLASP is surprisingly short on the tight root encoding. In that con-
text, the addition of a second cardinality constraint “ub” to redundantly assert |V |−1 as
upper bound on the number of edges of a directed tree 〈V,E〉 deteriorates performance,
so that the tight root encoding takes the last place among all edge counting variants
with additional upper bound. Checking the uniqueness of a root by means of the same
encoding approaches as presented for forests in Figure 7 leads to more robust perfor-
mance, which can be observed in the first three rows. While mutual exclusion via the
enumeration of pairs or a cardinality constraint, respectively, rely on the rule in line 15
of Figure 8(b) to derive edge targets, we used its dedicated variants in (1), (2), and (3)
for the bidirectional, linear, and tournament traversal approaches, applied to limit both
incoming edges and roots to at most one. Interestingly, pairwise mutual exclusion turns
out to be successful on tight instances, yet closely followed by uniqueness checking via
cardinality constraints or bidirectional traversal, for which non-tight ASP formulations
have some advantage over tight ones. The linear and tournament traversal approaches,
however, yield some difficulties on tight or non-tight encoding variants, respectively.6

Moreover, the alternative of checking the connectedness of a directed forest, as encoded
in Figure 8(c), exhibits a robust performance of CLASP on non-tight ASP formulations.
In summary, it appears promising to encode the properties of directed trees in terms of
a limitation to (at most) one root and/or connectedness, where manifold combinations
with underlying encoding parts aiming at forests can in principle be conceived.

Turning from the directed case to undirected graphs, the left-hand side of Table 3
shows average runtimes of CLASP (and numbers of solved instances in parentheses)
on several variants of the encoding in Figure 9. Since there is no apparent way to per-
form an acyclicity test via the transitive closure of edge/2 and top-down from roots
or inner vertices, respectively, encoding variants are, for one, obtained by replacing
the cardinality constraint in line 8 of Figure 9 by normalizations analogous to those in
Figure 7(c)–(e). For another, we focus on conditional edge generation via choice rules
requiring the absence of cycles through a vertex as a prerequisite for the addition of
edges including the vertex. The comparably long runtimes point at increased difficulty
of search for a forest in which edges lack orientation, and non-tight as well as tight en-
coding variants lead to timeouts on 17 or more of the 25 instances. While the tournament
traversal approach to check whether (at most) one edge including a vertex remains as
yet unchecked to not belong to any cycle is competitive on non-tight instances, the use
of cardinality constraints yields shortest average runtimes on tight ones, even though
six solved instances in the tight case of unconditional edge generation are not optimal.
Since conditional edge generation, where the prerequisites of choice rules formulate
the acyclicity requirement in a redundant fashion, does not exhibit a clear performance
trend, we do not further include respective runtime results for other graph structures.

The right-hand side of Table 3 provides average runtimes on encodings of undi-
rected trees, combining the previously considered acyclicity test approaches with edge
counting and/or connectedness checking, as encoded in Figure 8(a) and 8(c). Apart from

6 The average runtimes of 46.92 and 46.07 seconds include one timeout each, while CLASP

solved all 25 instances in time otherwise.



undirected unconditional conditional edge counting connectedness
forests trees non-tight tight non-tight tight non-tight tight non-tight tight
cardinality 800.00(5) 760.01(6) 683.64(8) 759.15(7) 823.12(5) —(0) 815.50(5) 920.96(2)
bidirectional 760.48(6) 764.03(7) 800.01(5) 810.95(5) 761.21(6) 807.92(6) 829.11(5) 807.74(6)
linear 762.12(6) 780.55(6) 800.00(5) 796.08(6) 766.78(6) 820.36(5) 804.10(5) 815.98(6)
tournament 760.00(6) 847.32(5) 699.04(8) 920.02(2) 763.37(6) 902.37(3) 720.01(7) 879.30(4)

cardinality/ub 802.87(5) 860.91(6) 800.02(5) 920.14(2)
bidirectional/ub 770.85(6) 840.26(6) 788.37(6) 789.70(7)
linear/ub 763.17(6) 813.14(5) 760.02(6) 793.65(6)
tournament/ub 802.80(5) 846.59(5) 761.63(6) 790.82(6)

Table 3: Average runtimes for undirected forests and trees

the bidirectional and linear traversal approaches to indicate leaves along with connect-
edness checking, non-tight encoding variants turn out to be advantageous. Somewhat
surprisingly, requiring the existence of |V | − 1 edges of a tree 〈V,E〉 is competitive
to checking whether a forest is connected, even though the latter yields the best per-
formance overall in combination with tournament traversal for handling leaves. The
addition of a redundant cardinality constraint “ub” asserting |V | − 1 as an upper bound
does not consistently improve the performance of CLASP on edge counting variants. In
a similar fashion, hybrid variants incorporating cardinality constraints asserting the ex-
istence of |V |−1 edges as well as an encoding part for checking connectedness in some
cases yield performance gains in the lower right quarter of Table 3. However, crossing
the non-tight connectedness encoding based on tournament traversal, which performs
best overall, with an orthogonal condition turns out to be counterproductive.

Furthermore, we ran CLASP on the chordality test encoded in Figure 10 as well a
tight variant thereof. Given that chordal graphs admit cycles, combinations with encod-
ing parts building on acyclicity, in particular, choice rules relying on the absence of
cycles through a vertex, are not applicable in the context of chordal graphs. However,
since any undirected forest is chordal, the number of admissible outcomes subject to
XOR-constraints increases, which facilitates the search for a solution. In fact, on the
non-tight encoding of chordality, CLASP completed 18 runs with an average runtime of
373.97 seconds, and 14 tight instances were solved in 461.43 seconds on average.

