
Under consideration for publication in Theory and Practice of Logic Programming 1

Multi-Criteria Optimization in ASP and its
Application to Linux Package Configuration∗

Martin Gebser and Roland Kaminski and Benjamin Kaufmann and Torsten Schaub†
Institut für Informatik, Universität Potsdam

submitted [n/a]; revised [n/a]; accepted [n/a]

Abstract

We elaborate upon new strategies and heuristics for solving multi-criteria optimization problems
via Answer Set Programming (ASP). In particular, we conceive a new solving algorithm, based
on conflict-driven learning, allowing for non-uniform descents during optimization. We apply these
techniques to solve realistic Linux package configuration problems, thereby showing how transpar-
ently such problems can be modeled in ASP. Finally, we describe the Linux package configuration
tool aspcud and compare its performance with systems pursuing alternative approaches.

1 Introduction

Upgrading and maintaining complex software systems constitutes a major challenge in
modern software architectures. This problem is addressed in the mancoosi project (man-
coosi), having a particular focus on GNU/Linux distributions. To this end, the consor-
tium organizes an international competition of solvers for package installation and upgrade
problems. In formal terms, this amounts to solving multi-criteria optimization problems.
Such problems are of great interest in various application domains because they allow for
identifying the best solutions among all feasible ones. The quality of a solution is often as-
sociated with costs or rewards subject to minimization and/or maximization, respectively.

In what follows, we are interested in solving Linux package configuration problems
by appeal to the multi-criteria optimization capacities of Answer Set Programming (ASP;
(Baral 2003)). To this end, we develop novel general-purpose strategies and heuristics in
the context of modern (conflict-driven learning) ASP solving (Gebser et al. 2007). In partic-
ular, we conceive a new optimization algorithm allowing for non-uniform descents during
optimization. In multi-criteria optimization, this enables us to optimize criteria in the order
of significance, rather than pursuing a rigid lexicographical descent. We illustrate the im-
pact of our contributions by appeal to the Linux package configuration tool aspcud and its
performance in comparison with alternative approaches.

Pioneering work in this area was done by Tommi Syrjänen in (1999; 2000), using ASP
for representing and solving configuration problems for the Debian GNU/Linux system.

∗ This draft extends a Pragmatics of SAT 2011 (PoS’11) contribution of the same title, which in turn extends the
short paper “Multi-Criteria Optimization in Answer Set Programming”, presented at the International Confer-
ence on Logic Programming 2011 (ICLP’11), by detailing ASP-based Linux package configuration.
† Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

2 Martin Gebser and Roland Kaminski and Benjamin Kaufmann and Torsten Schaub

In fact, ASP allows for defining such problems through sequences of cost functions rep-
resented by (multi)sets of literals with associated weights. For instance, in the approach
taken by smodels (Simons et al. 2002), cost functions are expressed through a sequence
of #minimize (and #maximize) statements. Optimal models are then computed via
a branch-and-bound extension to smodels’ enumeration algorithm. Similarly, dlv (Leone
et al. 2006) offers so-called weak constraints, serving the same purpose.

2 Background

We only briefly introduce the syntax and semantics of ground (extended) logic programs.
For further details, we refer the reader to (Simons et al. 2002). Likewise, first-order rep-
resentations, commonly used to encode problems in ASP, are informally introduced by
need in the remainder of this paper. See, e.g., (Syrjänen) and (Gebser et al.) for detailed
descriptions of the input languages of the grounders lparse and gringo, respectively.

A ground (extended) rule r is an expression of the form

h← b1, . . . , bm,not bm+1, . . . ,not bn.

The head h of r is either an atom a, a choice {a}, or the special symbol ⊥. If h is {a}, we
call r a choice rule, and an integrity constraint if h is ⊥; we skip ⊥ when writing integrity
constraints below. For 1 ≤ i ≤ n, each bi in the body of r is an atom a or a #sum constraint
of the formL#sum[`1 = w1, . . . , `k = wk]U . In the latter, `j = a or `j = not a is a literal
and wj an integer for 1 ≤ j ≤ k; L and U are integers providing a lower and an upper
bound. A #sum constraint holds wrt a set X of atoms if L ≤

∑
1≤j≤k,`j=a,a∈X wj +∑

1≤j≤k,`j=not a,a/∈X wj ≤ U . Either or both of L and U can be omitted, in which case
they are identified with the (trivial) bounds−∞ and +∞, respectively. A body literal bi (or
not bi) holds wrt X if bi holds (or does not hold) wrt X , where an atom a holds if a ∈ X .
If n = 0, i.e., r has an empty body, we call r a fact and simply write h. in the sequel. A
rule r is satisfied wrt X if some body literal of r does not hold wrt X , h is a choice, or
h ∈ X . Note that an integrity constraint is unsatisfied if all literals in its body hold wrt X .

A ground logic program Π is a set of ground rules. A set X of atoms is a model of Π

if each r ∈ Π is satisfied wrt X . An answer set of Π is a model X of Π such that every
atom in X is derivable from Π. Roughly speaking, the latter means that, for each a ∈ X ,
Π contains a rule r with head h = a or h = {a} such that all body literals of r hold wrt X;
see (Simons et al. 2002) for further details.

In addition to rules, a logic program can contain #minimize statements of the form

#minimize[`1 = w1@L1, . . . , `n = wn@Ln].

Besides literals `i and integer weights wi for 1 ≤ i ≤ n, a #minimize statement includes
integers Li providing priority levels (Gebser et al. 2011). The #minimize statements in Π

distinguish optimal answer sets of Π in the following way. For any set X of atoms and
integer L, let ΣX

L denote the sum of weights wi such that `i = wi@L occurs in some
#minimize statement in Π and `i holds wrtX . We also call ΣX

L the utility ofX at priority
levelL. An answer setX of Π is dominated if there is an answer set Y of Π such that ΣY

L <

ΣX
L and ΣY

L′ = ΣX
L′ for all L′ > L, and optimal otherwise. Note that greater priority levels

are more significant than smaller ones, which allows for representing sequences of several

Multi-Criteria Optimization in ASP & Application to Linux Package Configuration 3

optimization criteria. Finally, letting `i denote the complement of a literal `i, the following
can be used as a synonym for a #minimize statement: #maximize[`1 = w1@L1, . . . ,

`n = wn@Ln].

3 Approach

We start by describing the package configuration problem along with our ASP encoding of
it. The formal problem specification is oriented at (Argelich et al. 2010), yet extended here
to reflect the most recent optimization criteria assessed in the mancoosi project (mancoosi).

To begin with, we define the constituents of a package description.

Definition 1 (Package Description)
A package description (pvn, D,E,R) consists of

• a package identifier pvn associated with a package of name n in version v,
• a set D of dependency clauses,
• a set E of exclusion clauses, and
• a set R of recommendation clauses,

where clauses of each type are sets of package identifiers.

Note that each package is identified via a pair consisting of a name and a version. Fur-
thermore, there are three kinds of package relations: dependencies, exclusions, and recom-
mendations. An exclusion clause means that a package must not be installed jointly with
any of the excluded packages. A dependency clause expresses the requirement that some
package in it needs to be installed along with the dependent package. Finally, the intention
of recommendations is similar to dependencies, but unlike the latter a recommendation
clause specifies the (soft) desire that some of its packages should be installed.

