
λµPRL – A Proof Refinement Calculus
for Classical Reasoning

in Computational Type Theory

Nuria Brede and Christoph Kreitz

Institut für Informatik, Universität Potsdam,
August-Bebel-Strasse 89, 14482 Potsdam, Germany
{brede,kreitz}@cs.uni-potsdam.de

Abstract. We present a hybrid proof calculus λµPRL that combines the proposi-
tional fragment of computational type theory with classical reasoning rules from
the λµ-calculi. The calculus supports the top-down development of proofs as
well as the extraction of proof terms in a functional programming language ex-
tended by a nonconstructive binding operator. It enables a user to employ a mix
of constructive and classical reasoning techniques and to extract algorithms from
proofs of specification theorems that are fully executable if classical arguments
occur only in proof parts related to the validation of the algorithm.
We prove the calculus sound and complete for classical propositional logic, in-
troduce the concept of µ-safe terms to identify proof terms corresponding to con-
structive proofs and show that the restriction of λµPRL to µ-safe proof terms is
sound and complete for intuitionistic propositional logic. We also show that an
extension of λµPRL to arithmetical and first-order expressions is isomorphic to
Murthy’s calculus PROGK .

Key words: Computational type theory, classical logic, λµ-calculi

1 Introduction

Computational Type Theory [1,5] is a constructive higher order logic that supports the
extraction of functional programs from proofs of specification theorems and guaran-
tees that these programs are correct by construction. The ability to synthesize programs
via the proofs-as-programs correspondence is founded on a constructive notion of ex-
istence. This notion is the fundamental difference between intuitionistic (constructive)
and classical logic. While in intuitionistic logic objects can only be proven to exist by
showing how to construct them, classical logic allows proofs by contradiction and the
existence of objects is not necessarily tied to actually knowing them.

Since intuitionistic logic rejects classical axioms like the law of the excluded mid-
dle, proof search in intuitionistic logic is more difficult than in classical logic. Whereas
proof search in classical propositional logic is co-NP-complete, it is PSPACE-com-
plete in intuitionistic logic [7,31].

2 N. Brede, C. Kreitz

It was believed that classical logic had no constructive content until Griffin [16] pro-
posed an extension of the proofs-as-programs-principle to classical logic. He combined
the simply typed λ-calculus with Felleisen’s control operator C [13] which he typed
with the classical axiom of double negation elimination. This relates classical proofs
to functional programming languages with access to imperative control-flow constructs
such as the exception handling mechanism in ML or the call/cc- operator in Scheme.

Griffin’s work triggered a lot of research on the semantics and constructive content
of classical proofs, among these Murthy’s [21,22] concerning the constructive content
of Σ0

1 sentences in Peano arithmetic. Murthy’s work was situated in the context of the
Nuprl system [6] and contributed among other results a method for obtaining values
directly from classical proof terms.

Parigot [26] investigated an algorithmic interpretation of natural deduction by de-
signing a classical calculus λµ, which uses a new binding operator µ instead of the
additional operator C. The µ-operator binds a new kind of variables that indicate appli-
cations of classical reasoning in the sense of switching the goal formula or exchanging
the control context. On this basis multiple variants of λµ-calculi have been studied by
a variety of authors (e.g. [25,9,12,29]).

In this paper we aim at creating a foundation for a hybrid proof system that inte-
grates λµ into Computational Type Theory and enables users to decide which logic they
want to employ in different parts of a proof and thus to benefit from the advantages of
both concepts. A crucial aspect of this investigation is to find a way of maintaining the
system’s soundness in presence of both constructive and classical reasoning.

While Howe’s embedding of HOL (classical) [15] into Nuprl (constructive) [18] has
demonstrated that the semantics of a computational type theory can be reconciled with
classical logic there are also limitations. Systems that include both classical axioms
and a constructive notion of existence become unsound in presence of arithmetic (see
e.g. [21]). Howe solved this problem by ensuring that HOL proofs (which do not have
any algorithmic content) may not be used within Nuprl proof fragments that require a
construction. To implement this condition he added a parameter to proof nodes in Nuprl,
which indicates whether the respective proof may be used for construction or not.

Our research follows a similar line of thought: if the use of classical reasoning was
visible in the proof term it would enable us to subsequently distinguish between con-
structive and non-constructive proofs. To examine this approach in a contained range,
we have developed a propositional top-down calculus λµPRL that combines the propo-
sitional rules of Computational Type Theory with the classical exchange rules that are
characteristic for λµ-calculi.

In the following section we will briefly review Computational Type Theory and λµ-
calculi and then present the calculus λµPRL in section 3. We examine how constructive
and classical reasoning is reflected in the extracted proof terms in section 4. In this
context we adapt Crolard’s notion of µ-safe [9] and propose an extension of this concept
to partially µ-safe terms. In section 5 we investigate the relation between λµPRL and
Murthy’s work, showing how constructive content can be extracted from proofs in a
variant of λµPRL. Finally we discuss possibilities for future investigations in section 6.
Proof details that cannot be presented here can be found in [4].

λµPRL – Classical Reasoning in Computational Type Theory 3

Type Members and associated non-canonical
expressions

Function Space S → T, x : S → T λx.t, f t
Product Space S × T, x : S × T < s, t >, let <x, y>=e in u
Disjoint Union S + T inl(s), inr(t)

case e of inl(x) 7→ u|inr(y) 7→ v
Logical connectives ∀ ∃ ∧ ∨ ⇒ ¬ True False — Curry-Howard isomorphism —

Fig. 1. CTT types relevant for propositional reasoning

2 Preliminaries

2.1 Computational Type Theory

Computational Type Theory (CTT) [1] is an extension of Martin-Löf’s intuitionistic
type theory [20], designed as an open-ended foundation for reasoning about computa-
tion in both mathematics and computing practice. It is also the logic of the Nuprl proof
development system [6,19], which supports interactive and tactic-based proof develop-
ment and provides a tool for the synthesis, verification, and optimization of programs.

