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Abstract

The attractiveness of Answer Set Programming (ASP) and related paradigms for declara-
tive problem solving is considerably due to the availability of highly efficient yet easy-to-use
implementations. Standardized problem representations form a major driving force for the
development and improvement of tools for several reasons. First, they relieve developers
from the burden of inventing their own input formats. Second, they establish interoperabil-
ity between separate tools, allowing users to easily compare and exchange them without
extensively converting their problem representations. Third, they facilitate the acquisition
of problem descriptions from distinct sources, which is useful for benchmarking and assess-
ment purposes. Historically, however, standards for representing logic programs, serving as
inputs to ASP systems, were mainly dictated by few available tools. In fact, there currently
are two quasi-standard formats, viz. the formats of lparse and dlv, incompatible with each
other. As a first step towards overcoming this deficiency, this work proposes an intermedi-
ate format for ground logic programs, intended for the representation of problem instances
as inputs to ASP solvers. The format is not designed to be a primary input language, given
that ASP systems usually deploy a second component, called a grounder, to deal with the
inputs provided by users. In view of this, our format is situated intermediate a grounder and
a solver, guided by the example of grounder lparse and solver smodels, the latter marking
the first among nowadays a variety of solvers processing the output of lparse. However, the
output format of lparse has some decisive drawbacks, viz. its restrictive range and limited
extensibility. We thus propose a new intermediate language, where our major design goals
are flexibility in problem representation and easy extensibility to new language constructs.



Contents

1 Introduction 3

2 Review of Intermediate Languages for ASP and SAT 4
2.1 BC Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 DIMACS Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 GCore Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 MidL Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 PB Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 SModels Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 General Design of ASPils 9

4 Language Description 11
4.1 Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 End Of File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Normal Forms 19
5.1 Global Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Normal Form Simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Normal Form SimpleDLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Normal Form SModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Normal Form CModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.6 Normal Form CModelsExtended . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.7 Normal Form DLV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.8 Normal Form Conglomeration . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Discussion and Outlook 28

A Grammar of ASPils 34

2



Problem
Representation

Grounder // Intermediate
Representation

Solver // Variable
Assignment

Figure 1: Basic Architecture of an ASP System

1 Introduction

Answer Set Programming (ASP; [1, 18, 31, 37]) is a declarative approach to modelling and
solving search problems, represented as logic programs. As illustrated in Figure 1, an ASP
system usually deploys two components: a grounder and a solver. The input to an ASP sys-
tem typically consists of a non-ground problem encoding and a ground problem instance. In
such uniform encodings, the use of first-order variables reduces the size of the representation
and permits simpler, and therefore easier to write, logic programs. Furthermore, regarding the
input language, several extensions have been proposed, like aggregates, cardinality and weight
constraints, and optimize statements [6, 26, 43]. A grounder translates such a problem represen-
tation, which typically consists of a pair of an encoding and an instance in the input language,
into a ground logic program, represented in a simplified, solver-readable form. Starting from
the grounder’s output, the solver then searches for answer sets, corresponding to solutions of
the original problem. The most common solving approaches are based on the Davis-Putnam-
Logemann-Loveland (DPLL; [4, 5]) algorithm, like in dlv [26] and smodels [43], or Conflict-
Driven Clause Learning (CDCL; [32, 33, 35]), e.g., used in clasp [15].

There currently is a single intermediate language accessible to ASP solvers, namely, the output
format of grounder lparse [44].1 However, the format is not standardized and might thus change
over different lparse versions, which is a delicate issue since no version information is included,
e.g., for backward compatibility. The latter also makes ad-hoc extensions of lparse’s output
format intricate and error-prone.2 Furthermore, the fact that lparse’s output format is designed
to match smodels’ internal data structures necessitates program transformations incurring a loss
of structural information [30]. We thus consider the restrictedness, on the one hand, and the
limited extensibility, on the other hand, of lparse’s output format as serious drawbacks, making
it unsuitable as a general standard.

This work proposes a new intermediate format, called ASPils (“ASP intermediate language
standard”), for the use in-between grounders and solvers. Important design goals are:

• simplicity and efficiency in outputting and parsing;

• independence of grounder and solver implementations;

• support of the existing (input) language constructs (cf. [6, 26, 44]);

• support of version information, meta-information, and user comments; and

• flexibility and easy extensibility.
1The dlv system uses an internal grounder that is directly coupled with the solver.
2For instance, the tool dencode [21] includes functionality for making conversions between the disjunctive rule

output formats of old (up to version 1.0.14) and new versions of lparse.
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The development of ASPils is inspired by experiences made in related fields, such as Boolean
Satisfiability (SAT), having standardized problem description languages, e.g., DIMACS for-
mat [7]. For one, such standardized languages establish interoperability between solvers and
further tools, for instance, tools generating solver inputs. As a concrete example in ASP, a stan-
dardized intermediate language might enable (arbitrary) solvers to process the output of dlv’s
grounding component, and also dlv’s solving component to process the output of an external
grounder. From a user’s point of view, interoperability facilitates running different solvers, as a
problem encoding written in the input language of a particular grounder could after grounding be
processed by an arbitrary solver. Furthermore, a standardized intermediate language supported
by all solvers would greatly foster ASP solver competitions, where in the past the different in-
put formats of dlv and other solvers have been a major bottleneck [16]. In fact, as a secondary
benefit, a common language eases collecting challenging benchmarks from distinct sources and
might thus push the further development of ASP solvers, like it has been experienced in SAT.

In order to put this document in perspective, let us stress that ASPils is proposed as a standard
for the transmission of ground logic programs from grounders to solvers. At this stage, our pro-
posal aims at recording the language constructs currently supported by lparse-based solvers as
well as dlv’s solving component and at integrating them into a common framework, also antici-
pating future extensions to a certain extent. Of course, an input format for ASP solvers can only
turn into a standard if it is widely supported and used in practice, which requires a community
effort, especially, from ASP system developers. Our proposal of ASPils thus aims at providing a
starting point for a community-wide discussion of a standardized input format for ASP solvers.
Even if such a standard is successfully established, it will not instantly abolish all differences
and peculiarities of ASP systems. For instance, grounders and integrated ASP systems may fur-
ther (have to) use proprietary input languages, and any incremental [14] or even a system not
following the computational pattern shown in Figure 1 might not be readily supplied with an
appropriate input format. However, before succeeding to standardize the simplest element in the
workflow of ASP systems, namely, the intermediate language used in-between a grounder and a
solver, any attempts to standardize more diversified matters would most likely be prone to fail.
Hence, even though the scope of ASPils is limited to an intermediate representation according
to Figure 1, we think that it may initiate a worthwhile discussion on language standards in ASP.

The remaining sections of this document are organized as follows. We start by reviewing
existing (intermediate) languages for ASP and SAT in Section 2, thereby, highlighting and dis-
cussing their pros and cons. In Section 3 and 4, we describe the design of ASPils in general and
in detail, respectively. Section 5 specifies a number of normal forms, reflecting language frag-
ments of ASPils corresponding to different syntactic primitives of existing ASP solvers. Finally,
we present the conclusions of this proposal in Section 6. The grammar of ASPils in Extended
Backus-Naur Form (EBNF; [8]) can be found in Appendix A.

2 Review of Intermediate Languages for ASP and SAT

The following comparison of existing intermediate languages for SAT and ASP builds upon [22],
that is, we here review the same intermediate languages and in addition also MidL Normal
Form, but we sometimes draw different conclusion, for instance, as regards the extensibility
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of SModels format. Note that we do not consider the input language of dlv here, as it is a
textual format primarily aimed at the grounding component of dlv and thus too complex for a
solver-oriented intermediate language. For the same reason, we omit a discussion of the Rule
Interchange Format (RIF; [41]) and the Satisfiability Modulo Theories Library (SMT-LIB; [40])
format, both dealing with (fragments of) first-order logic.

2.1 BC Format

The BC file format [23] is used by the solver bcsat [24] for Boolean circuit satisfiability. The
first line of a file in BC format provides the format version. In the remainder, the file defines
the structure of the circuit in terms of gate definitions each of which associates a propositional
formula with a name in a recursive fashion. Such formulas may involve prefix operators, like
AND, OR, etc., or infix operators, like &, |, etc. Thereby, symbolic names can be used to refer to
particular gates in the circuit. The newline symbol is used as delimiter between gate definitions.

Advantages and Disadvantages. The file format supports version information, thus,
changes in the language can be recognized easily. Furthermore, the format is human-readable
as symbolic names are used for gates and operators. However, symbolic names and different
notations (prefix and infix) for operators make parsing more complex and therefore fault-prone.

2.2 DIMACS Format

There are two different DIMACS input formats [7], one for propositional formulas in CNF and
one for (arbitrary) propositional formulas. In addition, there is a particular output format, a
modification of which is used in SAT competitions [42]. All three formats are numerical and
support comments via lines starting with letter c.

CNF

A problem description in CNF format starts with a so-called problem line, whose first letter p is
followed by constant string cnf and the number of variables and clauses in the problem. The
remainder of the problem description consists of clauses, that is, lists of literals terminated by
number 0. Literals are non-zero integers whose absolute values stand for atoms.