Given a set of package descriptions, called universe, along with install goals, the instal-
lability problem is about identifying installations such that all goals are fulfilled and the
hard requirements (dependencies and exclusions) are satisfied for all packages.

Definition 2 (Valid Installation Profile)
Given a universe U of package descriptions and a set I of install clauses, where each
install clause is a set of package identifiers, some P ⊆ {pvn | (pvn, D,E,R) ∈ U} is a valid
installation profile if

• P ∩ i 6= ∅ for each i ∈ I ,
• P ∩ d 6= ∅ for each d ∈ (

⋃
(pv

n,D,E,R)∈U,pv
n∈P

D), and
• P ∩ e = ∅ for each e ∈ (

⋃
(pv

n,D,E,R)∈U,pv
n∈P

E).

Note that install clauses and dependencies act positively by requiring some contained
package to be installed, while exclusions prohibit the installation of any of their pack-
ages. Rather unsurprisingly, deciding whether there is a valid installation profile is NP-
complete (Di Cosmo et al. 2006), already if there is a single install clause of one element.

In the life cycle of a software system, an existing installation is frequently extended by
installing new components or updating existing ones. In such a setting, it is desirable that a
follow-up installation is “as close as possible” to its predecessor. To address this, a number
of optimization criteria have been proposed in the mancoosi project. They rely on counting
the elements of the sets defined next.

4 Martin Gebser and Roland Kaminski and Benjamin Kaufmann and Torsten Schaub

unit(n1, 1). unit(n1, 2). unit(n1, 3). latest(n1, 3).
satisfies(n1, 1, c5). satisfies(n1, 2, c5). satisfies(n1, 3, c5).
depends(n1, 1, c1). depends(n1, 2, c2). conflicts(n1, 3, c3).

unit(n2, 1). unit(n2, 2). latest(n2, 2). unit(n3, 1). latest(n3, 1).
satisfies(n2, 1, c1). satisfies(n2, 2, c1). satisfies(n3, 1, c3).
satisfies(n2, 1, c2). conflicts(n2, 2, c2). unit(n4, 1). latest(n4, 1).

recommends(n2, 2, c4). satisfies(n4, 1, c4).

installed(n2, 1). installed(n3, 1). requested(c5).

Fig. 1: Facts describing a package configuration instance.

Definition 3 (Utilities)
Given a universeU of package descriptions and two setsO,P of package identifiers, define

NP
O = {n | pvn ∈ P,@w : pwn ∈ O},
DP

O = {n | pvn ∈ O,@w : pwn ∈ P},
CPO = {n | pvn ∈ (P \O) ∪ (O \ P)},

UP
U = {n | pvn ∈ P, p

max{w|(pw
n ,D,E,R)∈U}

n /∈ P}, and

RP
U = {(pvn, r) | (pvn, D,E,R) ∈ U, pvn ∈ P, r ∈ R,P ∩ r = ∅}.

Viewing O as the existing installation and P as its follow-up, NP
O is the collection of

package names n such that some version v of n belongs to P , while O contains no version
of n; that is, a package of name n is new in P . Similarly, DP

O and CPO collect the names of
packages that are deleted or changed, respectively, where change means that some version
is new or deleted. The sets UP

U andRP
U investigate P relative to the universe U . A package

name n belongs to UP
U if some version v of n is in P , but not the latest version w of n;

that is, packages of name n are not up-to-date. Finally, a pair (pvn, r) in RP
U points to an

unsatisfied recommendation clause of a package of name n in version v that is contained
in P . In fact, recommendations impose soft constraints that have not been considered in
the description of valid installation profiles in Definition 2.

Lexicographically ordered combinations of utilities give rise to multi-criteria optimiza-
tion problems. In a recent trial-run1 of the competition organized by mancoosi, the follow-
ing criteria have been applied:

paranoid: Minimize first |DP
O | and second |CPO |.

trendy: Minimize first |DP
O |, second |UP

U |, third |RP
U |, and fourth |NP

O |.
user: Arbitrary sequence of objectives (minimization or maximization) over utilities.

The paranoid criteria aim at avoiding, first, package deletions and, second, changes in
general. The trendy criteria also penalize package deletions in the first place, but then aim
at an up-to-date installation, satisfaction of recommendations, and few new packages. Note
that the paranoid and trendy criteria have particular practical counterparts, viz., a server
system or a desktop environment, respectively.

After specifying package configuration problems, we now describe their representa-
tion in ASP. A particular package configuration instance is provided in terms of facts,

1 http://www.mancoosi.org/misc-live/20101126/

Multi-Criteria Optimization in ASP & Application to Linux Package Configuration 5

paranoid: utility(delete,−2). utility(change,−1).

trendy: utility(delete,−4). utility(update,−3). utility(recomm,−2). utility(newpkg ,−1).

Fig. 2: Facts describing the paranoid and trendy optimization criteria.

like the ones shown in Figure 1. Pairs of a package name and version are given via in-
stances of the predicate unit/2; the respective facts represent the package identifiers p1n1

,
p2n1

, p3n1
, p1n2

, p2n2
, p1n3

, and p1n4
. The identifiers of latest versions, p3n1

, p2n2
, p1n3

, and
p1n4

, are provided by means of the predicate latest/2. Facts of the form depends(n, v, c),
conflicts(n, v, c), and recommends(n, v, c) express dependencies, exclusions, and rec-
ommendations, respectively, where a package identified via pvn is related to a clause c.
The members of such a clause are specified in terms of the predicate satisfies/3; e.g.,
satisfies(n1, 1, c5), satisfies(n1, 2, c5), and satisfies(n1, 3, c5) represent that p1n1

, p2n1
,

and p3n1
belong to the clause labeled c5. The aforementioned predicates allow for provid-

ing the package descriptions (cf. Definition 1) of a universe (U in Definition 2). Finally, an
existing installation (O in Definition 3) and install clauses (I in Definition 2) are specified
via facts over installed/2 and requested/1, respectively.

Optimization criteria are declared via facts of the form utility(u, l), where u ∈
{newpkg , delete, change, update, recomm} refers toNP

O , DP
O , CPO , UP

U , orRP
U in Defini-

tion 3, respectively, and l is an integer representing a priority level as well as an objective
(minimization or maximization). In fact, if l is negative, it means that the cardinality of the
set associated with u is subject to minimization, while a positive l can be used to express
maximization. The paranoid and trendy criteria, described by the facts in Figure 2, rely
solely on minimization. Hence, all priority levels are negative, and a smaller priority level
takes precedence over greater levels (with smaller absolute values).

The described facts represent a package configuration problem along with objectives.
Corresponding (optimal) follow-up installations can be encoded in ASP as shown in Fig-
ure 3. Here, the first block of rules abstracts relations from particular package versions
to their common name, provided that all respective versions share a relation.2 For in-
stance, these rules allow us to derive satisfies(n1, c5) in view of satisfies(n1, 1, c5),
satisfies(n1, 2, c5), and satisfies(n1, 3, c5), given by the facts in Figure 1. The second
block of rules starts with a choice rule saying that any instance of unit/2 may be installed
in a follow-up installation, in which case install/2 holds. A similar abstraction as before
is applied by deriving install/1, omitting the version of a package to be installed, from
install/2. The following rules propagate relations of packages to be installed to clauses,
identifying the ones that need to be satisfied (include/1), must not be satisfied (exclude/1),
and those that are satisfied (satisfy/1). Based on this, the three integrity constraint at the
end of the second block stipulate all exclusion clauses to be unsatisfied and all dependency
as well as install clauses to be satisfied. These checks ensure that a follow-up installation
corresponds to a valid installation profile (cf. Definition 2). The rules of the third block
identify members of NP

O , DP
O , CPO , UP

U , or RP
U (cf. Definition 3), respectively, provided

that associated objectives are declared via facts over utility/2. Finally, the objectives rep-

2 The “:” connective expands to the list of all instances of its left-hand side such that corresponding instances
of literals on the right-hand side hold (Syrjänen; Gebser et al.).

