
λµPRL – A Proof Refinement Calculus

for Classical Reasoning

in Computational Type Theory

Diplomarbeit

von

Nuria Brede

Lehrstuhl für Theoretische Informatik

Institut für Informatik

Universität Potsdam

Betreuung:

Prof. Dr. Christoph Kreitz

Dipl. Inform. Martin Gebser

27. Januar 2009

Abstract

This thesis is concerned with an integration of classical logic into computational type
theory. Different from other approaches, our primary objective is not the extraction of
constructive content from classical proofs, but rather the development of a hybrid proof
environment which enables the user to benefit from the advantages of both concepts.

Computational Type Theory – as implemented in the Nuprl proof development system
[CAB+86] – provides the means to extract functional programs from the constructive
proof of their specification. These programs are correct by construction because of the
well-known proofs-as-programs correspondence.

However, finding proofs in the underlying constructive logic is harder than in classical
logic. At the same time a proof might contain subgoals which do not even require a
construction. But if the system was hybrid, the user could decide which logic to use in
particular parts of the proof.

Still, it must be possible to distinguish between classical and constructive proofs to
maintain the soundness of the system. Such a possibility is given, if the use of classical
logic is subsequently visible in the proof term. A calculus providing this feature is the
λµν-calculus by Pym and Ritter [PR04]. Thus we develop the calculus λµPRL, combining
λµν with a top-down sequent calculus closely related to Nuprl’s logic.

Furthermore, we consider λµPRL under different aspects. We establish a confluent
reduction relation and examine how the use of classical reasoning is indicated in a λµPRL-
term. We show that it is possible to make fine distinctions between constructive and
non-constructive proofs (instead of dismissing every term containing one of the classical
constructs). In this context we adapt the notion of µ-safe terms introduced by Crolard
[Cro02], and propose an even more precise extension of this concept.

Finally we relate λµPRL to the calculus PROGK for Peano arithmetic by Murthy
[Mur91b]. Murthy’s influential work was also situated in the Nuprl context and concerned
the extraction of constructive content from classical proofs of arithmetical Σ0

1 sentences.
We show that a variant of λµPRL is isomorphic to PROGK .

Zusammenfassung

In der vorliegenden Arbeit beschäftigen wir uns mit der Möglichkeit klassischen Schlie-
ßens in der konstruktiven Typentheorie. Dabei zielen wir jedoch weniger auf den konstruk-
tiven Inhalt klassischer Beweise als auf eine hybride Beweisumgebung ab. Diese soll dem
Benutzer ermöglichen, frei zwischen klassischen und konstruktiven Schließen zu wählen
und somit die Vorteile beider Denkweisen nutzen zu können.

Die von uns betrachtete konstruktive Typentheorie ist im Nuprl Beweisentwicklungs-
System [CAB+86] implementiert. Nuprl bietet die Möglichkeit, funktionale Programme aus
dem konstruktiven Beweis ihrer Spezifikation zu extrahieren. Aus dem bekannten Beweise-
als-ProgrammePrinzip ergibt sich, dass solche Programme per Konstruktion korrekt sind.
Klassische Logik dagegen lässt Widerspruchsbeweise zu, die nicht notwendigerweise kon-
struktiven Inhalt besitzen.

Allerdings ist die Beweissuche in konstruktiver Logik aufwendiger als in klassischer
Logik. Des Weiteren kann ein Beweis Teilziele enthalten, die ohnehin keine Konstruktion
erfordern. Als Lösung bietet sich ein hybrides System an: In diesem könnte der Benutzer
entscheiden, welche Logik er in verschiedenen Beweisteilen einsetzen möchte.

Um die Korrektheit eines solchen Systems zu gewährleisten, muss jedoch die Möglichkeit
gegeben sein, zwischen konstruktiven und klassischen Beweisen (oder Teilbeweisen) zu un-
terscheiden. Dies kann erreicht werden, indem die Verwendung klassischer Logik im Ex-
trakt des Beweises sichtbar wird. Ein klassischer Kalkül, der diese Eigenschaft besitzt, ist
der λµν-Kalkül von Pym und Ritter [PR04].

Dieser Kalkül dient nun als Grundlage unserer Überlegungen. Zunächst erwägen wir,
klassische Logik anhand der λµν-Multi-Konklusion in Nuprl zu integrieren. Dieser Ansatz
erweist sich zwar als ungeeignet, zeigt jedoch eine Alternative auf, die unseren Kalkül
λµPRL motiviert. Dieser ist ein analytischer Sequenzenkalkül, der sich stark an Nuprls
Logik orientiert. Eine Implementierung in Nuprl ließe sich daher mit nur geringfügigen
Änderungen des System verwirklichen.

Anschließend betrachten wir λµPRL unter verschiedenen Aspekten. Wir führen eine
Korrektheitsbeweis auf Basis einer gegenseitigen Simulation mit λµν und definieren eine
konfluente Reduktions-Relation.

Zudem untersuchen wir, wie sich klassisches Schließen im Beweisterm auswirkt. Dabei
zeigt sich, dass nicht jeder Term verworfen werden muss, der eines der klassischen Kon-
strukte enthält. Es ist vielmehr möglich, feine Unterscheidungen vorzunehmen. In diesem
Zusammenhang adaptieren wir das Konzept der µ-sicheren Terme von Crolard [Cro02].
Zusätzlich schlagen wir eine Erweiterung dieses Konzepts vor, die noch feinere Unterschei-
dungen erlaubt.

Schließlich setzen wir λµPRL in Bezug zu einer früheren Arbeit, die sich mit dem
konstruktiven Inhalt klassischer Beweise befasst [Mur91b]. Murthy’s einflussreiche Arbeit
stammt ebenfalls aus dem Nuprl-Umfeld und enthält den Kalkül PROGK für Σ0

1-Formeln
der Peano Arithmetik. Wir zeigen, dass eine Variante von λµPRL isomorph zu PROGK

ist.

Contents

1 Introduction 1

2 Preliminaries 4

2.1 Classical and Intuitionistic Logic . 4
2.2 The Nuprl Proof Development System . 5
2.3 Murthy’s PROGK . 7
2.4 The λµ-Calculi . 9
2.5 Substitution . 11
2.6 Reduction . 14

3 On the λµ-Multi-Conclusion 17

3.1 Preliminary Considerations . 17
3.2 A Multi-Conclusion for Nuprl? . 20
3.3 Conclusion and Alternative Approach . 22

4 λµPRL 24

4.1 The calculus λµPRL . 24
4.2 Consistency of λµPRL . 25

5 Conversion Theory 36

5.1 Conversion in λµPRL and Related Calculi . 36
5.2 Confluence of βµ-reduction . 40

6 On Classical and Intuitionistic Terms of λµPRL 46

6.1 Murthy’s Evaluation . 48
6.2 Distinguishing Terms by Crolard’s µ-safety . 51
6.3 Constructive Content of λµPRL-terms . 58
6.4 Non-µ-safe Terms with Constructive Content . 59

7 λµPRL and PROGK 61

7.1 λµPRL and PROGK . 61
7.2 Translation between λµPRL and PROGK . 62
7.3 Preservation of Reduction . 66
7.4 Example Proofs . 70

8 Conclusion and Perspectives 73

8.1 Conclusion . 73
8.2 Perspectives . 74

List of Figures I

Bibliography II

vii

viii

Chapter 1

Introduction

Computational Type Theory [Con08] is the constructive type theory implemented in the
Nuprl Proof development system [CAB+86, Con98]. The importance of constructive type
theories for computer science results from the proofs-as-programs correspondence (also
referred to as the Curry-Howard-isomorphism [How80]). This principle links reasoning
about data types to constructive logic and thereby enables the extraction of functional
programs from logical proofs. Such programs are correct by construction – a crucial feature
in a world where sensitive domains increasingly rely on the correctness of software.

The ability to automatically synthesize a program from the proof of its specification is
founded on a constructive notion of existence. This notion is the fundamental difference
between intuitionistic (constructive) and classical logic. While in intuitionistic logic the
existence of an object can only be proved if we know how to construct it, classical logic
allows proofs by contradiction. As a consequence, in classical logic the existence of an
object does not necessarily coincide with actually knowing the object which is supposed
to exist.

Although the algorithmic knowledge how to construct an object plays an important role
in computer science, modern mathematics largely depend on the classical point of view. A
type theory with a classical notion of existence is e.g. implemented in the theorem prover
HOL [GM93].

As a result of the different paradigms, intuitionistic logic rejects classical axioms like
the law of the excluded middle or the double negation elimination. But this also makes
proof search in intuitionistic logic harder: Whereas in classical propositional logic proof
search is co-NP-complete, in propositional intuitionistic logic it is PSPACE-complete
[Coo71, Sta79].

Although it was long believed that classical proofs have no constructive content, it still
was a known fact that classical and intuitionistic logic can be reconciled with each other.
There exist translations between intuitionistic and classical logic, e.g. Gödel’s double nega-
tion translation [Gal91]. Furthermore, Friedman [Fri78] proved that classical (Peano)
arithmetic is conservative over intuitionistic (Heyting) arithmetic for Π0

2 sentences.

Then, in 1989, Griffin published a very influential paper [Gri90], proposing an extension
of the proofs-as-programs-principle to classical logic. His method was to augment Church’s
simply typed λ-calculus [Chu40] (which is the basis for functional programming languages)
with Felleisen’s control operator C [FFKD87, FH92] and to type it with the classical axiom
of double-negation-elimination. This relates classical proofs to functional programming

1

2 CHAPTER 1. INTRODUCTION

languages with access to the control-flow (as in imperative languages) in the same way as
intuitionistic proofs are related to purely functional languages. Examples of such control
constructs include the exception handling mechanism in ML or the call/cc- operator in
Scheme.

Griffin’s work triggered a lot of research concerning the semantics and constructive
content of classical proofs (e.g.[BB92, BB93, RS94, Oga98, BBS95, dG95, Fuj97, Coq95,
Gir91]).

Among the works inspired by Griffin, was also Murthy’s research [Mur90, Mur91b,
Mur91a] concerning the constructive content of Σ0

1 sentences in Peano arithmetic.
Murthy’s work was situated in the context of the Nuprl system and contributed (among
other results) how to directly obtain values from classical proof terms.

Another work following up Griffin’s and Murthy’s research was an algorithmic inter-
pretation of natural deduction by Parigot [Par92]. For this purpose Parigot designed
the classical natural deduction calculus λµ which he regarded as better suited for proof-
theoretic studies. Instead of the additional operator C , the λµ-calculus introduced the
new binding operator µ. Different from C the µ-operator binds a new kind of variables
which (roughly speaking) denote applications of classical reasoning.

Since the λµ calculus was proposed, Parigot’s original version has intensively been
studied (e.g. [Par92, Par93a, Py98, BHF01, Mat01]) and multiple variants of λµ-calculi
have been defined (e.g. [OS97, Ste99, dG01, PR04]). One of these different versions is
Pym’s and Ritter’s λµν-calculus [PR04, RPW00, Pym, PR01].

Considering an integration of classical reasoning into computational type theory, λµν
and the Nuprl system were the origins of this thesis. But our primary objective in this
context is not the extraction of constructive content from classical proofs. We are rather
interested in the creation of a hybrid system, enabling the user to decide which logic he
wants to employ in different parts of a proof. Thereby the user could profit from the
advantages of both concepts.

However, it is still necessary to find a way of maintaining the system’s soundness in
presence of both constructive and classical reasoning. That it is possible to reconcile
the constructive Nuprl system’s semantics with classical logic, has been shown by Howe’s
embedding of HOL into Nuprl [How96b, How96a]. But at the same time it is common
knowledge, that systems which both validate classical axioms and allow dependent product
types (which are the basis for Nuprl’s constructive notion of existence) in presence of
arithmetic become unsound [Mur90].

Howe solves this problem by ensuring that HOL proofs may not be used within Nuprl
proofs, if a construction is required (since they have no algorithmic content but only truth
values and thus cannot prove the constructive existence of an object). To implement this
condition, Howe adds a parameter to proof nodes in Nuprl, which indicates whether the
respective proof may be used for construction or not.

The reason to consider λµν for an extension of Nuprl to classical logic follows a similar
line of thought: If the use of classical reasoning was visible in the proof term, this would
enable us to subsequently distinguish between constructive and non-constructive proofs.

In prior work [Bre08] we already attempted a simulation of λµν as conservative ex-
tension of the Nuprl system. Little surprisingly, not all of λµν’s rules were construc-
tively provable without additional premisses: It was necessary to either supplement a
non-constructive classical axiom or to state the decidability of a subformula (thereby draw-

3

ing a connection to the conservativity of classical over constructive logic in the decidable
fragment).

However, our aim was to not restrict the range of goal formulae. Thus, it seemed a
reasonable first step for this thesis to examine whether and how the λµν-multi-conclusion
could be expressed within Nuprl’s type theory as real extension.

This approach helps to emphasize some aspects of the λµν-multi-conclusion’s structure
and semantics. But it also turns out, that altering the conclusion part of Nuprl’s sequents
might not be the most sensible way to extend the system to classical logic. Instead
it seems more reasonable to add a distinct second kind of (µ-)hypotheses. This view
is also supported by other approaches to λµ in the literature. E.g. Ong and Stewart
[OS97, Ong96] use two kinds of hypotheses for λ-variables on the one hand and µ-variables
on the other. It is also compatible with augmenting the hypotheses by an ,,attitude” as
Stewart does in [Ste99].

Based on this, we develop the propositional calculus λµPRL 1 in proof-refinement-
logic-style. λµPRL is shown to be equivalent to λµν in the sense, that the rules of each
system can be simulated in the other. Moreover, it could be included into Nuprl in a
convenient way.

We also define a βµ-reduction relation for λµPRL and establish its confluence.
But still, the aspect of maintaining the system’s soundness remains. For this purpose

we investigate the proof terms of λµPRL-terms. This reveals that it is not necessary to
dismiss every proof term containing one of λµPRL’s “classical” operators. It is rather
possible to make fine distinctions between classical and constructive terms of λµPRL.
In this context we adapt the notion of µ-safe terms introduced by Crolard [Cro02] and
propose an extension of this concept to partially µ-safe terms. This idea concerns the
terms which can be evaluated to either constructive or non-constructive terms, depending
on the evaluation strategy employed.

Finally, we relate λµPRL to Murthy’s calculus PROGK [Mur91b]. This calculus is of
importance for our work as it is also situated in the environment of Nuprl and extends a
part of Nuprl’s logic to classical logic by an additional operator. We show that a variant
of λµPRL is isomorphic to PROGK . This on the one hand provides a possibility to also
extract computational context and on the other hand clarifies the relation between the µ-
and the C -operator.

As to the outline of this thesis, chapter 2 contains some more background information
on the systems and calculi recurring in later chapters and gives the necessary preliminary
definitions. Chapter 3 contains our considerations towards a multi-conclusion-type for
Nuprl and the alternative approach resulting in λµPRL. In chapter 4 the calculus λµPRL
is developed and a mutual simulation with λµν is presented. Chapter 5 deals with the
conversion theory of λµPRL, including a confluence proof of its reduction relation. In
chapter 6 we analyze how classical reasoning is visible in λµPRL-terms and in chapter 7
we relate λµPRLto Murthy’s PROGK . Finally, in chapter 8 the results of this thesis and
possibilities for future work are discussed.

Acknowledgements. I would like to thank Prof. Dr. Kreitz for proposing this fascinating
topic to me, giving useful advice and showing continuous interest in my work.

1Please note that the “µ” in λµPRL is not related to Mendler’s integration of µ-recursion into Nuprl’s
type theory [Men88]. Instead it refers to the µ-operator from the family of λµ-calculi.

Chapter 2

Preliminaries

This chapter is supposed to provides the preliminaries for the later chapters. Therefore
we will introduce recurring calculi and systems as well as basic notation and terminology.
Apart from some definitions of our own, this chapter basically contains content which can
also be found in the referenced literature.

2.1 Classical and Intuitionistic Logic

Classical and intuitionistic logic share the same syntax, but differ in both their semantics
and their axioms.

The crucial property of intuitionistic (also referred to as “constructive”) logic is the
existence property. It states that we can only claim the existence of an object if we know
how to construct it. As a consequence, intuitionistic logic rejects classical tautologies like
the law of the excluded middle as axiom.

Classical logic on the contrary allows proofs by contradiction, employing the law just
mentioned. This means we assume that some element does not exist, and prove that this
assumption is false. Then the element must exist, although we might not know how to
construct - or in terms of computer science: compute - it.

Still, if we take an intuitionistic calculus like Gentzen’s well-known LJ [Gen34], we
can obtain a calculus for classical logic by simply adding one of the following rules:

•
A ∨ ¬A

(tertium non datur / law of the excluded middle)

•
Γ,¬φ ⊢ ⊥

Γ ⊢ φ
(reductio ad absurdum)

•
Γ ⊢ ¬¬φ

Γ ⊢ φ
(double negation elimination)

Another possibility to achieve this effect is the admission of a multi-conclusion. This
approach is chosen in λµν (see section 2.4), while in λµPRL the classical rule corresponds
to reductio ad absurdum (see 4). Murthy’s PROGK employs the third variant using the
double negation elimination rule.

As a consequence, it is obvious that the set of intuitionistically provable formulae is
a real subset of classical tautologies. Nevertheless, intuitionistic logic is not weaker than

4

2.2. THE NUPRL PROOF DEVELOPMENT SYSTEM 5

classical logic as is shown by several translations (e.g. by Kolmogorov, Gentzen or Gödel
[Gal91]). In fact, a translated formula is provable in classical logic if and only if it is
provable in intuitionistic logic.

At the same time, in classical logic it is not possible to distinguish the translated
formula from the original formula. This means intuitionistic logic allows to make finer
distinctions. The same is valid for the different λµ-calculi: In these calculi the classical
equivalence P ≡ ¬¬P is not true [OS97].

However, the drawback is that proof search in intuitionistic logic is harder than in
classical logic: While classical propositional logic is co-NP-complete, intuitionistic propo-
sitional logic is PSPACE-complete [Coo71, Sta79].

2.2 The Nuprl Proof Development System

A version of Computational Type Theory is implemented in the Nuprl proof development
system [CAB+86, Con98] (which is now part of the Formal Digital Library FDL). This
system does not only provide an environment for interactive proof development, but also
a powerful tool for program synthesis, verification and optimization [Kre04].

Nuprl’s logic is based on Martin-Löf’s intuitionistic type theory [ML84]. Nevertheless
it is a considerable extension of this predecessor and moreover it is open-ended. This
enables the user to extend the logical language if desired.

Each type of Nuprl’s type theory is associated with a set of rules. These rules concern
on the one hand the type’s and its members’ formation and elimination, on the other hand
they determine how it is evaluated and whether two instances of this type or its members
are extensionally equal. This also stipulates the semantics of the type. An excerpt from
Nuprl’s types is given in figure 2.1, taken from [Kre04], and a more extensive overview of
the current system can be found in [Kre02].

Nuprl-Expressions are defined independently of their type so that even untypable con-
structs like the well-known Y-combinator can be used in terms. This allows to represent
all computable functions in Nuprl-terms. Still, proofs require that an expression is shown
to be member of a type. Furthermore, to maintain termination of evaluation in presence
of such expressiveness, Nuprl’s employs a lazy evaluation strategy.

Proofs in Nuprl are carried out in a top-down sequent calculus which refines a proof
goal until every subgoal is an instance of an axiom or lemma of Nuprl’s library. This
library contains a wide range of formalized mathematical knowledge.

The proof goal in Nuprl-proofs is not manipulated by direct application of inference
rules, but by the use of proof tactics. These tactics are implemented in the system’s
meta-language which is a functional programming language similar to Standard ML. A
tactic might in fact just carry out a single step of inference, but the concept is much more
powerful. Since tactics work on the meta-level of the system, it is possible to define tactics
which analyse the hypotheses and the proof goal to decide which inference rules can or
should “best” (possibly depending on heuristic information) be applied.

Nuprl also enables the user to implement his own proof tactics. Furthermore, the user
can even more easily combine tactics for his purposes by using tacticals. These allow e.g.
the repeated or sequential application of predefined tactics.

Another feature of Nuprl is the possibility of defining conservative extensions of its
type theory by abstract definitions. New types which ware defined by this mechanism

6 CHAPTER 2. PRELIMINARIES

Type Members and associated non-canonical expressions

Function Space S → T, x : S → T λx.t, f t
Product Space S × T, x : S × T < s, t >, let <x, y>=e in u
Disjoint Union S + T inl(s), inr(t)

case e of inl(x) 7→ u | inr(y) 7→ v
Universes Uj – types of level j –
Equality Type s = t ∈ T Ax

Empty Type Void – no members – any(x)
Atoms Atom “token′′, if ‘‘a’’=‘‘b’’ then s else t
Numbers Z 0, 1,−1, 2,−2, . . .

rec-case i of x < 0 7→[fx].s|0 7→ b|y > 0 7→[fy].t
s+ t, s− t, s ∗ t, s÷ t, remt
if i = j then s else t, if i < j then s else t

i < j Ax
Lists S list [], t :: list

rec-case L of [] 7→ b | x :: l 7→[fl].t
Inductive Types rectype X = T [X] – members defined by unrolling T[X] –

Subset {x : S|P [x]} – some members of S –
Intersection ∩x : S.T [x] – members that occur in all T[x] –

x : S ∩ T [x] – members that occur in S and T[x] –
Union ∪x : S.T [x] – members that occur in some T[x], tricky equality –
Quotient x, y : S//E[x, y] – members of S, new equality –
Very Dependent {f |x : S → T [f, x]} – functions whose range types depend on the values
Functions of their inputs ans of the functions themselves –

Figure 2.1: Types in Nuprl

Natural Numbers N ≡ {i : Z|0 ≤ i}
Logical connectives ∀∃ ∧ ∨ ⇒ ¬ True False – Curry-Howard isomorphism –
Singleton Type Unit, () ≡ 0 = 0 ∈ Z, Ax
Top type Top ≡ ∩x : V oid.V oid
Booleans B,tt,ff ≡ Unit+Unit,inl(()),inr(())

Boolean conditional if b then s else t ≡ case b of inl() 7→ s | inr() 7→ t
Y combinator Y ≡ λf. (λx.f(xx)) (λx.f(xx))
List operations hd(l),tl(l),l1@l2,length(l),map(f;l),rev(l),l[i]l[i..j

−]

Figure 2.2: Conservative extensions in Nuprl

2.3. MURTHY’S PROGK 7

t ::== x | λx.t | (t t) | 〈t, t〉 | spread(t;x, x.t)|
inl(t) | inr(t) | decide(t;x.t;x.t)
axiom | 0 | ind(t; t;x, x.t) | succ(t) | t+ t | t× t
(A t) | (C t) | λvx.t | (t t)v |

Figure 2.3: PROGK-terms

inherit (roughly speaking) the properties of the types used in their definition.
An example of a conservative extension is the integration of constructive logic into

Nuprl via the propositions-as-types-principle (also known as the Curry-Howard-correspondence
[How80]). I.e. the logical connective and is defined on top of the product type, or on the
sum type, the implication on the function type and so on. Classical logic can then be
used via the Gödel translation. Figure 2.2 shows some conservative extensions which are
currently used in Nuprl (adopted from [Kre04]).

More information on the internal structure of the Nuprl system will be given in chapter
3 when considering the possible design of a multi-conclusion-type.

2.3 Murthy’s PROGK

Murthy’s work [Mur91b, Mur90, Mur91a] primarily focusses on the extraction of con-
structive content from classical proofs, i.e. from proofs of Σ0

1 and Π0
2 sentences in Peano

arithmetic. Since this thesis is rather aimed at the recognition of classical reasoning in a
proof, our interest in Murthy’s work results from its proximity to the Nuprl system.

Just like λµPRL, Murthy’s calculus PROGK uses a part of Nuprl’s logical system
(forming a calculus for the constructive Heyting arithmetic [Hey71]) and extends it to
classical logic by an additional rule. In reference to Griffin [Gri90], this additional rule is
the double negation elimination rule and its associated term Felleisen’s control operator
C [FFKD87, FH92].

The terms and reduction rules of PROGK are given in figure 2.3 and 2.4. Since apart
from the different rules associated with the “classical” terms the rules of PROGK match
the rules of λµcPRL (and thus can be found in chapter 4, figure 4.1 for the propositional
and in chapter 7, figure 7.1 for the first order/ arithmetical fragment) we are content to
give the double negation elimination rule and omitting the rest in this place:

H ⊢ T ext (C t)
BY double negation elim

H ⊢ ¬¬T ext t

Murthy on the one hand shows how to extract constructive content from classical
proofs using Friedman’s A-translation [Fri78]. Thereby he shows that A-translation is
the proof-theoretic equivalent to a CPS-translation from imperative back to functional
programs.

On the other hand, he also defines an evaluation semantics which allows him to directly
extract the constructive content from a proof in Peano arithmetic. However, using the

8 CHAPTER 2. PRELIMINARIES

ind(0; b;x, y.u) β b
ind(kn; b;x, y.u) β u[kn, kn−1; b;x, y.u)/x, y]

decide(inl(t);x.u; y.v) β u[t/x]
decide(inr(t);x.u; y.v) β v[t/y]
spread(〈s, t〉 ;x, y.u) β u[s, t/x, y]

((λx.t) s) β t[s/x]
((λvx.t) s)v β t[s/x] if s is a value

succ(kn) β kn+1

kn + km β kn+m

kn × km β kn×m

E[(C t)] c (t λx.(A E[x]))
E[(A t)] c t

Figure 2.4: PROGK -reduction-rules

reduction-rules which are given in figure 2.4 requires a deterministic evaluation strategy.
Otherwise the intrinsic non-determinism of classical logic breaks the confluence of the
calculus (this matter might become clearer in chapter 7).

In the following we present the evaluation strategy exactly as it can be found in [Mur90].
Murthy starts by defining the values of the language (which renders the strategy “lazy”

as it accepts a λ-abstraction as value independently of its subexpressions) , then goes on
by defining his notion of a “reducible term”, which is done in terms of three different
syntactic classes.