SAT

A problem description in SAT format also starts with a problem line similar to CNF format, but
replacing cnf by sat and without providing a number of clauses. After the problem line, a
formula is specified in a single statement composed of infix operators -, *, and + along with
parentheses. (In the extended satex format, xor and = are additional infix operators.)

Output

Although it is not an intermediate format, the DIMACS output format is oriented at CNF and
SAT formats. The output format allows one to report information about the satisfiability of a
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problem as well as a solution in a standardized way, so that it can be post-processed automati-
cally. Also, timing information (how long has it taken to compute the solution) can be included.

Advantages and Disadvantages. The simplicity of the formats, in particular, CNF and
output formats, make them easy to parse or to produce by SAT solvers. The use of number 0
as clause delimiter in CNF format allows clauses to span over multiple lines, and it avoids
the interpretation of newline as an implicit delimiter. However, as the formats do not support
symbolic information, it can only be included in an application-specific way via comments. The
number of variables (and clauses) in problem lines can be useful for preparing the internal data
structures within SAT solvers, but tools generating the formats need to know these numbers in
advance. In ASP, providing such information at the start of a problem description would compel
grounders to store the complete ground instantiation of a logic program before outputting it.

2.3 GCore Format

The GCore format [36] for ground logic programs is a fragment of lparse’s input language [44]
in which all atoms are ground and referred to by names of the form vi. If vi and vj occur in a
program, then all atoms in-between vi and vj must occur as well, that is, gaps are not allowed.

Advantages and Disadvantages. Due to the similarity with the input language of lparse,
the format is human-readable, but with meaningless atom names. The drawback of textual
format is that it is harder to parse by solvers than a numerical format. In comparison to the
output language of lparse (see SModels format below), an advantage is that the structure of logic
programs is preserved, since extended rules of lparse’s input language are directly supported.

2.4 MidL Normal Form

MidL Normal Form (MNF; [34]) is a format for propositional ID-Logic, modifying DIMACS
format (cf. Section 2.2). In the problem line, constant string midl is used as the format name,
and in contrast to other DIMACS input formats, the number of variables is not provided. The
actual problem is represented by clauses as in CNF format, and in addition, statements of the
form C atom clause 0 or D atom clause 0, where atom is a positive integer and
clause is a list of non-zero integers. Furthermore, C and D indicate whether atom is equivalent
to the conjunction or disjunction of clause, respectively. Via an optional footer, MNF allows
for providing symbolic information. Rather than using a table for mapping integers to names,
the domains of functions and predicates are given via types, and individuals can be reconstructed
from base numbers. For instance, the footer

type T : A B C
pred P 1 : T T
pred Q 10 : T

declares that predicate P is of type T×T, and its instances are numbered from 1=P(A,A) to
9=P(C,C). Similarly, we have 10=Q(A), 11=Q(B), and 12=Q(C). By applying this con-
vention, the symbolic names of atoms can be reconstructed and provided to users.
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Advantages and Disadvantages. As MNF extends DIMACS format, it is numerical and
thus easy to parse. In contrast to DIMACS format, symbolic information is supported and can be
represented in a succinct way, as the instances of a function or predicate are not explicitly listed.
However, base numbers can become very large, as every syntactically constructible instance of
a function or predicate implicitly has a dedicated number, even if it is not referred to.

2.5 PB Format

The Pseudo-Boolean (PB; [39]) format may be viewed as a textual version of CNF format (cf.
Section 2.2). In fact, the format supports comments via lines starting with symbol *, and ac-
cording to the rules of the 2007 PB evaluation, the first line of an input file provides the numbers
of atoms and constraints inside a comment. The first non-comment line of an input file can
specify an objective function, starting the line with min:. The remainder of the file speci-
fies Pseudo-Boolean constraints, that is, inequalities and equalities, using connectives +, -, >=,
and =. Each (in)equality is provided within a single line terminated by symbol ;. Analogously to
GCore format (cf. Section 2.3), variables occurring within inequalities and equalities are named
schematically by xi where i ranges from 1 to the number of variables declared in the first line
of an input file.

Advantages and Disadvantages. The format is human-readable, but as with GCore, atom
names are meaningless. Similar to DIMACS formats (cf. Section 2.2), providing the numbers
of atoms and constraints can help solvers to prepare their internal data structures; however,
the strategy to provide such information inside comments is questionable. Finally, the format
specification [39] grants certain conditions only within the 2007 PB evaluation environment, but
not for user inputs. A simpler (numerical) format might exclude such sources of parsing errors.

2.6 SModels Format

The input language of the smodels solver, usually generated by means of grounder lparse, is
described in [44]. It allows for the representation of ground logic programs in a numerical
format, not supposed to be human-readable. Numerical program representations consists of
three blocks, separated from each other by a single line containing only number 0. The first block
provides the rules of a program, supporting eight different rule types identified via a dedicated
number at the beginning of a line. The remainder of the line specifies an individual rule in a
type-specific way, e.g., providing the head and the body of a normal rule. The second block
contains the symbol table of the program, which maps the names of atoms to unique positive
integer IDs that have been used in the first block to refer to atoms. Note that an atom used in
the first block, that is, its corresponding ID, does not have to occur in the symbol table, in which
case the atom is considered to be hidden. The third and last block contains “compute statements”
in which atoms can be declared to be either true or false. The last item of the third block is the
number of answer sets to compute.

Advantages and Disadvantages. The SModels format is recognized by a variety of ASP
solvers and used in ASP contests [16]. By means of the symbol table, it is possible to reconstruct
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a human-readable format and to represent answer sets in terms of symbolic atom names, which
is essential in applications. However, the supported rule types are designed to match smodels’
internal data structures and thus impose limitations that might lead to a loss of structural in-
formation. For instance, a cardinality or weight constraint can only specify a lower bound. If
it originally had an upper bound too, it is translated into another constraint, not belonging to
the input program. Moreover, negative weights and bounds for weight constraints are not al-
lowed, and due to complexity reasons, available compilations to get rid of them [43] may lead to
counter-intuitive results [12]. The block structure of the format compels grounders to accumu-
late the whole symbol table in main memory before outputting it, which might be unnecessary
if a grounder were allowed to output parts of the symbol table in-line. This limitation of the
SModels format is partly circumvented by modlist and lpcat (see [21] for descriptions) in terms
of module sequences, which are streams of programs in the SModels format. However, the defi-
nition of input atoms that are defined outside a module is based on an ad-hoc assumption3 since
input atoms are not distinguished by the SModels format. Yet another issue is the lack of version
and meta-information, so that changes in the language cannot be recognized easily.

2.7 Conclusions

In [22], several aspects of intermediate languages, like the file format (text or binary), version
and meta-information, comments, symbolic names, and extensibility, are discussed. Let us take
up some of these issues along with the observations made in the previous subsections:

• All of the discussed intermediate languages use a text format, and not a binary one. In fact,
a text format has the advantage of being system-independent, but it might be of greater
size than a binary format. However, common compression methods are able to reduce the
size of text and binary formats of the same contents to approximately the same size. Thus,
we think that system independence is more important than an a priori reduction of size.

• Most of the formats use a numerical representation for atoms and their interactions. From
the viewpoint of a solver, this eases parsing and thus reduces the likelihood of parsing
errors. Via symbol tables, symbolic information can be reconstructed even from a nu-
merical format. In the previous subsections, we have seen two alternative approaches to
represent symbol tables: in MNF (cf. Section 2.4), a naming scheme is used to compact
symbolic information, while SModels format (cf. Section 2.6) provides symbolic names
for atoms individually. Both ideas have their pros and cons, as base numbers used in MNF
can become large, and symbol tables in SModels format may contain many entries (but
still bound linearly in the size of ground logic programs). We note that numerical formats
are not considered to be human-readable, thus, they cannot be changed manually once
they have been generated. This drawback seems marginal in the context of ASP, since the
input language visible to users is that of a grounder, but not the intermediate language.

3An input atom has a name in the symbol table of the program but no defining rules. It is worth noting that, by
default, such atoms would be assigned false under the stable model semantics, but proper input atoms can take
any truth value [38].
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• Some formats, that is, CNF and SModels format (cf. Section 2.2 and 2.6), impose re-
strictive normal forms for their statements. In the process of generating such formats,
this often incurs a loss of structural information, which even led to approaches dealing
with restoring the lost structure [9, 30]. To abolish the need for such workarounds, an
intermediate format should be expressive and flexible enough to retain problem structure.

• An important detail lies in the choice of a statement delimiter, where we have seen two
alternative solutions: using explicit delimiters (such as 0, (), ;, or .) or newline as
an implicit delimiter. The second choice forbids statements to span over multiple lines,
which can be problematic if a computational environment does not allow for arbitrarily
long lines. Furthermore, the use of an explicit delimiter seems less fault-prone, to the price
of adding one more symbol to statements where otherwise newline would be sufficient.

• For enabling extensibility, it is crucial to include version information, so that solvers can
adjust their parsers or terminate in a well-defined way in case of an unrecognized (poten-
tially too new) version. The provision of a version numbers is also necessary in order to
address backwards compatibility in various tools. Another difficulty in ASP are different
language fragments supported by solvers, for instance, solver assat [29] does not han-
dle extended rules [43], and smodelscc [45] does not process weight constraints. By also
including information on the language fragment, solvers not supporting it can terminate
appropriately, that is, not with an error accidentally raised during parsing.