4.2 Reachability Benchmarks

As second benchmark problem, we consider finding Hamiltonian cycles for directed as
well as undirected planar graphs with 100 or 150 vertices. For either size, we generated
25 instances using the PLANAR tool,7 which produces a symmetric edge representation
including both 〈u, v〉 and 〈v, u〉 for neighboring vertices u and v. Directed Hamiltonian
cycles can be expressed in terms of bottom-up or top-down traversals as in Figure 3
and 4 by providing order(u) as a fact for an arbitrary starting vertex u along with
requiring the selection of exactly one predecessor and successor per vertex. In the undi-
rected case, pairs 〈u, v〉 and 〈v, u〉 are combined into undirected edges {u, v}, thus

7 http://research.ics.aalto.fi/software/asp/misc/



directed leaf encoding root encoding transitivity encoding
Hamiltonian cycles non-tight tight non-tight tight non-tight tight
CLASP 0.69 (25) 123.53 (25) 0.76 (25) 131.65 (25) 922.74 (4) 39.08 (25)
CLASP/ACYC 0.58 (25) 105.39 (25) 0.26 (25) 106.89 (25) 374.35 (22) 19.62 (25)
CLASP/SAT 311.58 (25) 17.00 (25) 333.68 (24) 16.17 (25) 219.90 (25) 2.68 (25)
LINGELING 896.03 (5) 537.72 (18) 802.65 (10) 436.57 (22) — (0) 8.90 (25)
Z3 74.64 (25) — (0) 66.63 (25) — (0) 704.92 (11) 74.70 (25)
CPLEX 762.50 (6) — (0) 841.34 (4) — (0) — (0) 978.70 (3)
CLASP 16.06 (25) 987.73 (1) 47.95 (24) — (0) — (0) 879.85 (5)
CLASP/ACYC 10.67 (25) 965.05 (2) 2.81 (25) — (0) 974.28 (2) 721.07 (8)
CLASP/SAT — (0) 905.88 (3) — (0) 966.00 (3) — (0) 505.76 (18)
LINGELING — (0) — (0) — (0) — (0) — (0) 756.98 (8)
Z3 113.74 (24) — (0) 72.79 (25) — (0) — (0) 901.94 (6)
CPLEX — (0) — (0) — (0) — (0) — (0) — (0)

Table 4: Average runtimes for directed Hamiltonian cycles through planar graphs

dividing the number of edge candidates that can be included in a Hamiltonian cycle by
two, while asserting the condition that two neighbors are selected per vertex by means
of the choice rule in Figure 2 or variants thereof. Although there are fewer undirected
than directed edge candidates, our encoding in the latter case disambiguates the pre-
decessor and successor selection for the starting vertex u, so that symmetric directed
graphs as well as their undirected counterparts admit the same number of Hamiltonian
cycles. This allows us to below assess the impact of switching between a directed and
an undirected graph representation. As before, runs were limited to 1000 seconds for
finding one directed or undirected Hamiltonian cycle, where all instances are satisfiable.

Table 4 provides average runtimes on directed Hamiltonian cycle encodings for in-
stances with 100 vertices in the upper part and those with 150 vertices in the lower
part, investigating the same encoding approaches and solvers as in Table 1. As also ob-
served on the synthetic benchmarks above, the non-tight encoding based on transitive
closure is the worst option, leading to only timeouts on instances with 150 vertices apart
from two runs completed by CLASP with acyclicity checking. Its tight variant, however,
dominates corresponding tight formulations of bottom-up or top-down traversals de-
scribed by the leaf and root encoding variants, which yield the same (quadratic) size
complexity. The linear non-tight formulations of the latter, however, still exhibit perfor-
mance improvements of CLASP (as ASP solver, using either standard well-foundedness
or acyclicity checking), Z3, and CPLEX, whose input languages support compact repre-
sentations of well-founded derivations. Differences between the leaf and root encoding
variants appear to be specific to solvers (in their default settings); e.g., the two versions
of CLASP as ASP solver behave complementary, and the translation-based approach
relying on acyclicity checking further turns out to be highly competitive. The general
advantages due to linear non-tight encodings become apparent when comparing the
runtimes of CLASP versions and Z3 on instances with 150 vertices in the lower part,
where solvers have difficulties on less compact ASP formulations or SAT translations,
respectively.



undirected unconditional conditional
Hamiltonian cycles non-tight tight non-tight tight
cardinality 0.20 (25) 4.27 (25) 0.19 (25) 5.87 (25)
bidirectional 0.75 (25) — (0) 0.64 (25) — (0)
linear 0.67 (25) — (0) 0.56 (25) — (0)
tournament 0.36 (25) 17.45 (25) 0.34 (25) 16.86 (25)
cardinality 0.96 (25) 40.02 (25) 0.41 (25) 76.09 (25)
bidirectional 5.15 (25) — (0) 4.56 (25) — (0)
linear 2.99 (25) — (0) 2.78 (25) — (0)
tournament 2.52 (25) 237.19 (25) 1.52 (25) 219.35 (25)

Table 5: Average runtimes for undirected Hamiltonian cycles through planar graphs