V al ≡ λx.Exp1 | λvx.Exp1 | 〈V al1, V al2〉 | inl(V al1) | inr(V al1)

• R: The class of redices which are terms that can be reduced, or – in terms of a
programming language– computed

• RC: constructors which contain reducible terms as subterms

• RD: destructors the subterms of which are reducible terms

Then, the classes RC and RD are defined recursively by:

RC ≡ 〈RC1, Exp1〉
| 〈V al1, RC1〉
| inl(RC1) | inr(RC1)
| RD

RD ≡ (RD1 Exp1)
| (RD1 N)v
| (λvx.Exp1 RD1)v
| spread(RD1;V ar1, V ar2.Exp2)

2.4. THE λµ-CALCULI 9

| decide(RD1;V ar1.Exp2;V ar2.Exp3)
| [] the empty context)

When we use the evaluation strategy for λµcPRL we adapt the definition as follows
(the difference is of purely syntactical nature):

RD ≡ (RD1 Exp1)
| (let 〈V ar1, V ar2〉 = RD1 in Exp2)
| (case RD1 of inl(V ar1) : Exp2 | inr(V ar2) : Exp3)
| [] the empty context)

Now, Murthy gives the following notion of a reducible term based on the definitions
above:

Definition 2.1. (Reducible Term) A reducible term is one which contains a unique (pos-
sibly empty) binding-free path from the root of the term to a subterm which is a redex such
that this path consists of constructors, followed by destructors, terminating in the redex.

This definition fixes an deterministic left-to-right evaluation order on terms. The
left-to-right-direction results from the parts of the definition where in presence of two
subexpressions the left one is defined as RD and the right one as Exp, e.g. 〈V al1, RC1〉.
However, this choice is arbitrary and another strategy could be chosen as long as it is
deterministic.

Remark In his definition of RD Murthy leaves out a term of the form

ind(RD1;Exp2;V ar1, V ar2.Exp3)

since he regards integer expressions as equivalent to their value in all contexts.
The reason for this choice is to accommodate the operational semantics to the
Kolmogorov-translation he uses in his work. This is possible as integer expres-
sions may only contain integer subexpressions and hence will evaluate to a nu-
meral at some point anyway [Mur90].

2.4 The λµ-Calculi

The λµ-calculus was first introduced by Parigot [Par92, Par93a] as an algorithmic in-
terpretation of classical natural deduction. Although inspired by Griffin’s [Gri90] and
Murthy’s [Mur91a] works on the constructive content of classical proofs, Parigot consid-
ered their approaches as not very well suited for proof theoretic studies. He felt that a
multi-conclusioned natural deduction calculus was a better basis for his purpose.

This first version of λµ is a multi-conclusioned second order calculus for the func-
tional fragment. The µ-variables “named” the formulae of the multi-conclusion and the
µ-operator marked the application of structural rules in the succedent. Parigot’s λµ has
a confluent cut elimination procedure and is strongly normalizable [Par92, Par93a, Py98,
BHF01, Mat01].

Since the λµ-calculus was first proposed, there has been a lot of subsequent research.
Both the properties of the original calculus have been extensively studied, and numerous
variants of λµ-calculi have been presented.

10 CHAPTER 2. PRELIMINARIES

One of these variants is a λµ type theory by Ong and Stewart [OS97, Ong96] which
returns to a single-conclusion and keeps the non-active µ-formulae in the antecedent as
µ-declarations.

Another variant is Pym’s and Ritter’s multi-conclusioned λµν-calculus [PR04, RPW00,
Pym, PR01] for full propositional logic (but without first or second order quantification).
λµν was designed in the context of providing a categorial semantics for reductive logic
and proof search.

In chapter 3 we start with λµν with regard to an integration of classical logic in to
Nuprl and use it in chapter 4 for a mutual simulation with λµPRL. Therefore we will in
the following introduce this calculus in more detail.

The terms of λµν are build up from the following grammar:

t ::== x | λx.t | (t t) | 〈t, t〉 | π(t) | π‘(t)| µα.t | [α]t |
µ⊥.t | [⊥]t | 〈β〉 t | νβ.t| 〈⊥〉 t | ν⊥.t

where x is from the alphabet of λ-variables and α from the alphabet of µ-names. These
two alphabets are disjoint in λµν.

The inference rules of λµν are formulated as a bottom-up sequential natural deduc-
tion calculus. As mentioned above, λµν’s sequents are multi-conclusioned. These multi-
conclusions consist of two parts: On the one hand, the active formula which provides the
current type of the associated term; on the other hand, the passive “classical” context.
The latter is a set of formulae which are named by µ-variables.

All rules of λµν except [−] and ∨νE are constructive. As the rule µ allows to reactivate
named formulae from the context or add new formulae to the conclusion, it basically
corresponds to ⊥-elimination in other calculi (although in its original formulation λµν
treats ⊥ separately). Symmetrical to this, applying the “classical” rule [−] passivates the
active type of the sequent. Thus it corresponds to the rule of ⊥-introduction which is not
valid in intuitionistic logic. (The case of the ∨ν-rules is similar.)

The possibility of exchanging the active type of the sequent reflects an intrinsic prop-
erty of classical logic: Proofs may switch their proof goal along the way. To illustrate this
feature, let us take a look at the proof of the law of the excluded middle - the well-known
classical tautology which not intuitionistically provable.

Example 2.1. Derivation of the law of the excluded middle in λµν

x : A ⊢ x : A
Ax

x : A ⊢ [α]x : , Aα
[−]

x : A ⊢ µ⊥.[α]x : ⊥, Aα
⊥I

⊢ λx.µ⊥.[α]x : (A⇒ ⊥), Aα
⊃I

⊢ [β]λx.µ⊥.[α]x : , (A⇒ ⊥)β, Aα
[−]

⊢ µα.[β]λx.µ⊥.[α]x : A, (A ⇒ ⊥)β
µ

⊢ νβ.µα.[β]λx.µ⊥.[α]x : A ∨ (A⇒ ⊥)
∨νI

The treatment of the disjunction in λµν corresponds to locally representing the choice
between the two disjuncts. This approach is similar to Gentzen’s well-known classical

2.5. SUBSTITUTION 11

Γx : φ ⊢ x : φ,∆
Ax

Γ, x : φ ⊢ t : ψ,∆
Γ ⊢ λx : φ.t : φ ⊃ ψ,∆

⊃ I
Γ ⊢ t : φ ⊃ ψ Γ ⊢ s : φ,∆

Γ ⊢ ts : ψ,∆
⊃ E

Γ ⊢ t : φα,∆
Γ ⊢ µα.t : φ,∆

µ
Γ ⊢ t : φ,∆

Γ ⊢ [α] t : φα,∆
[]

Γ ⊢ t : ∆
Γ ⊢ µα.t : φ,∆

µ
Γ ⊢ t : φ, φα,∆
Γ ⊢ [α] t : φα,∆

[]

Γ ⊢ t : φ,∆ Γ ⊢ s : ψ,∆
Γ ⊢ 〈t, s〉 : φ ∧ ψ,∆

∧ I Γ ⊢ t : φ ∧ ψ,∆
Γ ⊢ π′ (t) : ψ,∆

∧ E Γ ⊢ t : φ ∧ ψ,∆
Γ ⊢ π (t) : φ,∆

∧ E

Γ ⊢ t : ∆
Γ ⊢ µ⊥.t : ⊥,∆ ⊥I Γ ⊢ t : ⊥,∆

Γ ⊢ [⊥] t : ∆
⊥E

Γ ⊢ t : φ,∆
Γ ⊢ ν⊥.t : φ ∨ ⊥,∆ ∨ν I⊥

Γ ⊢ t : φ ∨ ⊥,∆
Γ ⊢ 〈⊥〉 t : φ,∆

∨ν E⊥

Γ ⊢ t : φ, ψβ ,∆
Γ ⊢ νβ.t : φ ∨ ψ,∆ ∨ν I

Γ ⊢ t : φ ∨ ψ,∆
Γ ⊢ 〈β〉 t : φ, ψβ ,∆

∨ν E

Figure 2.5: The inference rules of λµν

sequent calculus LK [Gen34]. However, Pym and Ritter mention the possibility of using a
constructive disjunction instead. This would result in a calculus λµ⊕ which is equivalent
up to mutual simulation. We exploit this fact in chapter 4.

Another alternative formulation of λµν or λµ⊕ concerns the handling of ⊥. Alterna-
tively to including additional rules and terms for ⊥, these could be combined with the
rules µ ans [−]. In this case the active type of the sequent is not empty, when a formula
has been moved to the context, but instead the active type becomes ⊥. We denote the
respective variants as λµν⊥ and λµ⊕⊥, and the latter is the basis for our considerations
in chapter 3.

2.5 Substitution

We require two different notions of substitution. On the one hand the usual substitution of
the λ-calculus, on the other hand structural substitution as common for λµ-terms. While
the former replaces free occurrences of λ-variables and avoid variable-capture, the latter
is a textual replacement within a term and we need the notion of a context, i.e. a term
C[−] with a hole.

Since we deal with three different calculi, we have to define both kinds of substitution
for all of them. However structural substitution for PROGK is basically an abbreviation
to simplify the presentation of the proofs in chapter 7.

Definition 2.2. (Substitution of λ-variables in λµPRL) The substitution t[s/x] where x
is a λ-variable and s an arbitrary λµPRL-term is defined inductively by:

12 CHAPTER 2. PRELIMINARIES

• y∗ = y if y 6= x

• x∗ = s

• (λy.t)∗ = λy.(t∗) if y 6= x

• (λx.t)∗ = λx.t

• (s t)∗ = (s∗ t∗)

• 〈s, t〉∗ = 〈s∗, t∗〉

• (let 〈y1, y2〉 = z in t)∗ = let 〈y1, y2〉 = (z∗) in (t∗)
if y1 6= x and y2 6= x

• (let 〈x, y〉 = z in t)∗ = let 〈x, y〉 = (z∗) in t
if y1 = x or y2 = x

• (inl(t))∗ = inl(t∗)

• (inr(t))∗ = inr(t∗)

• (case z of inl(y1) : u | inr(y2) : v = case (z∗)of inl(y1) : (u∗) | inr(y2) : (v∗)
if y1 6= x and y2 6= x

• (case z of inl(y1) : u | inr(y2) : v = case (z∗)of inl(y1) : u | inr(y2) : (v∗)
if y1 = x

• (case z of inl(y1) : u | inr(y2) : v = case (z∗)of inl(y1) : (u∗) | inr(y2) : v
if y2 = x

• (µα.t)∗ = µα.(t∗)

• ([α]t) = [α](t∗)

where t∗ stands for t[s/x]. If x occurs freely in s it must be substituted by a fresh variable
x′ before the substitution: s[x′/x].

Definition 2.3. (Substitution in λµcPRL)
The substitution t[s/x] in λµcPRL extends the definition of substitution in λµPRL. The
inductive definition for all common terms is the same as in λµPRL. The inductive defi-
nition to the additional terms is as follows:

• (λvy.t)∗ = λvy.(t∗) ify 6= x

• (λvx.t)∗ = λvx.t

• (s t)∗v = (s∗ t∗)v

• (A t)∗ = (A (t∗))

• axiom∗ = axiom

• 0∗ = 0

• ind(s; t; y1, y2.v)
∗ = ind((s∗); (t∗); y1, y2.(v

∗)) if y1 6= x and y2 6= x

• ind(s; t; y1, y2.v)
∗ = ind((s∗); (t∗); y1, y2.v) if y1 = x or y2 = x

• succ(t)∗ = succ(t∗)

• (s+ t)∗ = (s∗) + (t∗)

• (s× t)∗ = (s∗) × (t∗)

where t∗ stands for t[s/x]. If x occurs freely in s it must be substituted by a fresh variable
x′ before the substitution: s[x′/x].

2.5. SUBSTITUTION 13

Definition 2.4. (Substitution in PROGK)
The substitution t[s/x] where t and s are terms of PROGK and x is a λ-variable is
inductively defined by :

• y∗ = y if y 6= x

• x∗ = s

• (λy.t)∗ = λy.(t∗) if y 6= x

• (λx.t)∗ = λx.t

• (s t)∗ = (s∗ t∗)

• 〈s, t〉∗ = 〈s∗, t∗〉

• spread(z;x, y.t)∗ = spread((z∗); y1, y2.(t
∗) if y1 6= x and y2 6= x

• spread(z;x, y.t)∗ = spread((z∗); y1, y2.t if y1 = x or y2 = x

• (inl(t))∗ = inl(t∗)

• (inr(t))∗ = inr(t∗)

• decide(z; y1.u; y2.v)
∗ = decide((z∗); y1.(u

∗); y2.(v
∗)) if y1 6= x and y2 6= x

• decide(z; y1.u; y2.v)
∗ = decide((z∗); y1.(u

∗); y2.v) if y2 = x

• decide(z; y1.u; y2.v)
∗ = decide((z∗); y1.u; y2.(v

∗)) if y1 = x

• (µα.t)∗ = µα.(t∗)

• ([α]t) = [α](t∗)

• (λvy.t)∗ = λvy.(t∗) if y 6= x

• (λvx.t)∗ = λvx.t

• (s t)∗v = (s∗ t∗)v
• (A t)∗ = (A (t∗))

• axiom∗ = axiom

• 0∗ = 0

• ind(s; t; y1, y2.v)
∗ = ind((s∗); (t∗); y1, y2.(v

∗)) if y1 6= x and y2 6= x

• ind(s; t; y1, y2.v)
∗ = ind((s∗); (t∗); y1, y2.v) if y1 = x or y2 = x

• succ(t)∗ = succ(t∗)

• (s + t)∗ = (s∗) + (t∗)

• (s × t)∗ = (s∗) × (t∗)

where t∗ stands for t[s/x].If x occurs freely in s it must be substituted by a fresh variable
x′ before the substitution: s[x′/x].

Definition 2.5. (Structural Substitution in λµPRL)
The structural substitution t[[α]C[u]/[α]u] is defined inductively as follows:

• x∗ = x

• (λx.t)∗ = λx.(t∗)

• (s t)∗ = (s∗ t∗)

• 〈s, t〉∗ = 〈s∗, t∗〉

• (let 〈x, y〉 = z in t)∗ = let 〈x, y〉 = (z∗) in (t∗)

• (inl(t))∗ = inl(t∗)

• (inr(t))∗ = inr(t∗)

14 CHAPTER 2. PRELIMINARIES

• (case z of inl(x) : u | inr(y) : v = case (z∗)of inl(x) : (u∗) | inr(y) : (v∗)

• (µβ.t)∗ = µβ.(t∗) if α 6= β

• (µα.t)∗ = µα.t

• ([β]t) = [β](t∗)

• ([α]t)∗ = [α]C[(t∗)]

where t∗ stands for t[[α]C[u]/[α]u].

Definition 2.6. (Structural Substitution in λµcPRL)
The structural substitution t[(A C[u])/[α]u] in λµcPRL is an for the most part an extension
of the structural substitution in λµPRL. The inductive definition for all terms except
s ≡ [α]t is the same as in λµPRL. The altered definition for s and the extension of the
inductive definition to the additional terms is as follows:

• ([α]t)∗ = (λx.(A C[x]) (t∗))

• (λvx.t)∗ = λvx.(t∗)

• (s t)∗v = (s∗ t∗)v

• (A t)∗ = (A (t∗))

• axiom∗ = axiom

• 0∗ = 0

• ind(s; t;x, y.v)∗ = ind(s; t;x, y.v)

• succ(t)∗ = succ(t∗)

• (s+ t)∗ = (s∗) + (t∗)

• (s× t)∗ = (s∗) × (t∗)

where t∗ stands for t[(A C[u])/[α]u].

Definition 2.7. (Structural substitution for PROGK-terms)

Structural substitution for PROGK is defined on top of the regular substitution. For
all PROGK-terms t:

t[(A C[t])/(α t)] = t[λx.(A C[x])/α]

2.6 Reduction

In chapter 5 we need some background knowledge concerning reduction in term-calculi.
The necessary notions are introduced in the following. The definitions are standard and
adopted from Barendregt [Bar84] and Py [Py98].

Definition 2.8. (Notion of Reduction)

1. A notion of reduction on a set of terms Σ is a binary relation R on Σ.

2. If R1, R2 are notions of reduction, then R1R2 is R1∪2.

Definition 2.9. (Reduction Relation)

2.6. REDUCTION 15

1. A binary relation R on a set of terms Σ is compatible (with the operations) if
(M,M ′) ∈ R implies that (C[M], C[M ′]) ∈ R where C[−] is a context with one
hole and M,M ′ ∈ Σ.

2. An equality (or congruence) relation on Σ is a compatible equivalence relation.

3. A reduction relation on Σ is one which is compatible, reflexive, and transitive.

Definition 2.10. If → is a binary relation R on a set X, then the reflexive closure is
the least relation extending R that is reflexive. The transitive and compatible closure are
defined similarly.

Definition 2.11. (→∗,→+,→=,→n)
Let R be a notion of reduction on Σ. Then R induces the binary relations:

→R one step R-reduction
։R R-reduction
→+ transitive closure
=R R-equality

where

• →R is the compatible closure of R

• ։R is the transitive, reflexive closure of R

• =R is the equivalence relation generated by ։R:

1. M ։R N implies M =R N

2. M =R N implies N =R M

3. M =R N ,N =R L implies M =R L

Lemma 2.12. The relations ։R, →+ and =R are all compatible. Therefore ։R is a
reduction relation and =R is an equality relation.

Proof. The proof by induction can be found in Barendregt’s book [Bar84], p.52.

Definition 2.13. (Abstract Reduction System)
An abstract reduction system is a pair 〈Σ, (→i)i∈I〉 where Σ is a set of terms and (→i)i∈I

a set of binary relations (called reductions) on Σ such that for every element M of Σ the
set {M ′|(∃i ∈ I)(M →i M

′)} is finite.

Example 2.2. λµPRL is an abstract reduction system: Σ is the set of λµPRL-terms
and the reductions are the β- and µ-reduction as defined in chapter 5.

The following notions are important when considering the proof-theoretic properties
of a reduction system.

Definition 2.14. (Local Confluence) An abstract reduction system 〈Σ,→〉 is said to be
confluent if for all M,M ′.M ′′ ∈ Σ there is an N ∈ Σ such that: if [M →M ′ and M →M ′′]
then [M ′

։ N and M ′′
։ N].

16 CHAPTER 2. PRELIMINARIES

Definition 2.15. (Confluence) An abstract reduction system 〈Σ,→〉 is said to be confluent
if for all M,M ′.M ′′ ∈ Σ there is an N ∈ Σ such that: if [M ։ M ′ and M ։ M ′′] then
[M ′
։ N and M ′′

։ N].

Definition 2.16. (Strong Confluence) An abstract reduction system 〈Σ,→〉 is said to
be confluent if for all M,M ′.M ′′ ∈ Σ there is an N ∈ Σ such that: if [M → M ′ and
M →M ′′] then [M ′ → N and M ′′ → N].

Definition 2.17. (Normal Form)
In an abstract reduction system 〈Σ, (→i)i∈I〉 a term M is normal if the set {M ′|(∃i ∈
I)(M →i M

′)} is empty.

Definition 2.18. (Strong Normalization) In an abstract reduction system a term M is
strongly normalizable if there is no infinite sequence of reductions starting in M .
An abstract reduction system is strongly normalizing if all of its terms are strongly nor-
malizable.

Definition 2.19. (Weak Normalization) In an abstract reduction system a term M is
weakly normalizable if there is at least one finite sequence of reductions starting in M .
An abstract reduction system is weakly normalizing if all of its terms are weakly normal-
izable.

Definition 2.20. (Uniqueness of Normal Form) In a confluent abstract reduction system
the normal form of a term is unique.

Definition 2.21. (Termination) An abstract reduction system terminates, if it is strongly
normalizing.

Lemma 2.22. A strongly confluent abstract reduction system is confluent.

For further information on reduction in the λ-calculus or term rewriting systems in
general we refer the reader to Barendregt [Bar84] and Klop [Klo92].

Chapter 3

On the λµ-Multi-Conclusion

In this chapter we discuss different approaches to an integration of the λµ-multi-conclusion
into the Nuprl system.

As a basis for our considerations we use the λµ⊕⊥-calculus, a variant of Pym’s and
Ritter’s λµν-calculus. The rules of this version can be found in figure 4.4 and a proof of
its equivalence to λµν is given in chapter 4. We will briefly address our motivation why to
use this variant in the first section of this chapter. We will also describe the results of our
attempts at defining a multi-conclusion as conservative extension of Nuprl’s type theory.

Then we approach a real extension of the system. There are two basic ways to include
a multi-conclusion into Nuprl: Either by defining a new type of multi-conclusions or by
changing the system’s internal notion of a sequent. We will pursue both ideas in section
3.2.

Finally, in section 3.3 we will draw some conclusions from our considerations and
propose an alternative approach. This will result in the calculus λµPRL which is presented
in chapter 4.

3.1 Preliminary Considerations

The obvious initial step towards a λµ-style multi-conclusion for Nuprl is to choose which
of the available λµ-calculi is best suited. However, to motivate this decision, it is necessary
to give a general idea of the λµ-multi-conclusion’s structure at first.

Its structure particularly differs from the “usual” multi-conclusion of classical sequent
calculi such as Gentzen’s LK [Gen34]. This traditional notion of a multi-conclusion ba-
sically treats its formulae as “equals”. Therefore the comma delimiter is semantically
equivalent to the classical or. Contrary to this, the λµ-multi-conclusion consists of two
distinct main parts:

The active formula determines the type of the current term. It is also the formula on
which the inference rules operate.

The passive context is separated from the active formula by a comma. This comma
however is not semantically equivalent to the classical or. The context is a set of
an arbitrary number of ,,named” formulae. These names are labels which can be
interpreted as a distinct kind of variables: the µ-variables. The µ-variables encapsu-
late the formulae associated with them such that they can only be accessed by the

17

18 CHAPTER 3. ON THE λµ-MULTI-CONCLUSION

specific inference rules µ and [−]. These two rules perform the exchange operations
between context and active position.

This asymmetrical structure is the trick that allows to control the application of clas-
sical reasoning in presence of a multi-conclusion. At the same time it means, that to
some extent, the context formulae are independent of the conclusion. After all they can
exclusively be accessed by the exchange rules, not by any of the logical rules.

Being aware of the λµ-multi-conclusion’s structure, we can now motivate the choice of
λµ⊕⊥ as a basis.

In λµν (like in some other versions of λµ) the active position of the conclusion is empty
during the exchange operation, i.e. the current proof-term has no type. So the question is
how to implement this concept. One could certainly define a special “non”-type. But if
we take a closer look at Nuprl types, there already is an empty type: void, the data type
which is also used for the definition of logical absurdity ⊥. Corresponding to this, ⊥ is
exactly the type of the term during an exchange in λµ⊕⊥. Thus, preferring λµ⊕⊥ to λµν
is the straightforward solution.

Now, if this were the only aspect to consider, we could also use λµν⊥ instead of λµ⊕⊥.
But the reason to choose λµ⊕⊥ over λµν⊥ is equally straightforward. The difference
between these two variants is the treatment of disjunction. For their purpose, Pym and
Ritter prefer a local representation of the choice between the two disjuncts. Therefore in
λµν and λµν⊥ the right-hand disjunct is directly moved to the context. In λµ⊕⊥ on the
contrary, the treatment of the disjunction resembles intuitionistic logic. Accordingly, the
corresponding proof terms are the same as in Nuprl. As a consequence λµ⊕⊥ is preferable
since it does not require the additional terms like λµν⊥ would.

Remark Still, the second disjunct is not necessarily “lost” as in the intuitionistic
case. Backtracking is possible if the disjunction has been saved in the passive
context beforehand. This is important for the equivalence of λµν⊥and λµ⊕⊥.

Before we start our reflection on the actual ways to extend Nuprl on the basis of
λµ⊕⊥, let us summarise the results of [Bre08]. In this work , the author considered
and implemented a simulation of λµν⊥and λµ⊕⊥in Nuprl. For this purpose we defined
the multi-conclusion and its elements as conservative extension of Nuprl’s type theory.
Conservative extensions in Nuprl can be implemented via abstract definitions on top of
existing types. Our definition of the multi-conclusion resulted in three new constructs:
the mu-name, the context and the komma. The latter referred to the connection between
active and passive part of the multi-conclusion, hence its name.

As we were interested in the semantics of the comma delimiter of the multi-conclusion,
we examined three different variants (in the following, ∨ is the intuitionistic or) :

1. komma1(A;P) == A ∨ P

2. komma2(A;P) == ¬(¬A ∧ ¬P)

3. komma3(A;P) == ¬P ⇒ A

where A is the placeholder for the active and P for the passive part of the conclusion.
The motivation to use these formulations were the different notions of disjunction they

3.1. PRELIMINARY CONSIDERATIONS 19

represent. While the komma1 is defined by the constructive version, komma2 and komma3

exploit the classical equivalences of disjunction. Obviously each of these definitions triggers
different definitions for the passive context and its elements:

1. context1(P1;P) == P1 ∨ P
mu-name1(α1;P1) == α1 ∈ Atom ∧ P1

2. context2(P1;P) == ¬(¬P1 ∧ ¬P)
mu-name2(α1;P1) == α1 ∈ Atom ∧ P1

3. context3(P1;P) == P1 ∧ P
mu-name3(α1;P1) == α1 ∈ Atom ∧ ¬P1

Example 3.1. Now a multi-conclusion A,P1α of λµ⊕⊥ is be simulated by

kommai(A; contexti(mu-namei(α1;P1); ici)))

where ic stands for “initial context”. This construct is defined by the neutral element of
the respective junctor. E.g. ⊥ for context1, being the neutral element of disjunction.

Having defined all necessary constructs, the rules of the two calculi were formulated
as lemma and proven within the Nuprl system. Once proven, these lemma can be used to
simulate λµν⊥- of λµ⊕⊥-proofs in Nuprl.