• Some formats, e.g., DIMACS format (cf. Section 2.2), include meta-information, such as
the number of atoms in a problem. This can be useful for solvers, but the generation of a
format becomes harder if a priori knowledge is required. In ASP, grounders may produce
the intermediate format on-the-fly, that is, parts may be output before the whole ground
logic program is generated. In such a setting, meta-information about the final problem
description is unavailable. We thus think that including meta-information should be op-
tional, and solvers might ignore or use the available information, depending on whether
they recognize and trust it. Furthermore, we think that there is a difference between meta-
information and comments, as the latter should always be ignored by solvers. That is,
comments should be completely up to users, and passing solving information inside them
(as done in PB format; cf. Section 2.5) must be avoided.

• For benchmarking purposes, it is advantageous if solver input can be shuffled easily. In
other settings, several problem descriptions might need to be combined into a new prob-
lem. Thus, it is desirable that statements provided in problem descriptions are modular
(like, e.g., clauses in CNF format; cf. Section 2.2) and that they do not rely on a particular
order of the syntactic elements in the statements as far as possible. Indeed, this principle
is one of the underlying assumptions of declarative programming.

3 General Design of ASPils

We now briefly describe the design decisions underlying ASPils, the new intermediate language
for ASP we propose here. Our global goal is to specify a language that has the potential to
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become a standard format for inputs to ASP solvers. Thus, we have to respect that different ASP
solvers support different language constructs, e.g., dlv deals with aggregates [6] and smodels
with extended rules [43]. In order to reflect this diversity, our language must be general and
solver-independent. Furthermore, it is impossible to foresee language constructs that might
evolve in the future. Hence, extensibility of the language is an important issue. We thus include
a version number in problem descriptions of ASPils. In addition, normal forms are used to
specify language fragments. Their main purpose is to reflect the variety of (syntactic) primitives
supported by solvers, which are thus enabled to check whether a problem description given as
input is an appropriate one before processing it any further.

The body of ASPils consists of entries, mainly defining objects of particular types. The idea
is similar to the output format of lparse [44], using several rule types. However, ASPils goes
further than lparse by not restricting types to rules, rather, all entities in a ground logic program,
e.g., atoms, conjunctions, disjunctions, etc., are objects having a type. An advantage of this is
that complex structures occurring in a program, e.g., conjunctions of cardinality and weight con-
straints, can be represented in a modular and structure-preserving way. In contrast to this, lparse
would have to introduce new atoms and rules to represent complex structures in its restrictive
output format. Another advantage of types is the easy embedding of new language constructs,
as it only requires the definition of a type identifier and a syntax for objects of the type. To avoid
clashes of custom type identifiers, we use numbers consisting of a “major” and a “minor” slot
(similar to IP addresses), where the major slot ought to be related to a research group defining
the type. If newly introduced types turn into a standard, they can be integrated into ASPils via
the introduction of an additional normal form or even a new language version.

As mentioned above, every object occurring in a problem description has an associated type.
In addition, each object has a unique object identifier, or object ID for short. An object ID is
a positive integer that gives an identity to the object and hence enables subsequent references
to the object. This makes the language modular because, on the syntactic level, other objects
make use only of the object ID of an referenced object, but not of its internal structure. Hence, if
new language constructs are introduced, their objects can immediately be used within available
structures, without needing to exchange them. A second potential benefit of object IDs is the
possibility to re-use them if the same object has multiple occurrences in a ground logic program,
thus compacting the representation in analogy to gate definitions in the specifications of Boolean
circuits. Note that this accounts for ordinary propositional atoms as well as for non-atomic
structures, such as conjunctions and disjunctions.

On the technical level, our language shall be easy to parse, independent of system environ-
ments, and resistant against potential parsing errors. To this end, we use a numerical text format
and number 0 as an explicit delimiter for entries. As 0 can also occur within an entry (not as
delimiter), each entry must specify its number of consecutive (numeric and/or symbolic) pa-
rameters directly after its type. This shall enable the correct syntactic decomposition of ASPils
sentences, even without truly understanding the contents, and it deliberately introduces a layer of
redundancy in order to avoid parsing errors. Also, note that most parameters occurring in entries
are numeric and thus represented by integers, which should facilitate their recognition by solvers.
In particular, negative integers are used to denote the default negations of objects having the ab-
solute values as their IDs. Of course, the use of numbers makes ASPils less human-readable,
but obtaining human-readability is not among our desiderata anyway. Symbolic information can
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still be included, most likely, for defining atom names, but usually such information needs not be
interpreted by solvers. Furthermore, arbitrary meta-information as well as user comments can
be provided using dedicated types. Note that comments are the only kind of objects not having
an ID, as they ought to be ignored by solvers. In contrast, meta-information may be exploited by
solvers, but it should not be mandatory for solvers to recognize it. We here do not suggest using
any kind of meta-information, however, including information such as whether a ground logic
program has an answer set or whether it is tight [11, 10] might be useful for particular purposes.

4 Language Description

This section details the elementary constituents of our proposed intermediate language ASPils.
We focus on intuitions and examples because the formal specification of ASPils is given by
the grammar in Appendix A. Below, italic and typewriter fonts indicate non-terminals
and terminals, respectively, in the grammar. Consecutive terminal symbols (other than digits
of integers or characters of strings and verbals) must be separated by whitespace (including
characters for space, tabulation, carriage return, line feed, and form feed).

4.1 Header

Every sentence of ASPils starts with a header.4 For example, header

1 3 1 3 0 0

consists of a 1 indicating the type header, a 3 providing the number of parameters before the
delimiter, the second 1 stating that this is the first version of ASPils, the second 3 indicating
conformance to normal form “SModels” (cf. Section 5.4), a 0 stating that there are no additional
headers, and the second 0 delimiting the header. Note that language version 1 of ASPils, defined
in this document, does not specify any additional headers, hence, their number will always be 0.
The pattern that a type number is followed by the number of parameters before delimiter 0 recurs
in each of the types described below, while the parameters themselves are specific.

4.2 End Of File

Every sentence of ASPils is terminated with an occurrence of object eof,4 looking as follows:

0 0 0 .

The first 0 indicates the object’s type, the second its number of parameters, and the third one
delimits it. (The full stop sign “.” is part of the surrounding text, but not of ASPils.)

4.3 Entries

In-between the header and end of file, a ground logic program is specified by entries, providing
meta-information, comments, or defining elements of the program at hand. Each entry starts

4Only comments are allowed before header and after object eof.
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with its type number, an up to eight digits long hexadecimal cipher. The first four digits denote
the research group that has developed the type; for the core types described below, the four
leading digits are zeros and can thus be omitted (as done in Appendix A). The last four digits of
a type number must not evaluate to zero (the value reserved for object eof ). Each type number is
followed by the number of consecutive parameters before the entry is delimited by an occurrence
of 0. Each entry type imposes particular parameters, that is, the slots specified in the grammar
(see Appendix A) must be filled with appropriate terminals.

Meta-Information. Objects of type 2 can be used to provide meta-information. Although
we do not suggest any particular meta-object, the following one is syntactically valid:

2 3 42 "tight program" 23 0 .

Among the 3 parameters of the entry, 42 is the object ID, "tight program" is a safe verbal,
that is, a list of strings and whitespaces enclosed in double quotes, and 23 is the single element
of a list of meta-options (that is, integers). Meta-information may be exploited by solvers, but
any such information should not affect the semantics of the specified ground logic program, so
that it is admissible for solvers to simply ignore unrecognized meta-objects.

Comments. Comments of type 3 do not define any object (that is, they do not have an object
ID as parameter). An example comment looks as follows:

3 1 "grounded by GrinGo version 2" 0 .

As comments are not associated with an ID, they cannot be referenced by objects defined in
an ASPils problem description. In fact, comments are understood to be completely up to user
information, such as the author of a problem description or the grounder that generated it. Unlike
meta-information, comments must always be ignored by solvers.

Atoms. Objects of type 4 define atoms. For instance, consider:

4 2 8 p(a,1) 0
4 5 15 "-p(a,1)" 1 2 8 0 .

The first entry specifies that object ID 8 stands for an atom whose name is p(a,1), and the sec-
ond entry defines object ID 15 to represent another atom with name -p(a,1).5 Furthermore,
atom option 1, provided for -p(a,1), declares the atom as hidden, that is, the atom name shall
be suppressed in the output of an ASP solver. We include this option in order to reflect the ef-
fect of hide declarations in the input language of lparse [44]. However, while lparse suppresses
atom names by not including them in the symbol table, we choose to keep the symbolic names
of atoms and to signal their hidden nature via an option. In this way, it stays possible to recover a
symbolic representation from the intermediate format, as it is done by tool lplist [21] for lparse’s

5Note that the name of the second atom must be provided as a safe verbal, enclosed in double quotes. Double
quotes may only be omitted for atom names starting with a letter. Due to this requirement, the first symbols of
atom names and integers become unambiguous.

12



output format using the symbolic information still available there. The second atom option 2 for
-p(a,1) declares the atom to be the classical negation of the object with ID 8, viz., of atom
p(a,1). Classical negation is understood in the sense of [19]. In our example, it means that
atoms p(a,1) and -p(a,1) cannot jointly belong to a stable model of the program at hand.
Furthermore, module options, 3 and 4, may be used to declare an atom to be an input atom or a
local one, respectively, with respect to the concept of logic program modules in [38]. Intuitively
speaking, input atoms are defined by some other module whereas local atoms are defined in the
current module and hence they cannot be referenced by other modules.