6 Martin Gebser and Roland Kaminski and Benjamin Kaufmann and Torsten Schaub

% Lift interdependencies to names of packages

installed(N)← installed(N,V).

aux depends(N,D)← depends(N,V,D).
depends(N,D)← aux depends(N,D), depends(N,V,D) : unit(N,V).

aux conflicts(N,E)← conflicts(N,V,E).
conflicts(N,E)← aux conflicts(N,E), conflicts(N,V,E) : unit(N,V).

aux satisfies(N,S)← satisfies(N,V, S).
satisfies(N,S)← aux satisfies(N,S), satisfies(N,V, S) : unit(N,V).

% Generate valid installation profile

{install(N,V)} ← unit(N,V).
install(N)← install(N,V).

include(D)← install(N), depends(N,D).
include(D)← install(N,V), depends(N,V,D).

exclude(E)← install(N), conflicts(N,E).
exclude(E)← install(N,V), conflicts(N,V,E).

satisfy(S)← install(N), satisfies(N,S).
satisfy(S)← install(N,V), satisfies(N,V, S).

← exclude(E), satisfy(E).

← include(D),not satisfy(D).
← requested(I),not satisfy(I).

% Optimize installation profile

violate(newpkg , N)← utility(newpkg , L), install(N),not installed(N).

violate(delete, N)← utility(delete, L), installed(N),not install(N).

violate(change, N)← utility(change, L), installed(N,V),not install(N,V).
violate(change, N)← utility(change, L), install(N,V),not installed(N,V).

violate(update, N)← utility(update, L), install(N), latest(N,V),not install(N,V).

violate(recomm, r(N,V,R))← utility(recomm, L), recommends(N,V,R),
install(N,V),not satisfy(R).

#minimize[violate(U, T) = 1 @ −L : utility(U,L) : L < 0].

#maximize[violate(U, T) = 1 @ L : utility(U,L) : L > 0].

Fig. 3: ASP encoding of package configuration.

resented via negative priority levels are subject to a #minimize statement, and positive
ones to a #maximize statement.

As packages of the names n2 and n3 are installed according to facts in Figure 1, the
relevant parts of #minimize statements for criteria-specific priority levels L are:

#minimize[violate(newpkg , n1) = 1 @ L, violate(newpkg , n4) = 1 @ L]

#minimize[violate(delete, n2) = 1 @ L, violate(delete, n3) = 1 @ L]

#minimize[violate(change, n1) = 1 @ L, violate(change, n2) = 1 @ L,

violate(change, n3) = 1 @ L, violate(change, n4) = 1 @ L]

#minimize[violate(update, n1) = 1 @ L, violate(update, n2) = 1 @ L,

violate(update, n3) = 1 @ L, violate(update, n4) = 1 @ L]

#minimize[violate(recomm, r(n2, 2, c4)) = 1 @ L]

Multi-Criteria Optimization in ASP & Application to Linux Package Configuration 7

Note that recommends(n2, 2, c4) is the single recommendation in Figure 1. Hence, no
further atoms regarding recommendations are subject to the last #minimize statement.

4 Algorithm

As detailed in (Simons et al. 2002), #maximize statements can be turned into #minimize

statements, literals with negative weights be transformed such that weights become pos-
itive,3 and multiple priority levels be collapsed into a single one by scaling the weights
of literals, where all such transformations keep the optimal answer sets intact. However,
while the elimination of #maximize statements and negative weights can be done locally,
collapsing priority levels may lead to very large weights and also disguises an original
multi-criteria optimization problem. Hence, we assume here that optimization criteria are
represented in terms of a #minimize statement over literals associated with non-negative
weights and, notably, priority levels; i.e., priorities are not eliminated. The restriction to
non-negative weights has the advantages that the sum of weights is monotonically increas-
ing the more literals are assigned to true and that 0 is a (trivial) lower bound of the optimum
at each priority level.

As mentioned in the introduction, multi-criteria optimization can in principle be accom-
plished by extending a standard enumeration algorithm, like the one of smodels (Simons
et al. 2002), in the following way: for every solution, memorize its vector of utilities, back-
track, and check (during propagation) that assignments generated in the sequel induce a
lexicographically smaller vector of utilities (otherwise backtrack). This simple approach
requires only the most recent utility vector to be stored, and optimality of the last solution
is proven once the residual problem turns out to be unsatisfiable. But the simplicity comes
along with the drawback that the number of intermediate solutions, encountered before an
optimal one, is completely up to “luck” of the underlying enumeration algorithm. In fact,
if no additional measures are taken, such multi-criteria optimization is logically identical
to optimization of a single priority level along with scaled weights of literals.

The observation that plenty intermediate solutions improving only at low-priority utili-
ties can gravely obstruct the convergence towards a global optimum gave the main impetus
to our new approach to multi-criteria optimization in ASP. As noted in (Argelich et al.
2009) for Maximum Satisfiability (MaxSAT) and Pseudo-Boolean Optimization (PBO), a
better idea is to optimize priority levels stepwise in the order of significance, rather than
to optimize all priority levels at once. Thereby, we adhere to the strategy of successively
improving upper bounds given by intermediate solutions. On the one hand, focusing on
one priority level after the other settles the issue of intermediate solutions improving only
at low-priority levels. On the other hand, it leads to the situation that, before optimization
proceeds to the next priority level, optimality at the current level must be verified by prov-
ing unsatisfiability wrt an infeasible upper bound. Beyond the fact that accomplishing such
unsatisfiability proofs can be a bottleneck (cf. (Argelich et al. 2010)), they imply that too
strong bounds need to be taken back before optimization can proceed at the next level. In
particular, with solvers like clasp (Gebser et al. 2007), exploiting conflict-driven learning,

3 Since optimization statements merely serve the evaluation of answer sets, all preference-preserving transfor-
mations are admissible and cannot incur semantic problems (cf. (Ferraris 2005)).

8 Martin Gebser and Roland Kaminski and Benjamin Kaufmann and Torsten Schaub

also the learned constraints that rely on an infeasible upper bound must be retracted. To
this end, we make use of assumptions assigned at a solver’s root level (Eén and Sörensson
2003), i.e., unbacktrackable literals allowing for the selective (de)activation of constraints.
In fact, a speculative upper bound is imposed via an assumption such that a corresponding
constraint is not satisfied by making the assumption. If the upper bound turns out to be in-
feasible, the respective constraint and all learned information relying on it can then easily
be discarded by irrevocably assigning the complement of the former assumption. Likewise,
if the upper bound is feasible, the former assumption can be fixed, so that constraints in-
volving it may be simplified and apply unconditionally in the sequel. In the following, we
detail how dedicated multi-criteria optimization can be accomplished in modern (conflict-
driven learning) Boolean constraint solvers, thereby exploiting assumptions to circumvent
the need of a relaunch after an unsatisfiability proof.