Example 3.2. The rule µ of λµ⊕⊥/λµν⊥formulated as a lemma:

∀A,D : P.∀α :Atom.kommai(⊥;contexti(mu-namei(α;A);D)) ⇒kommai(A;D)

These rule simulations illustrated very clearly the semantics of λµ’s multi-conclusion.
Not surprisingly, none of the definitions allowed to prove all rule-lemmas in Nuprl’s con-
structive logic. At least one rule always required an additional premiss, which stated the
decidability of a subformula. The most adequate simulation obviously was komma3. Using
komma3 in the lemmas located the non-constructivity of the calculi in the exchange rules
(right where it belongs). Contrarily, simulating the rules with komma1 and komma2 resulted
in a non-constructive implication introduction.

The outcome of these simulations can be seen as illustration of the roles of the exchange-
rules in λµ⊕⊥. Consider the following inference steps:

. . .
Γ ⊢ [α]t : C,∆ [−]

Γ ⊢ t : ⊥, Cα,∆ . . .

. . .

. . .
Γ ⊢ µ.t : ⊥, Cα,∆ µ

Γ ⊢ t : C,∆ . . .

. . .

It is quite obvious that [−] takes the place of an introduction rule for ⊥. This is one
of the non-constructive rules which can be used to obtain a classical calculus from an
intuitionistic one (see chapter 2.1). And this is appropriately reflected, if komma3 is used
for the simulations.

As a consequence, we could interpret a sequent

H ⊢ A,P

20 CHAPTER 3. ON THE λµ-MULTI-CONCLUSION

of λµ⊕⊥ as, e.g. sequent of LK by

H,P¬ ⊢ A

where P¬ arises from P by replacing every Pαi

i by ¬P .
This interpretation indicates that the a multi-conclusion might not be the best ap-

proach in extending Nuprl. Instead, an elegant way could be to treat the passive formulae
of the conclusion as a distinct kind of hypotheses. From a syntactical point of view, the
results of the simulation also mean that an extension of Nuprl’s inference logic would
merely require the two exchange rules and their associated terms.

In the next section we nevertheless follow two different lines of thought concerning
an explicit extension of Nuprl by a λµ-multi-conclusion. These considerations will sub-
stantiate the observations made above and lead us to the conclusions drawn in section
3.3.

3.2 A Multi-Conclusion for Nuprl?

As mentioned above, there are two basic approaches to realizing a λµ⊕⊥-multi-conclusion
in Nuprl:

1. By defining a new multi-conclusion type or

2. By changing the internal representation of Nuprl’s sequents

We will start by considering the first approach. Explicitly, this means to regard λµ’s
multi-conclusion as semantic concept, not as syntactic element of the sequent.

This proceeding has two natural advantages: We would not have to alter the underlying
structure of the system and whenever we wanted to use classical logic, we would need this
type to encapsulate the goal formula. This could easily be filtered, to keep the classical
and the constructive system apart. However, this would also limit the user’s freedom,
requiring to choose beforehand whether classical logic is to be employed or not.

Now, when planning a new type, we have to consider the following aspects:

• the structure of the type,

• its canonical members and the non-canonical terms associated with this type

• the reduction of non-canonical forms associated with the type

• extensional equality: under which conditions can two instances of the type or its
members be considered as extensionally equal

• the inference rules associated with the type: Type formation, membership, equality
and elimination; these rules need to capture the definitions from above

Reasonably, we should start by analyzing the structure of the new multi-conclusion
type, denoted by mc in the following. Primitive types in Nuprl are implemented as ab-
stract types of the underlying metalanguage ML. These internal definitions determine the
operator-name, the number of subterms and variable-bindings.

3.2. A MULTI-CONCLUSION FOR NUPRL? 21

The λµ-multi-conclusion consists of two parts, the active formula and the passive
context (as described in the previous section). Accordingly, mc also requires two parts.
The active part may without question be an arbitrary term. However, the part representing
the context could be treated in different ways.

We could define another type mucontext, having formulae of another type muname as
subterms. But: The µ-names are another kind of variables, bound by the new binding
operator µ. Furthermore we have seen in the previous section, that the context-formulae
can be interpreted as negated hypotheses. Thus µ-variables are to some extent symmetrical
to λ-variables and this should be reflected in the data structure.

The antecedent of a Nuprl sequent is defined as declaration list; a declaration

itself is a pair of a variable and a term. Therefore it might be appropriate use as list of
type mudec (short for mu-declaration) as passive context. Then mudec should be a pair of
a variable and a term, corresponding to declaration.

Instead of defining an additional construct, we could also simply use a list of products
of variables and terms. However, most importantly, there would have to be a mechanism
of the meta-system allowing to access the formula of the context list.

As next step, we have to consider the elements of this type. Since mc is supposed to
represent the essence of classical reasoning, one might initially expect, that the members
of mc needed to be the terms µα.t and [α]t. But if we take a closer look and remember
that the multi-conclusion can only be used if it encapsulates the goal-formula – then we
realize that this means all applicable rules have to be associated with this type, Nuprl’s
existing rules cannot work on the active type. (That the use of any existing rules would
lead to odd results is ignored for now, as it is merely technical.)

Now, also the terms associated with the respective active types of mc would need to
be associated with the new type. Otherwise any type to be provable “within” mc would
require another multi-conclusion-rule.

Example 3.3. Assume the sequent is H ⊢ A ∧ B,Dα. In λµ⊕⊥ the active position
determines the type of the current term, so the current term has to be a pair 〈a, b〉. But
we can not apply the usual introduction rule for ∧, since it expects a conclusion of the
form H ⊢ A ∧ B. Thus we need an additional rule to handle the multi-conclusion. This
new rule could either be associated with ∧ (which is the product type in Nuprl) or with
mc.

Keeping in mind, that the semantics of a Nuprl sequent is that the extract term is
proved to be a member of the type in the conclusion, none of the two solutions seems
appropriate. In the usual Nuprl semantics, pair would now be a canonical member of mc,
too. But associating an mc-rule with the product type would contradict the aforementioned
principle of type-membership.

After these observations, it is already obvious, that the definition of a multi-conclusion
type might not be a neat extension of Nuprl’s type theory. Still, it could be used to
explicitly simulate a multi-conclusioned calculus in Nuprl, although this is not what we
are interested in.

Now it seems futile to finally consider under which premises two instances of mc could
be regarded as extensionally equal. But let us follow through with a naive approach. On
first thought, two multi-conclusions could either be equal, if all of their corresponding
elements are equal, or, if the type in their active positions is equal. In the latter case,

22 CHAPTER 3. ON THE λµ-MULTI-CONCLUSION

the associated proof terms have the same type. But on second thought, both notions of
equality are questionable: If we simply compare the active types, we ignore that the type
might be switched to one of the passive types; if we compare all elements we might also
compare passive formulae which are not even used in the proof.

All of these problems are not only caused by the inopportune approach to define
a multi-conclusion type, but also by the inherent non-determinism of classical logic (a
recurring issue in chapters 5 to 7).

We have already seen, that the multi-conclusion might not be a good way to extend
Nuprl. Let us still take a look at the second approach to include a multi-conclusion into
Nuprl.

The second approach is of syntactic nature and requires to alter Nuprl’s internal notion
of a sequent. Then the semantic of Nuprl’s sequents would have to be adjusted to make
sure the active type was the crucial one for all membership and equality issues. Otherwise,
the existing theories would become nonsensical.

The use of the µ-exchange rules (and thus classical reasoning) would have to be revealed
by the proof term. This coincides with our original anticipation.

The elements of the multi-conclusion could be internally represented in the same way
as we imagined for the type mc before. This means the µ-variables would be implemented
analogously to the λ-variable. According to this symmetry, the terms µα.t and [α] should
also be oriented on the terms of λ-abstraction and application and implemented in the
same way. The new rules could be considered as structural rules, not associated with a
certain type.

This approach seems to more reasonable than the first one, but it has one major
drawback: Since it profoundly changes the internal structure of the system, it would
require to adapt all of Nuprl’s numerous existing theories to the new representation. This
completely contradicts our paradigm to minimize the changes necessary in the existing
system.

However, all of our consideration have a common drift towards an elegant solution
which will be presented in the next section.

3.3 Conclusion and Alternative Approach

Although the idea of integrating a λµ-multi-conclusion into Nuprl did not turn out very
well, the naive approach helped to emphasize some important aspects:

• the µ-variables correspond to the λ-variables: the passive context formulae can be
regarded as negated hypotheses

• the type of the proof term is always determined by the active part of the sequent
like in the single-conclusioned Nuprl system

• the syntactic position of the passive part is irrelevant as it can be accessed exclusively
by the respective exchange rules; this exclusive access also allows to identify switches
and thus classical reasoning

• the possibility of switching the active proof goal complicates equality reasoning:
occurrences of µ-constructs in proof-terms have to be analyzed to maintain the

3.3. CONCLUSION AND ALTERNATIVE APPROACH 23

soundness of the system (the semantic of proof term being constructive evidence for
the type of the conclusion becomes questionable if the active type can be exchanged)

• the exchange rules correspond to the rules for logical absurdity and thus also to the
empty data type void

The first three observations provide the basis for developing λµPRL in chapter 4 and
will be reflected in the calculus’ structure. As to the relation between λ- and µ-variables,
it has to be mentioned that it results from the origins of λµ. This will become obvious in
chapter 7, when we relate λµPRL to Murthy’s PROGK [Mur91b].

The difficulties that became apparent when considering equality in presence of classical
logic are omnipresent in the context of reduction and evaluation of classical term calculi.
They are related to the inherent non-determinism of classical logic and reflected in the
fact that reduction in λµ calculi is not always confluent. This problem will be discussed
concerning reduction in chapter 5 and deterministic evaluation strategies in chapters 6
and 7.

The observation that the exchange rules of λµ-calculi correspond to logical absurdity
draws a connection between classical logic an untypable λ-terms (e.g. the well-known Y-
combinator). It can be shown, that in Nuprl such terms would become typable, if void was
not empty (i.e. the logical absurdity was inhabited). Now, according to Nuprl’s semantics
the rule abort of λµPRL (see figure 4.1) means that some term [α]t is a member of void.
The reason for this apparent “contradiction” is the non-constructive notion of existence
in classical logic. But a solution to this problem lies in the special structural reduction of
λµ-calculi. As the mu-operator can be regarded as a jump operator, it can e.g. “jump”
out of a while-loop. Although at the moment we do not pursue this relation any further,
it is an interesting topic for future work (see chapter 8).

Concluding this chapter, we give some ideas towards an implementation which treats
the passive formulae of the λµ-multi-conclusion as special kind of hypotheses. Roughly,
the following steps would suffice for an experimental implementation:

1. Internally add the concept of µ-variables and “µ-hypotheses” and extend the defini-
tion of a sequent to handle µ-hypotheses (this would be less costly than the changing
the conclusion part of the sequent, since changing the declaration list to a list of type
disjoint union of two kinds of declarations does not interfere with existing concepts).

2. Define the new operators µ and [−] as abstract data types of ML.

3. Implement the “classical” rules on top of the new structures.

4. Mark proofs containing one of the new constructs in their proof term by some label
to ensure the soundness of the system.

Chapter 4

λµPRL

Based on the considerations presented in the last chapter, we now formulate the analytic,
single-conclusioned sequent calculus λµPRL. In the first section of this chapter we will
give both a general idea and the precise formulation of the calculus. The second section
contains a proof of the consistency of λµPRL.

4.1 The calculus λµPRL

The calculus is based on the logical rules of the Nuprl system, although in Nuprl they
are associated with the types on which the logical connectives are defined via the Curry-
Howard-isomorphism [How80].

In λµPRL, the passive formulae of the µ-context are positioned on the left-hand side
of the sequent (similar to Ong and Stewart[Ong96, OS97]), and distinguished from the λ-
context by its syntactic form. However its role is equivalent to the context part of Pym’s
and Ritter’s λµν-multi-conclusion since it is separated from the rest of the sequent by
its names (i.e. the µ-variables) and accessible only by the specific exchange rules. This
also coincides with Stewart’s [Ste99] formulation of a λµ-theory which augments every
hypothesis with an attitude, interpreting the µ-variables as refutations. But differently
from Stewart’s approach, we do not admit reasoning about refutations.

Instead of an empty conclusion after the application of the µ-rule and before the
application of the [−]-rule, we use the logical absurdity (which in Nuprl is defined on
the empty data type void, thus corresponding to the ”emptiness” of the active position).
Therefore we do not need additional rules for the introduction or elimination of ⊥. This
approach also coincides with Ong’s λµtheory. Furthermore Pym and Ritter [PR04] propose
a version of λµν which also uses ⊥ instead of an empty active position, and omitting the
additional ⊥ rules (we will refer to this version as λµν⊥, see fig. 4.2).

Another difference of λµPRL and λµν is the handling of the disjunction. Whereas
in λµν ∨I moves the rightmost formula of the disjunction to the context and ∨E does
the reverse, λµPRL uses the “constructive” ∨ rules corresponding to Nuprl’s sum type.
Therefore the choice between the two disjuncts is not locally represented, but has to be
taken care of before choosing one disjunct (by “storing” the disjunction within the µ-
context). This treatment of the disjunction can also be found in another variant of λµν,
presented by Pym and Ritter in [PR01] as λµ⊕. We will use a combination of λµν⊥ and
λµ⊕ in section 4.2 to prove the consistency of λµPRL.

24

4.2. CONSISTENCY OF λµPRL 25

Corresponding to both Nuprl’s terms as well as Pym’s and Ritter’s λµν in [PR04], the
terms of λµPRL are not typed.

The sequents of λµPRL can be viewed as term assignment judgements: Γ ⊢ T ext
t means the type T is inhabited by the term t. Γ ranges over both λ and µ-contexts.
Accordingly there are two kinds of variables, the λ- and the µ-variables, ranging over
two distinct alphabets. λ-variables are declared by x : A, y : B, . . . and bound by the
λ-abstraction λx.t. The declaration of µ-variables is syntactically distinguished by an
encapsulation {{Aα}}, {{Bβ}}, Their binding operator is the µ-abstraction as in
µα.t.

The Types ranging over A,B,C, are built up by the constructors ⊃,∧,∨ from a
set of atomic types and the distinguished absurdity type ⊥. The Negation ¬A is expressed
by A ⊃ ⊥.
Terms of λµPRL are build up by the following grammar:

t ::== x | λx.t | µx.t | (t t) | [x]t | 〈t, t〉 | let 〈x, x〉 = t in t|
inl(t) | inr(t) | case t of inl(x) : t | inr(x) : t

The rules of the calculus λµPRL can be found in figure 4.1. Some of the rules need
additional parameters for technical reasons:

• The elimination- and abort-rules as well as the hypothesis-rule need the position
of the formula to work on denoted by $i.

• The mu-rules and lambdaI need the name of the variable to be declared (which must
be previously undeclared)

4.2 Consistency of λµPRL

The consistency of λµPRL can be established based on the consistency of the λµν-calculus.
λµ’s consistency is shown by Pym and Ritter in [PR04, PR01] by providing both a cat-
egorical and a games model. Their categorical model involves fibred bi-cartesian closed
categories which have sufficient structure to not collapse to boolean algebras when mod-
eling classical logic.

Since λµPRL does not provide the possibility of an ,,empty” conclusion, we will first
show the equivalence of λµν to its variant λµ⊕⊥ (a combination of λµν⊥ and λµ⊕) and
then use λµ⊕⊥ to proof the consistency of λµPRL by a mutual simulation. Different from
λµν, λµ⊕⊥ does not contain an empty conclusion either and like λµPRL uses ⊥ as type
instead, thus rendering the additional rules ⊥I and ⊥E redundant and omitting them.
The other difference is their treatment of the disjunction. In λµν the passive context is
involved in the ∨-rules and the right-hand side disjunct is automatically moved to or from
the context; λµ⊕⊥ supports the intuitionistic view of disjunction, demanding a decision
for one of the disjuncts in the associated introduction rule.

Pym and Ritter claim the variants λµν⊥ and λµ⊕ to be equivalent to λµν in the sense
that there exist translations between the two calculi. We will show the same is valid for
the combination of these two calculi, λµ⊕⊥. Based on this prerequisite, we will establish
the consistency of λµPRL by a mutual simulation with λµ⊕⊥.

26 CHAPTER 4. λµPRL

G, x : T, H ⊢ T ext x
BY hypothesis $i

(no subgoals)

H ⊢ A ⊃ B ext λx.b
BY lambdaI x

H, x:A ⊢ B ext b

G, pf:A ⊃ B, H ⊢ C ext b[pf a/y]
BY functionE $i

G, pf:A ⊃ B, H ⊢ A ext a
G, y:B, H ⊢ C ext b

H ⊢ B ext µ α.b
BY mu1 α

H , {{Bα}} ⊢ ⊥ ext b

G ,{{Bα}} , H⊢ ⊥ ext [α] b
BY abort1 $i

G , H ⊢ B ext b

H ⊢ B ext µ α.b
BY mu2 α

H ⊢ ⊥ ext b

G ,{{Bα}}, H ⊢ ⊥ ext [α] b
BY abort2 $i

G , {{Bα}}, H ⊢ B ext b

H ⊢ A ∧B ext < a, b >
BY andI

H ⊢ A ext a
H ⊢ B ext b

G, z:A ∧B, H ⊢ C ext let < a, b >
= z in u

BY andE $i

H , a : A, b : B, G ⊢ C ext u

H ⊢ A ∨B ext inl(a)
BY orI11

H ⊢ A ext a

H ⊢ A ∧B ext inr(b)
BY orI2

H ⊢ B ext b

G, z:A ∨B, H ⊢ C ext case z of

inl(a) => u |

inr(b) => v
BY orE $i

H , a : A, G ⊢ C ext u
H , b : B, G ⊢ C ext v

Figure 4.1: The calculus λµPRL

4.2. CONSISTENCY OF λµPRL 27

λµν⊥: terms t ::== x | λx.t | (t t) | µα.t | [α] t | 〈t, t〉 | π(t) | π‘(t)|
〈β〉 t | νβ.t| 〈⊥〉 t | ν⊥.t

The rules for ⊃,∧ and ∨ as well as Ax are the same as in λµν.

Γ ⊢ t : ⊥, φα,∆
Γ ⊢ µα.t : φ,∆

µ Γ ⊢ t : φ,∆
Γ ⊢ [α] t : ⊥, φα,∆

[]

Γ ⊢ t : ⊥,∆
Γ ⊢ µα.t : φ,∆

µ
Γ ⊢ t : φ, φα,∆

Γ ⊢ [α] t : ⊥, φα,∆
[]

Figure 4.2: The calculus λµν⊥

λµ⊕: terms t ::== x | λx : φ.t | (t t) | µα.t | µ⊥.t | [α] t | [⊥] t | 〈t, t〉 |
π(t) |π‘(t)|in1(t) | in2(t) | case t of in1(x) ⇒ t or in2(y) ⇒ t

The rules for ⊃ and ∧ as well as Ax, µ and [−] are the same as in λµν.

Γ ⊢ t : φi,∆
Γ ⊢ ini(t) : φ1 ∨ φ2,∆

∨+ I i ∈ {1, 2}

Γ ⊢ t : φ ∨ ψ,∆ Γ, x : φ ⊢ u : χ,∆ Γ, y : ψ ⊢ v : χ,∆
Γ ⊢ case t of in1(x) ⇒ u or in2(y) ⇒ v : χ,∆

∨+ E

Figure 4.3: The calculus λµ⊕

λµ⊕⊥: terms t ::== x | λx.t | (t t) | µα.t | [α] t | 〈t, t〉 | π(t) | π‘(t)|
in1(t) | in2(t) | case t of inl(x) ⇒ t or inr(y) ⇒ t

Consists of the rules for ⊃ and ∧ and the rule Ax of λµν;
the rules µ and [−] of λµν⊥, and the rules ∨I and ∨E of λµ⊕.

Figure 4.4: The calculus λµ⊕⊥

28 CHAPTER 4. λµPRL

Lemma 4.1. There exists a translation between the calculi λµν and λµ⊕⊥ which relates
every term of λµν to an equivalent term in λµ⊕⊥ and reversely.

Proof. As mentioned above, λµν (fig.2.5) and λµ⊕⊥ (fig.4.4) merely differ in their treat-
ment of disjunction and logical absurdity. λµν contains two additional rules ⊥I and ⊥E
which insert the absurdity ⊥ into the active part of the conclusion, respectively remove
it, resulting in an empty active type. As a consequence, the active position has to be
empty to fetch a formula from the context and remains empty after moving a formula to
the context. In λµν⊥, on the contrary, there is no empty active type of the conclusion,
but instead the type ⊥ is assigned to the term. Therefore the rules for ⊥ are subsumed
by the rules µ and [−]. Each application of one of these rules in λµ⊕⊥ can however be
achieved by a sequence of rule applications in λµν. Since in most cases this is quite ob-
vious, we simply provide the corresponding rule applications and the translations for the
accompanying terms. Otherwise we show how to derive the conclusion of the rule from
the premiss(es).

⇒) Terms of λµ⊕⊥ translated into λµν

1. µ-rule (both variants): Realized by a sequence of µ, ⊥E. Thus we get the
following translation:

[[µα.t]]λµ⊕⊥
≡ [[µα.[⊥]t]]λµν

2. [−] (both variants): Sequence of ⊥I, [−] resulting in

[[[α]t]]λµ⊕⊥
≡ [[µ⊥.[α]t]]λµν

3. ∨I1 : [−], µ, [−], µ, ∨I, therefore

[[in1(t)]]λµ⊕⊥
≡ [[νβ.µα.[β]µβ.[α]t]]λµν

4. ∨I2 : [−], µ, ∨I resulting in

[[in2(t)]]λµ⊕⊥
≡ [[νβµα.[β].t]]λµν

5. ∨E : In this case we will give a complete derivation in λµν:

4.2. CONSISTENCY OF λµPRL 29

Γ, x : φ ⊢ u : χ,∆

Γ ⊢ λx.u : φ ⊃ χ,∆
⊃I

Γ ⊢ [α]λx.u : φ ⊃ χα,∆
[−]

Γ ⊢ µβ.[α]λx.u : ψ, φ ⊃ χα,∆
µ

Γ, y : ψ ⊢ v : χ,∆

Γ ⊢ t : φ ∨ ψ,∆ Γ ⊢ [β]µβ.[α]λx.u : ψβ , φ ⊃ χα,∆
[−]

Γ ⊢ λy.v : ψ ⊃ χ,∆
⊃I

Γ ⊢ 〈β〉 t : φ, ψβ ,∆
∨E

Γ ⊢ µα.[β]µβ.[α]λx.u : φ ⊃ χ, ψβ ,∆
µ

Γ ⊢ [γ]λy.v : ψ ⊃ χγ ,∆
[−]

Γ ⊢ (µα.[β]µβ.[α]λx.u)(〈β〉 t) : χ, ψβ,∆
⊃E

Γ ⊢ µǫ.[γ]λy.v : χ, ψ ⊃ χγ ,∆
µ

Γ ⊢ [ǫ](µα.[β]µβ.[α]λx.u)(〈β〉 t) : χǫ, ψβ,∆
[−]

Γ ⊢ [ǫ]µǫ.[γ]λy.v : χǫ, ψ ⊃ χγ ,∆
[−]

Γ ⊢ µβ.[ǫ](µα.[β]µβ.[α]λx.u)(〈β〉 t) : ψ, χǫ,∆
µ

Γ ⊢ µγ.[ǫ]µǫ.[γ]λy.v : ψ ⊃ χ,∆
µ

Γ ⊢ (µγ.[ǫ]µǫ.[γ]λy.v)(µβ.[ǫ](µα.[β]µβ.[α]λx.u)(〈β〉 t)) : χ, χǫ,∆
⊃E

Γ ⊢ [ǫ](µγ.[ǫ]µǫ.[γ]λy.v)(µβ.[ǫ](µα.[β]µβ.[α]λx.u)(〈β〉 t)) : χǫ,∆
[−]

Γ ⊢ µǫ.[ǫ](µγ.[ǫ]µǫ.[γ]λy.v)(µβ.[ǫ](µα.[β]µβ.[α]λx.u)(〈β〉 t)) : χ,∆
µ

[[case t of in1(x) ⇒ u or in2(y) ⇒ v]]λµ⊕⊥
≡

[[µǫ.[ǫ](µγ.[ǫ]µǫ.[γ]λy.v)(µβ.[ǫ](µα.[β]µβ.[α]λx.u)(〈β〉 t))]]λµν

6. Since apart from the above all rules of λµ⊕⊥ are identical to the ones of λµν,
so are the corresponding terms.

⇐) Terms of λµν translated into λµ⊕⊥

1. µ-rule (both variants): It is not possible to derive the syntactically identical
rule, since there is no “empty” conclusion in λµ⊕⊥. However since the µ-rule
of λµ⊕⊥ subsumes the rules µ and ⊥ of λµν it is possible to perform a case
split on the term t. There are only two rules which could have been applied
before an application of the µ-rule in λµν which are [−] and ⊥E:

(a) [−]: An application of [−] followed by µ in λµν is realized by the corre-
sponding rules in λµ⊕, thus:

[[µα.[β]t]λµν ≡ [[µα.[β]t]]λµ⊕⊥

(b) ⊥E: An application of ⊥E followed by µ in λµν is realized by an application
of the µ-rule in λµ⊕, thus:

[[µα.[⊥]t]λµν ≡ [[µα.t]]λµ⊕⊥

2. [−] (both variants): Out of the same reason as above, we need to perform a
case split on the environment of the term [α]t. There are only two rules which
could be applied after an application of the [−]-rule in λµν which are µ and
⊥I:

(a) µ: An application of [−] followed by µ in λµν is realized by the correspond-
ing rules in λµ⊕, thus as already established in case (1a):

[[µα.[β]t]λµν ≡ [[µα.[β]t]]λµ⊕⊥

(b) ⊥E: An application of [−] followed by ⊥I in λµν is realized by an appli-
cation of the [−]-rule in λµ⊕, thus:

[[µ⊥.[α]t]λµν ≡ [[[α]t]]λµ⊕⊥

30 CHAPTER 4. λµPRL

3. ∨I : Can be derived by the sequence ∨I1, [−],µ, ∨I2, [−], µ in λµ⊕:

[[νβ.t]]λµν ≡ [[µα[α]in2(µβ.[α]in1(t))]]λµ⊕⊥

4. ∨I⊥ : Is derived by an application of ∨I1 in λµ⊕⊥:

[[ν⊥.t]]λµν ≡ [[in1(t)]]λµ⊕⊥

5. ∨E : In this case we will give a complete derivation in λµ⊕⊥:

Γ ⊢ t : φ ∨ ψ,∆ Γ, x : φ ⊢ x : φ,∆
Ax

Γ ⊢ [α]t : ⊥, φ ∨ ψα,∆
[−]

Γ, x : φ ⊢ [γ]x : ⊥, φγ ,∆
[−]

Γ ⊢ µβ.[α]t : ψ, φ ∨ ψα,∆
µ

Γ, x : φ ⊢ µβ.[γ]x : ψ, φγ ,∆
µ

Γ, y : ψ ⊢ y : ψ,∆
Ax

Γ ⊢ [β]µβ.[α]t : ⊥, ψβ , φ ∨ ψα,∆
[−]

Γ, x : φ ⊢ [β]µβ.[γ]x : ⊥, ψβ, φγ ,∆
[−]

Γ, y : ψ ⊢ [β]y : ⊥, ψβ,∆
[−]

Γ ⊢ µα.[β]µβ.[α]t : φ ∨ ψ, ψβ ,∆
µ

Γ, x : φ ⊢ µγ.[β]µβ.[γ]x : φ, ψβ ,∆
µ

Γ, y : ψ ⊢ µδ.[β]y : φ, ψβ ,∆
µ

Γ ⊢ case µα.[β]µβ.[α]t of in1(x) ⇒ µγ.[β]µβ.[γ]x or in2(y) ⇒ µδ.[β]y : φ, ψβ ,∆
∨E

Resulting in:

[[〈β〉 t]]λµν ≡ [[case µα.[β]µβ.[α]t of in1(x) ⇒ µγ.[β]µβ.[γ]x or in2(y) ⇒
µδ.[β]y]]λµ⊕⊥

6. ∨E⊥ : The derivation in λµ⊕⊥ is:

Γ, y : ⊥ ⊢ y : ⊥,∆
Ax

Γ ⊢ t : φ ∨ ⊥,∆ Γ, x : φ ⊢ x : φ,∆
Ax

Γ, y : ⊥ ⊢ µα.y : φ,∆
µ

Γ ⊢ case t of in1(x) ⇒ x or in2(y) ⇒ µα.y : φ,∆
∨E

[[〈⊥〉 t]]λµν ≡ [[case t of in1(x) ⇒ x or in2(y) ⇒ µα.y]]λµ⊕⊥

Remark Essentially, apart from the obviously different treatment of disjunction,
the main difference between terms of λµν and λµ⊕⊥ is the following: In λµν
a term [α]t can only occur as sub-term of a µ-binding. If during the proof we
had an introduction of ⊥ it is signalled by µ⊥ in the term whereas in λµ⊕⊥ an
introduction of absurdity is “hidden” in a singular occurrence of a [−]-term.