Rules, Facts, and Integrity Constraints. In ASP, a logic program is a set of rules, each
rule consisting of a head and a body. Either the head or the body may be constant, in which case
the rule is called a fact or an integrity constraint, respectively. Let us consider the following
example logic program containing a rule, a fact, and an integrity constraint:

-p(a,1) :- not p(a,1).
p(a,1).

:- -p(a,1).

Reusing object IDs 8 and 15 for p(a,1) and -p(a,1), respectively, corresponding entries in
ASPils can be represented as follows:

5 3 55 15 -8 0
6 2 66 8 0
7 2 77 15 0 .

Here, type numbers 5, 6, and 7 indicate that the objects with IDs 55, 66, and 77 are a rule,
a fact, and an integrity constraint, respectively. Note that -8 in the first entry refers to the
default negation of the atom with ID 8, viz., of atom p(a,1). Furthermore, observe that the
second entry specifies only a head literal and the third one only a body literal, while the rule
defined by the first entry contains both a head and a body literal. The choice of introducing
three different types is motivated by the goal of not imposing any hard-wired assumptions on
the structure of heads and bodies, while still being able to identify the role of particular literals.
Importantly, workarounds such as the false atom, introduced by lparse [44] as the head of
integrity constraints, ought to be avoided. Due to the generic design of entries for rules, facts,
and integrity constraints, allowing to refer to arbitrary and possibly default negated objects, there
are no restrictions on the structure of heads and bodies (rules might even reference each other) a
priori. In Section 5, the issue of ensuring certain formats is dealt with via normal forms.

Conjunctions and Disjunctions. In order to express more complex rules than the ones
given above, entries may specify conjunctions and disjunctions of literals. For instance,

8 3 89 -8 -15 0

defines an object with ID 89 as the conjunction of the default negations of the objects with IDs 8
and 15. Similarly,
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9 3 98 8 15 0

defines a disjunction of the objects with IDs 8 and 15. Assuming that ID 8 stands for atom
p(a,1) and 15 for -p(a,1), the entries

7 2 78 89 0
6 2 67 98 0

describe the following integrity constraint and disjunctive fact:

:- not p(a,1), not -p(a,1).
p(a,1) | -p(a,1).

Finally, note that the normal forms specified in Section 5 will restrict conjunctions to occur in
bodies of rules and disjunctions to being used in rule heads.

Default Negation. Programs in “canonical form” [25, 28] permit double (default) negation
of atoms. Rather than permitting multiple occurrences of “-” at the beginning of a literal (which
would make literals and integers syntactically different), we introduce entries defining default
negation objects for representing such nested expressions. This allows us to express a “choice”

p(a,1) :- not not p(a,1).

in terms of the following entries:

a 2 44 -8 0
5 3 45 8 44 0 .

Observe that the object defined by the first entry stands for the default negation of literal -8
and, thus, for the double negation of the object with ID 8, viz., of atom p(a,1). Finally, note
that, under answer set semantics, rules using an atom and those using its double negation are
not necessarily equivalent [28], so that double negation constitutes a proper syntactic feature.
The normal form in Section 5.8 will thus permit default negation objects for expressing double
negation of atoms.

Cardinality and Weight Constraints. Cardinality and weight constraints [43, 44] permit
expressing conditions on sets of literals, that is, true literals can be counted or their weights can
be summed up in order to compare the result against a lower and an upper bound. Letting object
IDs 1, 2, 3, and 4 stand for atoms a, b, c, and d, we can represent the expressions

2{a, b, not c, not d}3
-1[a=-2, b=1, not c=3, not d=-4]2

in ASPils as follows:

b 7 5 2 3 1 2 -3 -4 0
c 11 6 -1 2 1 2 -3 -4 -2 1 3 -4 0 .
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Here, the object IDs 5 and 6 of the cardinality and weight constraint, respectively, are imme-
diately followed by their lower and upper bounds. Afterwards, the literals are provided, and
for weight constraint 6, also a list of weights, exactly one weight per literal. The primary
constituents of a logic program, viz., rules, facts, and integrity constraints, can incorporate
cardinality and weight constraints just like atoms, simply by referencing their IDs directly or
indirectly through literals. Observe that, in general, we allow for upper bounds as well as for
negative weights, both of which can occur in the input language, but not in the output language,
of lparse. In fact, lparse performs a number of transformations and introduces new atoms to re-
move them. Some of the normal forms in Section 5 impose similar restrictions, thus, specifying
lparse-like fragments of ASPils. In such fragments, only trivial upper bounds are permitted, ob-
tained by summing up all (positive) weights, where weight 1 is used for the literals of cardinality
constraints.

Weighted Literals. Weighted literals are auxiliary concepts, devised for the use with aggre-
gates and optimization statements (see below), thus, establishing a uniform way of referencing
objects (simple or complex ones) that evaluate to numbers. For instance, we may associate
weights to literals, as in the above weight constraint, via the following entries:

d 3 11 1 -2 0
d 3 12 2 1 0
d 3 13 -3 3 0
d 3 14 -4 -4 0 .

Aggregates. We adopt the aggregates supported by dlv [6], allowing for five operations, viz.,
count, sum, max, min, and times. While count applies to Boolean operands, that is, to literals,
the other four aggregates operate on numerical values, thus, they require object IDs rather than
literals as parameters. For instance, count is used to count satisfied literals whereas sum yields
the sum of weights associated with satisfied literals. Reusing atoms a, b, c, and d as well as
weighted literals as specified above, we may define a count and a sum aggregate as follows:

e 5 21 1 2 -3 -4 0
f 5 22 11 12 13 14 0 .

Observe that count applies to (possibly negative) literals, while dlv’s aggregates are restricted
to atoms. As such a restriction does not significantly simplify dealing with aggregates, we do
not adopt it here, and the weighted literals used by sum may also apply to negative literals (as
it is the case for the objects with IDs 13 and 14). However, in order to reasonably apply an
aggregate, its operands must have appropriate types, being an issue to the normal forms that will
be addressed and collected in Section 5.

Operators. Arithmetic comparison operators can be applied to weighted literals and aggre-
gates in order to retrieve Boolean values from them. Thus, operators can be referenced by rules,
facts, and integrity constraints in the same way as atoms. We provide two kinds of operators:
(binary) operators of type in-between 13 and 17 can be used to compare the numerical values
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of two objects with one another, while unary operators of type in-between 18 and 1c allow for
comparing an object’s numerical value to an integer. Both kinds of operators support the fol-
lowing comparison operations: eq (“equal”), leq (“less or equal”), lt (“less than”), geq (“greater
or equal”), and gt (“greater than”). For instance, the following entry describes the application of
the (binary) operator eq to the aggregates with IDs 21 and 22 as defined above:

13 3 31 21 22 0 .

An application of unary operator leq to the aggregate with ID 22 and integer 0 can be specified
as follows:

19 3 91 22 0 0 .

Finally, note that current ASP solvers do not support (binary) operators of type in-between 13
and 17, hence, they will not be permitted by the normal forms in Section 5.

Optimization. Amongst the most common optimization techniques in ASP are “minimize
statements” [43] supported by smodels and “weak constraints” [26] supported by dlv. For ac-
commodating them, we introduce an optimize object whose underlying strategy is minimization
of (arbitrarily many) objective functions of distinct priorities, the priorities forming a strict total
order. Other strategies than lexicographic ordering of objective functions, e.g., Pareto optimal-
ity, would also be possible but are currently not in use, so we do not (yet) consider them. In
what follows, we detail how “minimize statements” and “weak constraints” can be represented
in ASPils.

Minimize Statements of smodels [43]: We start with an example. Assume that an input
program provided to lparse contains two minimize statements (in order):

minimize {not a, b, c}.
minimize [a=4, not b=3, c=2].

The first statement expresses that a minimum number of its literals should be true, while
the second one is about minimizing the sum of weights of true literals. The corresponding
objective functions are expressed by a count and a sum aggregate (over weighted literals),
respectively, where we assume IDs 1, 2, and 3 for atoms a, b, and c:

d 3 11 1 4 0
d 3 12 -2 3 0
d 3 13 3 2 0
e 4 21 -1 2 3 0
f 4 22 11 12 13 0 .

Note that the count aggregate with ID 21 gives the objective function minimized by the
first statement over literals, and the sum aggregate with ID 22 takes the weights provided
in the second minimize statement into consideration. We are now ready to define a single
optimize object that incorporates both aggregates:

16



1d 4 43 1e 22 21 0 .

The type of this object is 1d, 4 the number of parameters, and 43 the ID. Furthermore,
1e specifies the lexicographic optimization strategy, which is the only strategy included in
the first version of ASPils. Finally, minimizing the numerical value of the sum aggregate
with ID 22 takes higher priority than minimizing the value of the count aggregate with
ID 21. This priority, reverse to the order of minimize statements in the input, is indeed
applied by smodels.

In what follows, we provide a general scheme of how to represent multiple minimize state-
ments in ASPils. For uniformity, we assume that all minimize statements include multiple
literals along with weights. (Without explicit weights, count may be used instead of sum,
and for a minimize statement over a single literal, a weighted literal would already express
its objective function.) Consider m minimize statements in reverse order of priority:

minimize [l1m = w1m , . . . , lnm = wnm ]. . . . minimize [l11 = w11 , . . . , ln1 = wn1 ].