Turning to undirected Hamiltonian cycles, Table 5 shows average runtimes of
CLASP using the encoding variants also investigated for undirected forests on the left-
hand side of Table 3, again for instances with 100 vertices in the upper part and those
with 150 vertices in the lower part. As in the directed case, linear non-tight ASP for-
mulations yield more robust performance than their unfolded tight counterparts. Condi-
tional edge generation, progressing successively from leaves or a given starting vertex,
respectively, appears to be helpful on non-tight encoding variants, whereas there is no
clear trend on tight ones. Regarding different approaches to indicate leaves, the use of
cardinality constraints turns out to be advantageous, especially on tight instances. In-
terestingly, the normalization based on tournament traversal of potential neighbors per-
forms significantly better than the bidirectional and linear traversal approaches, whose
tight variants lead to timeouts only. Most importantly, however, the undirected graph
representation abolishes redundancy by disregarding edge orientation, given that di-
rected edges of the planar graphs at hand are symmetric. This yields substantial per-
formance improvements in comparison to the average runtimes of CLASP in Table 4
and highlights the utility of a canonical edge representation for avoiding (rather than
breaking) symmetry.

4.3 Application Benchmarks

Our third series of experiments deals with the application problem of Bayesian net-
work structure learning [15, 28, 16], which can be expressed in terms of optimization
relative to ASP, SAT, or LP formulations. Given a set V of vertices, directed edge can-
didates C, and scores s(v, P ) for vertices v ∈ V and parent sets P ⊆ {u | 〈u, v〉 ∈ C},
the task consists of finding a directed acyclic graph 〈V,E〉 such that E ⊆ C and∑

v∈V,P={u|〈u,v〉∈E} s(v, P ) is maximal. Notably, the linear non-tight ASP formula-
tions presented here are more compact than SAT or LP encodings suggested in the
literature, which yield from quadratic to sometimes even exponential space complexity.

Among the considered solvers, the two versions of CLASP as ASP solver and CPLEX
support optimization, and Table 6 shows their runtimes on eight Bayesian network
structure learning instances along with compact non-tight and unfolded tight formula-
tions of bottom-up or top-down acyclicity tests described by the leaf and root encoding



Bayesian net asia-1 asia-10 hail insure mildew-1 mildew-10 water-1 water-10
CLASP 0.01 0.05 885.92 6.95 0.29 0.95 10.26 126.31 tight

non-
leafencoding

CLASP/ACYC 0.01 0.09 871.90 20.21 0.15 0.94 8.31 88.36
CPLEX 1.04 3.42 1.01 81.15 10.55 0.39 569.07 —
CLASP 0.02 0.11 2871.79 42.96 1.77 3.09 31.83 290.37 tightCLASP/ACYC 0.02 0.08 1484.74 23.05 0.76 1.63 15.48 143.90
CPLEX 10.28 23.49 — — — 3098.88 — —
CLASP 0.04 0.30 1737.08 19.58 0.27 0.96 9.19 167.64 tight

non-
rootencoding

CLASP/ACYC 0.01 0.05 966.34 7.84 0.18 0.76 9.93 70.16
CPLEX 0.56 3.54 1.45 55.22 35.60 0.35 55.36 2922.53
CLASP 0.02 0.13 — 43.90 1.28 4.04 71.23 748.33 tightCLASP/ACYC 0.03 0.09 — 34.86 1.10 3.78 51.25 568.77
CPLEX 19.61 77.28 — — — 1511.86 — —

Table 6: Runtimes for Bayesian network structure learning

variants. In view of the increased hardness of performing optimization, we extended the
time limit to 3600 seconds per run. The shortest runtime of each solver per instance in
a column is highlighted in boldface. For all solvers, we observe significant advantages
on non-tight encoding variants. Unlike with the synthetic benchmarks investigated in
Section 4.1, CPLEX here benefits from the compact representation of level mappings in
terms of numerical variables introduced by the translator ACYC2SOLVER. While CPLEX
tends to perform better on the root than on the leaf encoding variants, the opposite
applies to the standard version of CLASP, and the prototype with acyclicity checking
shows no clear tendency on non-tight instances. These differences are application- and
solver-specific in view of the symmetry of both approaches to test acyclicity. Although
ASP formulations are automatically translated to LP and the two versions of the na-
tive ASP solver CLASP perform better in most cases, CPLEX has a clear advantage on
the “hail” instance. This points out the potential utility of translational approaches and
corresponding solver technology to solve ASP formulations.

5 Conclusions

Graphs satisfying acyclicity properties are frequent in knowledge representation tasks.
As these properties do not appear as basic primitives in common constraint-based rep-
resentation formalisms, formulating them compactly and efficiently is a recurring chal-
lenge. We investigated logic-based characterizations of acyclicity conditions and devel-
oped a systematic collection of encodings in the language of answer set programming.
Corresponding encodings can also be expressed in related formalisms like SAT, DL,
and LP, for which off-the-shelf tools provide automatic translations from ASP. Our ex-
periments showed that linear non-tight formulations of acyclicity properties tend to be
advantageous in formalisms supporting compact representations, as obtained through
well-founded derivations in ASP, acyclicity checking on top of SAT (or ASP), differ-
ence constraints in DL, or numerical variables in LP. In the case of plain SAT, however,
tight encodings based on transitive closure turned out to be the first choice. While such



an approach performs well for graphs of moderate size, our experiments also indicated
that it does not scale anymore when the number of vertices goes into the hundreds. A
second drawback is that transitivity relies on edge orientations and does not carry over
to the undirected case in a natural way.