Using Lemma 4.1 we can now proceed to proving:

Proposition 4.2. A formula φ is provable in λµPRL within the λ-context of x1 : H1, . . . ,
xn : Hn and the µ-context of α1 : ∆1, . . . , αn : ∆n, iff x1 : H1, . . . , xn : Hn ⊢ φ,∆α1

1 , . . . ,∆αn

n

is provable in λµν.

Proof. We have proven the existence of a translation between λµν and λµ⊕⊥ as lemma
4.1. We continue by mutually simulating the rules of λµ⊕⊥ and λµPRL. The comma
on the left-hand side of the sequent is interpreted as ∧, the ⊢ as ⊃; context formulae
are treated as context formulae, adjusted to the syntax of the calculus in question. The
syntactic representation of the context is irrelevant in the sense that the context formula

4.2. CONSISTENCY OF λµPRL 31

are distinguished from the rest of the sequent in both calculi and can only be accessed by
the specific exchange rules.

To focus on the relevant part of the rules, we prove the “core” of the rules. This means
we neglect the side formulae (usually denoted by Γ and ∆) which are not required for or
altered by the the application of the respective rule.

1. ⊃ I and lambdaI: Trivial, since the only difference between the rules is the syntactic
position of the µ-context.Moreover the semantics of the ⊢ delimiter coincides with
the semantics of the implication, thus the proof of the rule results in an identity
map.

Simulation of ⊃ I in λµPRL:

⊢ (φ ⊃ ψ) ⊃ (φ ⊃ ψ) ext λx.x
by lambdaI x
| x : φ ⊃ ψ ⊢ φ ⊃ ψ ext x

by hypothesis 1

Simulation of lambdaI in λµ⊕⊥:

x : A ⊃ B ⊢ x : A ⊃ B
Ax

⊢ λx.x : (A ⊃ B) ⊃ (A ⊃ B)
⊃I

2. ⊃ E and functionE:

Simulation of ⊃ E in λµPRL:

⊢ ((φ ⊃ ψ) ∧ φ) ⊃ ψ ext λx.let 〈f, s〉 = x in (f s)
by lambdaI x
| x : (φ ⊃ ψ) ∧ φ ⊢ ψ ext let 〈f, s〉 = x in (f s)

by andE 1
| f : φ ⊃ ψ, s : φ ⊢ ψ ext t [(f s)/t]

by functionE 1
| s : φ ⊢ φ ext s

by hypothesis 1
| t : ψ, s : φ ⊢ ψ ext t

by hypothesis 1

Simulation of functionE in λµ⊕⊥:

ξ ≡ A ∧ (B ⊃ C) and χ ≡ A ⊃ B

x : ξ, y : χ ⊢ x : A ∧ (B ⊃ C)
Ax

x : ξ, y : χ ⊢ x : A ∧ (B ⊃ C)
Ax

x : ξ, y : χ ⊢ y : A ⊃ B
Ax

x : ξ, y : χ ⊢ π(x) : A
∧E1

x : ξ, y : χ ⊢ π′(x) : B ⊃ C
∧E2

x : ξ, y : χ ⊢ (y π(x))) : B
⊃E

x : A ∧ (B ⊃ C), y : A ⊃ B ⊢ (π′(x) (y π(x))) : C
⊃E

x : A ∧ (B ⊃ C) ⊢ λy.(π′(x) (y π(x))) : (A ⊃ B) ⊃ C
⊃I

⊢ λx.λy.(π′(x) (y π(x))) : (A ∧ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ C)
⊃I

32 CHAPTER 4. λµPRL

3. ∧I and andI: Trivial since the rules are identical but for their syntactic layout.
Moreover the semantics of the comma delimiter in the hypotheses coincides with the
semantics of the connective ∧, thus the proof of the rule results in an identity map.

Simulation of ∧I in λµPRL:

⊢ (φ ∧ ψ) ⊃ (φ ∧ ψ) ext λx.x
by lambdaI x
| x : (φ ∧ ψ) ⊢ φ ∧ ψ ext x

by hypothesis 1

Simulation of andI in λµ⊕⊥:

x : A ∧B ⊢ x : A ∧B
Ax

⊢ λx.x : (A ∧B) ⊃ (A ∧B)
⊃I

4. ∧E1 and andE1:

Simulation of ∧E1 in λµPRL:

⊢ (φ ∧ ψ) ⊃ φ ext λx.let 〈s, t〉 = x in s

by lambdaI x
| x : (φ ∧ ψ) ⊢ φ ext let 〈s, t〉 = x in s

by andE 1
| s : φ, t : ψ ⊢ φ ext s

by hypothesis 1

Simulation of andE in λµ⊕⊥:

x : (A ∧B) ⊃ C ⊢ x : (A ∧B) ⊃ C
Ax

⊢ λx.x : ((A ∧B) ⊃ C) ⊃ ((A ∧B) ⊃ C)
⊃I

5. ∧E2 and andE2: Analogously to ∧E1 and andE1. The corresponding terms are
λx.let 〈s, t〉 = x in t in λµPRL and λx.x again in λµ⊕⊥.

6. ∨Ii, i ∈ {1, 2} and orI

Simulation of ∨I1 in λµPRL:

⊢ φ ⊃ φ ∨ ψ ext λx.inl(x)
by lambdaI x
| x : φ ⊢ φ ∨ ψ ext inl(x)

by orI1
| x : φ ⊢ φ ext x

by hypothesis 1

Simulation of ∨I2 in λµPRL:

⊢ ψ ⊃ φ ∨ ψ ext λx.inr(x)
by lambdaI x
| x : ψ ⊢ φ ∨ ψ ext inr(x)

by orI2
| x : ψ ⊢ φ ext x

by hypothesis 1

4.2. CONSISTENCY OF λµPRL 33

Simulation of orI1 and orI2 in λµ⊕⊥:

x : A ⊢ x : A
Ax

x : B ⊢ x : B
Ax

x : A ⊢ in1(x) : A ∨B
∨I1

x : B ⊢ in2(x) : A ∨B
∨I2

⊢ λx.in1(x) : A ⊃ (A ∨B)
⊃I

⊢ λx.in2(x) : B ⊃ (A ∨B)
⊃I

7. ∨E and orE

Simulation of ∨E in λµPRL:

⊢ ((φ ∨ ψ) ∧ (φ ⊃ χ) ∧ (ψ ⊃ χ)) ⊃ χ ext λx.let < x, v >= w in

by lambdaI x let < x, y >= v in case x of . . .
| w : (φ ∨ ψ) ∧ (φ ⊃ χ) ∧ (ψ ⊃ χ) ⊢ χ ext let < x, v >= w in

by andE 1 let < x, y >= v in case x of . . .
| x : φ ∨ ψ, v : (φ ⊃ χ) ∧ (ψ ⊃ χ) ⊢ χ ext let < x, y >= v in case x of . . .

by andE 2
| x : φ ∨ ψ, y : φ ⊃ χ, z : ψ ⊃ χ ⊢ χ ext case x of inl(s) ⇒ (y s)|

by orE 1 inr(t) ⇒ (y t)
| s : φ, y : φ ⊃ χ, z : ψ ⊃ χ ⊢ χ ext (z s)

by functionE 2
| | s : φ, y : φ ⊃ χ, z : ψ ⊃ χ ⊢ φ ext s

by hypothesis 1
| | s : φ, r : χ, z : ψ ⊃ χ ⊢ χ ext r

by hypothesis 2
| t : ψ, y : φ ⊃ χ, z : ψ ⊃ χ ⊢ χ ext (y t)

by functionE 3
| t : ψ, y : φ ⊃ χ, z : ψ ⊃ χ ⊢ ψ ext t

by hypothesis 1
| t : ψ, u : χ, z : ψ ⊃ χ ⊢ χ ext u

by hypothesis 2

Simulation of orE in λµ⊕⊥:

φ ≡ (A ⊃ C) ∧ (B ⊃ C)

ψ ≡ A ∨B

ΓA ≡ x : φ, y : ψ, u : A

ΓB ≡ x : φ, y : ψ, v : B

ΓA ⊢ x : φ
Ax

ΓB ⊢ x : φ
Ax

ΓA ⊢ π(x) : A ⊃ C
∧E

ΓA ⊢ u : A
Ax

ΓB ⊢ π′(x) : B ⊃ C
∧E

ΓB ⊢ v : B
Ax

x : φ, y : ψ ⊢ y : (A ∨B)
Ax

ΓA ⊢ π(x) u : C
⊃E

ΓB ⊢ π′(x) v : C
⊃E

x : (A ⊃ C) ∧ (B ⊃ C), y : (A ∨B) ⊢ case y of in1(u) ⇒ π(x) u or in2(v) ⇒ π′(x) v : C
∨E

x : (A ⊃ C) ∧ (B ⊃ C) ⊢ λy.case y of in1(u) ⇒ π(x) u or in2(v) ⇒ π′(x) v : (A ∨B) ⊃ C
⊃I

⊢ λx.λy.case y of in1(u) ⇒ π(x) u or in2(v) ⇒ π′(x) v : ((A ⊃ C) ∧ (B ⊃ C)) ⊃ (A ∨B) ⊃ C
⊃I

34 CHAPTER 4. λµPRL

Remark The simulation of the exchange rules µ and [−] needs further expla-
nation. On the one hand, the equivalence is quite obvious, since in both
calculi these rules fulfil the same function of moving formulae to and from
the context. However in the simulation we have to deal with the manipula-
tion of the passive context, so on the other hand some thought is required
how to handle the alteration of the context. The question is whether or
not we may use the context formula in proving the rule as a theorem.

Not surprisingly, the answer depends on the rule in question, with the
µ-rule playing the role of ⊥ elimination while [−] is the non-constructive
rule of ⊥ introduction. Accordingly [−] is the rule in which the succedent
in the conclusion is only provable from the hypotheses in the presence
of the matching context formula. Opposed to this, the rule µ is basically
independent form the context formulae (which is most obvious in the second
rule µ). Thus in the simulation we may use the context formula as a
prerequisite in the proof of the rule [−] but not in the proof of µ.

The reader may note that if we treated the context formulae as part of
a disjunction in the conclusion (or in any other way as part of the goal
formula), we would fail to reflect the distinct syntactic position of the
context.

The two variants of each of the exchange rules do not differ in their simu-
lation, since the second instances of the rules are merely structural rules,
i.e. contraction and weakening.

8. µ and mui, i ∈ {1, 2}

Simulation of µ in λµPRL:

⊢ ⊥ ⊃ φ ext λx.µα.x
by lambdaI x
| x : ⊥ ⊢ φ ext µα.x

by mu1 alpha
| x : ⊥, {{φα}} ⊢ ⊥ ext x

by hypothesis 1

Simulation of mu in λµ⊕⊥:

x : ⊥ ⊢ x : ⊥
Ax

x : ⊥ ⊢ µα.x : C
µ

⊢ λx.µα.x : ⊥ ⊃ C
⊃I

4.2. CONSISTENCY OF λµPRL 35

9. [−] and aborti, i ∈ {1, 2}

Simulation of [−] in λµPRL:

{{φα}} ⊢ φ ⊃ ⊥ ext λx.[α]x
by lambdaI x
| x : φ, {{φα}} ⊢ ⊥ ext [α]x

by abort1 2
| x : φ ⊢ φ ext x

by hypothesis 1

Simulation of mu in λµ⊕⊥:

x : C ⊢ x : C
Ax

x : C ⊢ [α]x : ⊥
[−]

⊢ λx.[α]x : C ⊃ ⊥, Cα
⊃I

Chapter 5

Conversion Theory

When we established the soundness of λµPRL in the last chapter, we postponed the crucial
part of an accompanying conversion theory. A reduction relation is both important from
a proof-theoretic and from a computational viewpoint: On the on hand, reduction rules
define the extensional equality of proofs and on the other hand, the process of reduction
(and thus cut elimination) represents computation.

In the scope of this work, our main interest concerning reduction is a confluent cut elim-
ination procedure, thereby providing a sound basis for equality reasoning about λµPRL-
terms.

This chapter consists of two parts. The first section reflects on the conversion theory
of different λµ-calculi in relation to λµPRL. It also contains definitions of β-,µ-,δ and
π-reduction for λµPRL, but for our current purpose, a βµ-reduction suffices. A proof
of its confluence is outlined in the second section, using the method of extended parallel
reduction.

For formal definitions of the proof-theoretic concepts see chapter 2.5.

5.1 Conversion in λµPRL and Related Calculi

In the formulation given in chapter 4, the calculus λµPRL does not contain a cut rule.
Since λµPRL is a top-down refinement calculus, this results in proofs without logical cuts.
But considering a cut rule is still sensible since cuts are very useful to structure a proof
(corresponding to the use of lemmas). Therefore, in the following we extend λµPRL by a
cut-rule:

G,H ⊢ C ext (λx.t)s
BY cut i T x

G,H ⊢ T ext s
G, x : T,H ⊢ C ext t

In the presence of cuts, it has to be shown, that every proof containing cuts can be
transformed into a proof without cuts. But we will not yet settle on a reduction relation
for our calculus. Before, let us reflect on some standard properties we might require.

Usually, the following proof-theoretic properties are of interest:

• strong normalization

36

5.1. CONVERSION IN λµPRL AND RELATED CALCULI 37

• confluence (Church-Rosser-property)

• subformula property of normalized terms

• subject reduction

Proof-theoretic properties form an important area in the research of classical λ-calculi.
Accordingly, there exists a number of normalization and confluency results for various λµ-
calculi, classical natural deduction systems and also related control calculi (e.g. [Yam04,
dG94a, Py98, dG01, Mat01, BHF01, BB93, Par93b, Tat07, NS06, Fuj97, RS94, NT03,
NT08, AHS07]).

We will have a look at possible reduction relations for λµPRL alongside these results.
However, in regard of the vast amount of different systems, we will do so within a certain
predetermined direction.

When considering the general setting, most of it is induced by our reference to the
Nuprl system:

• Corresponding to the terms of the Nuprl system, λµPRL terms are untyped. Con-
sequently the reduction relation is defined in an untyped setting, too. This means,
that the reduction merely depends on the shape of the derivation, not on additional
conditions on the form of the type.

• Nuprl employs a lazy evaluation strategy with β-reduction. The purpose is to ensure
termination without restricting the expressiveness of its type system. Again, we
would like to stay as close as possible to the system. Therefore we will focus on a
β-reduction in a call-by-name-regime for λµPRL, too.

Nevertheless, due to the classical constructs some additional aspects may need to be
regarded.

Our calculus works top-down and the elimination rules operate on the antecedent. As
a result, logical cuts can only be introduced into proofs by explicit use of the cut rule.
This is different in natural deduction systems: Logical cuts occur when the introduction
of a connective is directly followed by its elimination.

However, when we consider computation , such cuts do occur in λµPRL, too. Take the
application of a function to some argument of the expected type, i.e. a term of the form
(λx.t s). This corresponds to a proof where an implication-elimination is followed by its
introduction. Now we can evaluate the above term to t[s/x] by the usual β-reduction for λ-
terms. Then the proof related to the resulting term may contain further cuts. For λµPRL
terms we can identify a number of different cuts. Each kind gives rise to a corresponding
reduction relation:

• logical cuts: applications of elimination rules followed be introduction rules for the
same type (observed in top-down direction) resulting in a non-canonical term with
a canonical term of the same type as its principal subterm. This in our notion also
includes a rule to reduce terms of the form [α]µβ.t. This rule is also referred to
as renaming (e.g. by Parigot [Par92]). Apart from the µ-renaming, these cuts are
redexes of the usual β-reduction in intuitionistic logic. E.g. (λx.t s) β t[s/x]

38 CHAPTER 5. CONVERSION THEORY

• structural cuts: if a µ-abstraction is the principal subterm of a non-canonical ex-
pression and thus might mask a β-redex. The associated reduction relation is µ-
reduction (also referred to as structural reduction [Par92] or ζ-reduction [PR01]).
E.g. (µα.t s) µ t[[α](u s)/[α]u]

• permutative cuts: Since the elimination rules of ∨ and ∧ operate on the antecedent,
they might mask a redex (see example 5.1 below). We associate two reduction rela-
tions depending on the connective δ- and π-reduction for ∨ and ∧ respectively. The
δ-reductions are also referred to as permutative conversions or commuting conver-
sions.

The accompanying reduction-relations can be defined as follows for λµPRL terms. To
make the presentation of the rules clearer we will use the following abbreviations:

spr(t;x, y.u) ≡ let 〈x, y〉 = t in u
dec(t;x.u; y.v) ≡ case t of inl(x) : u | inr(y) : v

Definition 5.1. (β-reduction)
(λx.u) v β u[v/x]
spr(〈v,w〉 ;x, y.u) β u[v,w/x, y]
dec(inl(w);x.u; y.v) β u[w/x]
dec(inr(w);x.u; y.v) β v[w/y]
[α]µβ.u β u[α/β]

Definition 5.2. (µ-reduction)
(µα.u v) µ µα.u[[α](w v)/[α]w]
spr(µα.z, x, y.u) µ µα.z[[α]spr(w;x, y.u)/[α]w]
dec(µα.z;x.u; y.v) µ µα.z[[α]dec(w;x.u; y.v)/[α]w]

Definition 5.3. (δ-reduction)
(dec(z;x.u; y.v) t) δ dec(z;x.(u t); y.(v t))
spr(dec(z;x′.u; y′.v);x, y.t) δ dec(z;x′.spr(u;x, y.t); y′.spr(v;x, y.t))
dec(dec(z;x′.u′; y′.v′);x.u; y.v) δ dec(z;x′.dec(u′;x.u; y.v); y′.dec(v′;x.u; y.v))

Definition 5.4. (π-reduction)
(spr(z;x, y.u) t) π spr(z;x, y.(u t))
spr(spr(z;x′, y′.u′);x, y.u) π spr(z;x′, y′.spr(u′;x, y.u)))
dec(spr(z;x′, y′.u′);x.u; y.v) π spr(z;x′, y′.dec(u′;x.u; y.v))

Apart from reduction rules which concern the different kinds of cuts, works on λµ-
calculi contain some further notions of reduction.

• η-expansions: transformations like t η (λx.t x). These are employed by Pym and
Ritter [PR01] to ensure the uniqueness of representation required for their categorial
model. To restore confluence in presence of the η-rules they moreover need an
additional rule µexp.

• ν-reduction: a combination of η-expansion and µ-reduction (similar to the reduction
used by Pym and Ritter above). This is considered in [DP01] in order to formulate
an equivalent of Böhm’s theorem [Böh68] for λµ (which is shown to fail).

5.1. CONVERSION IN λµPRL AND RELATED CALCULI 39

• symmetric µ-reduction: Uses an additional rule µ′ for structural reduction. This
allows to reduce terms of the form (s µα.t) where the µ-abstraction is in the argu-
ment position. The usual structural reduction merely applies to terms where the
µ-abstraction takes the place of the function. Ong and Stewart [OS97] refer to these
two kinds of rules as ζarg and ζfun.

The calculus using the symmetric reduction rules is usually denoted by λµµ′ (e.g.
[Py98, BHF01]). The advantage of this calculus is a stronger notion of normal
form: e.g. in the second order variant this means that there are no “false” witnesses
for integer values. Instead every integer is represented by a Church numeral as in
intuitionistic logic. This links the µ′-rule to the extraction of constructive content
from classical proofs. Especially the “output operator” presented by Parigot in
[Par93a] is very closely related.

However, in a strict call-by-name regime µ′ is known to destroy the confluence of β-
reduction. As remarked in [OS97], this drawback can be fixed by certain restrictions.
But these include that the β-reduction is required to call-by-value. Therefore in this
work we will be content without symmetric µ-reduction.

• reduction of control operators: There is a strong relation between λµ-calculi and
λ-calculi with control operators like call/cc or Felleisen’s C. The reduction of such
control operators corresponds to symmetric structural reduction rules. Works on the
relations between λµ- and control calculi are e.g. [dG94b, AH08].

We postpone the relation between λµPRL and Felleisen’s C to the chapters 6 and 7.
It will be considered in context with Murthy’s work [Mur90].

The β-, µ- and δ-reduction-relations are the ones usually considered in proofs of strong
normalization for classical natural deduction with disjunction [dG01, Mat01, NS06, NT08,
DN03]. Pym and Ritter in contrast, use η-expansion rules (following a proof by Ghani
[Gha95]) to achieve strong normalization for λµν and λµ⊕. However, in [dG01] De Groote
remarks that these are not sufficient to ensure the subformula property for normal proofs.
To achieve this property in natural deduction the permutative conversions for disjunctions
become necessary. However, in λµPRL the situation which requires the δ- reductions can
also arise from the elimination of a conjunction. Consider the following example:

Example 5.1. Let the cut-formula φ be a disjunction A∨B which is not a subformula of
the original proposition. But one of the disjuncts is subformula of a conjunction z : A∧C
in the hypotheses. Therefore φ can be proved. Still, for the normal proof to have the
subformula property this cut needs to be eliminated.

Let the first refinement step of proving φ be by andE, resulting in the hypotheses x1 : A
and y1 : C and the proof term let 〈x1, y1〉 = ... in This is followed by an introduction
of the disjunction A∨B by orI1 (inl(...)). The resulting proof goal A can now be proved
by the hypothesis rule and the corresponding term is x1. Accordingly, the proof term of
the cut formula is let 〈x1, y1〉 = z in inl(x1). Now in the proof of the original goal, the
cut formula x:A ∨ B is eliminated by orE (case x of ...). Then in the cut elimination
procedure, a redex is masked by the term resulting from the application of andE.

An application of the cut-rule results in a term of the form (λx.t u) which can be
reduced to t[u/x] by β-reduction. But in the example, the term t[u/x] will contain a

40 CHAPTER 5. CONVERSION THEORY

subterm case (let 〈x1, y1〉 = z in inl(x1)) of inl(x2) : v | inr(y2) : w. In this term
the let-construct masks the β-redex which would result from the applications of orE and
orI1. Consequently a permutative conversion for conjunction is required. Employing
π-reduction we have

case (let 〈x1, y1〉 = z in inl(x1)) of inl(x2) : v | inr(y2) : w
 π let 〈x1, y1〉 = z in (case inl(x1) of inl(x2) : v | inr(y2) : w)

Now it is possible to eliminate the logical cut:

let 〈x1, y1〉 = (case inl(s) of inl(x2) : v | inr(y2) : w) in r
 β let 〈x1, y1〉 = v[s/x2] in r.

This also affects the subject reduction property. Without permutative conversions
the reduced term might not correspond to a proof in λµPRL. Still, there would be a
corresponding proof in an equivalent bottom-up calculus. But in the top-down direction,
the primary subterm of the case- and let-statement can only be a λ-variable. This is an
immediate consequence of the left elimination rules.

We conjecture that by the use of βµδπ-reduction it could be shown that

• the typable terms of λµPRL are strongly normalizing,

• the obtained normal proofs fulfil the subformula property and

• the reduction ensures the preservation of types (subject reduction)

Still, in our current work, we will not further pursue a verification of these proper-
ties as it would exceed the scope of this thesis. Currently a confluent call-by-name cut
elimination procedure which is similar to Nuprl’s operational semantics, but still takes
into consideration special role of the µ-operator, suffices. Thus we are content with a
βµ-reduction-relation. It provides a restricted form of equality reasoning and does not
require a deterministic evaluation strategy for confluence. This is important since Nuprl’s
evaluation strategy is lazy, but non-deterministic.

Therefore section 5.2 concerns a proof of confluence for βµ-reduction.

