
Proof Aounts in HOL

Avra Cohn

University of Cambridge Computer Laboratory

New Museums Site, Pembroke Street

Cambridge, CB2 3QG, England.

Abstrat:

This paper presents a method for extrating explanations of goal-

oriented proofs from the proess of generating suh proofs in the

HOL system. The aim has been to produe natural (if stylized)

explanations whih are phrased in onventional terms, even where

the tatis used in generating the proof are spei� to HOL, HOL's

implementation, or mehanized theorem proving in general. Inter-

nal forms of the explanations are onstruted by enrihing the ML

types that support goal-oriented proof in HOL, so that adequate

information an be saved during the generation of a proof to enable

expliit, annotated proof trees to be produed. These trees are then

rendered in readable form by a suite of printing funtions.

1

Aknowledgements:

This work was supported by the Siene and Engineering Researh

Counil, on Grant Thanks to Mike Gordon for his assistane,

and to everyone in the Cambridge Hardware Veri�ation Group for

their interest and omments.

2

Contents

1 Introdution 6

1.1 The HOL System . 9

1.1.1 The Metalanguage and Logi 9

1.1.2 Goal Oriented Proof 10

1.1.3 The Subgoal-Theorem Tree 11

1.2 An Example Textbook Proof 12

1.3 Design Deisions . 13

1.4 Related Work . 14

2 The Basi Idea 15

3 The Extended ML Types 22

4 Elementary Tatis 28

4.1 The Implementation of Named Tatis: (GEN TAC) 28

4.2 Solving a Goal: ACCEPT TAC 33

4.3 Naming New Assumptions: DISCH TAC 35

4.4 Transforming Subgoals: SUBST1 TAC 36

4.4.1 Impliit Assumptions from Invalid Proof Steps 37

4.4.2 Impliit Assumptions without Use 40

4.4.3 Impliit Assumptions from Valid Proof Steps 41

4.4.4 Aounting for Impliit Assumptions 43

4.5 Multiple Subgoals: INDUCT TAC 46

4.6 Advanement or Solution: REWRITE TAC 48

4.6.1 Solution by REWRITE TAC 48

4.6.2 Advanement by REWRITE TAC 51

4.7 Adding an Assumption: ASSUME TAC 53

5 Conversions 54

6 Resolution 57

7 Popping Assumptions 63

7.1 Popping to Erase Used Assumptions 64

7.2 Popping to Replae an Assumption 65

7.3 Popping to Erase Irrelevant Assumptions 65

3

7.4 Aounting for Popping Assumptions 66

7.4.1 Aounting for Popping to Erase Used Assumptions . . 67

7.4.2 Aounting for Popping to Replae Assumptions 70

7.4.3 Aounting for Popping to Erase Irrelevant Assumptions 71

7.5 Aounting for POP ASSUM LIST 74

7.6 Aounting for SUBST ALL TAC 75

8 Continuations 82

8.1 The Disjuntive Transformer 82

8.2 Implementation Issues . 93

8.3 Other Transformers whih Introdue Assumptions 93

8.3.1 The Disharging Transformer 93

8.3.2 The Choie Transformer 95

8.4 Transformers whih do not Introdue Assumptions 96

8.4.1 The Conjuntion Transformer 96

8.4.2 The Resolution Transformers 106

9 Strip Funtions 108

9.1 The Strip Transformer in HOL 109

9.2 Stripping and Assuming a Theorem in HOL 110

9.3 The Strip Tati in HOL . 112

9.4 Aounting for The Strip Tati 113

9.4.1 The Implementation-Based Aount 114

9.4.2 The Primitive Aount 124

10 Transforming Proof Aounts 128

11 Future Researh 132

12 Conlusions 136

13 Referenes 139

14 Appendix 140

4

Table of Figures

Figure 1 . ??

Figure 2 . ??

Figure 3 . ??

5

1 Introdution

Proof aounts are intended to explain and doument HOL

1

proofs in some-

thing approahing onventional or textbook terms. They do this for proofs

whih are generated `top down' in HOL through the appliation of tatis

to goals. Tati and goals in HOL (as in LCF) are metalanguage onstruts

whih are used to generate inferenes in an underlying formal logi. Thus, a

proof in the sense of a proof strategy (a proedure expressed as a struture of

metalanguage tatis), when applied suessfully to a goal, generates a proof

in the sense of a hain of primitive inferenes ulminating in the desired

theorem. Proof aounts explain `proofs' in the former sense.

Generally, top-down (goal oriented) proofs in HOL an be represented by

tree strutures of `proof steps', where eah step is a tati. A tati an be:

� One of HOL's built-in tatis

� The result of applying a tati-valued funtion when applied to argu-

ments of appropriate type

� A ombination (suh as alternation) of existing tatis

� A tati implemented diretly in the metalanguage by a user

2

.

The tatis are omposed into a tree struture via the metalanguage om-

binators THEN (for sequening) or THENL (for seletive sequening). Thus, for

tatis T

1

, T

2

, � � �, T

n

:

� T

1

THEN T

2

is a tati whih, given a goal, �rst applies T

1

to the goal,

then applies T

2

to eah resulting subgoal.

� T

1

THENL [T

2

; � � �; T

n

℄ is a tati

3

whih, to produe its results given a goal, �rst applies T

i

respetively

to the i results, for i from 2 to n.

1

The HOL (higher order logi) system is a system designed by Mike Gordon for helping

to automate formal proofs in higher order logi. It is based on Robin Milner's LCF system.

2

This last possibility, however, is not onsidered in this paper.

3

This notation denotes the list of elements shown.

6

Given an initial goal, eah step of a proof results in a set of intermedi-

ate subgoals, whih, if and when established, are adequate to establish the

original goal. That is, eah proof step omputes the funtion whih will map

the established subgoals (i.e. theorems) bak to a theorem establishing the

original goal, via logial inferene. Goals are deomposed suessively in this

way until they yield axioms or previously proved theorems; then the inter-

mediate funtions are applied to onstrut a hain of theorems ulminating

in the theorem establishing the initial goal.

Proofs in HOL are typially performed during interative sessions in whih

tatis are applied to suessive goals, in the ontext of a HOL theory

4

. Dur-

ing a suessful interation, the user is made aware of intermediate subgoals

as they are generated by tatis; and in due ourse, of the theorem that estab-

lishes eah subgoal. However, this information is ephemeral, and is available

only at ertain times during the interative session. In the end, all that an

be preserved of the working session within the HOL theory is the �nal theo-

rem itself. This is adequate in that the type system of HOL's metalanguage

assures that no theorem an be omputed exept by inferenes in the logi

5

;

and the logi itself has been shown onsistent (Pitts, manual ref). However,

should a user wish to know more about the way in whih a proof was aom-

plished after the working session is �nished, none of the intermediate goals

or theorems will have been saved in the relevant HOL theory.

As the HOL system stands, the only persistent reord that an be kept of

the way in whih a formal proof was produed is the text �le that a user keeps

{ optionally, of ourse { in order to doument the interative session. (Most

users do preserve, in some systemati way, the metalanguage proedures that

prove their theorems.) Reords of this sort are, however, extraneous to the

formal logi or any theory extending the logi; they assoiate only informally

with suh theories.

In any ase, the metalanguage text whih generates a proof is not nees-

sarily, in itself, a useful explanation of the proof strategy. Comments added

by the user may help, but inserting omments by hand is tedious, diÆult to

do in adequate detail, and not guaranteed to be aurate. The metalanguage

4

A HOL theory orresponds to a logial theory in the standard sense of an extension

of a logi via well-founded de�nitions and dedued theorems.

5

This use of the type disipline of the metalanguage was Milner's key idea in the LCF

system. It dispenses with the need to preserve primitive inferene sequenes, but without

loss of seurity.

7

text itself may not be aurately saved, or wholly intelligible to a reader in

ertain situations. This is so partiularly

� For longer or more omplex strutures of tatis

� For theorem-proving based, tehnial or HOL-spei� tatis

� When proof steps are spei�ed as the result of tati-valued funtions

applied to appropriate arguments (suh spei�ations may be arbitrar-

ily nested and omplex)

� When tati-valued funtions produe tatis whih obsure individual

proof steps

� For ontext or implementation dependent tatis (e.g. a tati whih

refers to the `third urrent assumption')

� For ombined tatis (e.g. ombined by the operator `ORELSE')

� When previously proved lemmas are denoted simply by name, or are

omputed in situ

� When parallel branhes of a proof are treated simultaneously by non-

branhing strategies

� When expert HOL users rely on personal styles of tatial proof not

familiar to other users.