Note that l11 , . . . , lnm can be represented as literals in ASPils. We keep notation lij to
refer to these literals for defining weighted literals to associate each lij with wij :

d 3 x11 l11 w11 0
...
d 3 xn1 ln1 wn1 0
...
d 3 x1m l1m w1m 0
...
d 3 xnm lnm wnm 0 .

Note that the above xij s are placeholders for the object IDs of the defined weighted lit-
erals. We then proceed by defining sum aggregates for individual minimize statements:

f n1+1 s1 x11 . . . xn1 0
...
f nm+1 sm x1m . . . xnm 0 .

The sjs are again placeholders for the object IDs of the defined sum aggregates. We use
these object IDs to define the final optimize object:

1d m+2 o 1e s1 . . . sm 0 .

Again, o stands for the object ID of the defined optimize object, and recall that 1e specifies
the lexicographic optimization strategy. While lparse and smodels derive the (reverse)
priorities of minimize statements implicitly from the order in the input, in the ASPils
representation, priorities are explicit because the objective functions to be minimized are
combined within an optimize object.

Weak Constraints of dlv [26]: We again start with an example. Consider an input program
containing the following weak constraints:
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:˜ a, not b. [1:2]
:˜ not c. [1:1]
:˜ b, c. [2:1]

Note that the numbers in brackets describe weights and levels, respectively. As level 2
of the first weak constraint is greater than 1, the first weak constraint is of higher priority
than the second and the third one. Among the last two weak constraints, the priority of
the third one is greater simply because its weight 2 is greater than 1. In order to express
the non-singleton bodies of weak constraints, we define conjunctions as follows:

8 3 81 1 -2 0
8 3 83 2 3 0 .

The conjunction with ID 81 stands for the body of the first weak constraint, and the one
with ID 83 for the body of the third weak constraint. We can now proceed by defining
weighted literals, one per weak constraint:

d 3 11 81 1 0
d 3 21 -3 1 0
d 3 22 83 2 0 .

Observe that the weight of each weak constraint is the weight given in the input. Finally,
we use a sum aggregate for multiple weak constraints at the same level and define an
optimize object as follows:

f 3 24 21 22 0
1d 4 35 1e 11 24 0 .

The last entry expresses that we minimize weights starting with the weak constraint at
level 2 and, secondarily, for the weak constraints at level 1.

We now provide a general scheme of how to represent multiple weak constraints of distinct
levels in ASPils. Consider the following weak constraints ordered by their levels lj , where
we assume li > lj if i < j in order to respect level priorities:

:˜ body11
. [w11 : l1] . . . :˜ bodyn1

. [wn1 : l1]
...

:˜ body1m
. [w1m : lm] . . . :˜ bodynm

. [wnm : lm] .

In ASPils, the bodies body11
, . . . , bodynm

of weak constraints can be defined by literals
either over atoms (for singleton bodies) or over conjunctions, which can be defined as
usual. Thus, we keep notation body ij in the following weighted literals:
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d 3 x11 body11
w11 0

...
d 3 xn1 bodyn1

wn1 0
...
d 3 x1m body1m

w1m 0
...
d 3 xnm bodynm

wnm 0 .

Except for the use of body ij instead of lij , the weighted literals defined above are similar to
those used in the representation of minimize statements. In fact, as body ij and lij are both
literals, it makes no difference in ASPils whether they refer to atoms or to conjunctions.
The next step of defining level-wise sum aggregates and a single optimize object is similar
to minimize statements:
f n1+1 s1 x11 . . . xn1 0
...
f nm+1 sm x1m . . . xnm 0

1d m+2 o 1e s1 . . . sm 0 .

The given embeddings in ASPils indicate that minimize statements and weak constraints
are handled likewise, using weighted literals, sum aggregates (sometimes, simpler con-
structs are sufficient), and an optimize object.

5 Normal Forms

This section describes seven normal forms corresponding to different language fragments han-
dled by existing ASP solvers. The normal forms stand in a hierarchy, as illustrated in Figure 2.
Each of the normal forms is identified via a corresponding number, given in parentheses in Fig-
ure 2, to be provided within the header (cf. Appendix A) of a problem description in ASPils.

The marks in Table 1 (see page 21) indicate which entry types (represented by columns) are
admissible in particular normal forms (indicated by letters denoting rows). Consult Table 3 for
the abbreviations used. Note that (binary) operators of types in-between 13 and 17 are not
supported by any of the normal forms, that is, they cannot occur in problem descriptions.

Table 2 summarizes requirements on the types of objects (in columns) permitted as parameters
in entries of certain types (in rows), that is, the cells contain the normal forms in which an entry
of the row type can refer to an entry of the column type by using its object ID as a parameter,
either directly or through a negative literal. For instance, the cell in row 6, column 9, indicates
that a disjunction object may occur as parameter of a fact in normal forms other than “Simple”
and “SModels.” Note that an atom may refer to another atom only through option classical
negation, otherwise, row 4 would be empty. Furthermore, comments of type 3 are not listed in
the second table as they do not have IDs and can themselves not refer to any object. One can
check that the requirements on reference relationships among objects of particular types exclude
nesting of complex types, e.g., a conjunction may neither directly nor indirectly be defined in
terms of another conjunction. In this way, a normal form imposes a certain structure of ground
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Conglomeration (7)
⊃

))SSSSSSSSSSSSSS
⊂

ttiiiiiiiiiiiiiiii

CModelsExtended (5)
⊃

**UUUUUUUUUUUUUUUU DLV (6)

∪

��

CModels (4)
⊃

))SSSSSSSSSSSSSS
⊂

ttiiiiiiiiiiiiiiii

SModels (3)
⊃

**UUUUUUUUUUUUUUUU SimpleDLP (2)
⊂

uukkkkkkkkkkkkkk

Simple (1)

Figure 2: Normal Form Hierarchy

logic programs, which become thereafter easier to handle by solvers. Finally, note that further
restrictions are given in footnotes, they will be explained below along with the normal forms
subject to restrictions in question. Before we describe the particular normal forms, we start with
global requirements valid for all of them.

5.1 Global Requirements

To ease parsing and the semantic recognition of problem descriptions in ASPils, we introduce
some requirements to be met by all normal forms. Accordingly, the following global require-
ments apply automatically and will thus not be repeated for particular normal forms:

• Every problem description in ASPils is a program, starting with a header and ending with
an occurrence of object eof.

• In a header, object eof, and all entries, the parameter immediately after the type must
correctly specify the number of further parameters occurring before delimiter 0.

• We say that an object is “defined” by an entry if its object ID occurs immediately after the
number of further parameters. (Note that comments do not define any object as they do not
have a parameter object ID.) Every object occurring in a problem description of ASPils
may be defined by at most one entry, that is, every defined object has a unique object ID.

• We say that an object is “referenced” by an entry if its object ID occurs directly or as
the absolute value of a literal in a parameter distinct from the defined object’s ID. Every
object referenced by an entry must have been defined earlier by some distinct entry of the
problem description, that is, every referenced object is (non-recursively) defined.
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2 3 4 5–7 8 9 a b c d e–f 10–12 18–1c 1d

A • • • • •
B • • • • • •
C • • • • • •6 •6,7 •7 • •
D • • • • • • •6 •6,7 •7 • •
E • • • • • • • • • • •
F • • • • • • •7 • • • •
G • • • • • • • • • • • • • •

Table 1: Summary of admissible objects

2 4 5–7 8 9 a b c d e–f 10–12 18–1c 1d

2 A–G A–G A–G A–G B,D–G G C–E,G C–E,G C–G C–G F–G F–G C–G
4 A–G
5 A–G [A–G]8,9 [B,D–G]10 G8,9 C–D11,E,G C–D8,E,G F8,G
6 A–G B,D–G C–D11,E,G E,G G
7 A–G [A–G]9 G9 C–E,G C–E,G F–G
8 A–G G9 C–E,G C–E,G F–G
9 [B,D–G]9

a G12

b C–E,G G9

c C–E,G G9

d C–G [F–G]9,13 G9

e C–G [F–G]9,13 G9

f [C–G]9

10–12 [F–G]9

18–1c [F–G]9 [F–G]9 [F–G]9

1d [C–G]9 [C–G]9

Table 2: Overview of admissible reference relationships

2 Meta-Object 4 Atom 9 Disjunction e Count Aggregate 18 EQ Operator
3 Comment 5 Rule a Default Negation f Sum Aggregate 19 LEQ Operator

1d Optimize Object 6 Fact b Cardinality Constraint 10 Max Aggregate 1a LT Operator
7 Integrity Constraint c Weight Constraint 11 Min Aggregate 1b GEQ Operator
8 Conjunction d Weighted Literal 12 Times Aggregate 1c GT Operator

A Simple C SModels D CModels F DLV G Conglomeration
B SimpleDLP E CModelsExtended

Table 3: Abbreviations used in Table 1 and Table 2

• Objects need not be defined in the strict order of their IDs (as long as they are defined
before they get referenced). Furthermore, object IDs do not have to be consecutive, that
is, gaps are allowed.