Interestingly, quadratic encodings based on the full transitive closure of edges ap-
pear frequently in the literature, e.g., for the purpose of Bayesian network structure
learning [15]. In particular, several ASP-based approaches [7, 10, 11, 6] utilize respec-
tive non-tight formulations similar to the encoding in Figure 5. As this option was by
far the worst in our experiments, future applications should rather take advantage of
linear bottom-up or top-down acyclicity tests, as given in Figure 3, or switch to a tight
formulation when transitive closure is not a space bottleneck. Furthermore, exponential
encodings of acyclicity or chordality, respectively, have been proposed in the context of
LP and SAT [28, 16, 14], whereas ours are proportional to graph size. By using compact
non-tight formulations like those in Figure 3 and 10 instead, we achieved significant
speed-ups in applications of our own that rely on acyclicity [16], chordality [14], or
(taxonomy) trees [27], both when using ASP or translational approaches to perform op-
timization relative to SAT or LP, respectively. Hence, we believe that other applications
dealing with acyclic or tree structures may benefit as well by incorporating encoding
approaches presented here.

The encoding variants for mutual exclusion testing in Figure 7 resemble a vari-
ety of approaches from SAT to formulate cardinality constraints [39, 32, 34, 20]. Such
conditions are particularly relevant for expressing acyclicity in the undirected case,
which turned out to be an effective way to cancel symmetric edge orientations (cf.
Section 4.2). In contrast, the SAT-based method for solving Hamiltonian cycle prob-
lems proposed in [40] uses a symmetric representation of undirected edges “for sim-
ple modeling”. Similarly, edge orientations are a prerequisite for utilizing the recent
SAT modulo graphs framework [24] to perform acyclicity tests. Such native support in
principle abolishes the need of encoding acyclicity conditions explicitly, but it has also
turned out to be highly competitive when applied to translations [21]. In view of reduced
combinatorics, the experiments in Section 4.2 still exhibited more robust performance
when disregarding edge orientation and using dedicated encodings for the undirected
case. Such observations suggest that a native handling of undirected graphs based on an
asymmetric edge representation may improve the search performance even further.

In summary, there are various options for formulating and combining encoding parts
addressing acyclicity and tree properties in constraint-based representation formalisms.
Experiments on combinatorial as well as application benchmarks indicate the relevance
of representation approaches and constraint formulations, with particular emphasis on
well-foundedness and cardinality constraints. While compact formulations are bene-
ficial in most cases, the resulting computational performance is also affected by the
specific formalism and solver under consideration. For instance, making the full tran-
sitive closure of edges explicit may be worthwhile in plain SAT, especially for graphs
of moderate size, whereas compactly expressed fixpoint constructions relying on well-
foundedness scale better otherwise. In view of such phenomena, diverse declarative
means to represent acyclic or tree structures along with systematic empirical investiga-
tion are essential elements in the design of robust constraint-based solving methods.
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30. Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs to
propositional clauses. In Balduccini, M., Son, T., eds.: Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning: Essays Dedicated to Michael Gelfond on
the Occasion of His 65th Birthday. Volume 6565 of Lecture Notes in Computer Science.
Springer (2011) 111–130
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A Correctness Proofs

In what follows, we show the correctness of ground instances of the main first-order en-
codings given in Section 3; other variants and combinations can be proven analogously.
A first-order encoding, possibly including arithmetic expressions, is a shorthand for all
ground instances of rules obtainable by substituting ground terms for variables and eval-
uating arithmetic expressions in the standard way. For details on ground instantiation,
we refer the interested reader to [8, 25, 41].

To begin with, we recall the formal syntax and semantics of ground logic programs
with choice rules as well as cardinality and integrity constraints [38]. A rule r is an
expression of the form

h← a1, . . . , am,not am+1, . . . ,not an

where ai, for 1 ≤ i ≤ n, is an atom or a cardinality constraint of the form l {a1, . . . , aj ,
not aj+1, . . . ,not ak}u in which l, u are integers and a1, . . . , ak are atoms; either or
both of l and u can be omitted if l = 0 or u = k, respectively. The head h of r is
either an atom, the special symbol ⊥, or a choice {a} in which a is an atom; note that a
choice is a shorthand for the cardinality constraint 0 {a} 1. We denote the set of atoms
occurring in h by H(h), i.e., H(h) = {h} if h is an atom, H(h) = {a} if h = {a},
and H(h) = ∅ if h = ⊥. A logic program R is a finite set of rules. The positive
dependency graph of R is the directed graph consisting of atoms in R as vertices and
edges 〈a, a′〉 for rules r ∈ R such that a ∈ H(h) and, for 1 ≤ i ≤ m, either ai = a′

or ai = l {a1, . . . , aj ,not aj+1, . . . ,not ak}u and a′ ∈ {a1, . . . , aj}; R is tight [19]
if its positive dependency graph is acyclic, and non-tight otherwise. Given a set X of
atoms, the satisfaction relation |= is inductively defined as follows:

– X |= a, if a ∈ X;
– X |= l {a1, . . . , aj ,not aj+1, . . . ,not ak}u,

if l ≤ |{a1, . . . , aj} ∩X|+ |{aj+1, . . . , ak} \X| ≤ u;
– X |= h← a1, . . . , am,not am+1, . . . ,not an,

if X |= a1, . . . , X |= am and X 6|= am+1, . . . , X 6|= an imply X |= h;
– X |= R, if X |= r for all r ∈ R.