Our algorithm augmenting conflict-driven learning (cf. (Darwiche and Pipatsrisawat
2009; Marques-Silva et al. 2009)) with multi-criteria optimization is shown in Algorithm 1.
The sequence 〈L1, . . . ,Llow 〉 determined in the first line contains the priority levels of the
input #minimize statement in decreasing order of significance. The counters assm , prio,
and step, initialized to 1 in the second line, are used to generate new assumptions on de-
mand, to identify the current priority level to be optimized, and to determine the amount
by which the upper bound ought to be decreased when a solution is found. The latter is
always 1, thus yielding a linear decrease, if the input leap flag is false , while an exponen-
tial scheme (described below) is applied otherwise. Furthermore, the lower bound lb, set
to 0 in the third line, stores the greatest value such that unsatisfiability has been proven
for smaller bounds at the current priority level. In fact, the optimization of a priority level
is finished once the utility of a solution matches the lower bound. In the loop in Line 4–
45, the optimization-specific information, kept in counters and the lower bound, is used to
guide conflict-driven search. As usual, the loop starts in Line 5 with a deterministic PROP-
AGATE step, assigning literals implied by the current assignment. Afterwards, one of the
following is the case: a conflict (Line 6–23), a solution (Line 24–44), or a heuristic decision
(Line 45). While the latter simply leads to reentering the loop, the first two cases deserve
more attention. We describe next the reaction to a solution and then the one to a conflict.

Upon encountering a solution, we start by checking whether its objective value at the
current priority level provides us with a new (non-speculative) upper bound. This is clearly
the case if the current solution is the first one, as tested via assm = 1 in Line 25, and
setting recd to true informs our algorithm that the upper bound needs to be recorded be-
fore proceeding to the next priority level. On the other hand, if a speculative upper bound
ubprio−step has already been imposed, the current solution witnesses that this bound is
feasible. Hence, a respective optimization constraint is made unconditional by fixing the
former assumption αassm in Line 27. In view of this, adding another constraint before pro-
ceeding to the next priority level is required only if the current solution’s objective value
is smaller than ubprio−step, as tested in Line 28. The sequence 〈ub1, . . . , ublow 〉 of up-
per bounds given by the current solution is memorized in Line 30 and printed along with
an answer set of the input program Π in Line 31. Then, the loop in Line 33–37 proceeds
to the next priority level to optimize, depending on whether the condition ubprio = lb

holds in Line 33. If so, it means that the upper bound witnessed by the solution at hand
matches the lower bound at a priority level, so that no further improvement is possible.

Multi-Criteria Optimization in ASP & Application to Linux Package Configuration 9

Algorithm 1: CDNL-OPT
Input: A logic program Π, a statement #minimize[`1 = w1@L1, . . . , `n = wn@Ln], and a

flag leap ∈ {true, false}.
1 〈L1, . . . ,Llow 〉 ← 〈max({L1, . . . , Ln} \ {L1, . . . ,Lm−1})〉1≤m≤|{L1,...,Ln}|
2 assm ← prio ← step ← 1 // assumption, priority, and step counter
3 lb ← 0 // lower bound

4 loop
5 PROPAGATE // deterministically assign implied literals

6 if conflict then
7 if at root level then // unsatisfiability modulo optimization constraint
8 if assm = 1 then exit
9 ASSIGN αassm // deactivate old optimization constraint

10 lb ← (ubprio−step) + 1
11 while prio ≤ low and ubprio = lb do
12 if recd = true then ADD #sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]lb
13 lb ← 0
14 recd ← true
15 prio ← prio + 1

16 if prio > low then exit
17 step ← 1
18 assm ← assm + 1
19 ADD

(
αassm ∨#sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]ubprio−step

)
20 ASSUME αassm // activate new optimization constraint
21 else
22 ANALYZE // analyze conflict and add (violated) conflict constraint
23 BACKJUMP // unassign literals until conflict constraint is unviolated

24 else if solution then
25 if assm = 1 then recd ← true // upper bound of witness yet unrecorded
26 else
27 ASSIGN αassm // fix old optimization constraint
28 if (Σ1≤i≤n,Li=Lprio ,`iassigned to true wi) < ubprio−step then recd ← true

29 else recd ← false

30 〈ub1, . . . , ub low 〉 ← 〈Σ1≤i≤n,Li=Lm,`iassigned to true wi〉1≤m≤low

31 print answer set along with 〈ub1, . . . , ub low 〉
32 prio′ ← prio
33 while prio ≤ low and ubprio = lb do
34 if recd = true then ADD #sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]lb
35 lb ← 0
36 recd ← true
37 prio ← prio + 1

38 if prio > low then exit
39 if prio = prio′ and leap = true then step ← min{2 ∗ step, d(ubprio−lb)/2e}
40 else step ← 1
41 assm ← assm + 1
42 ADD

(
αassm ∨#sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]ubprio−step

)
43 ASSUME αassm // activate new optimization constraint
44 BACKJUMP // unassign literals until optimization constraint is unviolated

45 else DECIDE // non-deterministically assign some literal

10 Martin Gebser and Roland Kaminski and Benjamin Kaufmann and Torsten Schaub

Furthermore, if the current upper bound still needs to be recorded, a corresponding #sum

constraint, as available in ASP input languages (Syrjänen; Gebser et al.), is added to the
constraint database of the solver in Line 34; this makes sure that future solutions cannot
exceed the lower bound lb at a forsaken priority level. Also note that lb is set to the min-
imum 0 in Line 35, so that proceeding by more than one priority level is possible only if
some upper bound given by the solution at hand is trivially optimal. After finishing the loop
in Line 33–37, multi-criteria optimization has been accomplished if the test prio > low

succeeds in Line 38, meaning that the utilities 〈ub1, . . . , ublow 〉 cannot be improved. Oth-
erwise, an amount by which the current upper bound ought to be decreased is determined
in Line 39–40. If the priority level has not been changed and the leap flag is true , we
take the minimum of the double former step size and half of the gap between the lower
and upper bound as the amount by which to decrease the upper bound. This exponential
scheme aims at balancing two objectives: try to skip non-optimal intermediate solutions
while decreasing the upper bound, but do not provoke many unnecessary (and potentially
hard) proofs of unsatisfiability. Given the next step size, an optimization constraint, being
the disjunction of a fresh literal αassm and a #sum constraint enforcing the new (specula-
tive) upper bound, is added to the constraint database of the solver in Line 42, and αassm

is assumed in Line 43, so that any further solution must fall below the speculative upper
bound ubprio−step. Finally, backjumping in Line 44 retracts literals (but not αassm as-
sumed at the root level) in order to re-enable the search for solutions satisfying the new
optimization constraint.