In CTT types are associated with sets of rules about the formation, decomposi-
tion, and extensional equality of types and their members as well as the evaluation of
non-canonical expressions. Within this paper we focus on the fragment of CTT types
relevant for propositional reasoning, which is summarized in figure 1.

CTT-expressions are defined independently of their type. Thus even constructs like
the Y-combinator may be used in terms. This makes it possible to represent all com-
putable functions as terms even if they cannot be typed. In a proof, however, one has to
show that an expression is a member of some type. To maintain termination of evalua-
tion in presence of such expressiveness CTT employs a lazy evaluation strategy.

Proofs are carried out in a top-down sequent calculus which refines a proof goal
until every subgoal is an instance of an axiom or lemma of the system’s library. In
Nuprl, this library contains a wide range of formalized mathematical knowledge.

Proof goals can be manipulated by user-definable proof tactics. Users may apply
tactics that execute a single inference rule, combine existing tactics through the use of
predefined tacticals, or write arbitrary expression of the system’s meta-language (an
early member of the ML family of programming languages) that analyze the proof goal
to decide which series of inference rules should be applied.

Users may also introduce conservative extensions of CTT via abstract definitions.
With this mechanism new types inherit the properties of the types used in their defini-
tion. An example of such an extension is the embedding of constructive logic into CTT
via the propositions-as-types-principle, also known as the Curry-Howard-isomorphism
[17]. The definition of conjunction is based on the product type, disjunction on the sum
type, implication on the function type, existential and universal quantification on de-
pendent product and function (i.e. Σ- and Π-) types. Classical logic can then be used
via the Gödel translation.

4 N. Brede, C. Kreitz

2.2 λµ-calculi

The λµ-calculus was first introduced by Parigot [26,27] as an algorithmic interpreta-
tion of classical natural deduction well suited for proof theoretic studies. The original
version of λµ is a multi-conclusioned second order calculus. µ-variables “name” the
formulae of the multi-conclusion and the µ-operator marks the application of structural
rules like exchanging the active formula in the succedent. Parigot’s λµ has a confluent
cut elimination procedure and is strongly normalizable [26,27,28,2].

Numerous variants of λµ-calculi have been presented. One of these is a λµ type
theory by Ong and Stewart [25,24], which returns to a single conclusion and keeps
the non-active µ-formulae in the antecedent as µ-context. Another variant is Pym’s
and Ritter’s multi-conclusioned λµν-calculus [29] for full propositional logic without
first or second order quantification. λµν was designed in the context of providing a
categorial semantics for reductive logic and proof search.

3 The Calculus λµPRL

λµPRL is based on the logical rules of CTT associated with the types on which the
logical connectives are defined. Similar to Ong and Stewart’s calculus [24,25] it keeps
passive formulae of the µ-context on the left-hand side of a sequent and distinguishes
them from the λ-context by their syntactic form. Their role is equivalent to the non-
active formulae of Parigot’s λµ-multi-conclusion since they are separated from the rest
of the sequent by their names (µ-variables) and accessible only by the specific exchange
rules. The rules of λµPRL are presented in figure 2.

Instead of allowing an empty conclusion after the application of the µ-rule and
before the application of the [−]-rule we use logical absurdity ⊥, which in CTT is
defined via the empty data type void, thus expressing the “emptiness” of the active
position. Additional rules for the introduction or elimination of⊥ are not required. This
approach also coincides with Ong’s λµ-theory.

For the treatment of disjunction λµPRL uses the “constructive” ∨ rules correspond-
ing to CTT’s sum type (which is similar to de Groote’s λµ calculus with disjunction
[12] or Pym’s and Ritter’s λµ⊕ [30]). Therefore the choice between the two disjuncts
is not locally represented, but has to be taken care of before choosing one disjunct by
“storing” the disjunction in the µ-context. Some of the rules need additional parameters:

– The elimination- and abort-rules as well as the hypothesis-rule need the po-
sition of the formula to operate on denoted by $i.

– The mu-rules and lambdaI need the name of a new variable to be declared.

Types range over A,B,C, and are built by the constructors ⊃,∧,∨ from a set of
atomic types and the distinguished absurdity type ⊥. The negation ¬A is expressed as
A ⊃ ⊥. Terms of λµPRL are built by the grammar in figure 2. Like CTT-terms, λµPRL
terms are untyped but have to be associated with types in proofs.

λµPRL-sequents can be viewed as term assignment judgments. A sequent of the
form Γ ` T ext t means that the type T is inhabited by the term t. Γ ranges
over both λ- and µ-contexts. Accordingly there are two kinds of variables, λ- and

λµPRL – Classical Reasoning in Computational Type Theory 5

t ::== x | λx.t | µx.t | (t t) | [x]t | 〈t, t〉 | let 〈x, x〉 = t in t |
inl(t) | inr(t) | case t of inl(x) : t | inr(x) : t

G, x : T, H ` T ext x
BY hypothesis $i

(no subgoals)