In this paper, we propose what we hope is an intelligible, aurate and

informative style of doumentation of goal oriented proofs, and a method for

deriving proof explanations in this style automatially upon the appliation

of tatis to goals. The purpose of these proof aounts is to larify and do-

ument suessfully ompleted HOL proofs in a style free from HOL-related

or theorem-prover based terms and onepts; that is, as lose in spirit as

is possible to textbook style proof presentations without involving natural

language expertise.

Possible future appliations of proof aounts might inlude

� Debugging user-designed tatis

8

� Tools for teahing HOL

� Tools for improving suessful proofs.

Further possible appliations are disussed in

Although this paper is probably of most interest to HOL users, and does

not ontain a presentation of the HOL system, we hope that the main ideas

will be lear to other interested readers. Doumentation of the HOL system

may be found in ().

All of the example sessions and remarks pertain to Version 11 of HOL

(1990). Minor modi�ations for Version 12 (1991) are urrently in progress.

1.1 The HOL System

1.1.1 The Metalanguage and Logi

LCF-based systems suh as HOL are built around (i) a sequent alulus,

and (ii) a programming language (ML, for metalanguage) in whih objets

of the alulus an be represented and omputed. In partiular, terms and

theorems of the logi an be denoted, and proofs an be omputed. This

is done by representing rules of inferene as metalanguage funtions whih

map theorems (sometimes with various parameters) to new theorems; and

implementing these funtions as ML proedures.

ML's type system plays an essential role in enabling theorems to be pro-

teted as abstrat types. Thus, one may inspet the onlusion or hypotheses

of a theorem (i.e. deompose a theorem into its syntati parts) but may not

onstrut a theorem from its parts; theorems an be produed only by ap-

pliation of funtions expressing rules of inferene.

In reent years, the language ML has been interfaed to several logis in

the hope of assisting in the proof of theorems in these logis. The original

logi (PPLAMBDA) of the LCF system was intended for proofs about reur-

sive funtions de�ned in domains, whih are useful in algorithm and software

veri�ation. In HOL, a version of Churh's higher-order prediate alulus

(also alled HOL) is used. This is intended for proofs about digital systems,

and for other areas in whih the issues of de�nedness and termination are

less entral. The Nuprl system (...) uses the logi ITT (intuitionisti type

theory).

9

For many appliations, the full expressiveness of a general-purpose pro-

gramming language is not neessary; a set of primitive proof-building oper-

ations would suÆe. One of the apabilities whih ML, as a full program-

ming language, provides { for users experimenting with proof methods, proof

styles, automation, and so on { is a way to express and test informal proof

strategies of their own design. These strategies an be anything from very

simple proof tehniques (for example: \In order to prove P , assume :P and

prove falsity") to sophistiated searhing heuristis. However, this paper

restrits itself to HOL's main built-in tatis.

1.1.2 Goal Oriented Proof

In both simple and omplex ases, the LCF-HOL methodology is geared to

the natural `bakward' style of proof often used in textbook presentations:

proeding from goal to subgoals via strategies, until reognizably trivial sub-

goals are reahed. Eah stage of the deomposition is aompanied by a

justi�ation funtion in whih is embedded the inferene pattern enabling

the move from established subgoal to established goals. The justi�ation

is again a funtion: it maps the set of theorems purporting to ahieve the

respetive subgoals to the theorem ahieving the original goal { by invoking

the inferene pattern in question. (A theorem is said to ahieve a goal if the

onlusion of the theorem is the term of the goal, up to alpha-onversion,

and the hypotheses of the theorem are a subset of the assumptions of the

goal.)

There are therefore two stages in a tatial proof: the searh stage, in

whih suessive subgoals are generated until (and if) axioms or previously

established subgoals are produed; and the justi�ation stage in whih the-

orems ahieving goals are dedued in suession from theorems ahieving

their subgoals, via formal inferene. These are often thought of as reverse

proesses, the �rst produing and working down a tree struture of subgoals,

and the seond working bak up to the original goal.

This proof style, of ourse, is really no more than a onvenient way of pre-

senting a proof, and of dressing the `real' proof, namely, the sequene of theo-

rems ulminating in the desired theorem, where eah theorem in the sequene

is either an axiom or is a onsequene of earlier theorems in the sequene.

The style oneals from the user the book-keeping proess through whih

the real proof is ontruted as the subgoals are deomposed and eventually

10

ahieved. Thus the simple strategy above (\In order to prove P , assume :P

and prove falsity") is a presentation of the inferene rule: \From the theorem

asserting falsity, under the assumption that P is false, derive the theorem

asserting P"; the strategy pakages the inferene rule in a onvenient way.

The sequenes of theorems ulminating in a given theorem are not reorded

as a result of performing a goal oriented proof; they are simply omputations

ourring in time. That is, the funtion representing eah inferene rule used

is applied to arguments, whih in turn means that the ML proedure rep-

resenting that funtion is exeuted. Beause inferenes are represented as

funtions, the proof (in the sense of the inferene sequene) is an ephemeral

part of the omputation whih represents the goal oriented proof e�ort.

Proof aounts are based on enhanements of the metalanguage types of

goals, tatis and justi�ations whih allow suÆient additional information

to be reorded for an explanation of the proof to be generated and preserved.

1.1.3 The Subgoal-Theorem Tree

The tree struture of suessive subgoals { together with a reord of the proof

steps leading from goals to subgoals, and the theorems ahieving the various

goals { is a onept whih is always in the bakground when tatial proofs

are performed in HOL. For example, appliation of the tati enoding the

strategy above (\In order to prove P , assume :P and prove falsity") to an

appropriate goal would always produe exatly one subgoal, and this would

be ahieved by one theorem; the usual numerial indution tati would

produe two subgoals (the base and step ases); ase analyses would produe

at least two, and so on. However, suh trees are neither represented expliitly

in HOL nor open to exploration

6

.

The struture of ahieving theorems forms an essential part of the tree.

In a suessful top-down proof, there is, for eah node (i.e. goal) of the

tree, starting at the leaves, a theorem ahieving that goal. Where one goal

diverges (under the appliation of a tati) into several subgoals, the several

ahieving theorems onverge (by inferene) to produe one theorem. Thus

the numerial indution strategy would indue two subgoals when applied to

6

The subgoal pakage in Version 11 of HOL, whih is an add-on faility, an be used

to manage the subgoal-theorem tree during a working session; it is based on a stak

representation of the tree. Again, however, this stak is not open to exploration by users;

nor is it expliit, or preservable

11

a goal, and a justi�ation funtion. The justi�ation funtion at that node

would aept the two ahieving theorems and produe the theorem ahieving

the original goal.

The whole tree struture representing the proof thus inludes the proof

steps, the subgoals, and the ahieving theorems. Proof aounts are based

on an expliit and preservable representation of this struture of goals, proof

steps and theorems.

1.2 An Example Textbook Proof

To give an idea of the textbook style to whih proof aounts aspire, we

give some fragments of a real example. The proof from whih these are

taken is from \The Higher Arithmeti" by H. Davenport. The proof is of the

uniqueness of prime fatorization.

Theorem: Any natural number an be represented in ... only one way as a

produt of primes.

Proof: We prove the uniqueness of fatorization by indution. This requires

us to prove it for any number n, on the assumption that it is already estab-

lished for all numbers less than n. If n itself is a prime, there is nothing to

prove. Suppose, then, that n is omposite, and has two di�erent representa-

tions as produts of primes, say

n = p q r � � � = p' q' r' � � �,

where p, q , r , � � � and p' , q' , r' , � � � are all primes. The same prime an-

not our in both representations, for if it did we ould anel it and get

two di�erent representations of a smaller number, whih is ontrary to the

indution hypothesis.

.

.

.

Now onsider the number n - p p' . This is a natural number less than n,

and so an be expressed as a produt of primes in one and only one way.

.

.

.

This ontradition proves that n has only one fatorization into primes.