In case of a conflict, we distinguish whether it is encountered at the root level or beyond
it. The latter means that the conflict is related to decisions made previously (in Line 45),
so that regular conflict analysis and backjumping (cf. (Darwiche and Pipatsrisawat 2009;
Marques-Silva et al. 2009)) can in Line 22–23 be applied to identify a reason in terms of
a conflict constraint and to resume search at a point where the conflict constraint yields
an implication. On the other hand, a conflict at the root level indicates unsatisfiability.
Provided that assm = 1 does not hold in Line 8, i.e., if Π has some answer set, there
is no solution meeting the upper bound ubprio−step. This bound is imposed by the most
recently added optimization constraint, which is in Line 9 retracted by assigning αassm ,
thus withdrawing the former assumption and unconditionally satisfying the optimization
constraint (as well as all conflict constraints relying on it). Furthermore, the unsatisfiability
relative to the upper bound provides us with the lower bound (ubprio−step) + 1, assigned
to lb in Line 10. As in the case of a solution, the loop in Line 11–15 proceeds to the next
priority level to optimize, where a gap between the lower and upper bound leaves room for
improvements. If such a level prio exists, i.e., prio > low does not hold in Line 16, the
step size is reduced to 1 in Line 17, and the next optimization constraint along with a fresh
assumption are put into effect in Line 18–20. By reducing the step size to the smallest
value that would still improve ubprio , we reset the exponential scheme applied if the input
leap flag is true . This directs search to first check whether improvements are possible at
all before reattempting to decrease the upper bound more aggressively.

For illustrating multi-criteria optimization via Algorithm 1, reconsider the package con-
figuration problem represented by the facts in Figure 1 along with the encoding in Fig-
ure 3. A valid installation profile is given by atoms of the predicate install/2 that belong
to an answer set, while instances of violate/2, indicating optimization criteria violations,

Multi-Criteria Optimization in ASP & Application to Linux Package Configuration 11

Witness Util. α Optimization Constraint
install(n1, 3) 〈2, 3〉 α2 ∨

#sum[violate(delete, n2), violate(delete, n3)]1
install(n1, 1), install(n2, 2),
install(n3, 1), install(n4, 1)

〈0, 3〉 α2 #sum[violate(delete, n2), violate(delete, n3)]0

ditto 〈0, 3〉 α3 ∨
#sum[violate(change, n1), violate(change, n2),

violate(change, n3), violate(change, n4)]2
install(n1, 1), install(n2, 1),
install(n3, 1)

〈0, 1〉 α3 α4 ∨
#sum[violate(change, n1), violate(change, n2),

violate(change, n3), violate(change, n4)]0
— 〈0,1〉 α4 #sum[violate(change, n1), violate(change, n2),

violate(change, n3), violate(change, n4)]1

Table 1: Run of CDNL-OPT on the instance in Fig. 1 using the paranoid criteria in Fig. 2.

are counted in an associated utility vector. The criteria specified by the facts in Figure 2,
paranoid and trendy, penalize package deletions and changes or, respectively, package
deletions, missing latest versions, unsatisfied recommendations, and new packages (listed
in the order of priority). Note that the value of the leap flag is inconsequential for the
example computations described next; the obtained utilities are not yet large enough for
admitting step sizes greater than 1 if leap is true .

Table 1 provides a sequence of witnesses, as it can be generated upon optimizing the
paranoid criteria. The first column shows the atoms representing valid installation profiles,
the second column provides associated utility vectors, the third column displays literals
corresponding to former assumptions as they become irrevocably assigned (not necessarily
as assumed beforehand), and the fourth column gives optimization constraints added to
impose upper bounds. For the first witness, according to which only the package of name
n1 in version 3 is to be installed, we have that packages of the names n2 and n3 are
deleted, so that the first component of the utility vector is 2. For decreasing this upper
bound, the optimization constraint containing α2 is added, while α2 is assumed. In fact,
the utility vector of the second witness is 〈0, 3〉, given that packages of the names n1, n2,
and n4 are changed. Since the upper bound imposed by the first optimization constraint
has been shown to be feasible, the former assumption α2 can now be fixed. In addition,
the first priority level has been optimized in view of hitting the (trivial) lower bound 0;
as it undercuts the imposed upper bound 1, we also add an (unretractable) optimization
constraint to make sure that future solutions do not involve deleted packages. Then, the first
priority level is completely processed, and the next optimization constraint, including α3,
tackles the improvement of the number of changed packages. The final witness, according
to which packages of the names n1, n2, and n3 in version 1 are to be installed, only changes
n1, which shows that the upper bound 1 is feasible at the second priority level. Hence, we
fix the former assumption α3 and add the optimization constraint containing α4 in order
to decrease the upper bound further to 0. In view of the request to install some package
of the name n1, while no such package belongs to the existing installation, 0 changes are
infeasible. As a consequence, the last optimization constraint along with the assumption
α4 impose an unsatisfiable problem; since the complement α4 is irrevocably assigned in
reaction to the root-level conflict, the (too strong) optimization constraint is satisfied in
the sequel and can thus be discarded. Furthermore, the conflict shows that the lower bound

12 Martin Gebser and Roland Kaminski and Benjamin Kaufmann and Torsten Schaub

Witness Util. α Optimization Constraint
install(n1, 3) 〈2, 0,

0, 1〉
α2 ∨
#sum[violate(delete, n2), violate(delete, n3)]1

install(n1, 1), install(n2, 1),
install(n3, 1), install(n4, 1)

〈0, 2,
0, 2〉

α2 #sum[violate(delete, n2), violate(delete, n3)]0

ditto 〈0, 2,
0, 2〉

α3 ∨
#sum[violate(update, n1), violate(update, n2),

violate(update, n3), violate(update, n4)]1
install(n1, 1), install(n2, 2),
install(n3, 1)

〈0, 1,
1, 1〉

α3 α4 ∨
#sum[violate(update, n1), violate(update, n2),

violate(update, n3), violate(update, n4)]0
— 〈0,1,

1, 1〉
α4 α5 ∨

#sum[violate(recomm, r(n2, 2, c4))]0
install(n1, 1), install(n2, 2),
install(n3, 1), install(n4, 1)

〈0,1,
0, 2〉

α5 α6 ∨
#sum[violate(newpkg , n1), violate(newpkg , n4)]1

— 〈0,1,
0,2〉

α6 #sum[violate(newpkg , n1), violate(newpkg , n4)]2

Table 2: Run of CDNL-OPT on the instance in Fig. 1 using the trendy criteria in Fig. 2.

is 1, thus hitting the upper bound given by the witness. That is, the second priority level has
been optimized as well, and Algorithm 1 may add a final optimization constraint recording
the lower bound at the second level before it terminates in view of having processed all
levels. Note that the last witness comprises an optimal valid installation profile, consisting
of packages of the names n1, n2, and n3 in version 1.

For further illustration, Table 2 provides a sequence of witnesses obtainable upon opti-
mizing the trendy criteria. Note that the utility vectors now consist of four components and
that the optimization of the first component is accomplished analogously to the paranoid
criteria considered above. However, the second trendy criterion, aiming at latest versions of
packages to be installed, is different. For the second witness, according to which packages
of the names n1, n2, n3, and n4 in version 1 are to be installed, the criterion is not met by n1
and n2, so that the given upper bound is 2. The optimization constraint containing α3 along
with the assumption α3 lead us to the third witness, where only n1 is not up-to-date. After
fixing α3, decreasing the upper bound further to 0 yields an unsatisfiable problem, given
that the package of name n3 in version 1 must not be deleted, which in turn implies that
the latest version 3 of n1 cannot be installed. Thus, the assumption α4 is withdrawn and α4

assigned before proceeding to the third priority level, addressing unsatisfied recommenda-
tions. Note that no new optimization constraint needs to added because the lower bound 1

at the second level has already been imposed via assigning α3. The last witness avoids the
previously unsatisfied recommendation by incorporating the package of name n4 in ver-
sion 1. This reduces the upper bound at the third priority level to 0, and assigning α5 makes
sure that it cannot be exceeded later on. Finally, the addition of the optimization constraint
containing α6 along with the assumption α6 yield a root-level conflict, which shows that
the witness at hand is optimal at the fourth priority level, dealing with new packages. Since
the complement α6 is assigned in reaction, an optimization constraint recording the lower
bound 2 at the fourth level may be added before Algorithm 1 terminates. The last witness
provides an optimal valid installation profile, consisting of packages of the names n1, n3,
and n4 in version 1 as well as the package of name n2 in (the latest) version 2.