H ` A ⊃ B ext λx.b
BY lambdaI x

H, x:A ` B ext b

G, pf:A ⊃ B, H ` C ext b[pf a/y]
BY functionE $i

G, pf:A ⊃ B, H ` A ext a
G, y:B, H ` C ext b

H ` B ext µ α.b
BY mu1 α
H, {{Bα}} ` ⊥ ext b

G, {{Bα}}, H ` ⊥ ext [α] b
BY abort1 $i

G, H ` B ext b

H ` B ext µ α.b
BY mu2 α
H ` ⊥ ext b

G, {{Bα}}, H ` ⊥ ext [α] b
BY abort2 $i

G, {{Bα}}, H ` B ext b

H ` A ∧B ext < a, b >
BY andI

H ` A ext a
H ` B ext b

G, z:A ∧B, H ` C ext let < a, b >
= z in u

BY andE $i
H, a : A, b : B, G ` C ext u

H ` A ∨B ext inl(a)
BY orI1

H ` A ext a

H ` A ∧B ext inr(b)
BY orI2

H ` B ext b

G, z:A ∨B, H ` C ext case z of
inl(a) => u |
inr(b) => v

BY orE $i
H, a : A, G ` C ext u
H, b : B, G ` C ext v

β-reduction:
(λx.u) v β u[v/x]
spread(〈v, w〉 ;x, y.u) β u[v, w/x, y]
decide(inl(w);x.u; y.v) β u[w/x]
decide(inr(w);x.u; y.v) β v[w/y]
[α]µβ.u β u[α/β]

µ-reduction:
(µα.u v) µ µα.u[[α](w v)/[α]w]
spread(µα.z, x, y.u) µ µα.z[[α]spread(w;x, y.u)/[α]w]
decide(µα.z;x.u; y.v) µ µα.z[[α]decide(w;x.u; y.v)/[α]w]

Fig. 2. The calculus λµPRL

6 N. Brede, C. Kreitz

µ-variables, ranging over two distinct alphabets. In a sequent λ-variables are declared
by x : A, y : B, . . . and bound by the λ-abstraction λx.t. Similarly, µ-variables are de-
clared by an encapsulation {{Aα}}, {{Bβ}}, . . . and bound by the µ-abstraction µα.t.

By mutual simulation with Pym’s and Ritter’s λµν-calculus [29], which is sound and
complete for propositional logic, we have proven the following property (see [4]).

Theorem 1. The calculus λµPRL is sound and complete for full propositional logic.

The conversion theory for λµPRL-terms is largely induced by our reference to CTT.
– Since λµPRL terms are untyped, the reduction relation is defined in an untyped

setting, too. This means that the reduction merely depends on the shape of the
derivation, not on additional conditions on the form of the type.

– CTT employs a lazy evaluation strategy with β-reduction. The purpose is to ensure
termination without restricting the expressiveness of its type system. As λµPRL is
intended to be as close as possible to CTT, we will use β-reduction in a call-by-
name-regime for λµPRL as well.

Accordingly we define a confluent βµ-reduction whose notion of normal form is less
strong than in other λµ-systems. In [4] we propose two sets of permutative conversions,
which might allow to us acquire the desirable proof theoretic properties of de Groote’s
full propositional λµ [12]. βµ-reduction for λµPRL terms is defined as union of the two
reduction relations defined in figure 2. For a simpler presentation we use the following
abbreviations:

spread(t;x, y.u) ≡ let 〈x, y〉 = t in u
decide(t;x.u; y.v) ≡ case t of inl(x) : u | inr(y) : v

Proposition 1. The reduction relation of λµPRL is confluent, i.e. if u �βµ u1 and
u�βµ u2, then there exists v such that u1 �βµ v and u2 �βµ v.

Proof. By an extended version of the usual parallel reduction method, following the
approach by Baba, Hirokawa and Fujita in [2]. See [4] for details.

4 Constructive and Non-constructive Terms of λµPRL

In this section we will analyze properties of normal proofs that will help us determine
whether they rely on classical or constructive arguments or both. This would enable a
proof system to distinguish classical from constructive proofs on a meta-level.

Our first step is to investigate in which cases λµPRL-proofs are non-constructive
and how this is reflected in the proof terms. Obviously, an intuitionistic fragment of
λµPRL could simply be obtained by removing the rules abort1 and abort2. But
classifying proofs that use these rules as non-constructive would exclude proofs that
are constructively valid, as the application of these rules may not have been relevant for
the proof. Consequently a more detailed analysis of the proof structure is needed.

If we look at the proof tree of the derivation of a sentence in λµPRL, the root
is the sentence itself and every leaf of the proof tree must contain an instance of the
rule hypothesis. Accordingly, the constructivity of the proof depends on how the
hypotheses used in the application of hypothesis have been obtained.

λµPRL – Classical Reasoning in Computational Type Theory 7

In λµPRL, the only rule that moves formulae into the hypotheses is implication
introduction, represented by a λ-abstraction in the proof term. But the crucial point
is the influence of context formulae in the proof tree. In the intuitionistic fragment of
λµPRL (as described above) two rules “destroy” a formula in the succedent: implica-
tion elimination and disjunction introduction. This is a usual property of these rules in
single-conclusioned Gentzen systems.

In the presence of the abort-rules, formulae that are “lost” in the intuitionistic
case can be saved by moving them to the context before one of the “destructive” rules
is applied and recovering them later. If the µ-variable of the recovered formula is α, the
application of abortwould result in a subterm of the form [α]t. There are two possible
cases that would render the proof classical.
1. The subtree rooted in a disjunction introduction contains a leaf that proves one dis-

junct or one of its subformulae using a hypothesis obtained from the other disjunct.
In this case the proof term will contain a subterm

µα. . . . inl(. . . λx. . . . [α] . . . inr(. . . x)) or
µα. . . . inr(. . . λx. . . . [α] . . . inl(. . . x)).

An example for this case is the standard proof of the law of the excluded middle
A ∨ (A ⊃ ⊥), which is represented by the term µα.[α]inr(λx.[α]inl(x)).