12

This presentation of the proof has the following features:

� The presentation is in sophistiated but still stylized English, using

standard phrases suh as \This requires us to prove � � �", \Suppose,

then, that� � �" and \Now onsider � � �".

� It is generally presented in a goal oriented style, and this requires the

reader to maintain his loation in the implied subgoal tree (and hene

to understand the sope of assumptions suh as \Suppose, then, that

n is omposite").

� Within the goal oriented format there are intervals of forward reasoning;

for example, \Now onsider the number n - p p' . This is a natural

number less than n, and so � � �".

� Minor steps are omitted in plaes; for example, \If n itself is a prime,

there is nothing to prove" { there is, of ourse.

� The presentation is ast in purely problem-related and logial terms {

i.e. it refers to numbers and their properties; to patterns of reasoning

suh as proof by ontradition; and to standing assumptions suh as

the indution hypothesis { but to nothing more tehnial in the realm

of theorem-proving.

Our aim is to produe proof aounts whih have as many of these prop-

erties as possible without approahing the natural language issues. That is,

we will be satis�ed with pre-pakaged phrases in a tiny subset of English, as

long as the explanations are strutured in something approahing the on-

ventional style, and depend on similar onepts.

1.3 Design Deisions

The urrent prototype aounting faility rests on the following design dei-

sions:

� The faility is not interative in the �rst instane; i.e. is not intended to

be used whilst developing a proof, but rather to generate explanations

of suessfully ompleted proofs.

13

� The proof explained is the proof in the sense of the strategy rather than

the proof in the sense of the inferene sequene. A proof step is taken

to be a tati without internal sequening. These tatis are taken to

be the main proof steps.

� There is an expliit data struture to represent subgoal-theorem trees

with proof steps. Eah aount is a presentation of an instane of this

data struture.

� The onstrution of this tree is separated from its presentation. That

is, there is an internal representation of the tree, as well as a set of

printing funtions for produing a readable rendition.

� We attempt to apture the harater of the textbook prose but without

any natural language apabilities.

� For the present, the basi HOL tatis are re-implemented to produe

aounts, and for this purpose are given distint names.

Improvements and elaborations are disussed in ().

1.4 Related Work

The only other similar explanation faility we know about is the one provided

for the Boyer-Moore theorem-prover (). As we understand it, the present

faility di�ers from that one in the following ways:

� The Boyer-Moore faility explains the ation of the (automati) theo-

rem prover as it searhes for a proof. Though it searhes very eÆiently,

the explanation is still given in terms of the searh rather than of the

proof diretly. The faility for HOL aims at explaining the proof found

rather than the searh proess.

� The Boyer-Moore system produes explanatory text in real time, as the

proof searh is in progress. Ours re-runs ompleted proofs in order to

generate explanations.

� The Boyer-Moore faility does not (apparently) onstrut an expliit

internal respresentation of an explanation, but rather, produes frag-

ments of explanation as a side e�et of the proof searh. We do aim

14

at onstruting an internal representation { whih an itself be trans-

formed, printed, et.

� The Boyer-Moore faility does give attention to the quality of the nat-

ural language produes, while ours does not.

2 The Basi Idea

In this hapter we give an example of a suessful proof session in HOL and

show, for this proof, the style and ontent of the explanation being proposed.

The aounting faility uses HOL's methods of subgoal deomposition and

proof assembly to generate a proof aount as a side-e�et of performing a

goal oriented proof. The information preserved makes it possible to identify

ertain key `proof events' suh as the solution of a subgoal, the splitting of

a goal into subgoals, proof by ontradition, assumptions made behinds the

senes, and invalid use of lemmas.

In the following HOL session, a simple theorem is proved: the assoiativ-

ity of addition. (This is atually one of the theorems that is already proved in

the theory of arithmeti when HOL is entered.) The proof uses the theorem

alled ADD_CLAUSES:

ADD_CLAUSES =

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

This is the HOL session in whih the theorem ADD_ASSOC is proved

7

.

#let g = [℄,"!m n p. m + (n + p) = (m + n) + p";;

g = ([℄, "!m n p. m + (n + p) = (m + n) + p") : (* list # term)

#let ta = INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES℄;;

ta = - : tati

#let gl,p = ta g;;

gl = [℄ : goal list

p = - : proof

#let ADD_ASSOC = p[℄;;

ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p

7

In the sessions that follow, we use HOL in mode in whih hypotheses of theorems

are printed in full; the ML top level printing funtion has been set to print hypotheses of

theorems in full.

15

In this session, a goal, g, is �rst onstruted; it onsists of the term to

be proved (namely, "!m n p. m + (n + p) = (m + n) + p"), together with

a list (initially empty) of assumptions whih may be used subsequently. A

tati (ta) is applied to the goal; the tati is a funtion. The tati is

formed by sequening two of HOL's built-in tatis: a tati INDUCT_TAC,

whih implements the numerial indution strategy, and a tati of the form

ASM_REWRITE_TAC l , (where l is a list of theorems), whih implements the

strategy of rewriting (simplifying) using (i) the theorems in the list l , (ii) any

of HOL's built-in basi rewriting theorems, and also (iii) any assumptions of

the goal in question

8

(hene the `ASM_' { the tati REWRITE_TAC l would not

use the assumptions of the goal).

The appliation of ta to g yields a list of goals (gl), together with a

justi�ation funtion (p). The list of goals represent the olletion of sub-

goals whih, if all ahieved, would suÆe to ahieve the original goal. The

justi�ation funtion maps the list of theorems (respetively) satisfying the

subgoals to a theorem ahieving the original goal. The mapping onsists of

a sequene of inferenes leading from the given theorems to the desired theo-

rem. Thus, the interation onsists in two stages: the generation of subgoals

until there are no more subgoals; and the onstrution of the proof through

inferene, based on the various justi�ation funtions.

The theorem produed an be named and preserved for future use as part

of the logial theory in whih it was established; and the text of the tati

an be saved in a �le (outside of the logial theory); but that is all that an

be preserved of the proof proess and proof session.

The tati (ta) in this ase is so simple that at �rst sight it would seem

to point diretly to a proof explanation { whih might read:

To prove "!m n p. m + (n + p) = (m + n) + p", do indution on m, and

then, for all resulting ases, simplify with the fat ADD_CLAUSES, with any

urrent assumptions, and with the basi tautologies.

However, the explanation does not follow so obviously from examination of

ta. First, the fat that the proof is by indution depends on assoiat-

ing the ML funtion name `INDUCT_TAC' with the strategy of mathematial

indution. Seond, it atually requires some thought to pereive that the

8

The assumptions are represented as terms t , so for purposes of rewriting they are

onsidered as theorems of the form t ` t

16

indution step produes two subgoals even though the goal is solved by a

`linear' sequene of steps. It also takes some thought to realize that an in-

dution assumption applies in the step ase, but not in the basis ase (and

hene that ASM_REWRITE_TAC amounts to REWRITE_TAC in the basis ase). It

requires further thought to state the indution hypothesis preisely. Finally,

the name `ADD_CLAUSES' does not immediately reveal the theorem or de�ni-

tion denoted by that name. If the tati were more omplex, the pattern of

reasoning indiated might be even less obvious.

An equivalent tati ould be formed in this ase by seletive sequening;

this makes the underlying tree of subgoals, and hene the explanation, a little

learer:

#let gl,p =

(INDUCT_TAC

THENL [ASM_REWRITE_TAC[ADD_CLAUSES℄;ASM_REWRITE_TAC[ADD_CLAUSES℄℄) g;;

##gl = [℄ : goal list

p = - : proof

#let ADD_ASSOC = p[℄;;

ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p

but this form is verbose and thus often avoided.

Some further information is revealed by generating the proof in stages.