Multi-criteria optimization via Algorithm 1 is implemented in clasp from version 2.0.0

Multi-Criteria Optimization in ASP & Application to Linux Package Configuration 13

on. We do not detail the implementation here, but mention matters of interest. To begin
with, note that clasp stores a statement #minimize[`1 = w1@L1, . . . , `n = wn@Ln] in
a single optimization constraint, using as data-structure a two-dimensional array of size
|{L1, . . . , Ln}| ∗ |{`1, . . . , `n}| with w1, . . . , wn as its (non-zero) entries. Furthermore,
the vector 〈ubm〉1≤m≤|{L1,...,Ln}| of upper bounds is initialized to 〈∞m〉1≤m≤|{L1,...,Ln}|
and then updated whenever a solution is found. For one, this permits to accomplish the
simple approach to multi-criteria optimization, described at the beginning of this section,
via lexicographic comparisons without scaling weights in view of priority levels. For an-
other, dedicated multi-criteria optimization wrt a current priority level prio merely re-
quires to (temporarily) ignore upper bounds at less significant priority levels, thus provid-
ing easy means to strengthen the readily available optimization constraint by subtracting
the value of step from ubprio (cf. Line 19 and 42 of Algorithm 1). To further facilitate
such steps, clasp includes a single assumption α in its optimization constraint and, for
the most significant priority level L = max{L1, . . . , Ln}, sets the weight w@L of α to
(
∑

1≤i≤n,Li=L wi)+1. This makes sure that α belongs to every conflict constraint relying
on the optimization constraint, so that these conflict constraints can be fixed (by discharg-
ing α) or withdrawn, respectively, immediately upon encountering either a solution or a
conflict. To this end, clasp invokes the method strengthenTagged() when a solu-
tion is found and removeTagged() when a root-level conflict occurs, while keeping the
assumption α in place at the root level; applying either method turns α into a fresh assump-
tion without presuming any particular solver state, as otherwise required when performing
constraint database simplifications.

The command-line parameters --opt-hierarch and --opt-heuristic allow
for configuring (multi-criteria) optimization in clasp. If the value 0 is provided for the
former, simple lexicographic optimization (without assumptions) is applied, while 1 and 2
switch to Algorithm 1 with the leap flag set to false and true , respectively. Furthermore,
--opt-heuristic determines how #minimize statements are taken into account in
clasp’s decision heuristics (Line 45 of Algorithm 1). While 0 falls back to the default
heuristic, a static sign heuristic, preferably falsifying literals that occur in a #minimize

statement, is applied for 1. Value 2 switches to a dynamic heuristic that, after a solution has
been found, falsifies its literals in a #minimize statement until a conflict is encountered.
Finally, 3 combines 1 and 2, thus falsifying literals subject to minimization if a respective
variable is selected, while also picking such variables after a solution has been found (until
hitting a conflict). The additional parameter --restart-on-model is a prerequisite
for the values 2 and 3 to be effective; without it, they drop down to 0 and 1, respectively.

5 Experiments

We developed the tool aspcud4 applying our approach to multi-criteria optimization in
ASP to Linux package configuration. At the start, aspcud translates a package configura-
tion problem in Common Upgradability Description Format (CUDF; (Treinen and Zacchi-
roli 2009)) into ASP facts, described in Section 3. The translation involves mapping CUDF

4 http://www.cs.uni-potsdam.de/wv/aspcud

14 Martin Gebser and Roland Kaminski and Benjamin Kaufmann and Torsten Schaub

package formulas to sets of packages (clauses) and tracing virtual packages that cannot di-
rectly be installed back to packages that implement them. Such flattening makes the prob-
lem encoding (cf. Figure 3) in ASP more convenient. Beyond syntactic simplifications, the
translation by aspcud also exploits optimization criteria and package interdependencies to
reduce the resulting ASP instance. For example, installing packages that are unrelated to
an existing installation and install clauses merely degrades paranoid and trendy optimiza-
tion criteria, so that such unrelated packages may be omitted in an ASP instance. Likewise,
paranoid optimization criteria do not consider recommendations. They can thus be ignored
if paranoid criteria are selected, but not in trendy optimization mode.

As ASP tools, aspcud (version 1.3.0) exploits gringo (version 3.0.3) for grounding and
clasp (version 2.0.0-RC2) for solving. To illustrate the impact of the strategies and heuris-
tics supported by clasp, our experiments consider several variants of it. Three settings are
obtained by configuring --opt-hierarch with the values described above, indicated
by a subscript:

• clasp0: optimizing whole utility vectors (as described at the beginning of Section 4
and implemented also in smodels as well as clasp versions below 2.0.0),

• clasp1: applying Algorithm 1 with the leap flag set to false , and
• clasp2: applying Algorithm 1 with the leap flag set to true .

We further combine each claspi (i ∈ {0, 1, 2}) with optimization-oriented heuristics, acti-
vated by setting --opt-heuristic to the value indicated by a superscript:

• clasp0i : applying no optimization-specific decision heuristic,
• clasp1i : applying the static sign heuristic to falsify literals of a #minimize statement,
• clasp2i : after a solution has been found, falsifying literals of a #minimize statement

until a conflict is encountered, and
• clasp3i : combining the sign heuristic of clasp1i with the dynamic approach of clasp2i .

We thus obtain twelve variants of clasp, each invoked with the (additional) command-
line parameters --sat-prepro, --heuristic=vsids, --restarts=128,
--local-restarts, and --solution-recording, which turned out to be helpful
on large underconstrained optimization problems confronted in Linux package configura-
tion. As mentioned above, clasp2i and clasp3i further require --restart-on-model to
be effective, and we indicate the use of this parameter by writing claspji -r, where “-r” is
mandatory for j ∈ {2, 3} and optional for j ∈ {0, 1}. The reasonable combinations of the
variable options amount to 18 variants of clasp to perform the optimization within aspcud.

For comparison, we also consider the package configuration tools cudf2msu5 (version
1.0), cudf2pbo6 (version 1.0), and p2cudf 7 (version 1.11). The PBO-based approaches of
cudf2pbo and p2cudf are closely related to multi-criteria optimization in ASP via Algo-
rithm 1, while the MaxSAT approach of cudf2msu utilizes unsatisfiable cores to iteratively
refine lower bounds. The tools included for comparison belong to the leaders in a recent
trial-run1, called MISC-live, of the competition organized by mancoosi.

5 http://sat.inesc-id.pt/˜mikolas/cudf2msu.html
6 http://sat.inesc-id.pt/˜mikolas/cudf2pbo.html
7 http://wiki.eclipse.org/Equinox/p2/CUDFResolver

Multi-Criteria Optimization in ASP & Application to Linux Package Configuration 15

Table 3 reports experimental results on package configuration problems used in the re-
cent MISC-live run, divided by the tracks paranoid, trendy, and user1–3,8 each applying
different optimization criteria, where the criteria of the custom user tracks are as follows:

user1: Minimize first |UP
U |, second |DP

O |, and third |CPO |.
user2: Minimize first |CPO |, second |DP

O |, third |RP
U |, and fourth |NP

O |.
user3: Minimize first |CPO |, second |UP

U |, third |DP
O |, and fourth |NP

O |.