6Only with trivial upper bound.
7Only with non-negative weights.
8Only referable as rule body.
9Only referable as positive literal.

10Only referable as rule head.
11Only with lower bound 0 when referenced as head.
12Only referable as negative literal.
13Only referable if not in the scope of any operator of type in-between 18 and 1c.
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• The literal standing for the head of a rule or fact must be positive, in other words, heads
must not be (default) negated. The reason for this design decision is that default negation
of a head can be eliminated by using an integrity constraint with the head in its body, thus,
this requirement reduces ambiguity in the syntactic representation of integrity constraints.

• A problem description of ASPils may define at most one optimize object of type 1d.

We below explain and illustrate the normal forms shown in Figure 2 on examples. A detailed
list of the restrictions they impose is collected in Tables 1 and 2 (cf. Table 3 for abbreviations).

5.2 Normal Form Simple

This normal form corresponds to the input language used in the SCore category of the ASP
system competition [16]. It allows for representing ground normal logic programs without any
extended constructs (like aggregates, etc.). For example, consider the following input program:

a :- not b.
b :- not a.
:- b.
c :- d, not b.
d.
#hide a.

This program can be translated into the following ASPils representation:14

3 1 "header, language version =: 1, normal form =: 1" 0
1 3 1 1 0 0
3 1 "a =: 1 and hidden, b =: 2, c =: 3, d =: 4" 0
4 3 1 a 1 0
4 2 2 b 0
4 2 3 c 0
4 2 4 d 0
3 1 "a :- not b. =: 5" 0
5 3 5 1 -2 0
3 1 "b :- not a. =: 6" 0
5 3 6 2 -1 0
3 1 ":- b. =: 7" 0
7 2 7 2 0
3 1 "(d, not b) =: 8" 0
8 3 8 4 -2 0
3 1 "c :- d, not b. =: 9" 0
5 3 9 3 8 0
3 1 "d. =: 10" 0
6 2 10 4 0

14We indicate the meanings of objects in comments preceding their definitions.
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3 1 "end of file" 0
0 0 0 .

Note that the above representation is not unique, for instance, we could have assigned different
object IDs or changed the order of entries (provided that referenced objects are already defined).

5.3 Normal Form SimpleDLP

This normal form, corresponding to the input language used in the SCore∨ category of the ASP
system competition [16], extends normal form “Simple” by allowing disjunctions over atoms to
occur in heads of rules and facts. For instance, consider the following disjunctive program:

a | b.
b | c | d :- a, not d.

This program can be represented in ASPils as follows:

3 1 "header, language version =: 1, normal form =: 2" 0
1 3 1 2 0 0
3 1 "a =: 1, b =: 2, c =: 3, d =: 4" 0
4 2 1 a 0
4 2 2 b 0
4 2 3 c 0
4 2 4 d 0
3 1 "(a | b) =: 5" 0
9 3 5 1 2 0
3 1 "a | b. =: 6" 0
6 2 6 5 0
3 1 "(b | c | d) =: 7" 0
9 4 7 2 3 4 0
3 1 "(a, not d) =: 8" 0
8 3 8 1 -4 0
3 1 "b | c | d :- a, not d. =: 9" 0
5 3 9 7 8 0
3 1 "end of file" 0
0 0 0 .

As in the previous subsection, this representation in ASPils is not unique.

5.4 Normal Form SModels

This normal form is inspired by the input language of the smodels solver [43], that is, it extends
“Simple” by cardinality and weight constraints as well as optimize objects (cf. tables on page
21). Note that the weights used in weight constraints and weighted literals have to be non-
negative. Furthermore, the upper bounds of cardinality and weight constraints must be trivial,
that is, they cannot be smaller than the number of literals or the sum of weights, respectively,
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in a constraint. If a cardinality constraint occurs as the head of a rule or fact, its lower bound
must also be trivial, viz., it must be 0, while weight constraints are not permitted as heads.
Finally, note that weighted literals as well as count and sum aggregates may only be used in
combination with an optimize object, but not as a part of a rule, a fact, or an integrity constraint.
For illustration, we consider an input program as follows:

{a, b}.
c :- a, not b.
:- 3[a=2, b=1, not c=2].
minimize [not a=1, not b=2, c=2].

The following is a possible representation of this program in ASPils:

3 1 "header, language version =: 1, normal form =: 3" 0
1 3 1 3 0 0
3 1 "a =: 1, b =: 2, c=: 3" 0
4 2 1 a 0
4 2 2 b 0
4 2 3 c 0
3 1 "{a, b} =: 4" 0
b 5 4 0 2 1 2 0
3 1 "{a, b}. =: 5" 0
6 2 5 4 0
3 1 "(a, not b) =: 6" 0
8 3 6 1 -2 0
3 1 "c :- a, not b. =: 7" 0
5 3 7 3 6 0
3 1 "3[a=2, b=1, not c=2] =: 8" 0
c 9 8 3 5 1 2 -3 2 1 2 0
3 1 ":- 3[a=2, b=1, not c=2]. =: 9" 0
7 2 9 8 0
3 1 "(not a=1) =: 10, (not b=2) =: 11, (c=2) =: 12" 0
d 3 10 -1 1 0
d 3 11 -2 2 0
d 3 12 3 2 0
3 1 "sum[not a=1, not b=2, c=2] =: 13" 0
f 4 13 10 11 12 0
3 1 "minimize [not a=1, not b=2, c=2]. =: 14" 0
1d 3 14 1e 13 0
3 1 "end of file" 0
0 0 0 .
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5.5 Normal Form CModels

This normal form is closely related to the input language of solver cmodels [20, 27], basically,
augmenting “SModels” normal form with disjunctions in heads of rules and facts.15

5.6 Normal Form CModelsExtended

This normal form is derived from “CModels” by dropping some of its restrictions. Non-trivial
upper bounds are permitted for cardinality and weight constraints. Furthermore, both of them
can occur with non-trivial bounds as heads of rules and facts. Finally, negative weights can
be used within weight constraints and weighted literals being subject to optimize objects (cf.
Table 2). The following example program makes use of these additional features:

0[a=1, b=-1]0 :- 0[c=-1, d=1]0.
0[c=1, d=-1]0 :- 0[a=-1, b=1]0.
minimize [not a=-1, not b=2, c=-2, d=1].

This program can be represented in ASPils as follows:

3 1 "header, language version =: 1, normal form =: 5" 0
1 3 1 5 0 0
3 1 "a =: 1, b =: 2, c =: 3, d =: 4" 0
4 2 1 a 0
4 2 2 b 0
4 2 3 c 0
4 2 4 d 0
3 1 "0[a=1, b=-1]0 =: 5" 0
c 7 5 0 0 1 2 1 -1 0
3 1 "0[c=-1, d=1]0 =: 6" 0
c 7 6 0 0 3 4 -1 1 0
3 1 "0[a=1, b=-1]0 :- 0[c=-1, d=1]0. =: 7" 0
5 3 7 5 6 0
3 1 "0[c=1, d=-1]0 =: 8" 0
c 7 8 0 0 3 4 1 -1 0
3 1 "0[a=-1, b=1]0 =: 9" 0
c 7 9 0 0 1 2 -1 1 0
3 1 "0[c=1, d=-1]0 :- 0[a=-1, b=1]0. =: 10" 0
5 3 10 8 9 0
3 1 "(not a=-1) =: 11, (not b=2) =: 12,

(c=-2) =: 13, (d=1) =: 14" 0
d 3 11 -1 -1 0
d 3 12 -2 2 0
d 3 13 3 -2 0
d 3 14 4 1 0

15While cmodels does not process minimize statements, they can be expressed in “CModels” via optimize objects.
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3 1 "sum[not a=-1, not b=2, c=-2, d=1] =: 15" 0
f 5 15 11 12 13 14 0
3 1 "minimize [not a=-1, not b=2, c=-2, d=1]. =: 16" 0
1d 3 16 1e 15 0
3 1 "end of file" 0
0 0 0 .

5.7 Normal Form DLV

This normal form is inspired by the input language of dlv [6, 26]. Hence, it allows for disjunc-
tions over atoms in heads of rules and facts. Furthermore, aggregates may be used in bodies,
under the proviso that all referenced weighted literals have non-negative weights.16 As dlv does
not deal with cardinality and weight constraints of smodels [43, 44], we exclude cardinality and
weight constraints from “DLV” normal form. (However, cardinality and weight constraints can
equivalently be expressed in terms of count and sum aggregates, respectively.) Finally, weak
constraints [26] can be represented using optimize objects. Note that the restrictions in Table 2
make sure that a weighted literal referencing a conjunction can only be used within an optimize
object, but not by aggregates in bodies, which excludes the possibility of conjunctions to nest.
For illustration, consider an input program as follows:

a | b | c.
d :- sum[a=1, b=1, c=2] >= 2.
:˜ d, not b. [1:2]
:˜ a. [2:1]
:˜ not c. [1:1]

The following is a possible representation of this program in ASPils:

3 1 "header, language version =: 1, normal form =: 6" 0
1 3 1 6 0 0
3 1 "a =: 1, b =: 2, c =: 3, d =: 4" 0
4 2 1 a 0
4 2 2 b 0
4 2 3 c 0
4 2 4 d 0
3 1 "(a | b | c) =: 5" 0
9 4 5 1 2 3 0
3 1 "a | b | c. =: 6" 0
6 2 6 5 0
3 1 "(a=1) =: 7, (b=1) =: 8, (c=2) =: 9" 0
d 3 7 1 1 0
d 3 8 2 1 0
d 3 9 3 2 0
3 1 "sum[a=1, b=1, c=2] =: 10" 0

16Moreover, the dlv solver requires logic programs to be “aggregate-stratified” [6], which is neglected herein.
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f 4 10 7 8 9 0
3 1 "(sum[a=1, b=1, c=2] >= 2) =: 11" 0
1b 3 11 10 2 0
3 1 "d :- sum[a=1, b=1, c=2] >= 2. =: 12" 0
5 3 12 4 11 0
3 1 "(d, not b) =: 13" 0
8 3 13 4 -2 0
3 1 "((d, not b)=1) =: 14, (a=2) =: 15, (not c=1) =: 16" 0
d 3 14 13 1 0
d 3 15 1 2 0
d 3 16 -3 1 0
3 1 "sum[a=2, not c=1] =: 17" 0
f 3 17 15 16 0
3 1 "minimize [(d, not b)=1].

minimize [a=2, not c=1]. =: 18" 0
1d 4 18 1e 14 17 0
3 1 "end of file" 0
0 0 0 .