5.2 Confluence of βµ-reduction

This section is concerned with the confluence of βµ-reduction relation ։βµ in λµPRL.
Confluence in λµ-calculi is quite well known. A wide range of confluence results for “pure”
λµ and λµµ′ (without sum and products) can e.g. be found in [Py98]. But λµPRL differs
from other λµ-calculi because of its left-hand-side elimination rules. Therefore, we will
outline a proof of the confluence of βµ-reduction in λµPRL.

To prove the confluence of a reduction relation, usually one of the following three
methods is used:

• Decomposing the reduction relation into several confluent subsystems. If these com-
mute, then by the lemma of Hindley-Rosen [Hin64, Ros73] the original reduction
relation is confluent. It is important to note that the confluence of the original
relation is not always implied, if merely the confluence of the subsystems can be
shown.

5.2. CONFLUENCE OF βµ-REDUCTION 41

• Defining a strongly confluent reduction relation with the same transitive closure as
the reduction relation in question. This results in the usual parallel reduction of
Martin-Löf and Tait [Bar84]. However, there might exist non-trivial critical pairs
which require an extension of the usual method.

• Restricting the considerations to typed terms and showing strong normalization for
these. Then it suffices to show local confluence by comparing critical pairs (which oc-
cur if two different reductions use common symbols). By Newman’s lemma [New42]
a reduction relation is confluent iff it is locally confluent and strongly normalizing.

Here, we will sketch a proof along the lines of the second method.
We use the following lemma by Barendregt. A strongly confluent reduction relation is

said to satisfy the diamond property. The proof of this lemma is given in [Bar84].

Lemma 5.5. (Barendregt) Let֌ be a binary relation on a set and let֌∗ be its transitive
closure. Then ֌ satisfying the diamond property implies ֌∗ satisfying the diamond
property.

The proof of confluence is an extension of Parigot’s proof [Par92] which is based on
the usual procedure for the λ-calculus due to Martin-Löf and Tait (for a presentation of
this method, see [Bar84]). However, there is a gap in the proof outlined by Parigot. This
has been independently observed by Py in [Py98] and by Baba, Hirokawa and Fujita in
[BHF01].

Obviously, Parigot’s one-step-reduction fails to resolve a non-trivial critical pair. Let
us consider the term t ≡ (µα.[α]µβ.[α]x y). This term t contains both a β- and a µ-redex.
Thus t can be reduced to t1 ≡ (µα.[α]x y) and to t2 ≡ µα.[α](µβ.[α](x y) y).

Now, t1 and t2 would have to be reduced in one step to some common t3. Otherwise the
reduction relation is not strongly confluent. But this is the problem with Parigot’s one-step
relation: In t2 the β-redex has to be recovered by an additional step of µ-reduction.

Therefore, it is necessary to extend the rules obtained by the usual parallel reduction
method. This is done by the authors in different, but still similar ways. Py adapts a
method by Aczel [Acz78] denoted as generalized parallel reduction. He extends the usual
parallel reduction by two new reduction rules. Baba, Hirokawa and Fujita add just one
new rule, which basically subsumes Py’s rules.

We will follow the approach by Baba, Hirokawa and Fujita. Due to the elimination
rules for conjunction and disjunction, we have to adapt the additional rule respectively.
Then the example given above can be resolved: t1 and t2 both reduce to µα.[α](x y) in
one step. The necessary one-step reduction relation is defined in the proof of proposition
5.6.

Proposition 5.6. The reduction relation of λµPRL is confluent, i.e. if u ։βµ u1 and
u։βµ u2, then there exists v such that u1 ։βµ v and u2 ։βµ v.

Proof. We define a new one-step reduction relation ⇒1 with the following properties:

1. ։βµ is the transitive closure of ⇒1. This can be shown by set inclusion for relations
written as sets of pairs. The idea is that the equality relation induced by βµ-
reduction-rules is a subset of ⇒1 which is a subset of the transitive closure ։βµ.
Therefore ։βµ also is the transitive closure of ⇒1. Details can be found in [Bar84].

42 CHAPTER 5. CONVERSION THEORY

2. ⇒1 is strongly confluent.

It remains to show (2). Then, from (1) and (2) we can deduce that։βµ is confluent
by lemma 5.5.

The reduction relation ⇒1 is inductively defined by:

(a) u⇒1 u

(b) if u⇒1 u
′ then λx.u⇒1 λx.u

′

(c) if u⇒1 u
′ and v ⇒1 v

′ then (u v) ⇒1 (u′ v′)

(d) if u⇒1 u
′ then µα.u⇒1 µα.u

′

(e) if u⇒1 u
′ then [α]u⇒1 [α]u′

(f) if u⇒1 u
′ and v ⇒1 v

′ then 〈u, v〉 ⇒1 〈u′, v′〉

(g) if u⇒1 u
′ and v ⇒1 v

′ then let 〈x, y〉 = v in u⇒1 let 〈x, y〉 = v′ in u′

(h) if u⇒1 u
′ then inl(u) ⇒1 inl(u

′)

(i) if u⇒1 u
′ then inr(u) ⇒1 inr(u

′)

(j) if u ⇒1 u
′, v ⇒1 v

′ and w ⇒1 w
′ then case w of inl(x) : u | inr(y) : v ⇒1

case w′ of inl(x) : u′ | inr(y) : v′

(k) if u⇒1 u
′ and v ⇒1 v

′ then (λx.u v) ⇒1 u
′[v′/x]

(l) if u⇒1 u
′ and v ⇒1 v

′ then (µα.u v) ⇒1 µα.u
′[[α](w v′)/[α]w]

(m) if u⇒1 u
′ then [α]µβ.u⇒1 u

′[α/β]

(n) if u⇒1 u
′, v ⇒1 v

′ and w ⇒1 w
′ then let 〈x, y〉 = 〈v,w〉 in u⇒1 u

′[v′, w′/x, y]

(o) if u⇒1 u
′ and w ⇒1 w

′ then case inl(w) of inl(x) : u | inr(y) : v ⇒1 u
′[w′/x]

(p) if u⇒1 u
′ and w ⇒1 w

′ then case inr(w) of inl(x) : v | inr(y) : u⇒1 u
′[w′/y]

(q) if u ⇒1 u
′ and v ⇒1 v

′ then let 〈x, y〉 = µα.u in v ⇒1 µα.u
′[[α]let 〈x, y〉 =

w in v′/[α]w]

(r) if u⇒1 u
′, v ⇒1 v

′ and w ⇒1 w
′ then case µα.u of inl(x) : v | inr(y) : w ⇒1

µα.u′[[α]case z of inl(x) : v′ | inr(y) : w′/[α]z]

(s) Let Ci[] ∈ {(vi), case of inl(xi) : vi | inr(yi) : wi, let 〈xi, yi〉 = in vi}
and C ′

i[] ∈ {(v′i), case of inl(xi) : v′i | inr(yi) : w′
i, let 〈xi, yi〉 = in v′i},

1 ≤ i ≤ n.
If u⇒1 u

′,v1 ⇒1 v
′
1, . . . , vn ⇒1 v

′
n and w1 ⇒1 w

′
1, . . . , wn ⇒1 w

′
n then

[β]C1[. . . Cn[µα.u] . . .] ⇒1 u
′[[β]C ′

1[. . . C
′
n[w] . . .]/[α]w]

From the definition of ⇒1 we obtain 5 different critical pairs:

i. if u⇒1 u
′ and v ⇒1 v

′ then u[v/x] ⇒1 u
′[v′/x]

ii. if u⇒1 u
′ and v ⇒1 v

′ then u[v/x] ⇒1 u
′[[α](wv′)/[α]w]

iii. if u⇒1 u
′ and v ⇒1 v

′ then u[[α]let 〈x, y〉 = w in v/[α]w] ⇒1 u
′[[α]let 〈x, y〉 =

w in v′/[α]w]

iv. if u ⇒1 u
′, v ⇒1 v

′ and w ⇒1 w
′ then u[[α]case z of inl(x) : v | inr(y) :

w/[α]z] ⇒1 u
′[[α]case z of inl(x) : v′ | inr(y) : w′/[α]z]

v. if u⇒1 u
′ then u[α/β] ⇒1 u

′[α/β]

5.2. CONFLUENCE OF βµ-REDUCTION 43

That it is possible to resolve all critical pairs can be shown by induction (for each) on
the definition of ⇒1. The base case is u ⇒ u′ is u ⇒1 u

′. This is done by an induction
on the form of u. All further cases can be verified by using the induction hypothesis.
The only interesting cases are related to the gap in Parigot’s proof and arise from items
(2(s)ii),(2(s)iii) and (2(s)iv). The proof for item (2(s)ii) and rule (2m) can basically be
found in [BHF01]. The cases for (2(s)iii) and (2(s)iv) can be shown analogously. Therefore
we will be content with an example for (2(s)iii) and rule (2s) to illustrate the procedure
for this rule. Then the corresponding cases for (2(s)ii) and (2(s)iv) could again be done
analogously.

We will now proceed as follows: Let us first take a look at the base case and one simple
induction step for (2j) on item (2(s)iii). Then we will go on to one of the cases concerning
structural reduction. As exemplary case we show the proof for (2(s)iii) and the rule (2s).
For space reasons, the case- and let-constructs are once more abbreviated by decide and
spread.

• base case: u ⇒1 u
′ is u⇒1 u. Then we have to show by induction on the structure

of u that u[[α]let 〈x, y〉 = s in t/[α]s] ⇒1 u[[α]let 〈x, y〉 = s in t′/[α]s]. This can be
done in a table:

u lhs rhs comment

base cases:

x x x OK
[α]v, α 6∈ FV (v) [α]let 〈x, y〉 = w in v [α]let 〈x, y〉 = w in v′ OK

induction hypothesis (IH1): r[[α]let 〈x, y〉 = s in t/[α]s] ⇒1 r[[α]let 〈x, y〉 = s in t′/[α]s] ,
for short r[] ⇒1 r[

′]
induction step: r → E[r] for all contexts E[]

λx.v λx.v[] λx.v[′] by IH1
(v w) (v[] w[]) (v[′] w[′]) — || —
µα.v µα.v[] µα.v[′] — || —

[α]v, α ∈ FV (v) [α]let 〈x, y〉 = v[] in t [α]let 〈x, y〉 = v[′] in t′ — || —
〈v,w〉 〈v[], w[]〉 〈v[′], w[′]〉 — || —

let 〈x, y〉 = z in v let 〈x, y〉 = z[] in v[] let 〈x, y〉 = z[′] in v[′] — || —
inl(v) inl(v[]) inl(v[′]) — || —
inr(v) inr(v[]) inr(v[′]) — || —

decide(z;x.v; y.w) decide(z[];x.v[]; y.w[]) decide(z[′];x.v[′], y.w[′]) — || —

• induction hypothesis(IH2): r[[α]let 〈x, y〉 = s in t/[α]s] ⇒1 r′[[α]let 〈x, y〉 =
s in t′/[α]s]

• induction step: r → E[r]

• exemplary case for common parallel reduction cases: rule (2j).
u ⇒1 u′ is decide(z;x.v; y.w) ⇒1 decide(z′;x.v′; y.w′) and a direct consequence

44 CHAPTER 5. CONVERSION THEORY

of z ⇒1 z′, v ⇒1 v′ and w ⇒1 w′. Let σ ≡ [[α]let 〈x, y〉 = s in t/[α]s] and
σ′ ≡ [[α]let 〈x, y〉 = s in t′/[α]s]. Then

uσ ≡ decide(zσ;x.vσ; y.wσ)
⇒1 decide(zσ

′;x.vσ′; y.wσ′) ,by IH2,
≡ u′σ′.

• exemplary case for structural rules: rule (2s).
Let Ci[] ∈ {(vi), decide(;xi.vi; yi.wi), spread(;xi, yi.vi)} and
C ′

i[] ∈ {(v′i), decide(;x′i.v
′
i; y

′
i.w

′
i), spread(;x′i, y

′
i.v

′
i)}, 1 ≤ i ≤ n.

Now u⇒1 u
′ is of the form

[β]C1[. . . Cn[µγ.u1] . . .] ⇒1 u
′
1[[β]C ′

1[. . . C
′
n[w] . . .]/[γ]w]

and we know the induction hypothesis is valid for u1 ⇒1 u
′
1,v1 ⇒1 v

′
1, . . . , vn ⇒1 v

′
n

and w1 ⇒1 w
′
1, . . . , wn ⇒1 w

′
n.

Consequently Ci[][[α]spread(w;x, y.v)/[α]w] ⇒1 C
′
i[][[α]spread(w;x, y.v′)/[α]w].

For space reasons let Ciσ[] ≡ Ci[][[α]spread(w;x, y.v)/[α]w] and C ′
iσ[] ≡ C ′

i[][[α]spread(w;x, y.v′)/[α]w]

Two cases arise, depending on the µ-variables: α = β and α 6= β.

– α = β. Then

u[[α]spread(w;x, y.v)/[α]w]
= [α]C1[. . . Cn[µγ.u1] . . .][[α]spread(w;x, y.v)/[α]w]
= [α]spread(C1σ[. . . Cnσ[µγ.u1[[α]spread(w;x, y.v)/[α]w]] . . .];x, y.v)
=: u2,

u′[[α]spread(w;x, y.v′)/[α]w]
= u′1[[α]C ′

1[. . . C
′
n[w] . . .]/[γ]w][[α]spread(w;x, y.v′)/[α]w]

= u′1[[α]spread(C ′
1σ[. . . C ′

nσ[w] . . .];x, y.v′)/[γ]w]
=: u′2.

Using the induction hypothesis for u1 ⇒1 u
′
1, we know

u1[[α]spread(w;x, y.v)/[α]w] ⇒1 u
′
1[[α]spread(w;x, y.v′)/[α]w]

Therefore by rule (2s) u2 ⇒1 u
′
2.

– α 6= β. Then

u[[α]spread(w;x, y.v)/[α]w]
= [β]C1[. . . Cn[µγ.u1] . . .][[α]spread(w;x, y.v)/[α]w]
= [β]C1σ[. . . Cnσ[µγ.u1[[α]spread(w;x, y.v)/[α]w]] . . .]
=: u2,

u′[[α]spread(w;x, y.v′)/[α]w]
= u′1[[β]C ′

1[. . . C
′
n[w] . . .]/[γ]w][[α]spread(w;x, y.v′)/[α]w]

= u′1[[β]C ′
1σ[. . . C ′

nσ[w] . . .]; /[γ]w]

5.2. CONFLUENCE OF βµ-REDUCTION 45

=: u′2.

Using the induction hypothesis for u1 ⇒1 u
′
1, we know

u1[[α]spread(w;x, y.v)/[α]w] ⇒1 u
′
1[[α]spread(w;x, y.v′)/[α]w]

Therefore by rule (2s) u2 ⇒1 u
′
2.

• The other cases can be verified analogously: The “common” cases like the proof for
2(s)iii and rule (2j); the “structural” cases similar to 2(s)iii and rule (2s).

= Having resolved the critical pairs, it can easily be shown by induction on the definition
of u ⇒1 u

′ that for all u ⇒1 u
′′ there is an u′′′ such that u′ ⇒1 u

′′′ and u′′ ⇒1 u
′′′. Thus

⇒1 is confluent, and by lemma 5.5 ։βµ is confluent as well.

Chapter 6

On Classical and Intuitionistic

Terms of λµPRL

This chapter is concerned with evaluation of a different kind. Although being related to
normalization in the sense of unique data representation, it focuses on another purpose.
Our motivation for a further evaluation of normal proofs (in the sense of the reduction
relation presented in the previous chapter), is to decide whether a proof relies on a classical
or a constructive argument. Such a procedure would enable a proof system to distinguish
classical from constructive proofs on a meta-level.

The first step in the development of this evaluation procedure is to consider in which
cases a proof in λµPRL is non-constructive and how this is reflected in the respective proof
term.

It is easy to see, that an intuitionistic fragment of λµPRL can be obtained by taking
the calculus minus the rules abort1 and abort2. But simply classifying proofs which use
these rules as non-constructive does also exclude proofs which are constructively valid.
After all, the conclusion might have been exchanged during the proof, albeit completely
irrelevant for the completion of the proof. Consequently we need a more detailed analysis
of the proof structure.

If we have a look at the proof tree of the derivation of a sentence in λµPRL, the root
is the sentence itself, and every leaf of the proof tree must contain an instance of the rule
hypothesis. Accordingly, the constructivity of the proof depends on how the hypotheses
used in the application of hypothesis have been obtained.

In λµPRL, the only rule which moves formulae from the succedent to the antecedent
is the introduction of an implication, which is represented in the proof term by a λ-
abstraction. But the crucial point is the influence of context formulae in the proof tree. In
the intuitionistic fragment of λµPRL (as described above) two rules “destroy” the formula
in the succedent: the elimination of an implication and the introduction of a disjunction.
This is a usual property of these rules in single-conclusioned intuitionistic logic.

But in the presence of the abort-rules, the formulae which are “lost” in the intuition-
istic case can be saved by moving them to the context before one of these “destructive”
rules is applied, and recovering them later on. Obviously, if the µ-variable of the recovered
formula is α, the application of abort would result in a subterm of the form [α]t. Now,
the following cases arise which would render the proof classical:

1. the subtree rooted in an introduction of disjunction contains a leaf that proves one

46

47

disjunct (or one of its subformulae) by a hypothesis obtained from the other disjunct.

2. the subtree in which the premiss of an eliminated implication is to be proven does not
prove the premiss itself but a formula from the context, depending on a hypothesis
obtained from the premiss (if the context formula was proven without an additional
hypothesis this would have shown the unnecessity of using the eliminated implication
in this place and consequently would have been removed within the process of cut
elimination.)

Let us take a look at the proof terms resulting from proofs to which these two cases apply.

1. In this case the proof term will contain a subterm

µα. . . . inl(. . . λx. . . . [α] . . . inr(. . . x))
or

µα. . . . inr(. . . λx. . . . [α] . . . inl(. . . x))

An obvious example (and in fact the simplest instance) of this case is the proof of
the law of the excluded middle A ∨ (A ⊃ ⊥). E.g., it is represented by the term
µα.[α]inr(λx.[α]inl(x))

2. This scenario will result in a subterm

µα. . . . (t (. . . λy. . . . [α] . . . y))

where t is the respective term which represents the eliminated implication the premiss
of which is proven by a switch of the goal formula. Example are the classical axiom
¬¬A ⊃ A and Peirce’s Law (((P ⊃ Q) ⊂ P) ⊃ P). These can be represented by the
terms λx.µα.(x λy.[α]y) and λf.µα.[α](f λy.µβ.[α]y)

As one can see, both cases involve instances of the prominent classical theorems that do
not hold intuitionistically. This reflects once more on the well-known fact that a classical
calculus can be obtained from an intuitionistic one by adding one of these as axioms.

Now the question is, how to generally identify such structures in proof terms. One
possibility seems to be an adaption of a method by Parigot [Par93a]. Since in his second
order λµ-calculus normalized proofs of natural numbers are not only represented by Church
numerals but also by infinitely many “false” witnesses, he proposes the use of an output
operator. This operator is related to the additional reduction rule of the symmetric λµ-
calculus mentioned in the previous chapter. In [Par93a] Parigot shows that there is an
output operator which can compute the constructive term (i.e. the Church numeral)
corresponding to a natural number from every false witness.

It might be possible to use a similar concept to return the constructive term, if a term
of λµPRL relies on a constructive argument and “something else” otherwise. However,
using this output operator is very similar to interpreting the µ-operator as control-operator
and reducing it like Felleisen’s operator C. Since this is the evaluation used by Murthy in
the context of Nuprl’s logic, it might be more reasonable to consider adapting this method
for our purpose.

48 CHAPTER 6. ON CLASSICAL AND INTUITIONISTIC TERMS OF λµPRL

6.1 Murthy’s Evaluation

Let us now take a look at two evaluation rules which interpret the µ-abstraction as control
operator and an accompanying evaluation strategy. The rules correspond to the reduction
relation of Felleisen’s calculus λC [FFKD87, FH92] and have also been used by Murthy
[Mur91b] in his deterministic evaluation of Σ0

1 and Π0
2 sentences in Peano Arithmetic.

Murthy’s evaluation strategy is a deterministic head-reduction strategy. The µ-operator
plays the role of Felleisen’s control operator C and we introduce a new unary operator A
which does not bind any variables, although in presence of the reduction rules below it
could also be expressed by a µ-abstraction with a dummy variable not occurring in the
subterm: µα∗.t, α∗ 6∈ FV (t).

Definition 6.1. (ǫ-reduction)

E[µα.t] ǫ t[A(E[w])/[α]w]
E[A(t)] ǫ t

If we now return to our examples for propositions which do not hold intuitionistically,
it is interesting to observe what happens to the proof terms if we apply the rules of ǫ-
reduction. To illustrate the matter, we first take a look at the proof tree of the double
negation elimination rule represented by the term λx.µα.(x λy.[α]y).

⊢ ¬¬A ⊃ A

x : ¬¬A ⊢ A

x : ¬¬A, {Aα} ⊢ ⊥

{Aα} ⊢ ¬A

{Aα}, y : A ⊢ ⊥

{Aα}, y : A ⊢ A

x : ¬¬A, z : ⊥, {Aα} ⊢ ⊥

Applying the ǫ-reduction rules to the proof term now basically means to replace the
subtree rooted in the first box by the subtree rooted in the second box (which however is
a leaf in the example):

λx.µα.(x λy.[α]y) ǫ (x λy.A(λx.y)) ǫ λx.y

Obviously, this reduction results in a non-closed term. This problem does not occur
in Murthy’s system, since it is a first order calculus for arithmetic in which the only
atomic type is N and it furthermore is restricted to Σ0

1 sentences (where classical logic is
conservative over intuitionistic logic).

Of course for non-decidable propositions such a reduction is not an equality trans-
formation on proofs, but the resulting free variable does signal the non-constructivity of
the proof. Since its binding λ-abstraction has occurred in between the µ-abstraction and
the re-activation of the associated context formula, we can conclude, that this variable
is not accessible in an intuitionistic proof. To illustrate this point, we could also regard

6.1. MURTHY’S EVALUATION 49

the different µ-contexts as subroutines, so that in the intuitionistic case each subroutine
merely has access to its own namespace while in the classical case all variables are globally
accessible.

To avoid a non-closed term we could alter the reduction rules by substituting either a
new constant anyx1

, . . . , anyxn
or simply one special constant any for every free variable

x1, . . . , xn (if we are simply interested in whether a classical argument has been used or
not the latter is sufficient):

Variant 1: E[A(t)] ǫ1 t[FV (t)i/anyi] or
Variant 2: E[A(t)] ǫ2 t[FV (t)/any]

Still, we require another prerequisite to be able to tell apart non-constructive from con-
structive proofs. This depends on the order in which the rules of the proof are applied.
The problem is, that not only λ-abstractions bind variables, but also the terms associated
with ∨- and ∧-elimination. Therefore we could ,,loose” variables since in a calculus in
which elimination rules operate on the antecedent it is possible to apply these elimination
rules independently from the form of the succedent – e.g. in between applications of the
rules mu and abort.

However, their independence of the type of the succedent also contains the chance to
move the application of the respective rule in the proof tree. The “secure” position for
such a conjunction or disjunction elimination is directly below the function introduction
which has added said conjunction or disjunction to the hypotheses (the merely have to
avoid variable capture). Consider the following simple example which obviously has both
a classical and an intuitionistic proof:

Example 6.1. For space reasons the extract terms are omitted in the proof trees and
can be found below.

H ≡ z : A ∧B, {{(A ∨ ¬A)α}}
H ′ ≡ x1 : A, y : B, {{(A ∨ ¬A)α}}, x2 : A
H ′′ ≡ z : A ∧B, {{(A ∨ ¬A)α}}, x2 : A
H ′′′ ≡ x1 : A, y : B, {{(A ∨ ¬A)α}}, x2 : A

We take a look at three possible derivations of the proposition (A ∧B) ⊃ (A ∨ ¬A) in λµPRL:

50 CHAPTER 6. ON CLASSICAL AND INTUITIONISTIC TERMS OF λµPRL

⊢ (A ∧B) ⊃ (A ∨ ¬A) ext t1
by lambdaI z
| z : A ∧B ⊢ A ∨ ¬A
by mu1 α
| z : A ∧B, {{(A ∨ ¬A)α}} ⊢

⊥
by abort2 α
| H ⊢ A ∨ ¬A
by orI1
| H ⊢ ¬A
by lambdaI x2

| H ′′ ⊢ ⊥
by abort2 α
| H ′′ ∨ ¬A
by orI2
| H ′′ ⊢ A
by andE
| H ′′′ ⊢ A
by hypothesis 1

⊢ (A ∧B) ⊃ (A ∨ ¬A) ext t2
by lambdaI z
| z : A ∧B ⊢ A ∨ ¬A
by mu1 α
| z : A ∧ B, {{(A ∨ ¬A)α}} ⊢

⊥
by abort2 α
| H ⊢ A ∨ ¬A
by orI1
| H ⊢ ¬A
by lambdaI x2

| H ′′ ⊢ ⊥
by abort2 α
| H ′′ ∨ ¬A
by orI2
| H ′′ ⊢ A
by andE
| H ′′′ ⊢ A
by hypothesis 4

⊢ (A ∧B) ⊃ (A ∨ ¬A) ext t3
by lambdaI z
| z : A ∧B ⊢ A ∨ ¬A
by mu1 α
| z : A ∧B, {{(A ∨ ¬A)α}} ⊢

⊥
by andE
| H ′ ⊢ A
by abort2 α
| H ′ ⊢ A ∨ ¬A
by orI1
| H ′ ⊢ ¬A
by lambdaI x′

| H ′′′ ⊢ ⊥
by abort2 α
| H ′′′ ⊢ A ∨ ¬A
by orI2
| H ′′′ ⊢ A
by hypothesis 1

The three derivations result in the following proof terms:

t1 ≡ λz.µα.[α]inr(λx2.[α]inl(let 〈x1, y〉 = z in x1))
t2 ≡ λz.µα.[α]inr(λx2.[α]inl(let 〈x1, y〉 = z in x2))
t3 ≡ λz.µα.let 〈x1, y〉 = z in [α]inr(λx2.[α]inl(x1))

If we applied the ǫ-reduction to these terms without any previous conversion, we would
get (where the boxes mark the freed variables):

t1
∗
ǫ λz.inl(let 〈x1, y〉 = z in x1)

t2
∗
ǫ λz.inl(let 〈x1, y〉 = z in x2)

t3
∗
ǫ λz.inl(x1)

Now we have three different cases:

1. t1 reduces to the equivalent constructive proof term

2. t2 reduces to a term containing a free variable which is as expected since it relies
on a non-constructive argument and proves the law of the excluded middle without
using the premiss A ∧B

3. t3 also reduces to a non-closed term, however it does not rely on a classical argument,
but the term representing the elimination of the conjunction is simply lost in the
reduction.