(Normally, the subgoal pakage would be used to do the book-keeping seen

here.) The head and tail of the list (gl1) of indution subgoals are omputed

respetively by the ML funtions hd and tl. Subsequent subgoal lists and

justi�ation funtions are named as shown:

#let gl1,p1 = INDUCT_TAC g;;

gl1 =

[([℄, "!n p. 0 + (n + p) = (0 + n) + p");

(["!n p. m + (n + p) = (m + n) + p"℄,

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p")℄

: goal list

p1 = - : proof

#let gl2,p2 = ASM_REWRITE_TAC[ADD_CLAUSES℄(hd gl1);;

gl2 = [℄ : goal list

p2 = - : proof

#let th2 = p2[℄;;

th2 = |- !n p. 0 + (n + p) = (0 + n) + p

#let gl3,p3 = ASM_REWRITE_TAC[ADD_CLAUSES℄(hd(tl gl1));;

gl3 = [℄ : goal list

p3 = - : proof

17

#let th3 = p3[℄;;

th3 =

!n p. m + (n + p) = (m + n) + p

|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p

#let ADD_ASSOC = p1[th2;th3℄;;

ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p

Here, the list of subgoals, gl1, shows expliitly the two intermediate sub-

goals produed by the indution step, and it an be seen how eah is sub-

sequently a�eted by the rewriting step, and �nally ahieved by a theorem.

However, though they an be viewed, the goals, steps and theorems are nei-

ther strutured into a tree nor preserved, but are simply bound to ML iden-

ti�ers for the duration of the partiular HOL session in whih they our.

The meaning of the name ADD_CLAUSES is still not expliit; and the reasoning

pattern denoted by `INDUCT_TAC' still depends on knowing the names and

e�ets of the built-in ML funtions.

The ompleted tree, if it ould be seen now, might look something like

this

9

:

goal: [℄,"!m n p. m + (n + p) = (m + n) + p"

ahieved by: |- !m n p. m + (n + p) = (m + n) + p

advaned by proof step: INDUCT_TAC

|

| |

goal: [℄, goal: ["!n p. m + (n + p) =

"!n p. 0 + (n + p) = (m + n) + p"℄,

(0 + n) + p" "!n p. (SUC m) + (n + p) =

((SUC m) + n) + p"

ahieved by: |- !n p. 0 + (n + p) = ahieved by: !n p. m + (n + p) =

(0 + n) + p (m + n) + p

|- !n p. (SUC m) + (n + p) =

| ((SUC m) + n) + p

|

| |

| |

solved by proof step: solved by proof step:

ASM_REWRITE_TAC[ADD_CLAUSES℄ ASM_REWRITE_TAC[ADD_CLAUSES℄

9

How it `looks' depends on the onventions for displaying it, of ourse.

18

Using the subgoal pakage

10

, the subgoal-theorem tree is represented (but

only impliitly within HOL) using staks. However, the tree annot be

searhed or examined, exept by proeding with (or undoing) the intera-

tive proof, and it annot be preserved; and the problems of ADD_CLAUSES and

INDUCT_TAC still remain. In the session below, the ommand set_goal has

the side e�et of putting a goal on the goal stak, and a ommand of the form

expand ta applies ta to the goal at the top of the stak. Sibling subgoals are

staked in left-to-right order, and the subgoal tree is traversed in left-to-right

order. A useful reminder of the next remaining subgoal is printed when a

goal is ahieved. (Note that the hypotheses of a theorem is printed as `.'.)

#set_goal([℄,"!m n p. m + (n + p) = (m + n) + p");;

"!m n p. m + (n + p) = (m + n) + p"

() : void

#expand INDUCT_TAC;;

OK..

2 subgoals

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

["!n p. m + (n + p) = (m + n) + p" ℄

"!n p. 0 + (n + p) = (0 + n) + p"

() : void

#expand(ASM_REWRITE_TAC[ADD_CLAUSES℄);;

OK..

goal proved

|- !n p. 0 + (n + p) = (0 + n) + p

Previous subproof:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

["!n p. m + (n + p) = (m + n) + p" ℄

() : void

#expand(ASM_REWRITE_TAC[ADD_CLAUSES℄);;

OK..

goal proved

. |- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p

|- !m n p. m + (n + p) = (m + n) + p

Previous subproof:

goal proved

() : void

The proof aount faility produes the following explanation of the same

proof. It does so as a result of applying to a goal based on the original goal a

10

of HOL Version 11 { that of HOL Version 12 is more sophistiated

19

tati based on the given tati. The marker >>>> indiates a proof step, and

>>, a goal to be ahieved. The subgoal tree is presented depth-�rst, left to

right. Theorems are shown as they are ahieved. Eah return to a pending

subgoal is remarked:

This is the proof of the onjeture

>> ADD_ASSOC:

"!m n p. m + (n + p) = (m + n) + p"

>>>> The proof is by mathematial indution on "m".

This gives two ases to prove, the basis and step:

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

>> indution step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indution hypothesis: "!n p. m + (n + p) = (m + n) + p"

The proof of the

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

is as follows:

>>>> This follows by using the equality,

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

basi logial identities, and the assumptions made thus far.

This establishes

|- !n p. 0 + (n + p) = (0 + n) + p

The proof of the

>> indution step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indution hypothesis: "!n p. m + (n + p) = (m + n) + p"

is as follows:

>>>> This follows by using the equality,

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

basi logial identities, and the assumptions made thus far.

This establishes

!n p. m + (n + p) = (m + n) + p

|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p

This establishes

20

|- !m n p. m + (n + p) = (m + n) + p

This ompletes the proof of the onjeture

>> ADD_ASSOC:

"!m n p. m + (n + p) = (m + n) + p"

In other words, all the information that is impliit or ephemeral in the

interative proof session, or simply bound to ML identi�ers in an ad ho way,

is now expliitly strutured and saved. Beause it is saved, it an be printed

in a readable form for later inspetion and study.

To produe the aount shown, the whole tree struture of intermediate

subgoals, proof steps and and ahieving theorems that is generated when a

tati is applied to a goal is preserved in an internal form. Thus, the meaning

of names suh as ADD_CLAUSES an be shown; separate branhes of the tree

(suh as the branhing into two ases that is aused by the indution proof

step) are shown individually, even when the tati is not phrased that way.

After the printing of one branh of the tree, a reminder an be given of the

next pending branh. ML identi�ers suh as `INDUCT_TAC' are referred to by

their meaning and e�et rather than simply by name. Most importantly, the

aount avoids using HOL-spei� terminology or onepts. For example,

referene is avoided to goals and subgoals, urrent assumptions, tatis, and

rewrite rules.

The aount is produed in the following way: First, the ML type of a goal

is modi�ed to inlude more information, suh as a name for eah assumption

of the goal, and a name for the whole goal (useful when more than one

subgoal is produed at some stage). A new type, aount , is introdued to

represent subgoal-theorem trees. Justi�ations are reoneived as mapping

lists of aounts (of subgoals) to an aount (of the original goal). Next, the

ML type of a tati is modi�ed to map a new type goal to a list of new type

subgoals together with a new type justi�ation. Finally, a suite of printing

funtions is written in ML to enable the subgoal-theorem trees to be output

in an understandable format.

Further whole and partial examples of aounts our throughout this

paper.

21

3 The Extended ML Types

The aounts depited in the previous hapter are based on more elaborate

types of goals, tatis, and justi�ations than exist in HOL itself. The new

types enable enough information to be stored during the performane of a

goal oriented proof to generate a omprehensible explanation afterwards.

In the existing system, the following expressions introdue the types for

justi�ations (proofs), goals and tatis, respetively:

lettype proof = thm list -> thm ;;

lettype goal = term list # term;;

lettype tati = goal -> ((goal list) # proof);;

A goal is a term together with a list of urrent assumptions; and a tati

maps a goal to a list of subgoals and a justi�ation, where the justi�a-

tion maps the theorems ahieving the subgoals to the theorem ahieving the

original goal.

For the purpose of produing aounts, a new type, named goal , is intro-

dued (via a onstrutor funtion):

type named_goal =

mk_named_goal of string # (string # bool # term) list # term;;

A named goal of the form mk_named_goal(s,sbtl,t) orresponds to an ordinary

goal tl,t , where the list of third omponents of the elements of sbtl is simply

tl . That is, eah assumption of a named goal is aompanied by a name

(i.e. a string) and a boolean value (whose purpose is explained later); and

eah goal itself has a name (a string). The names are used in the printing of

aounts to identify ertain assumptions, and to distinguishe among multiple

subgoals.