If X |= R, then X is a model of R. The reduct RX of R relative to X is inductively
defined as follows:

– aX = a, for an atom a;
– [l {a1, . . . , aj ,not aj+1, . . . ,not ak}u]X = l′{a1, . . . , aj},

for l′ = l − |{aj+1, . . . , ak} \X|;
– RX = {a← aX1 , . . . , aXm | [h← a1, . . . , am,not am+1, . . . ,not an] ∈ R,

a ∈ H(h) ∩X,X 6|= am+1, . . . , X 6|= an}.

Note that RX has a unique least model, denoted by LM(RX). Then, X is a stable
model of R if X |= R and LM(RX) = X . Deciding whether R has some stable model
is NP-complete, given that LM(RX) can be computed in linear time [38].

We below use the following abbreviations for ground instances of encoding parts in
Section 3 obtained with n=n for some integer n:



Gn: Ground instances of the rules in Figure 2.
An: Ground instances of the rules in Figure 3.
Fn
a : Ground instances of the rules in Figure 7(a).

Fn
b : Ground instances of the rules in Figure 7(b).

Fn
c : Ground instances of the rules in Figure 7(c).

Fn
d : Ground instances of the rules in Figure 7(d).

Fn
e : Ground instances of the rules in Figure 7(e).

Tn
a : Ground instances of the rules in Figure 8(a).

Tn
b : Ground instances of the rules in Figure 8(b).

Tn
c : Ground instances of the rules in Figure 8(c).

Gn
u: Ground instances of the rules in Figure 2 with line 3 replaced by

pair(X,Y) :- node(X;Y), X < Y.

Un: Ground instances of the rules in Figure 9.
Cn: Ground instances of the rules in Figure 10.

We proceed by showing the correctness of a selection of encodings of directed
graphs that are acyclic, forests, or trees, respectively.

Proposition 1. Given an integer n, let V = {1, . . . , n} and R = Gn ∪ An. Then, we
have that:

1. If 〈V,E〉 is a directed acyclic graph, then there is exactly one stable model X of R
such that {〈u, v〉 | edge(u, v) ∈ X} = E.

2. If X is a stable model of R, then 〈V, {〈u, v〉 | edge(u, v) ∈ X}〉 is a directed
acyclic graph.

Proof. In view of line 2 and 3 in Figure 2, any stable model X of R must be such
that {v | node(v) ∈ X} = V and {〈u, v〉 | pair(u, v) ∈ X} = (V × V ) \
{〈w,w〉 | w ∈ V }. Along with line 7 and 9 in Figure 3, it must also hold that {v |
order(v) ∈ X} = V and {〈u, v〉 | order(u, v) ∈ X} = (V × V ) \ {〈w,w〉 | w ∈ V },
where establishing that {order(v) | v ∈ V } ∪ {order(u, v) | 〈u, v〉 ∈ (V × V ) \
{〈w,w〉 | w ∈ V }} ⊆ LM(RX) is of interest. We further consider the items of the
statement:

1. If 〈V,E〉 is a directed acyclic graph, let X = {node(v), order(v) | v ∈ V } ∪
{pair(u, v), order(u, v) | 〈u, v〉 ∈ (V × V ) \ {〈w,w〉 | w ∈ V }} ∪ {edge(u, v) |
〈u, v〉 ∈ E}, where the choice rule in line 4 of Figure 2 grants that {〈u, v〉 |
edge(u, v) ∈ X} = {〈u, v〉 | edge(u, v) ∈ LM(RX)} = E. Given the
above considerations, there cannot be any stable model X ′ 6= X of R such that
{〈u, v〉 | edge(u, v) ∈ X ′} = E. Moreover, since 〈V,E〉 is acyclic, for any non-
empty U ⊆ V , there is some vertex u ∈ U such that {v | 〈u, v〉 ∈ E} ⊆ V \ U ,
i.e., {edge(u, v) ∈ X | v ∈ U} = ∅. In view of line 5 to 7 in Figure 3, it follows by
induction that {order(v) | v ∈ V } ∪ {order(u, v) | 〈u, v〉 ∈ (V × V ) \ {〈w,w〉 |
w ∈ V }} ⊆ LM(RX), so that X = LM(RX) is a stable model of R.

2. If X is a stable model of R, then X = LM(RX) implies that, for any non-empty
U ⊆ V , there is some vertex u ∈ U such that {edge(u, v) ∈ X | v ∈ U} = ∅, so
that 〈V, {〈u, v〉 | edge(u, v) ∈ X}〉 is a directed acyclic graph. ut



Proposition 2. Given an integer n, let V = {1, . . . , n} and Rf = Gn ∪ An ∪ Fn
f for

f ∈ {a, b, c, d, e}. Then, we have that:

1. If 〈V,E〉 is a directed forest, then there is exactly one stable model X of Rf such
that {〈u, v〉 | edge(u, v) ∈ X} = E.