So, while the ǫ-reduction of t1 and t2 gives the desired results, the reduction of t3 does
not. For this reason it would be necessary to permute the proof term with respect to the
position of the ∨- and ∧-eliminations before applying a further evaluation.

6.2. DISTINGUISHING TERMS BY CROLARD’S µ-SAFETY 51

And still, there is something else to pay attention to: Classical reasoning has an intrin-
sic notion of non-determinism, which also affects term languages with control operators.
Usually this non-determinism is either restricted by the reduction rules, a determinis-
tic evaluation strategy or the term language is accepted as being non-deterministic and
non-confluent [UB01] (a discussion can be found in the previous chapter).

We can follow Murthy by fixing a deterministic evaluation strategy, but if we are
interested in not “loosing” constructive proofs by the choice of the evaluation strategy,
we need to evaluate the term under more than one strategy and then have a look at the
resulting terms whether they contain occurrences of free variables (or any-constants).

So, the ǫ reduction presented above is well suited to get an idea of problem. How-
ever, due to the difficulties in presence of left-hand side elimination rules and the non-
determinism of classical proofs, the question arises, whether there is a more straightforward
procedure to determine whether a proof relies on a classical argument or not. As we have
seen above, reducing the proof term by the ǫ-reduction rules results in free λ-variables,
either if the proof is classical or if disjunctions or conjunctions have been eliminated in
an inopportune place. Now we would like to be able to differ between latter and former,
not only between free variables or bound variables. However, this cannot be accomplished
once the term has been reduced by ǫ-reduction. We would either need perform another
permutation of the proof in advance moving applications of elimination rules - or find
another method.

6.2 Distinguishing Terms by Crolard’s µ-safety

Such another method is presented by Crolard in [Cro02]. He presents a constructive re-
striction CND

r
∨ of Parigot’s λµ (extended by disjunction and a cut rule) annotating the

inference rules so that a set of interdependencies between hypotheses and conclusions is
defined. The intuition is to keep the multi-conclusion, and the opportunity to exchange
the active formula, but to restrict the implication introduction in a way, that the inter-
dependencies make sure that only the hypotheses linked to the active conclusion can be
used. This idea is very similar to the constructive multi-conclusioned logic FIL (“Full
Intuitionistic Logic”) by Pereira and de Paiva [PdP05].

Crolard furthermore defines an extension of classical λµ by disjunction and cut as λµ+.
To determine whether a λµ+-term t can be typed in CND

r
∨ he introduces the notion of the

scope Sδ(t) of a µ-variable δ and defines µ-safe terms as those λµ+-terms which represent
constructive proofs. The scopes of the µ-variables are exactly the interdependencies of
CND

r
∨.

Definition 6.2. (Crolard [Cro02]) A λµ+-term t is safe with respect to µ-contexts (µ-safe
for short) iff for any subterm of t which has the form λx.u, for any free µ-variable δ of u,
x 6∈ Sδ(u).

We can proceed in the same way for λµPRL – basically, if a term is not µ-safe, the
λ-variables contained in the scope of the respective µ-variables are exactly the ones which
would occur freely after ǫ-reduction, if the corresponding proof was non-constructive. The
variables bound by the let- or case-constructs do not interfere, since this problem is solved
by the construction of the set Sδ. Therefore, we will proceed by giving a constructive

52 CHAPTER 6. ON CLASSICAL AND INTUITIONISTIC TERMS OF λµPRL

restriction of λµPRL with annotations and defining the scope of a µ-variable for λµPRL.
We adopt Crolard’s notation and adapt the following abbreviation:

U, V sets. U [V/W] =

{

U \W ∪ V if W ∩ U 6= ∅

U otherwise

Definition 6.3. (Scope of a µ-variable) By induction on a term t of λµPRL we define
the set S[](t) of the free λ-variables which occur out of the scope of any µ-variable in t and
the set Sδ(t) of the free λ-variables which occur in the scope of a free µ-variable δ in t.

• S[](x) = x
Sδ(x) = ∅

• S[](λx.u) = S[](u) \ {x}
Sδ(λx.u) = Sδ(u) \ x

• S[](u v) = S[](u) ∪ S[](v)
Sδ(u v) = Sδ(u) ∪ Sδ(v)

• S[]([α]u) = ∅
Sδ([α]u) = Sδ(u) for any δ 6= α
Sα([α]u) = Sα(u) ∪ S[](u)

• S[](µα.u) = Sα(u)
Sδ(µα.u) = Sδ(u)

• S[](〈u, v〉) = S[](u) ∪ S[](v)
Sδ(〈u, v〉) = Sδ(u) ∪ Sδ(v)

• S[](let 〈x, y〉 = z in u) = S[](u)[S[](z)/{x, y}]
Sδ(let 〈x, y〉 = z in u) = Sδ(u)[S[](z)/{x, y}] ∪ Sδ(z)

• S[](inl(u)) = S[](u)
Sδ(inl(u)) = Sδ(u)
S[](inr(u)) = S[](u)
Sδ(inr(u)) = Sδ(u)

• S[](case z of inl(x) : u | inr(y) : v) = S[](u)[S[](z)/{x}] ∪ S[](v)[S[](z)/{y}]
Sδ(case z of inl(x) : u | inr(y) : v) = Sδ(u)[S[](z)/{x}] ∪ Sδ(v)[S[](z)/{y}] ∪ Sδ(z)

Remark The above definition of the scope requires that cuts have been eliminated
from the term t in advance, since we cannot distinguish whether a λ-abstraction
results from a cut or from the introduction of an implication. This is not a
serious problem: if we evaluate a term to check its constructivity this can be
combined with a reduction. However we could also deal with terms containing
cuts, but we would have to identify another term with the application of the
cut-rule:

6.2. DISTINGUISHING TERMS BY CROLARD’S µ-SAFETY 53

G,H ⊢ C ext let x = v in u
BY cut i T x

G,H ⊢ T ext v
G, x : T,H ⊢ C ext u

Then definition 6.3 could be extended by:

• S[](let x = v in u) = S[](u)[S[](v)/x]
Sδ(let x = v in u) = Sδ(u)[S[](v)/x] ∪ Sδ(v)

As a consequence the inductive definition of a scope could also be used to dis-
tinguish between constructive and non-constructive proof terms in presence of
a cut. Still, the cut elimination procedure would need to be adapted to resolve
the new construct. This could be achieved by adding the new reduction rule:

let x = v in u β u[v/x]

It can be verified that this extension of the reduction relation would not break
the confluence.

Now we can define µ-safety for terms of λµPRL analogously to definition 6.2.

Definition 6.4. (µ-safety of λµPRL-terms) A term t of λµPRL is called safe in respect
to µ-contexts, or µ-safe for short, iff for any subterm of t of the form λx.u, x 6∈ Sδ(u) for
any free µ-variable δ.

Example 6.2. We return to the terms of example 6.1. It is easy to see that the
notion of µ-safety provides the desired means to distinguish intuitionistically valid from
non-constructive terms:

• t1 ≡ λz.µα.[α]inr(λx2.[α]inl(let 〈x1, y〉 = z in x1)): We have to consider the sub-
terms of the λ-abstractions λz and λx2. Then t1 is µ-safe, since z is declared out
of the scope of any µ-variable and so may occur in anywhere in the subterm of its
abstraction and x2 does not occur in the scope of α which is the only free µ-variable
in the subterm of its abstraction: x2 6∈ Sα([α]inl(let 〈x1, y〉 = z in x1))(= {z}) and
there is no free µ-variable in µα.[α]inr(λx2.[α]inl(let 〈x1, y〉 = z in x1)).

• t2 ≡ λz.µα.[α]inr(λx2.[α]inl(let 〈x1, y〉 = z in x2)): t2 is not µ-safe as x2 is con-
tained in the scope of α: Sα([α]inl(let 〈x1, y〉 = z in x2)) = {x2}.

• t3 ≡ λz.µα.let 〈x1, y〉 = z in [α]inr(λx2.[α]inl(x1)): t3 is µ-safe basically for the
same reason as t1. x2 6∈ Sα([α]inl(x1))(= {z}) and there is no free µ-variable in
µα.let 〈x1, y〉 = z in [α]inr(λx2.[α]inl(x1)).

If we have a look at our first analysis of non-constructive λµPRL-terms, it is also easy
to see that in both of the identified cases these are not µ-safe.

54 CHAPTER 6. ON CLASSICAL AND INTUITIONISTIC TERMS OF λµPRL

To verify, that µ-safe terms are indeed the ones which correspond to constructive
proofs, we now formulate a constructive restriction of λµPRL which we will refer to as
λµrPRL. As a starting point we again use an idea employed in [Cro02]:

Crolard formulates a calculus CND∨ by annotating the formulae of the conclusion
by their interdependencies with λ-variables. These sets of interdependencies are exactly
the sets from definition 6.3, i.e. S[] corresponds to the interdependencies of the active
conclusion and the interdependencies of each µ-variable δ naming a passive formula are
contained in Sδ. He then restricts this calculus to the constructive version CNDr

∨. To
ensure constructivity, he only allows the introduction of an implication if the λ-variable
of the abstraction does not occur in any of the scopes (sets of interdependencies) of the
passive formula. The reason why this method renders the calculus constructive is that it
keeps the implication local as the respective hypothesis cannot be used in the proof of any
of the passive formulae – otherwise the variable would occur in the scope of the µ-variable
associated with the respective formula.

Still, because our calculus works in top-down direction, we need some more notation
than in a bottom-up calculus, since the inductive definition of the scope (and equivalently
the interdependencies) means that the scopes of the µ-variables can like the proof term
only be computed when the proof is completed. As a consequence, at the point where the
implication introduction is applied, there is not enough information on the scopes available
to restrict the rule as Crolard does. However, we can implement this restriction by the use
of some more annotation. We simply have to add a sets of “forbidden” λ-variables and
alter the hypothesis rule such that these forbidden hypotheses may not be used. The
construction of these sets of forbidden variables can loosely be thought of as a recursive
check of µ-safety by stating for every term which λ-variables may not occur freely in its
subterms.

The sequents of λµrPRL are sequents of λµPRL with the following extensions: The
µ-variables and the conclusion are each annotated by a tuple of sets S|F where S is
a placeholder for the interdependencies and F contains the forbidden λ-variables. The
interdependencies of µ-variables and conclusion with λ-variables are computed from the
completed proof as is the proof term. The construction of the set of interdependencies in
correspondence to the rules applied obviously reflects and is consistent with definition 6.3.
This draws the connection between the calculus and the concept of µ-safety.

The rules lambdaI, functionE, andI, andE and orE require to express operations being
performed on the annotation of each µ-variable. Let

SµH = {Sδ | Sδ|Fδ : {{Dδ}} ∈ H}

FµH = {Fδ | Sδ|Fδ : {{Dδ}} ∈ H}

H(S1µG|F1µG) = ∀Sδ|Fδ : {{Dδ}} ∈ H,S1δ ∈ SµG,F1δ ∈ FµG.
(Sδ = S1δ ∧ Fδ = F1δ)

H(S1µG ∪ S2µG|Fµ) = ∀Sδ|Fδ : {{Dδ}} ∈ H,S1δ ∈ S1µG,S2δ ∈ S2µG,Fδ ∈ FµG.
(Sδ = S1δ ∪ S2δ ∧ Fδ = F1δ)

Uset. H(S1µG|F1µ ∪ U) = ∀Sδ|Fδ : {{Dδ}} ∈ H,S1δ ∈ S1µG,F1δ ∈ F1µG.

6.2. DISTINGUISHING TERMS BY CROLARD’S µ-SAFETY 55

(Sδ = S1δ ∧ Fδ = F1δ ∪ U)

U, V sets. H(S1µG[U/V]|F1µ) = ∀Sδ|Fδ : {{Dδ}} ∈ H,S1δ ∈ S1µG,F1δ ∈ F1µG.
(Sδ = S1δ[U/V] ∧ Fδ = F1δ)

U, V sets. H(S1µG|F1µ[U/V]) = ∀Sδ|Fδ : {{Dδ}} ∈ H,S1δ ∈ S1µG,F1δ ∈ F1µG.
(Sδ = S1δ ∧ Fδ = F1δ [U/V])

The rules of λµrPRL can be found in figure 6.2.

Proposition 6.5. A λµPRL-term corresponds to a proof in λµrPRL iff it is µ-safe.

Proof. ⇒) We have to show that for any λµrPRL-term t for any subterm of the form λx.u
holds: for any µ-variable δ occurring freely in u, x 6∈ Sδ.

We know that in λµrPRL the application of the rule lambdaIwould have added x to the
set of forbidden variables for all µ-variables. If any of the passive formulae associated with
these µ-variables was activated in the subsequent proof, this would result in a subterm in
which the respective µ-variable would occur freely. The restriction of the rule hypothesis
of λµrPRL would prevent the use of x as long as no other context formula is activated
and thus it cannot occur freely in the subterm.

⇐) If a λµPRL-term t is µ-safe, we know that for any subterm of the form λx.u
for any µ-variable δ occurring freely in u , x 6∈ Sδ. Therefore in none of the subproofs
corresponding to subterms of the form [δ]v of λx.u, x is used by the hypothesis-rule, since
in that case it would occur freely in v. Accordingly the restriction put on λµPRL terms
by the rules lambdaI and hypothesis are met and the term is also a term of λµrPRL.

It remains to show that λµrPRL is in fact correct and complete for full intuitionistic
propositional logic. E.g. this could be done by simulating its rules in Nuprl or a calculus
equivalent to its propositional subsystem.

Proposition 6.6. A proposition φ is provable in λµrPRL iff it is provable in the con-
structive logic of the Nuprl proof development system.

Proof. ⇒) We simulate the sequents ofλµrPRL such that the set of forbidden variables F
“splits” the sequent into several sequents which themselves can be seen as implications:
One sequent for each µ-variable and one for the active conclusion. These sequents are
connected by a constructive ∨ and the antecedent of each “subsequent” contains merely
the hypotheses which are not contained in F of the respective succedent. E.g. the sequent

{y} : {{Dα}}, x : A, y : B ⊢ {x} : C

of λµrPRL induces the split sequents (A ⊢ D) and (B ⊢ C) and is simulated by

⊢ (A ⊃ D) ∨ (B ⊃ C)

in Nuprl. Then we can proof all rules of λµrPRL as lemmas in Nuprl.
The interesting cases are the rules lambdaI, mu1, abort1 and hypothesis, although

the simulation renders them to very simple constructive theorems. The rest of the rules

56 CHAPTER 6. ON CLASSICAL AND INTUITIONISTIC TERMS OF λµPRL

G, x : T, H ⊢ {x}|F : T ext x
BY hypothesis $i

if x 6∈ F

(no subgoals)

H(SµH |FµH) ⊢ S \ {x}|F : A ⊃ B ext λx.b
BY lambdaI x

H (SµH |FµH ∪ {x}), x:A
⊢ S|F : B ext b

G(S1µG ∪ S2µG|FµH), pf:A ⊃ B,
H(S1µH ∪ S2µH |FµH)

⊢ S1 ∪ S2|F : C ext b[pf a/y]
BY functionE $i

G(S1µG|FµG), pf:A ⊃ B, H(S1µH |FµH)
⊢ S1|F : A ext a

G(S2µG|FµG), y:B, H(S2µH |FµH)
⊢ S2|F : C ext b

H ⊢ Sα|F : B ext µ α.b
BY mu1 α

H , Sα|F : {{Bα}} ⊢ S|F : ⊥ ext b

G ,S|Fα : {{Bα}} , H⊢ ∅|F : ⊥ ext [α] b
BY abort1 $i

G , H ⊢ S|Fα : B ext b

H ⊢ Sα|F : B ext µ α.b
BY mu2 α

H ⊢ S|F : ⊥ ext b

G ,Sα ∪ S|Fα : {{Bα}}, H ⊢ ∅|F : ⊥ ext [α] b
BY abort2 $i

G , Sα|Fα : {{Bα}}, H ⊢ S|Fα : B ext b

H(S1µH ∪ S2µH |FµH) ⊢ S1 ∪ S2|F : A ∧B
ext 〈a, b〉

BY andI

H(S1µH |FµH) ⊢ S1|F : A ext a
H(S2µH |FµH) ⊢ S2|F : B ext b

G, z:A ∧B, H(SµH |FµH) ⊢ S[{z}/{a, b}|F :C
ext let 〈a, b〉 = z in u

BY andE $i

G , a : A, b : B, H(SµH |FµH [{a, b}/{z}])
⊢ S|F [{a, b}/{z}] :C ext u

H ⊢ S|F : A ∨B ext inl(a)
BY orI1

H ⊢ S|F : A ext a

H ⊢ S|F : A ∧B ext inr(b)
BY orI2

H ⊢ S|F : B ext b

G(S1µG[{z}/{a}]∪ S2µG[{z}/{b}]|FµG), z:A ∨B, H(S1µH [{z}/{a}]∪ S2µH [{z}/{b}]|FµG)
⊢ S1[{z}/{a}]∪ S2[{z}/{b}]|F :C ext case z of inl(a) : u |

inr(b) : v
BY orE $i

G(S1µG|FµG) , a : A, H(S1µH |FµH [{a}/{z}]) ⊢ S1|F [{a}/{z}] :C ext u
G(S2µG|FµG) , b : B, H(S2µH |FµH [{b}/{z}]) ⊢ S2|F [{b}/{z}] :C ext v

Figure 6.1: The inference rules of λµrPRL

6.2. DISTINGUISHING TERMS BY CROLARD’S µ-SAFETY 57

do not alter the F-sets of the sequent (apart from replacing the variable associated with
an eliminated conjunction or disjunction by the new variable-names of the conjuncts or
disjuncts) and are obviously constructive.

We omit detailed proofs in Nuprl or another constructive logic since they are trivial
and in no way illuminating.

To describe a set of hypotheses without the hypotheses forbidden by F we write H \F .
The formulation of the rule lemmas may ignore the static part of the rule, i.e. the part of
the µ-contexts which are not altered by an application of the rule.

• hypothesis: Is simulated by simply ⊢ A ⊃ A since the condition x 6∈ F induces
a sequent which does contain A as hypothesis. We could also write the lemma as
disjunction between all sequents induced by the µ-variables and their accompanying
sets of forbidden λ-variables. But as they are not used in the rule we can omit them
(If there were a disjunction, the proof would require to choose the disjunct A ⊃ A
anyway.) Thus the rule can be proven by Nuprl’s rule hypothesis.

• lambdaI: Simulated by ⊢ (((H ∧ A) ⊃ B) ∨ (H ⊃ ∆)) ⊃ ((H ⊃ (A ⊃ B)) ∨ (H ⊃
∆)) where ∆ represents the µ-formulae of the sequent and H ⊃ ∆ represents a
disjunction of implications, such that for every µ-variable δ of Type D with the set
of forbidden λ-variables Fδ the respective implication is H \ Fδ ⊃ D. A does not
occur in these implications, since it is added to the forbidden set for each µ-variable.
As a consequence the part H ⊃ ∆ can be omitted in the rule-lemma. However,
⊢ ((H ∧ A) ⊃ B) ⊃ (H ⊃ (A ⊃ B)) is exactly the usual introduction rule for an
implication.

• mu1: H ′ ≡ H \Fα. Then the rule is simulated by ⊢ ((H ′ ⊃ ⊥)∨ (H ′ ⊃ B)) ⊃ (H ′ ⊃
B) which is obviously constructively valid.

• abort1: H ′ ≡ (G ∪H) \ Fα and H ′′ ≡ (G ∪H) \ F . Then the rule is simulated by
⊢ (H ′ ⊃ B) ⊃ (H ′ ⊃ B) ∨ (H ′′ ⊃ ⊥) which is also obviously constructively valid.

⇐) The propositional inference rules of Nuprl’s logic (or an equivalent constructive
logic) are very obviously provable in λµrPRL as there is no need for context formulae and
thus the set F trivially remains empty throughout the proofs of the rules.

Now we can use the concept of µ-safety for our original purpose. Evaluating a term t
of λµPRL to decide its constructivity consists of two steps:

1. computing the scopes of the free µ-variables present in t and

2. checking for every subterm of the form λx.u that x is not in the scope of any free
µ-variable occurring in u.

Remark We could also verify that the set of µ-safe λµPRL-terms is closed under
reduction.

The last question remaining is whether we can safely use Murthy’s evaluation to com-
pute the constructive λ-term from a constructive λµPRL-term.

58 CHAPTER 6. ON CLASSICAL AND INTUITIONISTIC TERMS OF λµPRL

6.3 Constructive Content of λµPRL-terms

It might be desirable to recover the equivalent λ-term of a constructive λµ-term. Under
this aspect, it seems sensible to consider whether we can use Murthy’s evaluation [Mur90]
for this purpose. As described above, we still have to ensure, that the elimination rules for
∨ and ∧ are applied directly after the ⊃-introduction of the respective hypothesis. But
under this prerequisite, we can again use the notion of µ-safe terms: We can show for
the set of µ-safe λµPRL-terms, that reducing them by a combination of ǫ-reduction and a
deterministic evaluation strategy, the resulting term does not contain any free, undefined
variables, i.e. the resulting term is constructive.

Being interested in the “pure” (as opposed to λµ) λ-term, the straightforward ap-
proach is to start with the outermost occurrence of µ and to evaluate each µ-abstraction
contained in the term directly followed by evaluating the occurrences of the abort-operator
A produced by the evaluation of µ. Like Murthy, we use a weak-head-reduction and due
to the non-determinism induced by the two principal subterms of the pair-construct, we
have to fix an evaluation strategy. This means either left-to-right or right-to-left evalua-
tion order. However, with µ-safe terms it does not matter which subterm is chosen first
(the other subterm possibly being thrown away by A), since both variants must result in
a constructive term. Still, this hints a pathological case which we will briefly address in
the next section.

Therefore let the new evaluation work as follows:

Definition 6.7. (c-evaluation) Given a λµPRL-term t:

1. Choose the outermost µ-abstraction contained in t and evaluate it by the rule
C[µα.u] ǫ u[A(C[v])/[α]v].

2. Evaluate every occurrence of A in the resulting term left-to-right by C[A(u)] ǫ u.

3. Repeat these two steps as long as there are occurrences of µ in the resulting term.

We denote this adapted ǫ-reduction as c-evaluation and write t c t
′ if t′ is obtained

by c-evaluating t..

Proposition 6.8. Applying c-evaluation to a µ-safe λµPRL-term results in a closed term,
i.e. for t, t′ terms of λµPRL, if t is µ-safe and t c t

′ then t′ contains no free variables.

Proof. We know that t is µ-safe. Following from the definition, every subterm of t is µ-safe
as well. When we apply c-reduction to t, it is split into a context C[•] with a hole and a
term of the form µα.u. We have two cases:

1. α does not occur freely in u: Then C[µα.u] c u. Then u is µ-safe because t is
µ-safe and u is a subterm of t.

2. α occurs freely in u: C[µα.u] is first reduced to u[A(C[s])/[α]s], then – by evaluating
each occurrence of A – to the leftmost, innermost C[v]. Since t is µ-safe, we know
that for any λ-variable x there are three cases:

(a) v has a subterm λx.w by which any x occurring in v is bound. Then x is also
bound in t′, since v is not changed in the evaluation (for it is the innermost
occurrence of a subterm [α]s).

6.4. NON-µ-SAFE TERMS WITH CONSTRUCTIVE CONTENT 59

(b) v does not contain x then it does not occur in in v after the evaluation either.

(c) x is bound in C[•] where α is not free. Since c-evaluation replaces every subterm
of the form [α]w by A(C[w]), t′ is one of these terms C[w] and therefore still
contains a subterm λx.s where s is a superterm of w, so that every occurrence
of x in w is bound. Occurrences of x in C[•] also (obviously) remain bound,
since the context is not altered but merely moved during c-evaluation.

6.4 Non-µ-safe Terms with Constructive Content

In section 6.1 we briefly mentioned that a deterministic evaluation in presence of the non-
determinism intrinsic to classical logic might “loose” constructive content. To conclude
this chapter, we would like to elaborate this point, as the terms which are concerned are
not µ-safe and as such have not been considered up to now.

The first question is, in which case a term may evaluate to a constructive term or a
non-constructive term depending on the evaluation order in which ǫ-reduction is applied.
For λµPRL-terms, this situation might occur because the pair-construct contains two
principal subterms.

If we have some term context with a µ-abstraction C[µα.t] and a pair 〈u, v〉 as sub-
term of t where u contains a subterm [α]u′ and v a subterm [α]v′, it depends on the
evaluation order whether the resulting term is C[u′] or C[v′] (provided there are no other
µ-abstractions which are evaluated first and there are no other free occurrences of α). Now
C[u′] might be constructive whereas C[v′] is not.

Let us take a look at an admittedly highly artificial example.

Example 6.3. Consider the proposition φ ≡ A ⊃ ((A∨B)∧ ((A∨¬A)∨B)). A witness
of this proposition is the term

t ≡ λx.µα.[α] 〈inr(µβ.[α] 〈inl(x), inl(inl(x))〉 , inr(µδ.[α] 〈inl(x), inl(lem)〉〉

where lem is a proof term of the law of the excluded middle. We omit the complete proof
since it is rather lengthy and uninteresting. As we know, the term lem is not µ-safe, and
consequently t is not µ-safe either. However, if we evaluate t by c-evaluation, we obtain
the term λx. 〈inl(x), inl(inl(x))〉 which corresponds to an intuitionistic proof of φ. On the
contrary, if the subterms of the crucial pair in t had been reverted, then the result would
have been a non-closed term.