2. The subtree in which the premiss of an eliminated implication is to be proven does
not prove this premiss but a formula from the context and depends on a hypothesis
obtained from the premiss (if the context formula was proven without that hypo-
thesis the eliminated implication would have been superfluous for the proof and
been removed during cut elimination). This scenario will result in a subterm

µα. . . . (t (. . . λy. . . . [α] . . . y))
where t is the term that represents the eliminated implication the premiss of which
is proven by a switch of the goal formula. Examples are the axiom of double nega-
tion ¬¬A ⊃ A and Peirce’s Law (((P ⊃ Q) ⊂ P) ⊃ P). These can be represented
by the terms λx.µα.(x λy.[α]y) and λf.µα.[α](f λy.µβ.[α]y)

As one can see, both cases involve instances of the prominent classical theorems that
do not hold intuitionistically.

Now the question is how to identify such structures in proof terms. One possibility
is an adaption of a method by Parigot [27]. Since in his second order λµ-calculus the
usual formula describing natural numbers is not only represented by Church numerals
but also by infinitely many “false” witnesses, he proposes the use of an output operator.
This operator is related to the additional symmetric reduction rule of some λµ-calculi
(e.g. [25]) and also to the direct extraction of computational content from classical
proofs [22]. In [27] Parigot shows that there is an output operator which can compute
the constructive term (i.e. the Church numeral) corresponding to a natural number from
every false witness. Adapting the output of constructive content might allow to distin-
guish between proof terms with and without such content. But in this approach, the
intrinsic non-determinism of classical proofs would require special care.

Another method presented by Crolard [9] provides a constructive restrictionCND
r

∨
of Parigot’s λµ extended by disjunction and cut, which annotates the inference rules in
order to define a set of interdependencies between hypotheses and conclusions. The in-
tuition is to keep the multi-conclusion and the potential to exchange the active formula,

8 N. Brede, C. Kreitz

but to restrict the implication introduction in a way that only the hypotheses linked to
the active conclusion can be used. Additionally, Crolard defines an extension of clas-
sical λµ by disjunction and cut as λµ+. To determine if a λµ+-term t can be typed
in CND

r

∨ he introduces the notion of the scope Sδ(t) of a µ-variable δ and defines
µ-safe terms as those λµ+-terms which represent constructive proofs. The scopes of
the µ-variables are exactly the interdependencies of CND

r

∨.
We proceed in a similar fashion by giving a constructive restriction of λµPRL with

annotations and defining the scope of a µ-variable for λµPRL. We adopt Crolard’s
notation and use the following abbreviation for sets U, V , and W .

U [V/W] =
{
U \W ∪ V if W ∩ U 6= ∅
U otherwise

Definition 1. (Scope of a µ-variable) The set S[](t) of free λ-variables that occur out
of the scope of any µ-variable in t and the set Sδ(t) of free λ-variables that occur
within the scope of a free µ-variable δ in t are defined inductively on λµPRL-terms.

– S[](x) = x Sδ(x) = ∅
– S[](λx.u) = S[](u) \ {x} Sδ(λx.u) = Sδ(u) \ x
– S[](u v) = S[](u) ∪ S[](v) Sδ(u v) = Sδ(u) ∪ Sδ(v)
– S[]([α]u) = ∅ Sδ([α]u) = Sδ(u) for any δ 6= α
Sα([α]u) = Sα(u) ∪ S[](u)

– S[](µα.u) = Sα(u) Sδ(µα.u) = Sδ(u)
– S[](〈u, v〉) = S[](u) ∪ S[](v) Sδ(〈u, v〉) = Sδ(u) ∪ Sδ(v)
– S[](let 〈x, y〉 = z in u) = S[](u)[S[](z)/{x, y}]
Sδ(let 〈x, y〉 = z in u) = Sδ(u)[S[](z)/{x, y}] ∪ Sδ(z)

– S[](inl(u)) = S[](u) Sδ(inl(u)) = Sδ(u)
S[](inr(u)) = S[](u) Sδ(inr(u)) = Sδ(u)

– S[](case z of inl(x) : u | inr(y) : v) = S[](u)[S[](z)/{x}] ∪ S[](v)[S[](z)/{y}]
Sδ(case z of inl(x) : u | inr(y) : v)

= Sδ(u)[S[](z)/{x}] ∪ Sδ(v)[S[](z)/{y}] ∪ Sδ(z)

Remark 1. The above definition of the scope requires cuts to be eliminated from the
term t since we cannot distinguish if a λ-abstraction resulted from a cut or from an
implication introduction. This is not a serious problem as evaluating a term to check its
constructivity can be combined with reduction. We could also deal with terms contain-
ing cuts if we were to use a different term to represent the application of cuts (e.g. the
usual let x=v in u) and adapt the above definition and the reduction relation.

Now we can define µ-safety for terms of λµPRL analogously to Crolard:

Definition 2. (µ-safety of λµPRL-terms) A term t of λµPRL is safe in respect to µ-
contexts, or µ-safe, iff for any subterm of t of the form λx.u, x 6∈ Sδ(u) for any free
µ-variable δ.

It is easy to see that in both cases of the above analysis of non-constructive proofs the
λµPRL-terms are not µ-safe.

λµPRL – Classical Reasoning in Computational Type Theory 9

To verify that µ-safe terms are indeed the ones that always correspond to construc-
tive proofs, we formulate a constructive restriction of λµPRL named λµrPRL. Since
this version requires much notation, we only present the basic idea and refer the inter-
ested reader to [4] for further detail.

As a starting point we use Crolard’s calculus CND∨ [9] again. In his formulation
of CND∨ Crolard annotates the formulae in the conclusion by their interdependencies
with λ-variables. These sets of interdependencies are exactly the sets from definition 1,
i.e. S[] corresponds to the interdependencies of the active conclusion and the interde-
pendencies of each µ-variable δ naming a passive formula are contained in Sδ . He then
restricts this calculus to the constructive version CNDr

∨. To ensure constructivity, he
only allows the introduction of an implication, if the λ-variable of the abstraction does
not occur in any of the scopes of the passive formula. The reason why this method
renders the calculus constructive is that it keeps the implication local as the respective
hypothesis cannot be used in the proof of any passive formula – otherwise the variable
would occur in the scope of the µ-variable associated with the respective formula.