2. If X is a stable model of Rf , then 〈V, {〈u, v〉 | edge(u, v) ∈ X}〉 is a directed
forest.

Proof. Since no head atom (if any) of Fn
f , for f ∈ {a, b, c, d, e}, occurs in Gn ∪ An,

any stable model X of Rf has the form X = Y ∪ Z for some stable model Y
of Gn ∪ An such that {node(v), order(v) | v ∈ V } ∪ {pair(u, v), order(u, v) |
〈u, v〉 ∈ (V × V ) \ {〈w,w〉 | w ∈ V }} ⊆ Y ⊆ {node(v), order(v) | v ∈ V } ∪
{pair(u, v), order(u, v), edge(u, v) | 〈u, v〉 ∈ (V × V ) \ {〈w,w〉 | w ∈ V }} and
Z ⊆

⋃
[h←a1,...,am,not am+1,...,not an]∈Fn

f
H(h). By Proposition 1, we have that Y

uniquely represents the directed acyclic graph G = 〈V, {〈u, v〉 | edge(u, v) ∈ Y }〉. Be-
low we consider particular cases for f ∈ {a, b, c, d, e} and show that G is a directed
forest iff X is the single stable model of Rf such that X \ Z = Y :

a. In view of line 10 in Figure 7(a), X = Y is a stable model of Ra iff, for any v ∈ V ,
|{〈u, v〉 | edge(u, v) ∈ X}| ≤ 1 iff G is a directed forest.

b. In view of line 10 in Figure 7(b), X = Y is a stable model of Rb iff, for any v ∈ V ,
|{〈u, v〉 | edge(u, v) ∈ X}| ≤ 1 iff G is a directed forest.

c. In view of line 14 in Figure 7(c), it must hold that {v | unique(v) ∈ Z} = V .
Along with line 13, for any v ∈ V , there must be some u ∈ V such that
{unique(v, u, 1), unique(v, u,−1)} ⊆ Z, where u 6= v if n > 1. On the other
hand, the rules in line 10 to 12 yield that {u | unique(v, u, 1) ∈ LM(RX

c )} =
{u ∈ V | {w | edge(w, v) ∈ Y } ⊆ {u, . . . , n}} and {u | unique(v, u,−1) ∈
LM(RX

c )} = {u ∈ V | {w | edge(w, v) ∈ Y } ⊆ {1, . . . , u}}, so that
{u | unique(v, u, 1) ∈ LM(RX

c ), unique(v, u,−1) ∈ LM(RX
c )} = {u ∈ V |

{w | edge(w, v) ∈ Y } ⊆ {u}}. It must thus hold that {unique(v) | v ∈ V } ⊆
Z = LM(RX

c ) ∩
⋃

[h←a1,...,am,not am+1,...,not an]∈Fn
c
H(h) = {unique(v) |

v ∈ V, |{u | edge(u, v) ∈ Y }| ≤ 1} ∪ {unique(v, u, 1) | v, u ∈ V,
{w | edge(w, v) ∈ Y } ⊆ {u, . . . , n}} ∪ {unique(v, u,−1) | v, u ∈ V,
{w | edge(w, v) ∈ Y } ⊆ {1, . . . , u}}. That is, X = Y ∪ Z is a stable model
of Rc iff, for any v ∈ V , |{〈u, v〉 | edge(u, v) ∈ X}| ≤ 1 iff G is a directed forest.

d. In view of line 14 in Figure 7(d), it must hold that {v | unique(v, 1, 0) ∈ Z} = V .
For any v ∈ V , the rules in line 10 to 13 yield that {u | unique(v, u, 1) ∈
LM(RX

d )} = {u ∈ V | |{w ≥ u | edge(w, v) ∈ Y }| = 0} and {u |
unique(v, u, 0) ∈ LM(RX

d )} = {u ∈ V | |{w ≥ u | edge(w, v) ∈ Y }| ≤ 1}.
It must thus hold that {unique(v, 1, 0) | v ∈ V } ⊆ Z = LM(RX

d ) ∩⋃
[h←a1,...,am,not am+1,...,not an]∈Fn

d
H(h) = {unique(v, u, 1) | v, u ∈ V,

|{w ≥ u | edge(w, v) ∈ Y }| = 0} ∪ {unique(v, u, 0) | v, u ∈ V, |{w ≥ u |
edge(w, v) ∈ Y }| ≤ 1}. That is, X = Y ∪ Z is a stable model of Rd iff, for any
v ∈ V , |{〈u, v〉 | edge(u, v) ∈ X}| ≤ 1 iff G is a directed forest.

e. In view of line 14 in Figure 7(e), it must hold that {v | unique(v, 1, 1, 0) ∈ Z} =
V . For any v ∈ V , the rules in line 10 to 13 yield that {〈i, j〉 | unique(v, i, j, 1) ∈



LM(RX
e )} = {〈i, j〉 | l ∈ {0, . . . , dlog2(n)e}, i = d n

2l
e, j ∈ {1, . . . , i},

|{2l∗(j−1) < u ≤ 2l∗j | edge(u, v) ∈ Y }| = 0} and {〈i, j〉 | unique(v, i, j, 0) ∈
LM(RX

e )} = {〈i, j〉 | l ∈ {0, . . . , dlog2(n)e}, i = d n
2l
e, j ∈ {1, . . . , i},

|{2l ∗ (j − 1) < u ≤ 2l ∗ j | edge(u, v) ∈ Y }| ≤ 1}. In particular, we have
that unique(v, 1, 1, 0) ∈ LM(RX

e ) iff |{0 < u ≤ 2dlog2(n)e | edge(u, v) ∈ Y }| =
|{u | edge(u, v) ∈ Y }| ≤ 1. It must thus hold that {unique(v, 1, 1, 0) | v ∈ V } ⊆
Z = LM(RX

e ) ∩
⋃

[h←a1,...,am,not am+1,...,not an]∈Fn
e
H(h) = {unique(v, i, j, 1) |

v ∈ V, l ∈ {0, . . . , dlog2(n)e}, i = d n2l e, j ∈ {1, . . . , i}, |{2
l∗(j−1) < u ≤ 2l∗j |

edge(u, v) ∈ Y }| = 0} ∪ {unique(v, i, j, 0) | v ∈ V, l ∈ {0, . . . , dlog2(n)e},
i = d n

2l
e, j ∈ {1, . . . , i}, |{2l ∗ (j − 1) < u ≤ 2l ∗ j | edge(u, v) ∈ Y }| ≤ 1}.