5.8 Normal Form Conglomeration

This normal form is the most general one defined here. It results from “CModelsExtended”
and “DLV” by dropping some restrictions of the latter, that is, unary operators and aggregates
may occur in the heads of rules and facts, and negative weights are allowed within weighted lit-
erals. Furthermore, we include default negation objects on negative literals over atoms in order
to account for double negation. Though double negation is a syntactical feature that increases
neither computational complexity nor technical difficulties of ASP solving, somewhat astonish-
ingly, it is currently not supported by any ASP solver nor by accompanying grounders. This is
why default negation objects were not permitted in previous normal forms. Their restriction to
negative literals over atoms excludes nesting and makes the representation of double negation
unambiguous. The following program, comprising a single rule, uses the additional features:

sum[a=1, b=1, c=1, d=-2] == 0 :-
2[a=-1, not b=2, not c=3]3, not not d.

This program can be represented in ASPils as follows:

3 1 "header, language version =: 1, normal form =: 7" 0
1 3 1 7 0 0
3 1 "a =: 1, b =: 2, c =: 3, d =: 4" 0
4 2 1 a 0
4 2 2 b 0
4 2 3 c 0
4 2 4 d 0
3 1 "(a=1) =: 5, (b=1) =: 6, (c=1) =: 7, (d=-2) =: 8" 0
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d 3 5 1 1 0
d 3 6 2 1 0
d 3 7 3 1 0
d 3 8 4 -2 0
3 1 "sum[a=1, b=1, c=1, d=-2] =: 9" 0
f 5 9 5 6 7 8 0
3 1 "(sum[a=1, b=1, c=1, d=-2] == 0) =: 10" 0
18 3 10 9 0 0
3 1 "2[a=-1, not b=2, not c=3]3 =: 11" 0
c 9 11 2 3 1 -2 -3 -1 2 3 0
3 1 "(not not d) =: 12" 0
a 2 12 -4 0
3 1 "(2[a=-1, not b=2, not c=3]3, not not d) =: 13" 0
8 3 13 11 12 0
3 1 "sum[a=1, b=1, c=1, d=-2] == 0 :-

2[a=-1, not b=2, not c=3]3, not not d. =: 14" 0
5 3 14 10 13 0
3 1 "end of file" 0
0 0 0 .

6 Discussion and Outlook

In this document, we have specified language version 1 of ASPils, which stands for “ASP in-
termediate language standard.” The primary motivation for this work is making a step towards
a standard input language for ASP solvers to be generated by grounders, for which we propose
ASPils. The major design goals of ASPils are generality, by supporting language constructs
processed by existing ASP grounders and solvers, and extensibility, by using an object-based
approach and including version information. For solvers, parsing a problem description in AS-
Pils should still be reasonably simple, thus, ASPils defines a numerical format not intended to be
manually written by users. However, ASPils also provides means to specify symbolic informa-
tion, enabling the reconstruction of a human-readable format. Beyond that, via comments and
meta-information, arbitrary contents can be included in a problem description without disturbing
solvers. Thus, the current proposal of ASPils is an appropriate response to the recommendations
presented in [22] as regards extensibility and support for comments as well as symbolic infor-
mation. The specification of a module architecture for problem representations in ASPils is still
missing from this document, but atom options for identifying input atoms and local atoms are
already provided in the first version of the format. However, the outcome of joining several
ASPils specifications into a single specification remains to be defined.

As a proof of concept, we are currently working on a new version of grounder gringo [17]
able to output ASPils format and also on an ASPils front-end for solver clasp [15]. In the course
of this, we take advantage of the generic design of ASPils allowing us to preserve the structure
of ground logic programs. For instance, gringo can output cardinality and weight constraints
specifying both a lower and a non-trivial upper bound, and such constraints can occur both in

28



the bodies and in the heads of rules. In contrast, in lparse’s output format [44], upper bounds
(and in rule heads, also lower bounds) have to be compiled away, introducing additional atoms
and rules. Such structure-degrading transformations are performed by lparse in order to match
the problem representation with the internal data structures of smodels [43], and in the past,
tools [30] were particularly developed to undo such transformations. As regards grounding, we
think that the two tasks of a grounder are, first, substituting constants for variables in an input
program and, second, presenting the grounding result to a solver in some basic format that is easy
to parse. Beyond these two tasks, a grounder should keep the input program intact in order to be
solver-independent and to abolish the need of applying structure-restoring tools. In particular,
introducing additional atoms during the grounding phase ought to be avoided, as it is very likely
to spoil the desired equivalence between the input program and the result of grounding.

In long-term, we hope that our proposal of an intermediate language standard leads to the
establishment of a common input format for ASP solvers, comparable to the role of DIMACS
format [7] in SAT. On the one hand, it would make ASP more user-friendly if solvers could be
interchanged without redoing problem encodings, given that the two main input languages, the
one of dlv [26] and the one of lparse [44], are incompatible with each other. A common inter-
mediate language would enhance the interoperability of other auxiliary tools as well. Similarly,
the assessment of ASP solvers would be greatly facilitated, for instance, in future ASP solver
competitions. On the other hand, the non-availability of a standardized intermediate language
(as dlv does not supply an intermediate format and lparse’s output language is not standard-
ized) makes ASP solvers and related tools satellites of particular grounders, addicted to their
capabilities and supported language fragments. We think that the establishment of an extensible
intermediate language standard, not dictated by the capabilities of grounders, might motivate
future works on knowledge representation for applications, inventing new language constructs
when they are useful and then integrating them into the standard. At the moment, incorporating
new language features would mean hacking one of the few available grounding tools, making
the broad acceptance and usage of the feature rather unlikely. However, the establishment of an
intermediate language standard must be a community effort, requiring a representative standard-
ization committee and developers motivated to implement the standard in their tools. In view of
these requirements, our proposal of ASPils can serve as a starting point for future discussions
within the community as well as first implementations of a real shared format.

Let us note that the establishment of ASPils or a comparable intermediate language standard
can only be a small step in making ASP tools more general, more interoperable, and thus more
user-friendly. In fact, tools are needed to perform various useful tasks on problem descriptions in
the new language, similar to what the Helsinki collection [21] of tools offers for lparse’s output
format. Let us give some examples. For the use in ASP system competitions, solver inputs must
contain neither meta-information nor comments, thus, a (trivial to develop) tool to delete such
information would be needed. For benchmarking, a tool like shuffle is desirable, in particular,
considering that shuffling ASPils sentences requires more care than needed with lparse’s output
format as the order among object definitions and references has to be maintained. If a grounder
generates ASPils output on-the-fly, it is hard to predict the most restrictive normal form suffi-
cient for the input program, hence, a post processor calculating this simplest normal form might
be useful. As the last example given here, a tool like lplist should be made available for recon-
structing a symbolic representation from the intermediate format. Finally, we note that ASPils
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or any other intermediate language cannot establish compatibility among the input languages
of grounders or integrated ASP systems (such as dlv). Furthermore, incremental [14] or even
systems dealing with non-ground input programs are currently out of the scope of our proposal.
However, we think that the relatively simple concept of an intermediate language provides a
good basis for standardization efforts, whereas more sophisticated aspects of intermediate lan-
guages could be addressed in the future.
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A Grammar of ASPils
DIGIT = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’;
POSINTEGER = DIGIT-’0’, {DIGIT};
INTEGER0 = POSINTEGER | ’0’;
INTEGER = [’-’], INTEGER0;

LETTER = ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ |
’i’ | ’j’ | ’k’ | ’l’ | ’m’ | ’n’ | ’o’ | ’p’ | ’q’ |
’r’ | ’s’ | ’t’ | ’u’ | ’v’ | ’w’ | ’x’ | ’y’ | ’z’ |
’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’ | ’I’ |
’J’ | ’K’ | ’L’ | ’M’ | ’N’ | ’O’ | ’P’ | ’Q’ | ’R’ |
’S’ | ’T’ | ’U’ | ’V’ | ’W’ | ’X’ | ’Y’ | ’Z’ | ’_’;