We ran the five criteria combinations on 117 instances considered in the paranoid and
trendy tracks of the MISC-live run (all instances except for the ones in the “debian-dudf”
category, which were not available for download). For each track, the column headed by S
provides the sums of solvers’ scores according to the MISC-live ranking: a solver that
returns a solution earns b+ 1 points, where b is the number of solvers that returned strictly
better solutions; a solver that returns no solution earns 2 ∗ s points, where s is the total
number of participating solvers (s = 21 in our case); finally, a solver that crashes or returns
a wrong solution (i.e., an invalid installation profile) is awarded 3∗s points (for s as before).
Note that a smaller score is better than a greater one, and solvers are ranked by their scores
in ascending order. The columns headed by T/O report total runtimes per solver in seconds
followed by the number of instances on which the solver was aborted, either before finding
the optimum or while still attempting to prove it (or unsatisfiability, respectively). These
statistics are used for tie-breaking wrt scores in MISC-live ranking, and they also yield
valuable information regarding solvers’ capabilities to prove optima: after 280 seconds of
running, closeness of runtime exhaustion (300 seconds) is signaled to a solver, so that the
remaining time can be used to output the best solution found so far. Accordingly, we count
solutions returned after more than 280 seconds as aborts, which are not reflected in scores
(columns S) if output solutions happen to be optimal without the proof being completed.
We ran our experiments under MISC-live conditions on an Intel Quad-Core Xeon E5520
machine, possessing 2.27GHz processors and 48GB main memory, under Linux. The best
scores and runtimes obtained among the variants of clasp as well as the best ones among
its competitors are highlighted in bold face in Table 3.

Recall that two optimization criteria are applied in the paranoid track, three in the user1
track, and four in the remaining tracks. One may expect solvers optimizing criteria in the
order of significance (all but the variants of clasp0) to have greater advantages the longer
the sequence of criteria is. In fact, we observe that clasp0, optimizing criteria in parallel, is
competitive in the paranoid track; in particular, the static sign heuristic applied by the vari-
ants of clasp10 helps them to achieve the smallest score. However, the gap to other solvers is
not large, neither in terms of scores nor runtimes. Unlike this, the disadvantages of clasp00
and clasp10 variants are remarkable in the other four tracks; they are compensated to some
extent by the optimization-oriented dynamic variable selection applied by clasp20-r and
clasp30-r. Comparing the variants of clasp1 and clasp2, applying Algorithm 1, we note that
they are less sensitive to heuristic aspects. Nonetheless, their relative performance varies
over tracks, thus not suggesting any universal strategy to multi-criteria optimization. For

8 The results of (a preliminary version of) aspcud, running clasp11 in all five tracks, were scrambled in this trial-
run due to scripting problems, which led to complete failure rather than a sub-optimal solution if an optimum
could not be proven in time.

16 Martin Gebser and Roland Kaminski and Benjamin Kaufmann and Torsten Schaub

paranoid trendy user1 user2 user3
Solver S T/O S T/O S T/O S T/O S T/O

clasp00-r 431 2,287/6 1730 23,829/ 80 935 14,349/35 525 5,097/12 1031 14,184/37
clasp00 416 2,294/6 2375 29,781/105 1727 21,897/73 1224 14,697/45 671 11,178/21
clasp10-r 410 2,210/6 1560 22,660/ 73 898 13,466/30 502 4,654/ 9 980 13,682/35
clasp10 410 2,326/6 2079 26,471/ 92 1723 21,525/72 922 10,767/31 658 10,675/23
clasp20-r 427 2,135/6 712 16,867/ 51 527 5,891/11 426 2,981/ 5 587 7,628/20
clasp30-r 429 2,134/6 740 17,079/ 52 507 5,863/12 425 3,044/ 6 576 7,769/21

clasp01-r 425 2,428/6 579 16,713/ 50 550 5,819/14 434 3,000/ 6 710 8,958/25
clasp01 417 2,418/6 549 16,544/ 50 475 5,318/12 411 2,538/ 5 502 6,279/16
clasp11-r 429 2,405/6 622 17,304/ 50 518 5,908/13 438 2,976/ 6 676 8,938/23
clasp11 427 2,372/6 613 16,946/ 49 490 5,478/12 416 2,562/ 5 496 6,144/16
clasp21-r 427 2,352/6 571 16,646/ 50 518 5,358/13 418 2,582/ 5 471 6,356/16
clasp31-r 429 2,346/6 547 16,386/ 50 499 5,306/12 413 2,498/ 5 497 6,255/16

clasp02-r 425 2,392/6 806 16,598/ 50 523 5,583/13 421 2,677/ 6 479 5,548/12
clasp02 417 2,364/7 748 17,132/ 50 487 5,823/14 422 2,583/ 5 482 5,592/15
clasp12-r 416 2,378/6 752 17,269/ 52 492 5,663/12 414 2,409/ 5 451 5,349/11
clasp12 425 2,365/6 864 17,128/ 51 517 6,151/15 412 2,681/ 5 463 5,972/14
clasp22-r 445 2,402/6 706 16,551/ 50 528 5,788/13 419 2,700/ 5 436 5,519/13
clasp32-r 434 2,345/6 748 16,982/ 51 518 5,850/14 415 2,559/ 5 457 5,360/13
cudf2msu 610 3,051/8 669 5,318/ 8 1270 8,709/18 548 3,238/ 7 504 4,750/ 9
cudf2pbo 465 2,727/7 1082 21,302/ 68 520 6,168/13 462 3,575/ 7 537 3,487/ 8
p2cudf 463 2,920/8 696 19,105/ 60 516 3,947/ 7 573 6,927/16 577 8,063/21
Table 3: Results on package configuration problems used in a recent MISC-live run.

instance, the variants of clasp1, decreasing upper bounds linearly, are more successful than
clasp2 variants in the trendy track, where the large total runtimes and numbers of aborts
indicate that many instances were hard to complete (proving optima failed in many cases).
On the other hand, the exponential decrease scheme of clasp2 enables some of its variants
to achieve the smallest score and runtime in the user3 track. Finally, comparing the vari-
ants of clasp with its three competitors, we observe that the ASP-based approach to Linux
package configuration is highly competitive. In particular, its consistent performance is
confirmed by scores, while each of the other tools achieved an impressive runtime (mainly
by succeeding to prove optima) in some track: cudf2msu in trendy, cudf2pbo in user3, and
p2cudf in user1. Unfortunately, cudf2msu produced non-optimal solutions and crashes in
two tracks, trendy and user1, so that its ranking in these two tracks is not very conclusive.