Obviously, if we look at the term tree of such terms and transfer the concept of µ-safety
to such trees, they contain partial trees which are µ-safe. Accordingly, we could define a
notion of partial µ-safety.

Definition 6.9. (partial µ-safety) Partial µ-safety is defined recursively as follows:

• A λµPRL term t which does not contain any subterm of the form 〈p1, p2〉 is partially
µ-safe, if it is µ-safe.

• A λµPRL term t ≡ C[〈p1, p2〉] where C[•] does not contain any pair-constructors, is
partially µ-safe, if it is µ-safe or either C[p1] or C[p2] is partially µ-safe.

60 CHAPTER 6. ON CLASSICAL AND INTUITIONISTIC TERMS OF λµPRL

We conjecture, that every partially µ-safe term can be evaluated to a constructive
term.

In this chapter, we have shown, that we cannot only distinguish between constructive
and non-constructive λµPRL-terms by identifying the use of abort-rules which would
exclude many terms which in fact do have constructive content. Based on a more detailed
analysis of the term structure, the resulting notions of µ-safe and partially µ-safe terms can
easily be used to implement a procedure which identifies terms with constructive content.

Remark Still, we certainly cannot conclude from a term which evaluates as non-
constructive, that there is no constructive proof of the proposition! The result
simply states, that the proof in question relies on a classical argument.

Chapter 7

λµPRL and PROGK

This chapter is concerned with the relation between λµPRL and Murthy’s system PROGK

[Mur91b].

Like λµPRL, PROGK has been developed in the context of the Nuprl Proof devel-
opment system and provides an extension to classical logic. Moreover, Murthy’s results
together with the work of Griffin [Gri90] were pioneering in the research of computational
content of classical proofs. Parigot’s original λµ-calculus [Par92] was also inspired by Grif-
fin and Murthy. Therefore it is interesting to look into the exact relation between λµPRL
and PROGK .

If we both restrict and extend λµPRL in a convenient way, it is possible to reproduce
Murthy’s results as to the extraction of computational content.

For a short introduction to PROGK , see chapter 2.3.

7.1 λµPRL and PROGK

As mentioned above, λµPRL and PROGK are set in a similar context. Consequently,
there is some common ground between the two:

• both use logical rules of Nuprl

• both are top-down refinement calculi

• both are extended to classical logic by an additional rule

• application of the classical rule is signalled in the proof term by a special operator

• both are minimal logics, i.e. there is no explicit elimination rule for ⊥.

Still, there are differences as well.

The intention behind PROGK is the extraction of constructive content from classical
proofs. It is a calculus for Peano Arithmetic and therefore contains rules for universal and
existential quantification and arithmetical expressions. At the same time N is the only
data type. Because of problems with the axiom of choice (which will be briefly addressed
in chapter 8) theorems are restricted to the decidable fragment Σ0

1 (respectively Π0
2). In

this fragment classical logic is conservative over intuitionistic logic.

61

62 CHAPTER 7. λµPRL AND PROGK

λµPRL is a calculus for propositional logic only, but without restrictions concerning
data types or theorems. This reflects the idea behind λµPRL to let the user decide
whether he wants to employ classical logic or not (i.e. needs constructive content or not).
Accordingly, proofs in λµPRL do not necessarily contain constructive content. Still, to
some extend it is possible to distinguish between constructive and non-constructive proofs
(as described in chapter 6).

Murthy extends the intuitionistic calculus PROGJ to its classical version PROGK by
the double negation elimination rule. The associated operator is Felleisen’s C [FFKD87]
and “classical” hypotheses are not distinguished from “constructive” ones as λ is the only
binding operator. When reducing C, another new operator is used: The abort-operator A
(also due to Felleisen).

λµPRL is classical because of the abort-rules and “classical” hypotheses are syntac-
tically different from “constructive” ones. Their associated variables are bound by the
additional µ-operator and their usage is signalled by the [−]-operator.

For λµPRL we settled on a confluent call-by-name βµ-reduction. Reduction in PROGK

is defined in terms of evaluation contexts. The one-step-evaluation rules for the operators
C and A are adapted from Felleisen’s λC-calculus. Thus C works like a control operator
in a not purely functional programming language. This kind of evaluation corresponds to
the symmetric reduction rule of the λµµ′-calculus described in chapter 5. Accordingly the
inherent non-determinism causes the well-known problem with confluence. To solve this
problem, Murthy defines a deterministic evaluation strategy. So, if a term contains two
different values, the evaluation strategy determines which one is “chosen”.

Since we did not use the symmetric reduction rule for λµPRL, it is quite obvious that
reduction will not be preserved in a translation between the two systems. However, in
section 7.3 we will consider how we could adapt λµPRL for this purpose.

Apart from the differences, we can show a strong relation between λµPRL and PROGK .
This can be done in a very similar way to how de Groote [dG94b] relates a first order ver-
sion of Parigot’s λµ to a subtheory of Felleisen’s syntactic theory of sequential control (for
short: λC) [FFKD87, FH92]. So the next section will be concerned with the respective
translations between λµPRL and PROGK .

7.2 Translation between λµPRL and PROGK

As mentioned before, λµPRL and PROGK do not cover the same range of formulae. Since
an extension of λµPRL to arithmetic and first order logic is desirable, we will define a
variant λµcPRL in this section. This will extend the logical language of λµPRL to include
the arithmetical and first-order expressions of PROGK as well as the accompanying rules.
To achieve further comparability with PROGK , we will restrict λµcPRL to decidable
formulae (i.e. Σ0

1 and Π0
2 sentences) and to the type N. As a result λµcPRL is a calculus

for Peano Arithmetic, too. The terms and additional rules of λµcPRL can be found in
figure 7.1.

Remark Note that we also add the abort-operator A to the term language of
λµcPRL. This necessity will become clearer in the context of reduction.

For soundness reasons, it is also required to include a call-by-value λ-abstraction
for the arithmetic rules having “axiom” as their extract term. This guarantees

7.2. TRANSLATION BETWEEN λµPRL AND PROGK 63

that the subterm does not cause any control side-effects (otherwise the context
might be discarded during evaluation, so that the result is not “axiom”).

Another property of PROGK is that sometimes integer expressions are distin-
guished from propositions. This is achieved by annotating them as −D.

Since our focus in this chapter is on the relation of λµcPRL and PROGK , we
will not go into further detail on the non-propositional part of the two calculi.
After all the additional rules and terms of λµcPRL (in comparison to λµPRL)
are identical to those of PROGK . The crucial differences between the two calculi
arise from the “classical” constructs µ and C. Therefore it is sufficient to merely
consider the propositional fragments for our current purpose.

On this basis we can define translations from λµcPRL-terms into the terms of PROGK

and reversely. This can be done quite straightforwardly, since the only difference between
λµcPRL and PROGK are the terms µ and [−] on the one hand and C on the other and
their respective typing rules. Since we adapted the non-propositional rules of PROGK

to λµcPRL, these are identical anyway. Consequently, we will be content to take a look
at the propositional fragment. The proceeding is basically an extension of de Groote’s in
[dG94b].

We start with defining a C-transform of a λµcPRL-term (for the reasons stated above,
we omit the non-propositional fragment).

Definition 7.1. The C-transform JtKC of a λµcPRL-term t is defined inductively by:

1. JxKC = x;

2. Jλx.tKC = λx.JtKC;

3. J(s t)KC = (JsKC JtKC);

4. J〈s, t〉KC =
〈

JsKC, JtKC
〉

;

5. Jlet 〈x, y〉 = z in uKC = spread(JzKC ;x, z.JuKC);

6. Jinl(t)KC = inl(JtKC);

7. Jinr(t)KC = inr(JtKC);

8. Jcase z of inl(x) : u | inr(y) : vKC = decide(JzKC ;x.JuKC ; y.JvKC);

9. Jµα.tKC = (C λα.JtKC);

10. J[α]tKC = (α JtKC);

11. J(A t)KC = (A JtKC);

Based on this definition we can show the following:

Proposition 7.2. If t is a λµcPRL-term and A is a simple type such that ⊢µ A ext t
then ⊢C A ext JtKC.

64 CHAPTER 7. λµPRL AND PROGK

λµcPRL-terms:

t ::== x | λx.t | (t t) | µα.t | [α] t | 〈t, t〉 | let 〈x, y〉 = z in t|
inl(t) | inr(t) | case t of in1(x) : t or in2(x) : t
A t | λvx.t | (t t)v | axiom | 0 | ind(t; t;x, y.t) | succ(t) | t+ t | t× t

The rules for ⊃,∧ and ∨ the rule hypothesis are the same as in λµPRL.

Arithmetical axioms

n : N,m : N, u : n = m ⊢ m = n ext (λvu′.axiom u)v
BY symmetry $i

a : N, b : N, c : N, u : a = b, v : b = c ⊢ a = c ext ((λvu′, v′.axiom u)v v)v
BY transitivity $i

n : N, u : succ(n) = 0 ⊢ ⊥ ext (λvu′.axiom u)v
BY succMonotonicity $i

x : N, y : N, u : xD = yD ⊢ succ(xD) = succ(yD) ext (λvu′.axiom u)v
BY succInjectivity $i

n : N,m : N, u : succ(xD) = succ(yD) ⊢ xD = yD ext (λvu′.axiom u)v
BY succSurjectivity $i

Rules for arithmetic and quantification

nD : N ⊢ T ext ind(nD;B; i, nD.F (n− 1)D(i))
BY induction $i

nD : N ⊢ T [0D/nD] ext B
nD : N ⊢ ∀mD : N.T [mD/nD] ⊃ T [succ(m)D/nD] ext F

H ⊢ ∀nD : N.T ext λxD.b
BY allI x

H, xD : N ⊢ T [xD/nD] ext b

G, pf : ∀nD : N.T,H ⊢ C ext b[pf tD/y]
BY allE $i y

G, xD : N,H ⊢ tD ∈ N ext axiom
G, y : T [tD/nD],H ⊢ C ext b

H ⊢ ∃nD : N.T ext < tD, b >
BY exI tD

H ⊢ tD ∈ N ext axiom
H ⊢ T [tD/nD] ext b

G, z : ∃nD : N.T,H ⊢ C ext let < xD, b >
= z in u

BY exE $i x b

G, xd : N, b : T [xD/nD],H[xD/nD]
⊢ C[xD/nD] ext u

Figure 7.1: The calculus λµcPRL for Peano Arithmetic

7.2. TRANSLATION BETWEEN λµPRL AND PROGK 65

Proof. If we interpret every sequent

Γ ⊢ A ext t

of λµcPRL as
Γ¬ ⊢ A ext t

where Γ¬ arises from Γ by replacing every µ-declaration of the form {{Bβ}} by a λ-
declaration β : ¬B (this is possible since the λ- and µ-variables come from the same
alphabet), we are able to simulate the rules mu1, mu2, abort1 and abort2 in PROGK :

Γ¬ ⊢ A ext (C λα.t)
by double negation elimination
| Γ¬ ⊢ ¬¬A ext λα.t

by function-intro
| Γ¬, α : ¬A ⊢ ⊥ ext t

Γ¬, α : ¬A ⊢ ⊥ ext (α t)1

by function-elim
| Γ¬ ⊢ A ext t
| Γ¬, α : ¬A, z : ⊥ ⊢ ⊥ ext z

by hypothesis

The extract terms of the rule-simulations match the translation given above.
Apart from the mu- and abort- rules, the rules of PROGK and λµcPRL are almost

identical for their respective logical connectives (but for syntactical differences). Conse-
quently the simulation is straightforward.

The inverse translation is based on the following proof of the double negation elimina-
tion rule in λµcPRL:

⊢ ¬¬A ⊃ A ext λx.µα.(x λy.[α]y)
by lambdaI
| ¬¬A ⊢ A ext µα.(x λy.[α]y)

by mu1 α
| x : ¬¬A, {{Aα}} ⊢ ⊥ ext (x λy.[α]y)

by functionE 1
| | {{Aα}} ⊢ ¬A ext λy.[α]y
| by lambdaI
| | y : A, {{Aα}} ⊢ ⊥ ext [α]y
| by abort2 2
| | y : A, {{Aα}} ⊢ A ext y
| by hypothesis
| z : ⊥, {{Aα}} ⊢ ⊥ ext z

by hypothesis

Applying the extract term of the proof above to the translated subterm t now yields
the µ-transform of a PROGK -term (C t). Now we can proceed to give the translation
from PROGK to λµcPRL.

1which is the result of applying the substitution in z[(α t)/z]

66 CHAPTER 7. λµPRL AND PROGK

Definition 7.3. The µ-transform JtKµ of a PROGK- term t is defined inductively by:

1. JxKµ = x;

2. Jλx.tKµ = λx.JtKµ;

3. J(s t)Kµ = (JsKµ JtKµ);

4. J〈s, t〉Kµ = 〈JsKµ, JtKµ〉;

5. Jlet 〈x, y〉 = z in uKµ = spread(JzKµ;x, z.JuKµ);

6. Jinl(t)Kµ = inl(JtKµ);

7. Jinr(t)Kµ = inr(JtKµ);

8. Jcase z of inl(x) : u | inr(y) : vKµ = decide(JzKµ;x.JuKµ; y.JvKµ);

9. J(C t)Kµ = µα.(JtKµ λy.[α]y);

10. J(A t)Kµ = (A JtKµ);

Based on this definition we can show the following:

Proposition 7.4. If t is a PROGK-term and A is a simple type such that ⊢C A ext t
then ⊢µ A ext JtKµ.

Proof. This can be shown by an induction on the derivation of ⊢C A ext t.

Remark A translation of the operator A is not necessary for the translation of
derivations in the two calculi (since it may not occur in a derivation). However,
it becomes interesting when we take a look at reduction.

In this section we have established translations between and PROGK and λµcPRL
which preserve typing. The next section will concern the question whether and how the
reduction relations of the two calculi correspond.

7.3 Preservation of Reduction

When relating two calculi and giving a translation, usually the question of reduction
preservation arises. If we compare the reduction rules of PROGK to the βµ-reduction
defined in chapter 5, it is rather obvious, that reduction cannot be preserved in any
direction. In fact even the notion is different. Reduction in PROGK is an evaluation
depending on evaluation contexts and a deterministic strategy - as opposed to a reduction
where the rules can applied to any redex.

However, the usual intuitionistic β-reduction-rules are the same in both λµPRL and
PROGK . The difference is caused by the rather restricted reduction of the µ-operator
in λµcPRL. As is known, this restriction is necessary for the confluence of the reduction
relation. In PROGK such a restriction is futile, since Murthy defines a deterministic
reduction strategy. While a term may contain more than one value, the evaluation strategy
will always return the same one.

7.3. PRESERVATION OF REDUCTION 67

So there is also a practical reason to compare the respective reduction relations: After
all the ability to extract values from λµcPRL-terms might be useful. So we would like to
consider another notion of reduction for λµcPRL. Instead of the µ-reduction-rules defined
in chapter 5, we will define two µc-rules.

The new rules are based on those for C and A in PROGK . We denote Murthy’s
evaluation as c-reduction. It is defined in the using a term context E[−] which (as usual)
denotes an arbitrary term of PROGK with a hole:

Definition 7.5. (c-reduction)
E[(C t)] c (t λx.(A E[x]))
E[(A t)] c t

Now we define µc-reduction in a similar way. The adaption is induced by the translation
of the respective terms from PROGK to λµcPRL. This is why we originally added the
A-operator to the term-language of λµcPRL.

Definition 7.6. (µc-reduction)
E[µα.t] µc

t[A(E[u])/[α]u]
E[A(t)] µc

t

Because of the known confluence-issues, the above “reduction” requires an evaluation
strategy (the reduction rules may not be applied independently of their context). Thus
we also adopt Murthy’s deterministic evaluation strategy which is defined in chapter 2.3.
This makes sure the rules are applied in the same order when we compare the evaluation
in the two calculi.

Now we can establish, that the translations defined in the previous section do preserve
the results of evaluation (although not necessarily in the same number of reduction steps).

We denote the evaluation of λµcPRL that combines Murthy’s reduction strategy with
β- and µc-reduction by evµ→ and the evaluation of PROGK by evc→.

Proposition 7.7. Let t1 and t2 be λµcPRL-terms. If t1 evµ→ t2 then Jt1K
C evc→ Jt2K

C.

Proof. This result is obvious for the β-rules since the differences in these cases are
purely syntactical.

The interesting cases concern the structural rules.

Instead of presenting a case split on every possible evaluation context, we sketch the
idea by writing EC [−] for the C -transform of E[−]. This is possible, since the eval-
uation strategy ensures, that E[−] does not bind any variables in its subexpression.

To ensure the correctness of the equations below we merely require that α 6∈ FV (EC [−]).
We can safely assume this, since α is bound in µα.s.

JE[µα.s]KC = EC [(C λα.JsKC)]

EC [(C λα.JsKC)] c (λα.JsKC)(λx.(A EC [x]))
 c JsKC[(λx.(A EC [x])/α]
= JsKC[(A EC [w])/(α w)]

E[µα.s] µc
s[(A E[u])/[α]u]

68 CHAPTER 7. λµPRL AND PROGK

Now we need to show that

Js[A(E[u])/[α]u]KC = JsKC[(A EC [w])/(α w)]

This can be done by structural induction on the definition of the structural substi-
tution. The only non-trivial case is s ≡ [α]r:

J([α]r)[A(E[u])/[α]u]KC = J(A E[r][A(E[u])/[α]u])KC

= (A JE[r][A(E[u])/[α]u]KC)
∗α 6∈ FV (EC [−])

=
∗

(A EC [Jr[A(E[u])/[α]u]KC])

J[α]rKC [(A EC [w])/(α w)] = (α JrKC)[(A EC [w])/(α w)]
= (A EC [JrKC])[(A EC [w])/(α w)])

By the induction hypothesis Jr[A(E[u])/[α]u]KC = JrKC[(A EC [w])/(α w)] and there-
fore (A Jr[A(E[u])/[α]u]KC) = (A JrKC[(A EC [w])/(α w)]).

Proposition 7.8. Let t1 and t2 be PROGK-terms. If t1 evc→ t2 then Jt1K
µ evµ→ Jt2K

µ.

Proof. The proceeding is similar to the proof of proposition 7.7, but shorter (since we do
not have to deal with substitution). Again, the result is obvious for the β-rules and the
non-trivial case concerns the structural reduction. Therefore we once more keep to the
essential cases. We also refrain from doing a case split on the different evaluation contexts
but refer to the µ-transform of JE[−]Kµ as Eµ[−].

JE[(C t)]Kµ = Eµ[µα.(JtKµ λx.[α]x)]
 µc

(JtKµ λx.(A Eµ[x])])

E[(C t)] c (t (λx.(A E[x])))

It remains to show that

J(t λx.(A E[x]))Kµ = (JtKµ λx.(A Eµ[x])])

J(t λx.(A E[x]))Kµ = (JtKµ Jλx.(A E[x])Kµ)
= (JtKµ λx.(A JE[x]Kµ))
= (JtKµ λx.(A Eµ[x]))

The reduction rules induce an equality relation for each of the two calculi (see chapter
2.5). Using this equality relation on terms, we can also show that the two translations are
inverses of each other.

Proposition 7.9. Let s be a closed λµcPRL-term and t be a closed term of PROGK .
Then the respective C- and µ-transforms are such that:

1. JJsKCKµ =µ s

7.3. PRESERVATION OF REDUCTION 69

2. JJtKµKC =c t

Proof. The proofs are done by structural inductions on the respective terms. The non-
trivial cases arise from the µ- and C-Operators. We will be content to present only these
two:

1. We prove the fact that for any λµcPRL-term JJsKCKµ =µ s∗ where s∗ is obtained
from s by replacing all terms of the form [α]u by (α u), i.e. t∗ = t[(α u)/[α]u].

The induction hypothesis is JJsKCKµ =µ s
∗.

JJµα.sKCKµ = J(C λα.JsKC)K
= µβ.(J((λα.JsKC)Kµ (λy.[β]y))
= µβ.(λα.JJsKCKµ (λy.[β]y))

by induction hypothesis

=µ µβ.(λα.s
∗(λy.[β]y))

 µc
(λα.s∗ (λy.(A y)))

 β s
∗[λy.(A y)/α]

 β s
∗[(A w)/(α w)]

= s[(A w)/[α]w)]

µα.s c s[(A w)/[α]w)]

and therefore JJµα.sKCKµ =µ µα.s.

Remark To prove that JJsKCKµ =µ s
∗ for any λµcPRL-term is sufficient, since

for closed terms the double-translated term (marked by the box) has the
same behaviour in any application-context as the original term. This can
easily be verified.

2. The induction hypothesis is JJtKµKC =c t.

JJ(C t)KµKC = Jµα.(JtKµ λy.[α]y)KC

= (Cλα.J(JtKµ λy.[α]y)KC

= (C λα.(JJtKµKC Jλy.[α]yKC)
by induction hypothesis

=c (C λα.(t λy.J[α]yKC))
= (C λα.(t λy.(α JyKC)))
= (C λα.(t λy.(α y)))
 c (λα.(t λy.(α y)) (λx.(A x)))
 β (t λy.((λx.(A x)) y)))
 β (t λy.(A y))

(C t) c (t λy.(A y))

and therefore JJ(C t)KµKC =c t.

70 CHAPTER 7. λµPRL AND PROGK

In conclusion we can establish that λµcPRLand PROGK are isomorphic.

Proposition 7.10. If t1 and t2 are closed terms of λµcPRL and s1 and s2 are terms of
PROGK , then

1. s1 =µ s2 iff Js1K
C =c Js2K

C

2. t1 =c t2 iff Jt1K
µ =µ Jt2K

µ

Proof. This result can be derived from the propositions 7.7, 7.8 and 7.9.

7.4 Example Proofs

In this section we will present two example proofs. These were originally given by Murthy
in [Mur91b]. Here, we will reproduce them in λµcPRL:

• The proof goal in the first example is a decidable Σ0
1 proposition. Its proof illustrates

the inherent non-determinism of classical proofs: the corresponding proof term can
be evaluated to two different values, depending on the evaluation strategy.

• The second example concerns the probable unsoundness caused by the combination
of the dependent product type, arithmetic and classical reasoning. As in this case an
undecidable proposition is proven, the resulting proof terms returns “fake” evidence.

Example 7.1 shows the proof of the first proposition in λµcPRL. The resulting term

µα.[α] 〈102, 〈µβ.[α] 〈2, π2〉 , µγ.[α] 〈3, π3〉〉〉

contains two possible values, but does not prove the incorrect evidence supplied at first
(102). Which value is returned by an evaluation procedure depends on the evaluation
strategy: Evaluating the term from left to right results in 2, from right to left in 3. This
is the reason why either a deterministic evaluator is required or else confluence is lost. π2

and π3 denote the respective proofs that for 2 and 3 the proposition really holds.
The second example is a classical proof without constructive content. We assume that

f : N → {0, 1} is a parameter. Then the proof goal ∃n : N.∀m : N.f(n) ≤ f(m) expresses
the fact that every boolean function will at some point reach a minimum.

If we had a constructive proof we could extract a program for this fact. Now this is
intuitively impossible: Consider on the one hand the constant function f : n 7→ 1 and on
the other hand a function which constantly returns 1 until it attains its minimum 0 at
the input of n1. The program would not necessarily be able to distinguish between these
two functions. The reason is, that for any predetermined finite number N of computation
steps, we might have n1 > N . Thus, in case of the second function, the program might
return after N steps with a wrong maximum of 1.

The classical proof of the sentence can be found in example 7.2.

µα.[α]
〈

0, λm.if f(0) ≤ f(m) then axiom else µβ.[α]
〈

m,λm′.axiom
〉〉

is the corresponding proof term.

7.4. EXAMPLE PROOFS 71

Example 7.1. φ ≡ ∃n : N.prime(n) ∧ n < 100.

⊢ φ ext µα.[α] 〈102, 〈µβ.[α] 〈2, π2〉 , µγ.[α] 〈3, π3〉〉〉
by mu1 α
| {{φα}} ⊢ ⊥ ext [α] 〈102, 〈µβ.[α] 〈2, π2〉 , µγ.[α] 〈3, π3〉〉〉

by abort2 α
| {{φα}} ⊢ φ ext 〈102, 〈µβ.[α] 〈2, π2〉 , µγ.[α] 〈3, π3〉〉〉

by exI 102
| {{φα}} ⊢ prime(102) ∧ 102 < 100 ext 〈µβ.[α] 〈2, π2〉 , µγ.[α] 〈3, π3〉〉

by andI
| {{φα}} ⊢ prime(102) ext µβ.[α] 〈2, π2〉

by mu1 β
| | {{φα}}, {{prime(102)β}} ⊢ ⊥ ext [α] 〈2, π2〉

by abort2 α
| | {{φα}}, {{prime(102)β}} ⊢ φ ext 〈2, π2〉

by exI 2
| | . . . ext π2

by . . .
| {{φα}} ⊢ 102 < 100 ext µγ.[α] 〈3, π3〉

by mu1 γ
| {{φα}}, {{102 < 100γ}} ⊢ ⊥ ext [α] 〈3, π3〉

by abort2 α
| {{φα}}, {{102 < 100γ}} ⊢ φ ext 〈3, π3〉

by exI 3
| . . . ext π3

by . . .