That is, X = Y ∪ Z is a stable model of Re iff, for any v ∈ V , |{〈u, v〉 |
edge(u, v) ∈ X}| ≤ 1 iff G is a directed forest. ut

Proposition 3. Given an integer n, let V = {1, . . . , n} and Rt = Gn ∪An ∪Fn
f ∪Tn

t

for f ∈ {a, b, c, d, e} and t ∈ {a, b, c}. Then, we have that:

1. If 〈V,E〉 is a directed tree, then there is exactly one stable model X of Rt such that
{〈u, v〉 | edge(u, v) ∈ X} = E.

2. If X is a stable model of Rt, then 〈V, {〈u, v〉 | edge(u, v) ∈ X}〉 is a directed tree.

Proof. Since no head atom (if any) of Tn
t , for t ∈ {a, b, c}, occurs in Gn ∪ An ∪ Fn

f

for f ∈ {a, b, c, d, e}, any stable model X of Rt has the form X = Y ∪ Z for
some stable model Y of Gn ∪ An ∪ Fn

f such that {node(v), order(v) | v ∈ V } ∪
{pair(u, v), order(u, v) | 〈u, v〉 ∈ (V × V ) \ {〈w,w〉 | w ∈ V }} ⊆ Y ⊆
{node(v), order(v) | v ∈ V } ∪ {pair(u, v), order(u, v), edge(u, v) | 〈u, v〉 ∈
(V × V ) \ {〈w,w〉 | w ∈ V }} ∪

⋃
[h←a1,...,am,not am+1,...,not an]∈Fn

f
H(h) and

Z ⊆
⋃

[h←a1,...,am,not am+1,...,not an]∈Tn
t
H(h). By Proposition 2, we have that Y

uniquely represents the directed forest G = 〈V, {〈u, v〉 | edge(u, v) ∈ Y }〉. Below we
consider particular cases for t ∈ {a, b, c} and show that G is a directed tree iff X is the
single stable model of Rt such that X \ Z = Y :

a. In view of line 15 in Figure 8(a), X = Y is a stable model of Ra iff |{〈u, v〉 |
edge(u, v) ∈ X}| ≥ |V | − 1 iff G is a directed tree.

b. In view of line 15 in Figure 8(b), it must hold that Z = LM(RX
b ) ∩⋃

[h←a1,...,am,not am+1,...,not an]∈Tn
b
H(h) = {child(v) | edge(u, v) ∈ Y }. On

the other hand, the integrity constraint in line 16 requires that |{v ∈ V |
child(v) /∈ Z}| ≤ 1. That is, X = Y ∪ Z is a stable model of Rb iff
|{v ∈ V | {〈u, v〉 | edge(u, v) ∈ X} = ∅}| ≤ 1 iff G is a directed tree.

c. Let C denote the vertices in the connected component of 〈V, {{u, v} |
edge(u, v) ∈ Y }〉 that contains vertex 1, or C = ∅ when V = ∅. In
view of line 15 to 17 in Figure 8(c), it must hold that Z = LM(RX

c ) ∩⋃
[h←a1,...,am,not am+1,...,not an]∈Tn

c
H(h) = {reach(v) | v ∈ C}. On the other

hand, the integrity constraint in line 18 requires that {v ∈ V | reach(v) ∈ Z} = V .
That is, X = Y ∪ Z is a stable model of Rc iff 〈V, {{u, v} | edge(u, v) ∈ X}〉 is
connected iff G is a directed tree. ut



In what follows, we turn to undirected forests and chordal graphs. The considera-
tions regarding undirected trees are similar to the directed case when adding the rules
in Tn

a or Tn
c to an underlying encoding of undirected forests.

Proposition 4. Given an integer n, let V = {1, . . . , n} and R = Gn
u ∪ Un. Then, we

have that:

1. If 〈V,E〉 is an undirected forest, then there is exactly one stable model X of R such
that {{u, v} | edge(u, v) ∈ X} = E.

2. If X is a stable model of R, then 〈V, {{u, v} | edge(u, v) ∈ X}〉 is an undirected
forest.

Proof. Recall that line 3 of Figure 2 is replaced by the following rule in Gn
u:

pair(X,Y) :- node(X;Y), X < Y.