As our calculus works in top-down direction, we need some more notation than
in a bottom-up calculus. The inductive definition of the scope, and equivalently the
interdependencies, means that the scopes of µ-variables can – like the proof term – be
computed only when the proof is completed. Thus, when an implication introduction
is applied, there is not enough information on the scopes to restrict the rule as Crolard
does. However, we can implement this restriction by additional annotation. We simply
add a set of “forbidden” λ-variables and alter the hypothesis rule such that these
forbidden hypotheses may not be used. The construction of these sets of forbidden
variables can loosely be thought of as a recursive check of µ-safety by stating which
λ-variables in a term may not occur freely in its subterms.

The sequents of λµrPRL are λµPRL-sequents with the following extensions: µ-
variables and the conclusion are each annotated by a tuple of sets S|F where S is a
placeholder for the interdependencies and F contains the forbidden λ-variables. The
interdependencies of µ-variables and conclusion with λ-variables are computed from
the completed proof as is the proof term. The construction of the set of interdependen-
cies corresponding to the rules applied reflects and is consistent with definition 1. This
draws the connection between the calculus and the concept of µ-safety.

The rule lambdaI (as well as the rules functionE, andI, andE and orE)
requires us to express operations on the annotation of each µ-variable. Let

– SµH = {Sδ | Sδ|Fδ : {{Dδ}} ∈ H}
– FµH = {Fδ | Sδ|Fδ : {{Dδ}} ∈ H}
– H(S1µG|F1µG) =

∀Sδ|Fδ : {{Dδ}} ∈ H,S1δ ∈ SµG,F1δ ∈ FµG.(Sδ = S1δ ∧ Fδ = F1δ)

– U set. H(S1µG|F1µ ∪ U) =
∀Sδ|Fδ : {{Dδ}} ∈ H,S1δ ∈ S1µG,F1δ ∈ F1µG.(Sδ = S1δ∧Fδ = F1δ∪U)

An excerpt from the rules of λµrPRL can be found in figure 3.

We can establish that µ-safe λµPRL-terms indeed correspond to proofs in λµrPRL and
that λµrPRL is sound and complete for intuitionistic propositional logic.

Proposition 2. A λµPRL-term corresponds to a proof in λµrPRL iff it is µ-safe.

10 N. Brede, C. Kreitz

G, x:T, H ` {x}|F :T ext x
BY hypothesis $i
if x 6∈ F

(no subgoals)

H(SµH |FµH) ` S \ {x}|F :A ⊃ B ext λx.b
BY lambdaI x

H(SµH |FµH ∪ {x}), x:A
` S|F :B ext b

H ` Sα|F :B ext µ α.b
BY mu1 α

H, Sα|F :{{Bα}} ` S|F :⊥ ext b

G, S|Fα:{{Bα}}, H` ∅|F :⊥ ext [α] b
BY abort1 $i

G, H ` S|Fα:B ext b

H ` ∅|F :B ext µ α.b
BY mu2 α

H ` S|F :⊥ ext b

G, Sα ∪ S|Fα:{{Bα}}, H ` ∅|F :⊥
ext [α] b

BY abort2 $i
G, Sα|Fα:{{Bα}}, H ` S|Fα:B ext b

Fig. 3. Excerpt from λµrPRL’s inference rules

Proof.
⇒ We have to show for a λµrPRL-term t and any subterm of the form λx.u that x 6∈ Sδ

for any µ-variable δ occurring freely in u.
We know that in λµrPRL the application of lambdaI would have added x to the
set of forbidden variables for all µ-variables. If any of the passive formulae associ-
ated with these µ-variables was activated in the subsequent proof, this would result
in a subterm in which the respective µ-variable would occur freely. The restriction
of the rule hypothesis would prevent the use of x as long as no other context
formula is activated and thus it cannot occur freely in the subterm.

⇐ If a λµPRL-term t is µ-safe, we know that x 6∈ Sδ holds for any subterm of the
form λx.u an any µ-variable δ occurring freely in u,. Therefore x is not used by
the hypothesis-rule in any of the subproofs corresponding to subterms of the
form [δ]v of λx.u since in that case it would occur freely in v. Accordingly the
restriction put on λµPRL terms by the rules lambdaI and hypothesis are met
and the term is also a term of λµrPRL.

It remains to show that λµrPRL is in fact correct and complete for full intuitionistic
propositional logic. This can be done by simulating its rules in Nuprl or a calculus
equivalent to its propositional subsystem.

Theorem 2. λµrPRL is sound and complete for intuitionistic propositional logic.

Proof. This can be shown by mutual simulation of λµrPRL and any sound and com-
plete calculus for intuitionistic logic. The idea behind the simulation is as follows:
⇒ We simulate the sequents of λµrPRL such that the set of forbidden variables F

“splits” the sequent into several sequents which themselves can be seen as impli-
cations: one sequent for each µ-variable and one for the active conclusion. These
sequents are connected by a constructive ∨ and the antecedent of each “subse-
quent” contains merely the hypotheses that are not contained in F of the respec-
tive succedent. E.g. the sequent {y} : {{Dα}}, x : A, y : B ` {x} : C of

λµPRL – Classical Reasoning in Computational Type Theory 11

λµrPRL induces the split sequents (A ` D) and (B ` C) and is simulated by
` (A ⊃ D) ∨ (B ⊃ C). Then we can prove all rules of λµrPRL as lemmas.

⇐ The propositional inference rules of an equally expressive constructive logic (e.g.
the propositional fragment of Gentzen’s LJ or CTT) are obviously theorems of
λµrPRL as there is no need for context formulae and thus the setF trivially remains
empty throughout the proofs of the rules.