To speify the struture of an aount, we �rst introdue a type for proof

steps:

lettype proof_step =

string # term list # thm list;;

The string part of a proof step identi�es the funtion omprising the step

(that is, a tati or a tati-valued funtion); while the lists of terms and

theorems allow for parameters to be reorded (in ase the funtion omprising

22

the step is not a tati but a funtion mapping a term to a tati, a theorem

to a tati, et).

An aount is de�ned reursively as onsisting of a proof step (whih ats

on a goal), together with a list of the named subgoals indued by that step;

a list of sub-aounts of the respetive subgoals; and a theorem (purporting

to ahieve the original goal):

retype named_aount =

mk_node of proof_step # (named_aount list) # (named_goal list) # thm;;

An auxiliary funtion extrat_theorem selets the theorem omponent of an

aount. It is de�ned by:

let extrat_theorem a =

let mk_node(ps,al,gl,th) = a in th;;

The relation of ahievement between a theorem and a goal is the same

here as in HOL.

In the new sheme, a justi�ation (named proof) funtion simply maps a

list of (sub)aounts bak to an aount:

lettype named_proof =

(named_aount)list -> named_aount;;

This subsumes the justi�ation in the HOL sense sine eah aount inludes

a theorem (as its fourth omponent).

A tati, �nally, maps a named goal to a list of named subgoals and a

justi�ation funtion:

lettype named_tati =

named_goal -> (named_goal list) # named_proof;;

The reursiveness of aounts means that an aount is a tree struture.

This gives an expliit internal representation of the subgoal-proof tree asso-

iated with a goal oriented proof. A readable version then an be produed

by a suite of print funtions. These an be arbitrarily sophistiated { for ex-

ample, hoosing to present only `important' proof steps, and doing so using

natural language expertise. However, we onsider only a simple presentation

in this paper, presenting every proof step, and doing so using unvarying,

stored phrases. Even so the print funtions are rather ompliated.

23

There are two modes of printing named goals, one for goals whih are

either one of several goals to be printed together, or are the initial goals

in a proof; and one for solitary and non-initial goals. In either ase, goals

are identi�ed with the symbol >>. The term is printed �rst (using HOL's

funtion for printing terms); then the labelled assumptions are announed

and printed (using HOL's string and term printing funtions).

For example, the following is a named goal whose aount was displayed

in the previous hapter ():

mk_named_goal(`ADD_ASSOC`, [℄, "!m n p. m + (n + p) = (m + n) + p")

The indution tati was applied to this goal to yield two subgoals. The

indution step subgoal is printed as follows, sine it is one of two subgoals

produed at one:

>> indution step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indution hypothesis: "!n p. m + (n + p) = (m + n) + p"

Printed as an only, non-initial goal it would look the same but without the

name of the goal:

>> "!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indution hypothesis: "!n p. m + (n + p) = (m + n) + p"

There are also two modes of printing proof steps: one for steps whih

advane a goal and one for steps whih solve it. In either ase, proof steps are

identi�ed by the symbol >>>>. The funtion whih prints a proof step looks

up the string identifying the step. This produes the appropriate phrases

for explaining that step. The elements lists of term and theorem parameters

may appear in the printed result. For example, the indution step of the

proof in question is

(`NAMED_INDUCT_TAC`, ["m"℄, [℄)

and that step is presented as follows, inluding the term parameter m:

>>>> The proof is by mathematial indution on "m".

This gives two ases to prove, the basis and step:

24

This step advanes rather than solves the goal, and is worded aordingly. In

ontrast, the indution ase is subsequently solved by applying a rewriting

tati whih uses any relevant urrent assumptions as well as an existing

theorem of arithmeti. The rewriting proof step is

(`NAMED_ASM_REWRITE_TAC`,

[℄,

[|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))℄)

and is printed as follows, inluding the theorem parameter shown:

>>>> This follows by using the equality,

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

basi logial identities, and the assumptions made thus far.

An aount is presented (reursively) relative to a goal. Given a goal

and an aount of its proof, the print funtion �rst prints the proof step

omponent of the aount (i.e. the top node of the subgoal-proof tree). That

is either the only node of the tree (meaning that the goal was solved in

one step) or not (meaning that the goal is just advaned by the step); the

appropriate mode is thus seleted for printing the proof step.

Seond, the subgoal list omponent of the aount is printed. Depending

on whether the list ontains just one or more than one subgoal, the appro-

priate mode is seleted for printing the element(s) of the subgoal list.

Third, the subaounts are printed (reursively), relative to the respetive

subgoals. This is aomplished by announing, for eah subgoal-subaount

pair, that the proof of the subgoal is about to follow; then printing the

subgoal followed by the subaount. (Where there is only one suh pair, the

announement and the repeated printing of the subgoal are omitted.)

Finally, the theorem ahieving the original goal is announed and printed.

Where the theorem does not in fat ahieve the goal, a message to that e�et

is also printed; an example of this ontingeny is shown in ().

In the example ase, the original goal is

mk_named_goal(`ADD_ASSOC`, [℄, "!m n p. m + (n + p) = (m + n) + p")

25

and the internal representation of the whole aount is

mk_node((`NAMED_INDUCT_TAC`, ["m"℄, [℄),

[mk_node((`NAMED_ASM_REWRITE_TAC`,

[℄,

[|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))℄),

[℄,

[℄,

|- !n p. 0 + (n + p) = (0 + n) + p);

mk_node((`NAMED_ASM_REWRITE_TAC`,

[℄,

[|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))℄),

[℄,

[℄,

. |- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p)℄,

[mk_named_goal(`basis`, [℄, "!n p. 0 + (n + p) = (0 + n) + p");

mk_named_goal(`indution step`,

[(`indution hypothesis`,

true,

"!n p. m + (n + p) = (m + n) + p")℄,

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p")℄,

|- !m n p. m + (n + p) = (m + n) + p)

The whole aount is thus printed as follows:

>>>> The proof is by mathematial indution on "m".

This gives two ases to prove, the basis and step:

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

>> indution step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indution hypothesis: "!n p. m + (n + p) = (m + n) + p"

The proof of the

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

is as follows:

>>>> This follows by using the equality,

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

basi logial identities, and the assumptions made thus far.

26

This establishes

|- !n p. 0 + (n + p) = (0 + n) + p

The proof of the

>> indution step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indution hypothesis: "!n p. m + (n + p) = (m + n) + p"

is as follows:

>>>> This follows by using the equality,

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

basi logial identities, and the assumptions made thus far.

This establishes

!n p. m + (n + p) = (m + n) + p

|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p

This establishes

|- !m n p. m + (n + p) = (m + n) + p

In ontexts in whih an aount to be printed is a top level aount rather

than a subaount of another, a prologue and epilogue are printed around

the rest of the printout. Here, the prologue is

This is the proof of the onjeture

>> ADD_ASSOC:

"!m n p. m + (n + p) = (m + n) + p"

and the epilogue is

This ompletes the proof of the onjeture

>> ADD_ASSOC:

"!m n p. m + (n + p) = (m + n) + p"

This produes the whole aount shown in the previous hapter. The al-

gorithm desribed for printing aounts determines the order in whih the

nodes of the subgoal-proof tree are printed: the tree is traversed depth �rst

and left to right. This method of printing a (tree-strutured) aount has the

advantage of produing a `at' result rather than a result mirroring the tree

struture by use of indentation or other devie, whih is useful, as the a-

ounts an be inde�nitely deep. The method also maintains indiators of the

original tree struture by repeating eah subgoal before giving its aount,

where there is more than one subgoal to be presented.

Further examples of printed aounts are shown throughout the paper.

27

4 Elementary Tatis

For the purpose of generating proof aounts, the tatis provided in HOL

an be represented by three groups of orresponding named tatis:

1. Simple tatis whih mirror the orresponding standard tatis, merely

elaborating them with names for their relevant values;

2. Complex tatis whih use the orresponding standard tatis, but

whih then further proess the results into more meaningful formats;

3. Tatis whose relation to natural patterns of reasoning is distant, and

for whih generating aounts raises philosophial problems; these an-

not be implemented along the lines of the orresponding standard ta-

tis.

This setion and Setion (...) address the �rst group; Setions (...), (...)

and (...) address the seond group; and Setions (...), (...) and (...) address

the third.

In produing an aount of the appliation of a tati to a goal, it is

useful to know something about the possible outomes of the appliation.