PARENTHESES = ’(’ | ’)’;
WHITESPACE = ’ ’ |

? ISO 6429 character Horizontal Tabulation ? |
? ISO 6429 character Carriage Return ? |
? ISO 6429 character Line Feed ? |
? ISO 6429 character Vertical Tabulation ? |
? ISO 6429 character Form Feed ?;

STRING = {LETTER | DIGIT | PARENTHESES};
VERBAL = {STRING | ’-’ | WHITESPACE};
SAFE_VERBAL = ’"’, VERBAL, ’"’;

PROGRAM = {OBJECT_COMMENT, ’0’},
HEADER, ADDITIONAL_HEADERS, {ENTRY}, OBJECT_EOF,
{OBJECT_COMMENT, ’0’};

HEADER = TYPE_HEADER, POSINTEGER, VERSION, NORMAL_FORM, NUM_ADDITIONAL_HEADERS, ’0’;

VERSION = POSINTEGER;
NORMAL_FORM = POSINTEGER;
NUM_ADDITIONAL_HEADERS = INTEGER0;
ADDITIONAL_HEADERS = {EXT_HEADER, ’0’};

OBJECT_EOF = TYPE_EOF, INTEGER0, ’0’;

ENTRY = OBJECT, ’0’;
OBJECT = OBJECT_META | OBJECT_COMMENT |

OBJECT_ATOM | OBJECT_RULE |
OBJECT_FACT | OBJECT_INTEGRITY_CONSTRAINT |
OBJECT_CONJUNCTION | OBJECT_DISJUNCTION |
OBJECT_DEFAULT_NEGATION | OBJECT_CARDINALITY_CONSTRAINT |
OBJECT_WEIGHT_CONSTRAINT | OBJECT_WEIGHTED_LITERAL |
OBJECT_AGGREGATE_COUNT | OBJECT_AGGREGATE_SUM |
OBJECT_AGGREGATE_MAX | OBJECT_AGGREGATE_MIN |
OBJECT_AGGREGATE_TIMES | OBJECT_OPERATOR_EQ |
OBJECT_OPERATOR_LEQ | OBJECT_OPERATOR_LT |
OBJECT_OPERATOR_GEQ | OBJECT_OPERATOR_GT |
OBJECT_UNARY_EQ | OBJECT_UNARY_LEQ |
OBJECT_UNARY_LT | OBJECT_UNARY_GEQ |
OBJECT_UNARY_GT | OBJECT_OPTIMIZE;

OBJECT_ID = POSINTEGER;
OBJECT_ID_LIST = OBJECT_ID, {OBJECT_ID};
LITERAL = [-], OBJECT_ID;
LITERAL_LIST = LITERAL, {LITERAL};
WEIGHT = INTEGER;
WEIGHT_LIST = WEIGHT, {WEIGHT};
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OBJECT_META = TYPE_META, POSINTEGER, OBJECT_ID, SAFE_VERBAL, {META_OPTION};
META_OPTION = INTEGER;

OBJECT_COMMENT = TYPE_COMMENT, INTEGER0, [SAFE_VERBAL];

OBJECT_ATOM = TYPE_ATOM, POSINTEGER, OBJECT_ID, ATOM_NAME,
{ATOM_OPTION}, [MODULE_OPTION];

ATOM_NAME = (LETTER, STRING) | SAFE_VERBAL;
ATOM_OPTION = HIDE | CLASSICAL_NEGATION;
HIDE = ’1’;
CLASSICAL_NEGATION = ’2’, OBJECT_ID;
MODULE_OPTION = INPUT | LOCAL;
INPUT = ’3’;
LOCAL = ’4’;

OBJECT_RULE = TYPE_RULE, POSINTEGER, OBJECT_ID, LITERAL, LITERAL;
OBJECT_FACT = TYPE_FACT, POSINTEGER, OBJECT_ID, LITERAL;
OBJECT_INTEGRITY_CONSTRAINT = TYPE_INTEGRITY_CONSTRAINT, POSINTEGER, OBJECT_ID,

LITERAL;

OBJECT_CONJUNCTION = TYPE_CONJUNCTION, POSINTEGER, OBJECT_ID, LITERAL_LIST;
OBJECT_DISJUNCTION = TYPE_DISJUNCTION, POSINTEGER, OBJECT_ID, LITERAL_LIST;
OBJECT_DEFAULT_NEGATION = TYPE_DEFAULT_NEGATION, POSINTEGER, OBJECT_ID, LITERAL;

OBJECT_CARDINALITY_CONSTRAINT = TYPE_CARDINALITY_CONSTRAINT, POSINTEGER, OBJECT_ID,
INTEGER0, INTEGER0, LITERAL_LIST;

OBJECT_WEIGHT_CONSTRAINT = TYPE_WEIGHT_CONSTRAINT, POSINTEGER, OBJECT_ID,
INTEGER, INTEGER, LITERAL_LIST, WEIGHT_LIST;

OBJECT_WEIGHTED_LITERAL = TYPE_WEIGHTED_LITERAL, POSINTEGER, OBJECT_ID,
LITERAL, WEIGHT;

OBJECT_AGGREGATE_COUNT = TYPE_AGGREGATE_COUNT, POSINTEGER, OBJECT_ID, LITERAL_LIST;
OBJECT_AGGREGATE_SUM = TYPE_AGGREGATE_SUM, POSINTEGER, OBJECT_ID, OBJECT_ID_LIST;
OBJECT_AGGREGATE_MAX = TYPE_AGGREGATE_MAX, POSINTEGER, OBJECT_ID, OBJECT_ID_LIST;
OBJECT_AGGREGATE_MIN = TYPE_AGGREGATE_MIN, POSINTEGER, OBJECT_ID, OBJECT_ID_LIST;
OBJECT_AGGREGATE_TIMES = TYPE_AGGREGATE_TIMES, POSINTEGER, OBJECT_ID, OBJECT_ID_LIST;

OBJECT_OPERATOR_EQ = TYPE_OPERATOR_EQ, POSINTEGER, OBJECT_ID, OBJECT_ID, OBJECT_ID;
OBJECT_OPERATOR_LEQ = TYPE_OPERATOR_LEQ, POSINTEGER, OBJECT_ID, OBJECT_ID, OBJECT_ID;
OBJECT_OPERATOR_LT = TYPE_OPERATOR_LT, POSINTEGER, OBJECT_ID, OBJECT_ID, OBJECT_ID;
OBJECT_OPERATOR_GEQ = TYPE_OPERATOR_GEQ, POSINTEGER, OBJECT_ID, OBJECT_ID, OBJECT_ID;
OBJECT_OPERATOR_GT = TYPE_OPERATOR_GT, POSINTEGER, OBJECT_ID, OBJECT_ID, OBJECT_ID;

OBJECT_UNARY_EQ = TYPE_UNARY_EQ, POSINTEGER, OBJECT_ID, OBJECT_ID, INTEGER;
OBJECT_UNARY_LEQ = TYPE_UNARY_LEQ, POSINTEGER, OBJECT_ID, OBJECT_ID, INTEGER;
OBJECT_UNARY_LT = TYPE_UNARY_LT, POSINTEGER, OBJECT_ID, OBJECT_ID, INTEGER;
OBJECT_UNARY_GEQ = TYPE_UNARY_GEQ, POSINTEGER, OBJECT_ID, OBJECT_ID, INTEGER;
OBJECT_UNARY_GT = TYPE_UNARY_GT, POSINTEGER, OBJECT_ID, OBJECT_ID, INTEGER;

OBJECT_OPTIMIZE = TYPE_OPTIMIZE, POSINTEGER, OBJECT_ID, STRATEGY;
STRATEGY = LEX;
LEX = TYPE_OPTIMIZE_LEX, OBJECT_ID_LIST;
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TYPE_EOF = ’0’;

TYPE_HEADER = ’1’;

TYPE_META = ’2’;
TYPE_COMMENT = ’3’;

TYPE_ATOM = ’4’;

TYPE_RULE = ’5’;
TYPE_FACT = ’6’;
TYPE_INTEGRITY_CONSTRAINT = ’7’;

TYPE_CONJUNCTION = ’8’;
TYPE_DISJUNCTION = ’9’;
TYPE_DEFAULT_NEGATION = ’a’;

TYPE_CARDINALITY_CONSTRAINT = ’b’;
TYPE_WEIGHT_CONSTRAINT = ’c’;

TYPE_WEIGHTED_LITERAL = ’d’;

TYPE_AGGREGATE_COUNT = ’e’;
TYPE_AGGREGATE_SUM = ’f’;
TYPE_AGGREGATE_MAX = ’10’;
TYPE_AGGREGATE_MIN = ’11’;
TYPE_AGGREGATE_TIMES = ’12’;

TYPE_OPERATOR_EQ = ’13’;
TYPE_OPERATOR_LEQ = ’14’;
TYPE_OPERATOR_LT = ’15’;
TYPE_OPERATOR_GEQ = ’16’;
TYPE_OPERATOR_GT = ’17’;

TYPE_UNARY_EQ = ’18’;
TYPE_UNARY_LEQ = ’19’;
TYPE_UNARY_LT = ’1a’;
TYPE_UNARY_GEQ = ’1b’;
TYPE_UNARY_GT = ’1c’;

TYPE_OPTIMIZE = ’1d’;
TYPE_OPTIMIZE_LEX = ’1e’;
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