Now we can use the concept of µ-safety for our original purpose and evaluate a
term t of λµPRL in two steps: Computing the scopes of the free µ-variables present in
t and checking for every subterm of the form λx.u that x is not in the scope of any free
µ-variable occurring in u.

We can also compute the constructive λ-term from a µ-safe λµPRL-term by evalu-
ating the µ-operator like Felleisen’s C-operator (see section 5) but that requires a deter-
ministic evaluation strategy. Otherwise such an evaluation would not be confluent.

For λµPRL-terms in general, this situation might occur because the pair-construct
contains two principal subterms. If we have some term context with a µ-abstraction
C[µα.t] and a pair 〈u, v〉 as subterm of t where u contains a subterm [α]u′ and v a
subterm [α]v′, it depends on the evaluation order whether the resulting term is C[u′] or
C[v′] (provided there are no other µ-abstractions which are evaluated first and there are
no other free occurrences of α).

In the case of µ-safe terms any strategy will yield a constructive term but the re-
sulting term may depend on the strategy. In contrast to that, for non-µ-safe terms the
evaluation might produce a non-closed term (which reflects that the crucial hypotheses
are not available in an intuitionistic proof).

There is another, somewhat pathological subset of λµPRL-terms which are not µ-
safe but may evaluate to a constructive, closed λ-term depending on the evaluation
order. Thus, in the above example, C[u′] might be constructive whereas C[v′] is not.

The question is when this may be the case. If we look at the term tree of such terms
and transfer the concept of µ-safety to such trees, they contain partial trees which are
µ-safe. Accordingly, we define a notion of partial µ-safety.

Definition 3. (partial µ-safety) Partial µ-safety is defined recursively as follows:

– A λµPRL term twhich does not contain any subterm of the form 〈p1, p2〉 is partially
µ-safe, if it is µ-safe.

– A λµPRL term t ≡ C[〈p1, p2〉] where C[•] does not contain any pair-constructors,
is partially µ-safe, if it is µ-safe or either C[p1] or C[p2] is partially µ-safe.

We conjecture that every partially µ-safe term can be evaluated to a constructive
term when using the appropriate evaluation order.

5 Relation to Murthy’s PROGK

Like λµPRL, Murthy’s calculus PROGK [22] has been developed in the context of
Computational Type Theory and provides an extension to classical logic. As a conse-
quence λµPRL and PROGK share the following properties:

12 N. Brede, C. Kreitz

– both use logical rules of CTT
– both are top-down refinement calculi
– both are extended to classical logic by an additional rule
– application of the classical rule is signalled in the proof term by a special operator
– both are minimal logics, i.e. there is no explicit elimination rule for ⊥.

Therefore it is interesting to look into the exact relation between λµPRL and PROGK .
Murthy’s work is primarily concerned with the direct extraction of constructive con-

tent from proofs of Σ-sentences in Peano Arithmetic. Thus, if we adapt λµPRL in an
appropriate way, it is also possible to reproduce Murthy’s results for this purpose. Such
an adaption has to overcome the following differences:

– PROGK is a calculus for Peano Arithmetic and therefore contains rules for uni-
versal and existential quantification and arithmetical expressions. At the same time
N is the only data type. Because of problems with the axiom of choice theorems
are restricted to the decidable fragment Σ0

1 (respectively Π0
2).

– PROGK is obtained from its intuitionistic fragment by adding the double negation
elimination rule. It types Felleisen’s C-operator [13]. When reducing C, the abort-
operator A (also due to Felleisen) is used.

– Reduction in PROGK is defined in terms of evaluation contexts. The one-step-
evaluation rules for the operators C andA are adapted from Felleisen’s λC-calculus.
Thus C works like a control operator in a functional programming language with
access to the control flow. Because of the known confluence issues, Murthy defines
a deterministic evaluation strategy.

The close relation between λµPRL and PROGK can be shown similarly to how de
Groote [10] relates a first order version of Parigot’s λµ to a subtheory of Felleisen’s
syntactic theory of sequential control [13]. We will focus on the basic idea of translating
between an adapted version of λµPRL and PROGK and refer to [4] for details.

Since λµPRL and PROGK do not cover the same range of formulae, we formulate
a variant λµcPRL of λµPRL that extends the logic by the arithmetical and first-order
expressions of PROGK as well as the accompanying rules. For further comparability
with PROGK and to maintain soundness, λµcPRL is restricted to decidable formulae
and to the type N.

The deterministic evaluation in PROGK is based on the following two reduction
rules, using the notion of evaluation contexts E[−] with a hole:

Definition 4. (c-reduction)
E[(C t)] c (t λx.(A E[x])) E[(A t)] c t

We define µc-reduction in a similar way. The adaption is induced by the translation
of the respective terms from PROGK to λµcPRL. For this purpose, the A-operator
needs to be included the term-language of λµcPRL.

Definition 5. (µc-reduction)
E[µα.t] µc t[A(E[u])/[α]u] E[A(t)] µc t

To make the evaluation comparable, the evaluation strategy is assumed to be the same
as in PROGK .

λµPRL – Classical Reasoning in Computational Type Theory 13

Since the only crucial difference between PROGK and λµcPRL arises from the
“classical” constructs µ and C, it is sufficient to look at their relation to get a basic idea
of the relation between the two calculi. We start with defining a C-transform JtKC of a
λµcPRL-term t. This is done inductively and the interesting cases are:

– Jµα.tKC = (C λα.JtKC);
– J[α]tKC = (α JtKC);
– J(A t)KC = (A JtKC);

Based on this definition we can show the following proposition (See [4] for a proof):

Proposition 3.
If t is a λµcPRL-term and A is a simple type such that `µ A ext t then `C A ext JtKC .