Example 7.2. ψ ≡ ∃n : N.∀m : N.f(n) ≤ f(m)
ξ ≡ f(0) ≤ f(m)

⊢ ψ ext µα.[α] 〈0, λm.if . . . 〉
by mu1 α
| {{ψα}} ⊢ ⊥ ext [α] 〈0, λm.if . . . 〉

by abort2 α
| {{ψα}} ⊢ ψ ext 〈0, λm.if . . . 〉

by exI 0
| {{ψα}} ⊢ ∀m : N.f(0) ≤ f(m) ext λm.if f(0) ≤ f(m) . . .

by allI m
| m : N, {{ψα}} ⊢ f(0) ≤ f(m) ext if f(0) ≤ f(m) then axiom

by cases on f(0) ≤ f(m) else µβ.[α] 〈m,λm′.axiom〉
| m : N, f(0) ≤ f(m), {{ψα}} ⊢ f(0) ≤ f(m) ext axiom

by hypothesis
| m : N, f(m) < f(0), {{ψα}} ⊢ f(0) ≤ f(m) ext µβ.[α] 〈m,λm′.axiom〉

by mu2 β
| m : N, f(m) < f(0), {{f(0) ≤ f(m)β}}, {{ψα}} ⊢ ⊥ ext [α] 〈m,λm′.axiom〉

by abort2 α
| m : N, f(m) < f(0), {{ξβ}}, {{ψα}} ⊢ ψ ext 〈m,λm′.axiom〉

by exI m
| m : N, f(m) < f(0), {{ξβ}}, {{ψα}} ⊢ ∀m′ : N.f(m) ≤ f(m′) ext λm′.axiom

by allI m′

| m : N, f(m) < f(0), {{ξβ}}, {{ψα}},m′ : N ⊢ f(m) ≤ f(m′) ext axiom
by . . .
| . . .

ext µα.[α] 〈0, λm.if f(0) ≤ f(m) then axiom else µβ.[α] 〈m,λm′.axiom〉〉

72 CHAPTER 7. λµPRL AND PROGK

Obviously, the evidence extracted from the proof is no real evidence. Instead, we obtain
a program which at first arbitrarily chooses 0 as n. When given m, it checks whether the
condition f(0) ≤ f(m) is fulfilled. Now it either reports success (if the statement was
true), otherwise it assumes f(m) < f(0). In this case f(m) must be 0. So the program
jumps back to before 0 was chosen and uses m instead.

Murthy summarizes the behaviour of this program as follows:

“..., our program does not really provide evidence for the truth of the
proposition it purports to be a proof of, but rather, provides a program which,
given a counterexample, will “throw” back to a place in the computation where
it can change the “answer” to disqualify the counterexample.”[Mur91b]

However, this does not pose a problem for the soundness of the calculus: The exam-
ple is out of the original range of λµcPRL which is restricted to decidable propositions.
Otherwise the example would render the calculus unsound.

Remark The term if b then s else t is used in the proof of example 7.2 for
brevity of presentation. It is short for case b of inl(x): s | inr(y): t,
where b is either inl(axiom) or inr(axiom). These two are used to define the
boolean values true and false in Nuprl (as conservative extension, see chapter
2.2).

Still, it is interesting to see what happens when proving undecidable propositions. The
question is, whether it is possible to identify “fake” evidence in a proof term. Then we
could again leave the decision to the user (as intended with the propositional λµPRL).

Possibly this could be achieved by adapting the concept of µ-safety from chapter 6 to
λµcPRL. We will not pursue this in detail here, but just have a short look at the proof
term of example 7.2: If we ignore the case split contained in the term (as axiom is not
part of the definition of µ-safety), it is still quite obvious that this term cannot be µ-safe
anyway. The reason is the λ-variable m which is free in the scope of the µ-variable α.

We conjecture that the concept of µ-safety could be employed to distinguish real and
fake evidence in λµcPRL-terms.

Chapter 8

Conclusion and Perspectives

In this chapter we consider the results of this thesis and possible directions for future work.

8.1 Conclusion

The original goal of this thesis was to develop a calculus for classical reasoning within
computational type theory [Con08]. This calculus was intended to enable users to directly
employ classical logic in a constructive environment. At the same time the use of classical
logic was supposed to be recognizable in retrospect.

To achieve this aim, we have provided λµPRL, a sequent-style proof refinement calcu-
lus for classical propositional logic. λµPRL is based on a variant of Parigot’s λµ-calculus
[Par92] and specifically targets the computational type theory of the Nuprl proof devel-
opment system [CAB+86]. Therefore a large part of its properties were influenced by λµ
and Nuprl’s logic and operational semantics.

Having started from the multi-conclusioned λµν-calculus by Pym and Ritter, we first
considered different possibilities of integrating this calculus into the Nuprl system. The
reasons to settle on a single-conclusioned variant have been presented in chapter 3.

These considerations have led to the calculus λµPRL. The calculus and a soundness
proof have been given in chapter 4. In hindsight, it might have been sensible to base
this proof on de Groote’s full propositional λµ-calculus [dG01]. This would have been
more straightforward, since de Groote’s calculus already uses the constructive disjunction.
Moreover it might have been possible to preserve (some of) the calculus’ proof-theoretic
features by a translation.

The decision to use Pym’s and Ritter’s λµν-calculus resulted from the origins of this
work. These included the considerations, as to whether a multi-conclusion was suited for
an integration of classical reasoning into Nuprl. Therefore it was also the first choice to
derive the soundness of λµPRL from λµν.

In chapter 5 we defined an accompanying reduction relation in the context of reduction
in different λµ calculi. In the scope of this work we were content with βµ-reduction,
which is shown to satisfy the confluence property. Besides we proposed reduction rules
for permutative conversions. These might provide the reduction relation with desirable
proof-theoretic properties like strong normalization. However, we have not pursued this
matter any further.

73

74 CHAPTER 8. CONCLUSION AND PERSPECTIVES

λµPRL shares the rules for implication, conjunction and disjunction and the axiom-
rule with Nuprl’s logic. Additionally, there are two more rules which are identified with
the special terms µ and [−]. These rulesextend the otherwise constructive calculus to
classical logic. Therefore the occurrence of the terms µ and [−] in a term can be used to
identify classical reasoning in a proof.

Nevertheless, not every term containing these constructs represents a non-constructive
proof. The possibility to make finer distinctions between non-constructive and constructive
terms has been shown in chapter 6. For this purpose we adopted a notion of µ-safe terms,
originally introduced by Crolard [Cro02]. Using this concept, we can identify whether the
crucial hypotheses of a λµPRL-proof are also available in a purely intuitionistic proof.

Still, there are proofs in λµPRL which are both constructive and non-constructive.
This is due to a generic non-determinism of classical logic. Thus it depends on the evalu-
ation strategy whether the proof term in question produces a value or not. To treat such
terms, we proposed the notion of partial µ-safety.

Finally, we considered the relation between λµPRLand PROGK , a calculus from an
early work on computational content of classical proofs by Murthy [Mur91b]. PROGK

is also related to Nuprl’s type theory and extends it to classical logic (for Σ0
1 and Π0

2

sentences). Therefore it shares the rules for implication, conjunction and disjunction with
λµPRL. Clarifying the relation between λµPRL and PROGK induces a variant of λµPRL
for Peano Arithmetic.

This variant λµcPRL is defined in chapter 7. We provide a translation between λµcPRL
and PROGK and show that by adapting the evaluation rules of PROGK to λµcPRL, we
can establish an isomorphism between the two calculi. As a consequence it is possible to
extract constructive content from λµcPRLproofs of decidable formulae, using the means
of PROGK .

As described in this section, we have developed λµPRL and examined its features.
In this context, we considered proof-theoretic properties, the possibility of distinguishing
classical from constructive proofs, and the relation to earlier work in this area. Unsurpris-
ingly, each of these aspects has risen a number of further questions. In the next section
we will address some of these.

8.2 Perspectives

There are various possible directions for future work. In this section, we will try to address
some of these.

From a practical point of view, the next step might be to integrate λµPRL into the
Nuprl system. The extended system could be used to develop larger exemplary proofs.

As we closely oriented our design decisions on the system, a basic implementation
could be done quite straightforwardly. All rules except the rules mu and abort already
exist in Nuprl’s inference system and the necessary new constructs could be easily created
using Nuprl’s meta-language. Proofs containing one of the new constructs in their proof
term could be marked by some label to ensure the soundness of the system and more
elaborate means to distinguish constructive from non-constructive proofs could be added
later. Besides, the proof term of Nuprl proofs is computed after the completion of a proof.
A proof is not accepted as valid before this check. As a consequence, this procedure might
be well suited to also include further evaluation of the proof term.

8.2. PERSPECTIVES 75

Such further evaluation is another possibility for future work. With the concept of µ-
safety, there is a basis for “finer” distinctions between constructive and non-constructive
proofs. But this does not cover all terms containing constructive content. Thus it would be
interesting to extend the approach of partial µ-safety. Then a sequence of open questions
follows up:

• Can a decision procedure for partial µ-safety identify every proof term with con-
structive content?

• If a term is not even partially µ-safe, does it contain any information on the possibilty
of proving the same formula constructively?

• Does the existence of constructive content in a proof term imply the decidability of
the original proposition?

• Can the concept of µ-safety and partial µ-safety be extended to λµcPRL?

• Do partially µ-safe λµcPRL-terms produce a value when evaluated appropriately?

• If so, could λµcPRL be used without restriction on its goal formulae? Would it be
possible to subsequently identify non-decidable sentences and thereby re-establish
soundness?

An extension of the concept to λµcPRL is also interesting for a general extension of
λµPRL to first order logic and arithmetic. The problem with an extension of λµPRL
without restricting it to decidable formulae, is related to the axiom of choice. In Nuprl,
the existential quantifier is defined by the dependent product type (sometimes also referred
to as the strong sum type) via the propositions-as-types principle. When used for program
synthesis, the proof of a specification therefore returns a pair 〈e, p〉 which consists of the
algorithm and the proof term guaranteeing its correctness.

However, in presence of the classical rules of λµPRL, the proof corresponding to p
might not really prove the correctness of e. Instead it may dismiss the original evidence
at some point and prove something else.

In fact, it can be proved that an arithmetic type theory which contains the dependent
product type and validates the principle of the excluded middle is unsound. A proof of
this is given by Stewart [Ste99] (who follows an argument of Coquand [Coq95]). Another
illustration of the problem, focussing on the axiom of choice, can be found in [Mur90].
The basic idea is that the non-decidable halting problem could be shown to be decidable
in such a theory.

Still, there might be methods to circumvent this problem. In [How96a, How96b],
Howe provides an operational semantics for Nuprl which allows an import of results from
HOL. But since the HOL proofs can contain instances of HOL’s non-constructive ”select”-
operator, Howe makes sure these results cannot be used when computation is required.
This is achieved by marking the proof’s root node whenever it is not computational.

As we can see, Howe makes use of Nuprl’s meta-system to ensure soundness. Now, if it
were possible to identify non-constructive λµcPRL-proofs, we could use a similar method.
This is where the concept of partial µ-safety might be applicable.

Another question arising in the context of Howe’s work concerns the relation between
the µ-operator of λµPRL and HOL’s select-operator. This also leads to the subject of

76 CHAPTER 8. CONCLUSION AND PERSPECTIVES

the computational meaning of seemingly non-constructive λµPRL- (respectively λµcPRL-
) terms. It is well-known, that the µ-operator can be seen as “generic jump operator”
[OS97]. Therefore the terms of λµPRL correspond to functional programming languages
with control operators.

Ong exploits this correspondence to define µPCF , a classical extension of PCF [Sco93].
In this context, he defines typing rules for different kinds of control constructs: the Y-
combinator, Scheme’s call/cc and ML-style exception handling via throw and catch.
Similar approaches have been taken by other authors as well. E.g. in [dG95] de Groote
presents a calculus for exception handling which is closely related to λµ.

Alongside these results, an extension of Nuprl’s purely functional programming lan-
guage might be of interest as well. It should be considered, whether on this foundation a
semantics of evidence for a hybrid type theory could be developed.

List of Figures

2.1 Types in Nuprl . 6
2.2 Conservative extensions in Nuprl . 6
2.3 PROGK -terms . 7
2.4 PROGK -reduction-rules . 8
2.5 The inference rules of λµν . 11

4.1 The calculus λµPRL . 26
4.2 The calculus λµν⊥ . 27
4.3 The calculus λµ⊕ . 27
4.4 The calculus λµ⊕⊥ . 27

6.1 The inference rules of λµrPRL . 56

7.1 The calculus λµcPRL for Peano Arithmetic 64

I

Bibliography

[Acz78] Peter Aczel. A general church-rosser theorem. Technical report, University of
Manchester, July 1978. 41

[AH08] Zena M. Ariola and Hugo Herbelin. Control reduction theories: the benefit of
structural substitution. J. Funct. Program., 18(3):373–419, 2008. 39

[AHS07] Zena M. Ariola, Hugo Herbelin, and Amr Sabry. A type-theoretic foundation
of delimited continuations. Higher Order and Symbolic Computation, 2007. 37

[Bar84] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, Revised
edition. North Holland, 1984. 14, 15, 16, 41

[BB92] Franco Barbanera and Stefano Berardi. A constructive valuation interpretation
for classical logic and its use in witness extraction. In J.-C. Raoult, editor,
Proceedings of Colloquium on Trees in Algebra and programming (CAAP ’92),
volume 581 of Lecture Notes in Computer Science, pages 1–23. Springer Verlag,
1992. 2

[BB93] Franco Barbanera and Stefano Berardi. Extracting constructive content from
classical logic via control-like reductions. In In Bezem and Groote, pages 45–59.
Springer-Verlag, 1993. 2, 37

[BBS95] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Program ex-
traction from classical proofs. In Annals of Pure and Applied Logic, pages
77–97. Springer Verlag, 1995. 2

[BHF01] Kensuke Baba, Sachio Hirokawa, and Ken-etsu Fujita. Parallel reduction in
type free λµ-Calculus. Electr. Notes Theor. Comput. Sci., 42, 2001. 2, 9, 37,
39, 41, 43

[Böh68] Corrado Böhm. Alcune proprietà delle forme normali nel K-calcolo. Technical
Report 696, INAC, Roma, Italy, 1968. 38

[Bre08] Nuria Brede. Klassisches Schliessen in der intuitionistischen Typentheorie: En-
twicklung eines Typs zur Simulation von Multikonklusionen. Student project,
Department of Computer Science, University of Potsdam, 2008. 2, 18

[CAB+86] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler,

II

BIBLIOGRAPHY III

P. Panangaden, James T. Sasaki, and Scott F. Smith. Implementing Math-
ematics with the Nuprl Development System. Prentice-Hall, NJ, 1986. 1, 5,
73

[Chu40] Alonzo Church. A formulation of the simple theory of types. The Journal of
Symbolic Logic, 5(2):56–68, 1940. 1

[Con98] R. L. Constable. Types in logic, mathematics, and programming. In Samuel R.
Buss, editor, Handbook of Proof Theory, pages 683–786. Elsevier Science Pub-
lishers, Amsterdam, 1998. 1, 5

[Con08] Robert L. Constable. Computational type theory. Technical Report
1813/11512, Cornell University, October 2008. 1, 73

[Coo71] S. A. Cook. The complexity of theorem proving procedures. In stoc71, pages
151–158, 1971. 1, 5

[Coq95] Thierry Coquand. A semantics of evidence for classical arithmetic. J. Symb.
Log., 60(1):325–337, 1995. 2, 75

[Cro02] Tristan Crolard. A constructive restriction of the λµ-calculus. Technical Re-
port 02, UFR d’Informatique, Université Paris 7, 2002. 1, 3, 51, 54, 74

[dG94a] Philippe de Groote. A cps-translation of the λµ-calculus. In Sophie Tison,
editor, Trees in Algebra and Programming – CAAP94, 19th International Col-
loquium, volume 787 of Lecture Notes in Computer Science, pages 85–99, Ed-
inburgh, 1994. Springer Verlag. 37

[dG94b] Philippe de Groote. On the relation between the lambda-mu-calculus and the
syntactic theory of sequential control. In LPAR, pages 31–43, 1994. 39, 62, 63

[dG95] Philippe de Groote. A simple calculus of exception handling. In TLCA, pages
201–215, 1995. 2, 76

[dG01] Philippe de Groote. Strong normalization of classical natural deduction with
disjunction. In TLCA, pages 182–196, 2001. 2, 37, 39, 73

[DN03] Rene David and Karim Nour. A short proof of the strong normalization of clas-
sical natural deduction with disjunction. Journal of Symbolic Logic, 68(4):1277–
1288, 2003. 39

[DP01] René David and Walter Py. lambda mu - calculus and böhm’s theorem. J.
Symb. Log., 66(1):407–413, 2001. 38

[FFKD87] Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce F.
Duba. A syntactic theory of sequential control. Theor. Comput. Sci., 52:205–
237, 1987. 1, 7, 48, 62

[FH92] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theo-
ries of sequential control and state. Theor. Comput. Sci., 103(2):235–271, 1992.
1, 7, 48, 62

IV BIBLIOGRAPHY

[Fri78] Harvey M. Friedman. Classically and intuitionistically provably recursive func-
tions. In Higher Set Theory, volume 669 of Lecture Notes in Mathematics, pages
21–27. Springer-Verlag, 1978. 1, 7

[Fuj97] Ken-etsu Fujita. Calculus of classical proofs i. In ASIAN, pages 321–335, 1997.
2, 37

[Gal91] Jean H. Gallier. Constructive logics, part I: A tutorial on proof systems and
typed λ-calculi. Research Report 8, DEC Paris Research Laboratory, Reuil-
Malmaison, may 1991. 1, 5

[Gen34] Gerhard Gentzen. Untersuchungen über das logische schliessen. Mathematische
Zeitschrift, 39:176–210, 1934. 4, 11, 17

[Gha95] Neil Ghani. fij-equality for coproducts. In In Typed -calculus and Applications,
number 902 in Lecture Notes in Computer Science, pages 171–185. Springer
Verlag, 1995. 39

[Gir91] Jean-Yves Girard. A new constructive logic: Classical logic. Mathematical
Structures in Computer Science, 1(3):255–296, 1991. 2

[GM93] Michael J. C. Gordon and Thomas F. Melham, editors. Introduction to HOL:
A theorem proving environment for higher order logic. Cambridge University
Press, 1993. HOL4 website: http://hol.sourceforge.net. 1

[Gri90] Timothy Griffin. A formulae-as-types notion of control. In POPL, pages 47–58,
1990. 1, 7, 9, 61

[Hey71] A. Heyting. Intuitionism: An Introduction. North-Holland, Amsterdam, 3
edition, 1971. 7

[Hin64] J. Roger Hindley. The Church-Rosser Property and a Result in Combinatory
Logic. PhD thesis, University of Newcastle-upon-Tyne, 1964. 40

[How80] William A. Howard. The formulae-as-type notion of construction, 1969. In
J. P. Seldin and R. Hindley, editors, To H. B. Curry: Essays in Combinatory
Logic, Lambda Calculus, and Formalism, pages 479–490. Academic Press, New
York, 1980. 1, 7, 24

[How96a] Douglas J. Howe. Importing Mathematics from HOL into Nuprl. In Theorem
Proving in Higher Order Logics, 9th International Conference, pages 267–281,
1996. 2, 75

[How96b] Douglas J. Howe. Semantic Foundations for Embedding HOL in Nuprl. In
Algebraic Methodology and Software Technology, 5th International Conference,
pages 85–101, 1996. 2, 75

[Klo92] J.W. Klop. Handbook of Logic in Computer Science, volume 2, chapter Term
rewriting systems, pages 1–116. Oxford University Press, 1992. 16

[Kre02] Christoph Kreitz. The Nuprl Proof Development System, Version 5, Reference
Manual and User’s Guide. Cornell University, 2002. 5

BIBLIOGRAPHY V

[Kre04] Christoph Kreitz. Building reliable, high-performance networks with the nuprl
proof development system. J. Funct. Program, 14(1):21–68, 2004. 5, 7

[Mat01] Ralph Matthes. Parigots second order λµ-calculus and inductive types. In
S. Abramsky, editor, Proceedings of TLCA 2001, volume 2044 of Lecture Notes
in Computer Science, pages 329–343. Springer-Verlag Berlin Heidelberg, 2001.
2, 9, 37, 39

[Men88] Nax P. Mendler. Inductive Definition in Type Theory. PhD thesis, Cornell
University, 1988. 3

[ML84] Per Martin-Löf. Intuitionistic Type Theory, volume 1 of Studies in Proof The-
ory: Lecture Notes. Bibliopolis, Napoli, 1984. 5

[Mur90] Chetan R. Murthy. Extracting Constructive Content from Classical Proofs.
PhD thesis, Department of Computer Science, Cornell University, August 1990.
2, 7, 8, 9, 39, 58, 75

[Mur91a] Chetan R. Murthy. Classical proofs as programs: How, what, and why. In
Constructivity in Computer Science, pages 71–88, 1991. 2, 7, 9

[Mur91b] Chetan R. Murthy. An evaluation semantics for classical proofs. In LICS, pages
96–107, 1991. 1, 2, 3, 7, 23, 48, 61, 70, 72, 74

[New42] M. H. A. Newman. On theories with a combinatorial definition of “equiva-
lence”. Annals of Math., 2(43):223–243, 1942. 41

[NS06] Karim Nour and Khelifa Saber. A semantical proof of the strong normalization
theorem for full propositional classical natural deduction. Arch. Math. Log.,
45(3):357–364, 2006. 37, 39

[NT03] Koji Nakazawa and Makoto Tatsuta. Strong normalization proof with cps-
translation for second order classical natural deduction. J. Symb. Log.,
68(3):851–859, 2003. 37

[NT08] Koji Nakazawa and Makoto Tatsuta. Strong normalization of classical natural
deduction with disjunctions. Annals of Pure and Applied Logic, 153:21–37,
2008. 37, 39

[Oga98] Ichiro Ogata. Classical proofs as programs, cut elimination as computation.
Technical report, Electrotechnical Laboratory, 1998. 2

[Ong96] C.-H. L. Ong. A semantic view of classical proofs. In In Proceedings of LICS
’96. IEEE Press, 1996. 3, 10, 24

[OS97] C.-H. L. Ong and C. A. Stewart. A curry-howard foundation for functional
computation with control. In In Proceedings of ACM SIGPLAN-SIGACT Sym-
posium on Principle of Programming Languages, pages 215–227. ACM Press,
1997. 2, 3, 5, 10, 24, 39, 76

[Par92] Michel Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical
natural deduction. In LPAR, pages 190–201, 1992. 2, 9, 37, 38, 41, 61, 73

VI BIBLIOGRAPHY

[Par93a] Michel Parigot. Classical proofs as programs. In Computational logic and
proof theory, volume 713 of Lecture Notes in Computer Science, pages 263–
276. Springer-Verlag, 1993. 2, 9, 39, 47

[Par93b] Michel Parigot. Strong normalization for second order classical natural deduc-
tion. In LICS, pages 39–46, 1993. 37

[PdP05] Luiz Carlos Pereira and Valeria de Paiva. A short note on intuitionistic
propositional logic with multiple conclusions. MANUSCRITO - Rev. Int. Fil.,
28(2):317–329, jul-dez 2005. 51

[PR01] David J. Pym and Eike Ritter. On the semantics of classical disjunction.
Journal of Pure and Applied Algebra, 159:315–338, 2001. 2, 10, 24, 25, 38

[PR04] David J. Pym and Eike Ritter. Reductive Logic and Proof-search. Oxford
University Press, 2004. 1, 2, 10, 24, 25

[Py98] Walter Py. Confluence en λµ-calcul. PhD thesis, UFR Sciences Fondamentales
et Appliquées, Université de Savoie, 1998. 2, 9, 14, 37, 39, 40, 41

[Pym] David J. Pym. Notes towards a semantics for proof-search. 2, 10

[Ros73] Barry K. Rosen. Tree-manipulating systems and church-rosser theorems. J.
ACM, 20(1):160–187, 1973. 40

[RPW00] Eike Ritter, David Pym, and Lincoln Wallen. On the intuitionistic force of
classical search. Theoretical Computer Science, 232(1–2):299–333, 2000. 2, 10

[RS94] Niels Jakob Rehof and Morten Heine Sørensen. The λ∆ calculus. In Theoretical
Aspects of Computer Software, pages 516–542. Springer-Verlag, 1994. 2, 37

[Sco93] Dana S. Scott. A type-theoretical alternative to iswim, cuch, owhy. Theor.
Comput. Sci., 121(1&2):411–440, 1993. 76

[Sta79] Richard Statman. Intuitionistic propositional logic is polynomial-space com-
plete. Theor. Comput. Sci., 9:67–72, 1979. 1, 5

[Ste99] Charles A. Stewart. On the formulae-as-types correspondence for classical logic.
PhD thesis, Worcester College, Oxford University, 1999. 2, 3, 24, 75

[Tat07] Makoto Tatsuta. The maximum length of mu-reduction in lambda mu-calculus.
In RTA, pages 359–373, 2007. 37

[UB01] Christian Urban and Gavin M. Bierman. Strong normalisation of cut-
elimination in classical logic. Fundam. Inform., 45(1–2):123–155, 2001. 51

[Yam04] Yoriyuki Yamagata. Strong normalization of the second order symmetric λµ
calculus. In Information and Computation, volume 193. Elsevier, 2004. 37

Eidesstattliche Erklärung

Ich versichere hiermit an Eides statt, dass ich die von mir eingereichte Diplomarbeit bzw.
die von mir namentlich gekennzeichneten Teile selbständig verfasst und ausschließlich die
angegebenen Hilfsmittel benutzt habe.
Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde

vorgelegt und auch nicht veröffentlicht.

Potsdam, den 27. Januar 2009

(Nuria Brede)

VII

	Introduction
	Preliminaries
	Classical and Intuitionistic Logic
	The Nuprl Proof Development System
	Murthy's PROG_K
	The LambdaMu-Calculi
	Substitution
	Reduction

	On the LambdaMu-Multi-Conclusion
	Preliminary Considerations
	A Multi-Conclusion for Nuprl?
	Conclusion and Alternative Approach

	LambdaMu-PRL
	The calculus LambdaMu-PRL
	Consistency of LambdaMu-PRL

	Conversion Theory
	Conversion in LambdaMu-PRL and Related Calculi
	Confluence of BetaMu-reduction

	On Classical and Intuitionistic Terms of LambdaMu-PRL
	Murthy's Evaluation
	Distinguishing Terms by Crolard's Mu-safety
	Constructive Content of LambdaMu-PRL-terms
	Non-Mu-safe Terms with Constructive Content

	LambdaMu-PRL and PROG_K
	LambdaMu-PRL and PROG_K
	Translation between LambdaMu-PRL and PROG_K
	Preservation of Reduction
	Example Proofs

	Conclusion and Perspectives
	Conclusion
	Perspectives

	List of Figures
	Bibliography