A partiular tati, when applied to a goal, either produes some number

of subgoals (together with a justi�ation), or else it raises an exeption (i.e.

fails). Where a tati sueeds on a goal, the number of subgoals produed

may be �xed for the tati, or it may vary inde�nitely, depending on the goal.

Some tatis have the apaity to solve goals; i.e. to produe no subgoals

(together with an appropriate justi�ation). Other tatis are able to advane

goals (i.e. to produe one or more subgoals); some an do either. Finally,

a tati that advanes a goal an do so by produing subgoals either with

hanged lists of assumptions, or with hanged terms { or both.

Based on the possible outomes of applying a tati to a goal, a sheme

for omprehensibly presenting the proof step it represents, and the subgoals

it indues, an be designed. The treatment of a few simple tatis illustrates

the methods and the range of issues involved.

4.1 The Implementation of Named Tatis: (GEN TAC)

In this setion, we sketh the way in whih simple named tatis are imple-

mented to produe aounts. GEN_TAC is used as an example.

28

The tati GEN_TAC maps a goal with a universally quanti�ed term (i.e.

a term of the form !x.t[x℄ to a list with just one subgoal, whose term is

instantiated to the bound variable (or, if neessary, a fresh variable not free

anywhere in the goal). That is, the new term is of the form t[x'℄. GEN_TAC

fails on goals whose terms are not universally quanti�ed; where it sueeds

it produes a subgoal list of �xed length (one). GEN_TAC hanges the term of

a goal, where it sueeds, but never the assumption list. It annot solve a

goal, but only advane one.

The use of GEN_TAC is illustrated in the example below. Two new predi-

ates, DIVIDES and PRIME, are de�ned here:

DIVIDES_DEF = |- !m n. m DIVIDES n = ~(m = 0) /\ (?q. q * m = n)

PRIME_DEF =

|- !n. PRIME n = n > 1 /\ (!m. m DIVIDES n ==> (m = 1) \/ (m = n))

Suppose that a goal, g, is introdued, as shown below, and that GEN_TAC is

applied to g to give a list (gl1) of one subgoal, and a justi�ation funtion

(p1):

let g = [℄, "!n. (n > 1) ==> (?p. (PRIME p) /\ (p DIVIDES n))";;

g = ([℄, "!n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")

#let gl1,p1 = GEN_TAC g;;

gl1 = [([℄, "n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")℄ : goal list

p1 = - : proof

Given, eventually, the theorem th

th = |- n > 1 ==> (?p. PRIME p /\ p DIVIDES n)

the funtion p maps th to a theorem ahieving g:

#p1[th℄;;

|- !n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)

To produe an aount of this goal-oriented proof, a orresponding new

tati, alled NAMED_GEN_TAC is de�ned. NAMED_GEN_TACmaps the orrespond-

ing named goal to a list of one named goal, together with a named proof

(the justi�ation). The justi�ation, in turn, maps a list of one aount (the

aount of the one subgoal) to another aount (the aount of the original

goal). To de�ne NAMED_GEN_TAC, given an arbitrary named goal, requires (i)

the subgoal to be onstruted and (ii) the justi�ation to be spei�ed. The

orresponding named goal (ng), alled `example_1`, is:

29

#let ng =

mk_named_goal(`example_1`,

[℄,

"!n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")

Sine it is easy to extrat an ordinary goal from a named goal, the e�et

of the ordinary tati GEN_TAC on the orresponding ordinary goal an be

omputed; this gives an ordinary subgoal and justi�ation (as shown earlier).

To then onstrut the named subgoal using the ordinary subgoal is very

simple, sine the (named and agged) assumptions of the original named

goal should not be hanged by appliation of NAMED_GEN_TAC. The name of

the subgoal does not matter, sine it is an only subgoal, so the name of the

original goal is used, arbitrarily, as the subgoals's name. The term of the

subgoal is just the term of the ordinary subgoal. Thus the list of subgoals

produed by NAMED_GEN_TAC on the named goal (ng) is:

[mk_named_goal(`example_1`,

[℄,

"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")℄

Computing the justi�ation for a named goal is also straightforward. A

funtion is de�ned whih maps a list ontaining one aount (the aount of

the named subgoal) to a new aount (the aount of the named goal). That

is, the new justi�ation is spei�ed as a funtion of the form

\[a:named aount℄. mk_node(..., ..., ..., ...)

with the parameter a representing the aount of the subgoal, and the four

slots representing the following omponents:

1. The proof step;

2. The list ontaining the sub-aount of the subgoal

3. The list ontaining the subgoal, and

4. The theorem that ahieves the subgoal.

The proof step onsists of a string, to identify the tati applied, a list of any

term parameters to be remembered, and a list of any theorem parameters.

NAMED_GEN_TAC (like GEN_TAC) does not involve theorem parameters, but does

30

involve a term: the term whih is instantiated. To identify the proof step,

the string `NAMED_GEN_TAC` will do. The new subgoal is known (as explained

above), so the third omponent is easy. The list ontaining the aount (a)

of the subgoal is supplied to the justi�ation (via the lambda binding), so this

gives the fourth item. Finally, the justi�ation of the ordinary GEN_TAC has

already been omputed. From the aount of the new subgoal, the theorem

ahieving the new subgoal an be extrated (it is the fourth omponent of

the aount); then the ordinary justi�ation an be applied to that theorem

to produe the theorem ahieving the main goal. Thus the new justi�ation

is denoted by the expression

\[a℄. mk_node((`NAMED_GEN_TAC`, ["n:num"℄, [℄),

[a℄,

[mk_named_goal(`example_1`,

[℄,

"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")℄,

p1[extrat_theorem a℄)

When the named tati is applied to the named goal, a list of named subgoals

and a named proof (justi�ation) result:

#NAMED_GEN_TAC ng;;

([mk_named_goal(`example_1`,

[℄,

"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")℄,

-)

: (named_goal list # named_proof)

When the aount of the original goal ng is �nally produed { by applying

the named proof to the atual aount of the subgoal { it is of the form

mk_node((`NAMED_GEN_TAC`, ["n"℄, [℄),

[mk_node(\dots)℄,

[mk_named_goal(`example_1`,

[℄,

"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")℄,

|- !n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n))

: named_aount

where the \. . ." representing the atual aount of the subgoal may be

arbitrarily omplex.

This internal representation is made readable by a suite of printing fun-

tions whih (i) produe a linear layout, and (ii) use the strings reording

31

proof steps to look up a pakaged `explanation' of the strategy behind the

tati.

To print the aount of a named goal, the proof step is �rst announed and

printed; then the subgoals are announed and printed; then the aount of

eah subgoal is announed and (reursively) printed; and �nally, the theorem

ahieving the original goal is announed and printed. To print a proof step

requires a print funtion de�ned as a large onditional with a branh for eah

possible string whih identi�es a proof step. The print funtion provides a

natural wording for the step denoted by the string { that is, it desribes the

natural pattern of reasoning implemented by the tati behind the step. To

print a goal involves identifying and printing the term of the goal, and then

identifying and printing the assumptions.

The printed form of the example aount is shown (partially) below. (As

we have not said anything about the proof of the subgoal, the the \� � �"

represents the printout of the aount of the subgoal.)

>>>> Consider an arbitrary "n":

We show:

>> "n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"

...

This establishes

|- n > 1 ==> (?p. PRIME p /\ p DIVIDES n)

This establishes

|- !n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)

The string `GEN_TAC` is used to generate the wording at \Consider an ar-

bitrary � � �" (and the term remembered then appears). The wording suggests

the natural pattern of reasoning in something like the way that a textbook

might put it. If an aount to be printed is the outermost aount of a

partiular proof, a prologue and epilogue are added around its printout:

This is the proof of the onjeture

>> example_1:

"!n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"

...

This ompletes the proof of the onjeture

>> example_1:

"!n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"

32

The internal form of the aount ould be rendered in many other ways,

of ourse, eah with its own suite of print funtions. The partiular suite

that has been implemented reports every proof step in detail, and uses the

format shown.

Most of the named tatis orresponding to simple HOL tatis are im-

plemented similarly way to GEN_TAC.

4.2 Solving a Goal: ACCEPT TAC

Several tatis are apable, unlike GEN_TAC, of solving goals. The simplest

of these is ACCEPT_TAC, whih in fat only solves, and annot advane, goals.