The inverse translation is based on the proof of the double negation elimination rule
¬¬A ⊃ A in λµcPRL. Applying the extract term of the proof to the translated subterm
t yields the µ-transform of a PROGK-term (C t). So we can proceed with defining the
µ-transform JtKµ of a PROGK- term t. Again we omit the less illuminating cases:

Definition 6. (µ-transform)
J(C t)Kµ = µα.(JtKµ λy.[α]y) J(A t)Kµ = (A JtKµ)

Based on this definition we can show by an induction on the derivation of `C A ext t:

Proposition 4.
If t is a PROGK-term andA is a simple type such that `C A ext t then `µ A ext JtKµ.

Remark 2. A translation of the operatorA is not necessary for the translation of deriva-
tions in the two calculi, as it will not occur in a derivation. However, it is necessary for
evaluation purposes.

Based on the above translations some results involving the evaluation of terms and
thus of computational content can be established (see [4] for proofs of propositions
5–7). We denote the evaluation of λµcPRL that combines Murthy’s reduction strategy
with β- and µc-reduction by evµ→ and the evaluation of PROGK by evc→.

Proposition 5. Let t1 and t2 be λµcPRL-terms. If t1evµ→ t2 then Jt1KCevc→ Jt2KC .

Proposition 6. Let t1 and t2 be PROGK-terms. If t1evc→ t2 then Jt1Kµevµ→ Jt2Kµ.

The reduction rules combined with the evaluation strategy induce an equality rela-
tion for each of the two calculi. Using this equality relation on terms, we can also show
that the two translations are inverses of each other.

Proposition 7. Let s be a closed λµcPRL-term and t be a closed term of PROGK .
Then the respective C- and µ-transforms are such that:
1. JJsKCKµ =µ s
2. JJtKµKC =c t

In conclusion we can establish that λµcPRL and PROGK are isomorphic.

Theorem 3. If t1, t2 are closed λµcPRL-terms and s1, s2 are PROGK-terms then
1. s1 =µ s2 iff Js1KC =c Js2KC
2. t1 =c t2 iff Jt1Kµ =µ Jt2Kµ

Proof. This result can be derived from the propositions 5, 6 and 7.

14 N. Brede, C. Kreitz

6 Conclusions and Future Work

We have shown that it is possible to distinguish between “constructive” and “non-
constructive” λµPRL-terms by a detailed analysis of the term structure. The notions
of µ-safe and partially µ-safe terms can be used to implement a procedure that identi-
fies proof terms with constructive content even if the proof contained abort-rules.

As a consequence of the isomorphism between λµcPRL and PROGK we can also
directly extract computational content from proofs in λµcPRL. Using the same evalua-
tion for λµPRL, however, might result in non-closed terms since there is no restriction
on the goal formulae. This will be the case if the proof relies on a hypothesis not avail-
able in an constructive proof. In the case of µ-safe terms, an intuitionistic proof term
can be recovered using any evaluation strategy since no subgoal may depend on a “clas-
sical” hypothesis. Partially µ-safe terms will evaluate to a closed λ-term for at least one
evaluation sequence.

Still, we cannot conclude from a proof term which does not evaluate as construc-
tive that there is no constructive proof of the proposition. The result simply states that
the proof in question relies on a classical argument. Considering the relation between
classical logic and control operators in functional programming languages (and thus im-
perative programming constructs), it would be interesting to further examine the com-
putational content of such “classical” terms.

There are various potential directions for future work. From a practical point of
view, the next step might be to integrate λµPRL into the Nuprl system. The extended
system could be used to develop larger exemplary proofs. As we closely followed the
design decisions of CTT, a basic implementation could be done quite straightforwardly.
All rules except the rules mu and abort already exist in Nuprl and the new constructs
could be easily embedded as (abstraction-, rule-, and ML-) objects in Nuprl’s library.
As the proof term of Nuprl proofs is computed after the completion of a proof, this
procedure might be well suited to also include further evaluation of the proof term to
decide whether the proof is constructive in the intuitionistic sense or not.

It would also be interesting to further examine the idea of partial µ-safety, e.g. es-
tablishing whether the set of partial µ-safe terms contains every proof term with con-
structive content. The concept could be extended to λµcPRL, possibly allowing to drop
the restriction on its goal formulae by subsequently identifying non-constructive terms.

Extending λµPRL to first order logic and arithmetic cannot be done without re-
stricting it to decidable formulae (instead of permitting the use of the axiom of choice).
In CTT, the existential quantifier is defined as the dependent product type via the
propositions-as-types principle. When used for program synthesis, the proof of a speci-
fication therefore returns a pair 〈e, p〉which consists of the algorithm and the proof term
guaranteeing its correctness. However, using the classical rules of λµPRL the proof cor-
responding to p might not really prove the correctness of e. Instead it may dismiss the
original evidence and prove something else. In fact, it has been shown in [21] that an
arithmetic type theory that contains the dependent product type and validates the prin-
ciple of the excluded middle is unsound. The essential reason is that the undecidable
halting problem could be proven decidable in such a theory.

Nevertheless, if we could identify non-constructive λµcPRL-proofs, this problem
could be circumvented. We could then employ the meta-system in a fashion similar to

λµPRL – Classical Reasoning in Computational Type Theory 15

Howe’s method for importing proofs from HOL into Nuprl [18]. By using Nuprl’s meta-
system to mark a proof’s root node whenever it is not computational, Howe made sure
that proofs containing instances of HOL’s non-constructive “select”-operator cannot be
used when computation is required. Investigating the relation between HOL’s select-
operator and λµPRL’s µ-operator and studying how Howe’s operational semantics for
CTT can be reconciled with λµPRL could provide a basis for adapting his method to
λµcPRL-proofs.