6 Discussion

We presented an approach to dedicated Boolean multi-criteria optimization (Argelich et al.
2009) in modern ASP solvers (Gebser et al. 2007), admitting the imposition as well as the
withdrawal of speculative upper bounds without solver relaunches. To this end, our ap-
proach exploits conflict-driven learning (cf. (Darwiche and Pipatsrisawat 2009; Marques-
Silva et al. 2009)) and assumptions, as available in incremental SAT (Eén and Sörensson
2003). Albeit we modeled Linux package configuration in ASP, related PBO and MaxSAT
modelings (Argelich et al. 2010) could be solved in the same fashion. However, while as-
sumptions may be unnecessary (to compensate for unsatisfiability wrt infeasible bounds)
in single-objective optimization, offered, e.g., by the PBO solvers bsolo (Manquinho
and Marques-Silva 2004), minisat+ (Eén and Sörensson 2006), and pueblo (Sheini and
Sakallah 2006), pre-existing multi-criteria optimization techniques, like the ones presented
in (Marques-Silva et al. 2011), lack tight solver integration. To our knowledge, among

Multi-Criteria Optimization in ASP & Application to Linux Package Configuration 17

the few systems implementing dedicated multi-criteria optimization, sat4j (Le Berre and
Parrain 2010) and wbo (Manquinho et al. 2009) (when decreasing upper bounds rather
than using unsatisfiable cores to refine lower bounds) rely on solver relaunches, i.e., the
complete withdrawal of learned constraints, after an unsatisfiability proof showing opti-
mality wrt the current optimization criterion. In contrast to them, the internalization of
multi-criteria optimization functionalities in clasp enables maintaining valid constraints as
well as guiding search by optimization-oriented heuristics. To this end, clasp offers sev-
eral optimization-specific variations of its decision heuristics, which can be combined with
linear or exponential upper bound decrease schemes. The additional integration of lower
bound refinement techniques, proposed, e.g., in (Manquinho and Marques-Silva 2004) and
(Manquinho et al. 2009), is an interesting subject to future work. In this process, competi-
tions by mancoosi provide a venue for improving and sharing methods of optimization.

Acknowledgments. This work was partly funded by DFG grant SCHA 550/8-2. We are
grateful to Daniel Le Berre for useful discussions on the subject of this work and to the
mancoosi project team for organizing MISC(-live).

References

ARGELICH, J., LE BERRE, D., LYNCE, I., MARQUES-SILVA, J., AND RAPICAULT, P. 2010. Solv-
ing Linux upgradeability problems using Boolean optimization. In Proceedings of the First Inter-
national Workshop on Logics for Component Configuration (LoCoCo’10), I. Lynce and R. Treinen,
Eds. Electronic Proceedings in Theoretical Computer Science (EPTCS), vol. 29. 11–22.

ARGELICH, J., LYNCE, I., AND MARQUES-SILVA, J. 2009. On solving Boolean multilevel opti-
mization problems. In Proceedings of the Twenty-first International Joint Conference on Artificial
Intelligence (IJCAI’09), C. Boutilier, Ed. AAAI Press/The MIT Press, 393–398.

BARAL, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press.

BIERE, A., HEULE, M., VAN MAAREN, H., AND WALSH, T. 2009. Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press.

DARWICHE, A. AND PIPATSRISAWAT, K. 2009. Complete algorithms. See Biere et al. (2009),
Chapter 3, 99–130.

DI COSMO, R., DURAK, B., LEROY, X., MANCINELLI, F., AND VOUILLON, J. 2006. Maintaining
large software distributions: New challenges from the FOSS era. EASST Newsletter 12, 7–20.

EÉN, N. AND SÖRENSSON, N. 2003. An extensible SAT-solver. In Proceedings of the Sixth Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT’03), E. Giunchiglia
and A. Tacchella, Eds. Lecture Notes in Computer Science, vol. 2919. Springer-Verlag, 502–518.

EÉN, N. AND SÖRENSSON, N. 2006. Translating pseudo-Boolean constraints into SAT. Journal on
Satisfiability, Boolean Modeling and Computation 2, 1–26.

FERRARIS, P. 2005. Answer sets for propositional theories. In Proceedings of the Eighth Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’05), C. Baral,
G. Greco, N. Leone, and G. Terracina, Eds. Lecture Notes in Artificial Intelligence, vol. 3662.
Springer-Verlag, 119–131.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., OSTROWSKI, M., SCHAUB, T., AND THIELE, S. A
user’s guide to gringo, clasp, clingo, and iclingo. Available at http://potassco.
sourceforge.net.

GEBSER, M., KAMINSKI, R., KÖNIG, A., AND SCHAUB, T. 2011. Advances in gringo series 3. In
Proceedings of the Eleventh International Conference on Logic Programming and Nonmonotonic

18 Martin Gebser and Roland Kaminski and Benjamin Kaufmann and Torsten Schaub

Reasoning (LPNMR’11), J. Delgrande and W. Faber, Eds. Lecture Notes in Artificial Intelligence,
vol. 6645. Springer-Verlag, 345–351.

GEBSER, M., KAUFMANN, B., NEUMANN, A., AND SCHAUB, T. 2007. Conflict-driven answer set
solving. In Proceedings of the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI’07), M. Veloso, Ed. AAAI Press/The MIT Press, 386–392.

LE BERRE, D. AND PARRAIN, A. 2010. The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation 7, 59–64.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCARCELLO,
F. 2006. The DLV system for knowledge representation and reasoning. ACM Transactions on
Computational Logic 7, 3, 499–562.

mancoosi. http://www.mancoosi.org.
MANQUINHO, V. AND MARQUES-SILVA, J. 2004. Satisfiability-based algorithms for Boolean op-

timization. Annals of Mathematics and Artificial Intelligence 40, 3-4, 353–372.
MANQUINHO, V., MARQUES-SILVA, J., AND PLANES, J. 2009. Algorithms for weighted Boolean

optimization. In Proceedings of the Twelfth International Conference on Theory and Applications
of Satisfiability Testing (SAT’09), O. Kullmann, Ed. Lecture Notes in Computer Science, vol. 5584.
Springer-Verlag, 495–508.

MARQUES-SILVA, J., ARGELICH, J., GRAÇA, A., AND LYNCE, I. 2011. Boolean lexicographic
optimization: Algorithms & applications. Annals of Mathematics and Artificial Intelligence, to
appear.

MARQUES-SILVA, J., LYNCE, I., AND MALIK, S. 2009. Conflict-driven clause learning SAT
solvers. See Biere et al. (2009), Chapter 4, 131–153.

SHEINI, H. AND SAKALLAH, K. 2006. Pueblo: A hybrid pseudo-Boolean SAT solver. Journal on
Satisfiability, Boolean Modeling and Computation 2, 165–189.

SIMONS, P., NIEMELÄ, I., AND SOININEN, T. 2002. Extending and implementing the stable model
semantics. Artificial Intelligence 138, 1-2, 181–234.

SYRJÄNEN, T. Lparse 1.0 user’s manual. http://www.tcs.hut.fi/Software/smodels/
lparse.ps.gz.

SYRJÄNEN, T. 1999. A rule-based formal model for software configuration. Technical Report A55,
Helsinki University of Technology. http://www.tcs.hut.fi/Publications/bibdb/
HUT-TCS-A55.ps.

SYRJÄNEN, T. 2000. Including diagnostic information in configuration models. In Proceedings of
the First International Conference on Computational Logic (CL’00), J. Lloyd, V. Dahl, U. Furbach,
M. Kerber, K. Lau, C. Palamidessi, L. Pereira, Y. Sagiv, and P. Stuckey, Eds. Lecture Notes in
Computer Science, vol. 1861. Springer-Verlag, 837–851.

TREINEN, R. AND ZACCHIROLI, S. 2009. Common upgradability description format (CUDF) 2.0.
Technical Report 003, mancoosi — managing software complexity. Available at (mancoosi).