ACCEPT_TAC is a funtion whih maps a theorem to a tati whih when ap-

plied to a goal either produes an empty list of subgoals, or else fails. The

former happens i� the onlusion of the theorem is the same as the term of the

goal (up to alpha-onversion); in that ase, the justi�ation of ACCEPT_TAC,

applied to the orresponding empty list of theorems, produes the same theo-

rem as provided to ACCEPT_TAC. This is demonstrated by solving the following

goal (whih might, perhaps be a ase in a larger proof) using the pre-proved

HOL theorem MULT_SYM:

#let g = ["x > 0";"y > 0"℄,"x * y = y * x";;

g = (["x > 0"; "y > 0"℄, "x * y = y * x") : goal

#MULT_SYM;;

|- !m n. m * n = n * m

#let thm = SPECL ["x:num";"y:num"℄ (MULT_SYM);;

thm = |- x * y = y * x

#let gl,p = ACCEPT_TAC thm g;;

gl = [℄ : goal list

p = - : proof

#p[℄;;

|- x * y = y * x

The aount of this fragment of proof uses a wording to express the nat-

ural strategy behind ACCEPT_TAC. (In the orresponding named goal, the two

assumptions are given names.)

This is the proof of the onjeture

>> example_2:

"x * y = y * x"

Assuming

33

The fat1: "x > 0"

The fat2: "y > 0"

>>>> The theorem

|- x * y = y * x

is proposed to satisfy this.

This establishes

|- x * y = y * x

This ompletes the proof of the onjeture

>> example_2:

"x * y = y * x"

Assuming

The fat1: "x > 0"

The fat2: "y > 0"

Note that NAMED_ACCEPT_TAC must reord its theorem parameter in order

that the aount be understandable.

If the theorem to whih the justi�ation of ACCEPT_TAC is applied has an

appropriate onlusion but fails to ahieve the original goal through having

hypotheses beyond the assumptions of the goal, then this failure is noted at

the appropriate points in the aount { here, in the prologue and epilogue.

Suppose, for example, that we have proved the easy theorem thm', as shown

below, and that thm' is supplied to NAMED_ACCEPT_TAC in plae of thm:

x = 3 |- x * y = y * x

In HOL, an empty list of subgoals would again ensue, but the justi�a-

tion would then produe the theorem x = 3 |- x * y = y * x. The aount

makes the nature of this failure lear:

This is the attempted proof of the onjeture

>> example_2:

"x * y = y * x"

Assuming

The fat1: "x > 0"

The fat2: "y > 0"

>>>> The theorem

x = 3 |- x * y = y * x

is proposed to satisfy this.

This establishes

x = 3 |- x * y = y * x

whih does not satisfy

>> "x * y = y * x"

Assuming

34

The fat1: "x > 0"

The fat2: "y > 0"

This ompletes the attempted proof of the onjeture

>> example_2:

"x * y = y * x"

Assuming

The fat1: "x > 0"

The fat2: "y > 0"

The wording seen in the prologue and epilogue are hosen by the print

funtions when the ahievement failure is deteted in the subgoal-proof tree

being printed.

NAMED_ACCEPT_TAC is implemented similarly to NAMED_GEN_TAC, exept that

instead of onstruting a list ontaining one subgoal, it simply returns an

empty list of subgoals. The justi�ation does not involve inferene { as

GEN_TAC's does, but simply maps the empty list of theorems to the theorem

provided. While the implementation of NAMED_GEN_TAC must remember a

term, that of NAMED_ACCEPT_TAC must remember the theorem parameter to

whih it was applied.

4.3 Naming New Assumptions: DISCH TAC

DISCH_TAC, like GEN_TAC, an advane but not solve goals; and where it su-

eeds, it produes exatly one subgoal. Unlike GEN_TAC, it not only hanges

the term of a goal, but also hanges the assumption list (by adding a new

assumption):

#let g = [℄,"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)";;

g = ([℄, "n > 1 ==> (?p. PRIME p /\ p DIVIDES n)") : (* list # term)

#let gl,p = DISCH_TAC g;;

gl = [(["n > 1"℄, "?p. PRIME p /\ p DIVIDES n")℄ : goal list

p = - : proof

One we have proved the theorem th

th = |- ?p. PRIME p /\ p DIVIDES n

we an then apply the justi�ation (p) to yield the theorem ahieving the

original goal:

#p[th℄;;

|- n > 1 ==> (?p. PRIME p /\ p DIVIDES n)

35

The orresponding named tati is implemented along the lines of the

previous named tatis, exept that it must in addition give a name to the

added assumption to indiate that this assumption was, in a previous goal,

the anteedent of an impliation. The aount onstruted by the named

tati uses this name, and supplies a natural wording for the strategy, applied

to the orresponding named goal:

This is the proof of the onjeture

>> example_3:

"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"

>>>> It is suffiient to prove:

>> "?p. PRIME p /\ p DIVIDES n"

Assuming

The anteedent: "n > 1"

...

This establishes

n > 1 |- ?p. PRIME p /\ p DIVIDES n

This establishes

|- n > 1 ==> (?p. PRIME p /\ p DIVIDES n)

This ompletes the proof of the onjeture

>> example_3:

"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"

4.4 Transforming Subgoals: SUBST1 TAC

The ML funtion SUBST1_TAC, like ACCEPT_TAC, maps a theorem to a tati.

The theorem must have a onlusion of equational form; it is is used to make

and justify a substitution throughout the term of a goal for all free instanes

of the left hand side of the equation by the right hand side of the equation.

Like GEN_TAC, a tati of the form SUBST1_TAC th, where it sueeds, produes

a subgoal list of �xed length one. Also like GEN_TAC, it advanes but does

not solve goals; and it transform the term of a goal but does not alter the

assumptions. For example:

#let g = [℄,"!n:num. n > 1 ==> n DIVIDES n";;

g = ([℄, "!n. n > 1 ==> n DIVIDES n")

Suppose that the theorem th is an instane of the de�nition of division:

th = |- n DIVIDES n = ~(n = 0) /\ (?q. q * n = n)

36

Then substituting throughout the goal aording to the speialized form of

the de�nition, is a way of unfolding the goal into more basi terms:

#let gl1,p1 = (GEN_TAC THEN SUBST1_TAC th)g;;

gl1 = [([℄, "n > 1 ==> ~(n = 0) /\ (?q. q * n = n)")℄ : goal list

p1 = - : proof

The printed form of the aount on the orresponding named goal explains

the e�et of SUBST_TAC:

This is the proof of the onjeture

>> example_4:

"!n. n > 1 ==> n DIVIDES n"

>>>> Consider an arbitrary "n":

We show:

>> "n > 1 ==> n DIVIDES n"

>>>> We substitute aording to the following equality:

|- n DIVIDES n = ~(n = 0) /\ (?q. q * n = n).

Thus, it is suffiient to prove:

>> "n > 1 ==> ~(n = 0) /\ (?q. q * n = n)"

...

This establishes

|- n > 1 ==> ~(n = 0) /\ (?q. q * n = n)

This establishes

|- n > 1 ==> n DIVIDES n

This establishes

|- !n. n > 1 ==> n DIVIDES n

This ompletes the proof of the onjeture

>> example_4:

"!n. n > 1 ==> n DIVIDES n"

It an be seen that the theorem parameter to NAMED_SUBST_TAC has to be re-

membered in order to explain fully the substitution { as for NAMED_ACCEPT_TAC.

The implementation is similar to previous ones.

4.4.1 Impliit Assumptions from Invalid Proof Steps

Although SUBST_TAC is apparently straightforward, there is one diÆulty that

may arise. To explain it, we use the arithmeti onstants SUC and PRE, pro-

vided in HOL, for the suessor and predeessor funtions (respetively) on

37

the natural numbers. The predeessor funtion is haraterized by the theo-

rem

|- (PRE 0 = 0) /\ (!m. PRE(SUC m) = m)

and about the suessor we know that

|- !n. ~(SUC n = 0)

Suppose that the goal is to prove the following (for any x)

#let g = [℄, "PRE(SUC(PRE x)) = PRE x";;

g = ([℄, "PRE(SUC(PRE x)) = PRE x") : (* list # term)

and that we have already proved the theorem th:

~(x = 0) |- SUC(PRE x) = x

(whih is not diÆult to prove).