Besides, it is well known that the µ-operator can be seen as “generic jump operator”
[25]. Therefore the terms of λµPRL correspond to functional programming languages
with control operators. In [25] Ong explicitly describes such a correspondence between
terms of µPCF and different kinds of control constructs: the Y-combinator, Scheme’s
call/cc and ML-style exception handling via throw and catch. Other authors
have also presented calculi for λ-calculi with control, like de Groote’s calculus for ex-
ception handling [11], which is closely related to λµ.

Along these results, an extension of Nuprl’s purely functional programming lan-
guage might be of interest instead of merely employing the µ-operator to distinguish
between intuitionistic and classical proofs. It could be considered how to define differ-
ent control constructs as conservative extensions based on the µ-operator and whether
a semantics of evidence for a hybrid type theory could be developed on this foundation.

References

1. Stuart Allen, Mark Bickford, Robert Constable, Richard Eaton, Christoph Kreitz, Lori
Lorigo, and Evan Moran. Innovations in computational type theory using Nuprl. Journal of
Applied Logic 4(4):428–469, 2006.

2. Kensuke Baba, Sachio Hirokawa, and Ken-etsu Fujita. Parallel reduction in type free λµ-
Calculus. Electronic Notes on Theoretical Computer Science 42, 2001.

3. Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Program extraction from
classical proofs. Annals of Pure and Applied Logic, pages 77–97, 1995.

4. Nuria Brede. λµPRL – A Proof Refinement Calculus for Classical Reasoning in Compu-
tational Type Theory Diploma thesis, Institut für Informatik, Universität Potsdam, 2009.
available at: http://www.cs.uni-potsdam.de/˜brede

5. Robert L. Constable. Computational type theory. Scholarpedia, 4(2):7618, 2009.
6. Robert L. Constable et. al. Implementing Mathematics with the Nuprl Development System.

Prentice-Hall, 1986.
7. S. A. Cook. The complexity of theorem proving procedures. STOC-71, pp. 151–158, 1971.
8. Thierry Coquand. A semantics of evidence for classical arithmetic. Journal of Symbolic

Logic, 60(1):325–337, 1995.
9. Tristan Crolard. A constructive restriction of the λµ-calculus. Technical Report 02, UFR

d’Informatique, Université Paris 7, 2002.
10. Philippe de Groote. On the relation between the lambda-mu-calculus and the syntactic theory

of sequential control. LPAR-94, pages 31–43, 1994.
11. Philippe de Groote. A simple calculus of exception handling. TLCA, pages 201–215, 1995.
12. Philippe de Groote. Strong normalization of classical natural deduction with disjunction.

TLCA, pages 182–196, 2001.
13. Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce F. Duba. A syn-

tactic theory of sequential control. Theoretical Compututer Science 52:205–237, 1987.

http://www.cs.uni-potsdam.de/~brede

16 N. Brede, C. Kreitz

14. Jean H. Gallier. Constructive logics, part I: A tutorial on proof systems and typed λ-calculi.
Research Report 8, DEC Paris Research Laboratory, Reuil-Malmaison, may 1991.

15. Michael J. C. Gordon and Thomas F. Melham, editors. Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press, 1993.

16. Timothy Griffin. A formulae-as-types notion of control. POPL-90, pages 47–58, 1990.
17. William A. Howard. The formulae-as-type notion of construction, 1969. In J. P. Seldin and

R. Hindley, editors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and
Formalism, pages 479–490. Academic Press, 1980.

18. Douglas J. Howe. Semantic Foundations for Embedding HOL in Nuprl. 5th International
Conference on Algebraic Methodology and Software Technology, pages 85–101, 1996.

19. Christoph Kreitz. The Nuprl Proof Development System, Version 5, Reference Manual and
User’s Guide. Cornell University, 2002.

20. Per Martin-Löf. Intuitionistic Type Theory. Studies in Proof Theory 1, Bibliopolis, 1984.
21. Chetan R. Murthy. Extracting Constructive Content from Classical Proofs. PhD thesis,

Department of Computer Science, Cornell University, 1990.
22. Chetan R. Murthy. An evaluation semantics for classical proofs. LICS ’91, pp. 96–107, 1991.
23. Koji Nakazawa and Makoto Tatsuta. Strong normalization of classical natural deduction with

disjunctions. Annals of Pure and Applied Logic, 153:21–37, 2008.
24. C.-H. L. Ong. A semantic view of classical proofs. LICS ’96. IEEE Press, 1996.
25. C.-H. L. Ong and C. A. Stewart. A curry-howard foundation for functional computation

with control. ACM SIGPLAN-SIGACT Symposium on Principle of Programming Languages,
pages 215–227. ACM Press, 1997.

26. Michel Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical natural de-
duction. LPAR-92, pages 190–201, 1992.

27. Michel Parigot. Classical proofs as programs. Computational logic and proof theory, LNCS
713, pages 263–276. Springer-Verlag, 1993.

28. Walter Py. Confluence en λµ-calcul. PhD thesis, UFR Sciences Fondamentales et Ap-
pliquées, Université de Savoie, 1998.

29. D. J. Pym and E. Ritter. Reductive Logic and Proof-search. Oxford University Press, 2004.
30. D. J. Pym and E. Ritter. On the semantics of classical disjunction. Journal of Pure and

Applied Algebra, 159:315–338, 2001.
31. Richard Statman. Intuitionistic propositional logic is polynomial-space complete. Theoreti-

cal Compututer Science 9:67–72, 1979.

	LambdaMu-PRL -- Classical Reasoning in Computational Type Theory
	N. Brede, C. Kreitz
	Introduction
	Preliminaries
	Computational Type Theory
	LambdaMu-calculi

	The Calculus LambdaMu-PRL
	Constructive and Non-constructive Terms of LambdaMu-PRL
	Relation to Murthy's PROG_K
	Conclusions and Future Work