Along with line 2 in Figure 2, any stable model X of R must be such that {v |
node(v) ∈ X} = V and {〈u, v〉 | pair(u, v) ∈ X} = {〈u, v〉 | u, v ∈ V, u < v}. In
view of line 6, 7, and 9 in Figure 9, it must also hold that {v | order(v) ∈ X} = V
and {〈u, v〉 | order(u, v) ∈ X} = {〈u, v〉 | u, v ∈ V, u < v}, where establishing that
{order(v) | v ∈ V } ∪ {order(u, v) | u, v ∈ V, u < v} ⊆ LM(RX) is of interest. We
further consider the items of the statement:

1. If 〈V,E〉 is an undirected forest, let X = {node(v), order(v) | v ∈ V } ∪
{pair(u, v), order(u, v) | u, v ∈ V, u < v} ∪ {edge(u, v) | {u, v} ∈ E, u < v},
where the choice rule in line 4 of Figure 2 grants that {〈u, v〉 | edge(u, v) ∈ X} =
{〈u, v〉 | edge(u, v) ∈ LM(RX)} = {〈u, v〉 | {u, v} ∈ E, u < v}. Given
the above considerations, there cannot be any stable model X ′ 6= X of R such
that {{u, v} | edge(u, v) ∈ X ′} = E. Moreover, since 〈V,E〉 is an undi-
rected forest, for any non-empty U ⊆ V , there is some vertex u ∈ U such
that |{v | {u, v} ∈ E, v ∈ U}| ≤ 1, i.e., |{edge(u, v) ∈ X | v ∈ U,
u < v} ∪ {edge(v, u) ∈ X | v ∈ U, v < u}| ≤ 1. In view of line 5 to 8 in Fig-
ure 9, it follows by induction that {order(v) | v ∈ V } ∪ {order(u, v) | u, v ∈ V,
u < v} ⊆ LM(RX), so that X = LM(RX) is a stable model of R.

2. If X is a stable model of R, then X = LM(RX) implies that, for any non-empty
U ⊆ V , there is some vertex u ∈ U such that |{edge(u, v) ∈ X | v ∈ U, u < v} ∪
{edge(v, u) ∈ X | v ∈ U, v < u}| ≤ 1, so that 〈V, {{u, v} | edge(u, v) ∈ X}〉 is
an undirected forest. ut

Proposition 5. Given an integer n, let V = {1, . . . , n} and R = Gn
u ∪ Cn. Then, we

have that:

1. If 〈V,E〉 is a chordal graph, then there is exactly one stable model X of R such
that {{u, v} | edge(u, v) ∈ X} = E.

2. If X is a stable model of R, then 〈V, {{u, v} | edge(u, v) ∈ X}〉 is a chordal graph.

Proof. By the same argument as in the proof of Proposition 4 along with line 5 in
Figure 10, any stable model X of R must be such that {v | node(v) ∈ X} = V ,
{〈u, v〉 | pair(u, v) ∈ X} = {〈u, v〉 | u, v ∈ V, u < v}, and {〈u, v, w〉 |



scope(u, v, w) ∈ X} = {〈u, v, w〉 | u, v, w ∈ V, u 6= v, u 6= w, v < w}. In view
of line 12 and 13 in Figure 10, it must also hold that {v | order(v) ∈ X} = V and
{〈u, v, w〉 | order(u, v, w) ∈ X} = {〈u, v, w〉 | u, v, w ∈ V, u 6= v, u 6= w, v < w},
where establishing that {order(v) | v ∈ V } ∪ {order(u, v, w) | u, v, w ∈ V, u 6= v,
u 6= w, v < w} ⊆ LM(RX) is of interest. We further consider the items of the state-
ment:

1. If 〈V,E〉 is a chordal graph, let X = {node(v), order(v) | v ∈ V } ∪ {pair(u, v) |
u, v ∈ V, u < v} ∪ {scope(u, v, w), order(u, v, w) | u, v, w ∈ V, u 6= v, u 6= w,
v < w}∪{edge(u, v) | {u, v} ∈ E, u < v}, where the choice rule in line 4 of Fig-
ure 2 grants that {〈u, v〉 | edge(u, v) ∈ X} = {〈u, v〉 | edge(u, v) ∈ LM(RX)} =
{〈u, v〉 | {u, v} ∈ E, u < v}. Given the above considerations, there cannot be
any stable model X ′ 6= X of R such that {{u, v} | edge(u, v) ∈ X ′} = E.
Moreover, since 〈V,E〉 is a chordal graph, there is some “perfect elimination or-
dering” [12]. That is, for any non-empty U ⊆ V , there is some vertex u ∈ U such
that {v | {u, v} ∈ E, v ∈ U} is a clique, i.e., {edge(v, w) | edge(u, v) ∈ X,
edge(u,w) ∈ X, v,w ∈ U, v < w} ∪ {edge(v, w) | edge(v, u) ∈ X,
edge(u,w) ∈ X, v,w ∈ U} ∪ {edge(v, w) | edge(v, u) ∈ X, edge(w, u) ∈ X,
v,w ∈ U, v < w} ⊆ X . In view of line 6 to 12 in Figure 10, it follows by induction
that {order(v) | v ∈ V }∪{order(u, v, w) | u, v, w ∈ V, u 6= v, u 6= w, v < w} ⊆
LM(RX), so that X = LM(RX) is a stable model of R.

2. If X is a stable model of R, then X = LM(RX) implies that, for any non-empty
U ⊆ V , there is some vertex u ∈ U such that {edge(v, w) | edge(u, v) ∈ X,
edge(u,w) ∈ X, v,w ∈ U, v < w} ∪ {edge(v, w) | edge(v, u) ∈ X,
edge(u,w) ∈ X, v,w ∈ U} ∪ {edge(v, w) | edge(v, u) ∈ X, edge(w, u) ∈ X,
v,w ∈ U, v < w} ⊆ X , so that G = 〈V, {{u, v} | edge(u, v) ∈ X}〉 admits a
“perfect elimination ordering” [12], which in turn means that G is chordal. ut