If a user unwittingly were to try to proede in HOL by making a substi-

tution based on the theorem th, the resulting subgoal would appear without

reording the fat that an assumption (~(x = 0)) had thereby been intro-

dued. The result would appear to be as hoped:

#let gl1,p1 = SUBST1_TAC th g;;

gl1 = [([℄, "PRE x = PRE x")℄ : goal list

p1 = - : proof

This subgoal ould then be solved by appeal to reexivity:

#let th' = REFL "PRE x";;

th' = |- PRE x = PRE x

#let gl2,p2 = ACCEPT_TAC th' (hd gl1);;

gl2 = [℄ : goal list

p2 = - : proof

#let th2 = p2[℄;;

th2 = |- PRE x = PRE x

This still appears to solve the problem; it leads to a theorem whih ahieves

the one subgoal in gl1. However, the justi�ation of the substitution (p1)

maps th2 to a theorem th1

38

#let th1 = p1[th2℄;;

th1 = . |- PRE(SUC(PRE x)) = PRE x

#print_all_thm th1;;

~(x = 0) |- PRE(SUC(PRE x)) = PRE x

whih, beause it is ontingent on some hypothesis, does not ahieve the

original goal. This sudden failure of ahievement is the �rst indiation to the

user that an assumption has been introdued `behind the senes' { as a result

of the theorem parameter to SUBST1_TAC having depended on the hypothesis

~(x = 0). The ause of the failure may not be immediately apparent { even

after the hypothesis (printed by default as a dot) is examined.

Indeed, if instead of th' (|- PRE x = PRE x) we had proved an easy the-

orem th''

~(x = 0) |- PRE x = PRE x

and we had supplied th'' rather than th' as the solution of the subgoal in gl1

(i.e. ([℄, "PRE x = PRE x")), then the theorem (th2) whih was supplied

to the justi�ation (p1) of the substitution would already depend on the

hypothesis ~(x = 0):

#let gl2,p2 = ACCEPT_TAC th'' (hd gl1);;

gl2 = [℄ : goal list

p2 = - : proof

#let th2 = p2[℄;;

th2 = . |- PRE x = PRE x

#print_all_thm th2;;

~(x = 0) |- PRE x = PRE x

#let th1 = p1[th2℄;;

th1 = . |- PRE(SUC(PRE x)) = PRE x

#print_all_thm th1;;

~(x = 0) |- PRE(SUC(PRE x)) = PRE x

As an be seen, the end result is the same as before. That is, the justi�ation

of the substitution (the funtion p1) \knows" about the invisible assumption

~(x = 0), so whether the justi�ation is applied to the theorem with onlu-

sion PRE x = PRE x) with the hypothesis ~(x = 0) or without the hypothesis

makes no di�erene; in either ase, the result is a theorem with the hypothe-

sis ~(x = 0). However, what the justi�ation funtion \knows" is not readily

apparent to a user. We will take this behaviour of the justi�ation to be the

39

riterion of whether a tati applied to a given goal introdues an impliit

assumption.

To see why the justi�ation neessarily adds the hypothesis to the theo-

rem it returns, where it is laking, one must examine the inferene rule for

substitution whih supports the substitution tati. The rule spei�es that

in using an established equality to substitute equals for equals throughout

the onlusion of a given theorem, the hypotheses of the equality theorem,

as well as the hypotheses of the theorem into whih the substitution is made,

are propagated through to the resulting theorem. (See ref, Ch 3.)

A |- t = u B |- P(t)

A u B |- P(u/t)

In general, a tati is alled invalid if it is able to generate, on some

goal, subgoals and a justi�ation suh that ahieving the subgoals does not

neessarily entail, via the justi�ation, ahieving the goal. Invalidity ne-

essarily haraterizes any tati onstruted by applying a funtion of type

thm -> tati (or thm list -> tati), et, to appropriate values to reate

a tati. The property thereby pertains to quite a few of the ommonly used

HOL tatis, inluding DISCH_TAC, whih was desribed earlier, as well as

SUBST1_TAC. (See appendix ... listing all suh HOL tatis.)

Any of these invalid tatis an be applied validly or invalidly to goals.

SUBST1_TAC th, for example, was applied invalidly to the goal g, in the last

example, beause g inluded no assumptions { in partiular, it did not inlude

as an assumption the hypothesis ~(x = 0) of the substitution theorem th.

4.4.2 Impliit Assumptions without Use

In the previous example, the theorem th was used in the substitution step;

it may appear that that is essential for the hypothesis ~(x = 0) to have been

made impliitly. However, this is not so. Another example of the same sort

illustrates the subtle point that the appearane of the invisible assumption

does not depend on the theorem with the hypothesis having had an e�et on

the goal. In the following example, the attempted substitution has no e�et,

beause there is no suitable substitution instane for the term SUC(PRE x).

Suppose the goal is

#let g = [℄,"PRE(SUC x) = x";;

g = ([℄, "PRE(SUC x) = x") : (* list # term)

40

and the same substitution theorem, th (~(x = 0) |- SUC(PRE x) = x), is

engaged (but to no e�et):

#let gl,p = SUBST1_TAC th g;;

gl = [([℄, "PRE(SUC x) = x")℄ : goal list

p = - : proof

One the single subgoal is ahieved { without our speifying how { by a

theorem th'

#th';;

|- PRE(SUC x) = x

the justi�ation an be applied to give a result:

#p[th'℄;;

. |- PRE(SUC x) = x

#print_all_thm it;;

~(x = 0) |- PRE(SUC x) = x

Thus, despite the fat that the theorem th' itself ahieves the subgoal

[℄, "PRE(SUC x) = x")

and the fat that the substitution tati has had no e�et, the justi�ation

(p) of the substitution tati still produes a theorem depending on the

hypothesis ~(x = 0). That is, the substitution step neessarily introdues an

assumption behind the senes { by embedding that hypothesis in the funtion

that justi�es the (e�etive or ine�etive) substitution step.

11

4.4.3 Impliit Assumptions from Valid Proof Steps

Although the appearane of the unexpeted hypothesis in the previous two

setions was aused by an invalid use of a tati, the introdution of invis-

ible assumptions does not arise only through invalidity { the mehanism is

atually more subtle still. We return to the �rst substitution example (Se-

tion 4.4.1) to illustrates the same e�et, but without the invalid use of tatis

and without failing to ahieve the original goal.

Suppose we refer to the same theorem th:

11

Possibly, HOL's substitution tati ould be implemented so that if it deteted that it

has had no e�et it would return a justi�ation that did not rely on the inferene rule for

substitution { whih is the origin of the hypothesis of the result. However, this would be

ompliated, probably ineÆient, and would have to be done for quite a few other similarly

onstruted tatis.

41

~(x = 0) |- SUC(PRE x) = x

and this time use a goal resembling that of Setion 4.4.1, but whih inludes

the assumption in question to begin with:

#let g = ["~(x = 0)"℄, "(PRE(SUC(PRE x)) = PRE x)";;

g = (["~(x = 0)"℄, "PRE(SUC(PRE x)) = PRE x") : goal

The use of the substitution tati is now valid:

#let gl1,p1 = SUBST1_TAC th (hd gl1);;

gl1 = [(["~(x = 0)"℄, "PRE x = PRE x")℄ : goal list

p1 = - : proof

If the theorem th' (as in Setion 4.4.1)

th' = |- PRE x = PRE x

or indeed th'' (also as in Setion 4.4.1)

~(x = 0) |- PRE x = PRE x

is now supplied as the solution to the goal in gl1, the justi�ation (p1) of

the substitution { as before { produes a theorem (th2) that depends on the

ondition ~(x = 0). (This time, though, the resulting theorem does ahieve

the goal g.)

#let gl2,p2 = ACCEPT_TAC th' (hd gl2);;

gl2 = [℄ : goal list

p2 = - : proof

#let th2 = p2[℄;;

th2 = |- PRE x = PRE x

#let th1 = p1[th2℄;;

th1 = . |- PRE(SUC(PRE x)) = PRE x

#print_all_thm th1;;

~(x = 0) |- PRE(SUC(PRE x)) = PRE x

The dependene on ~(x = 0) happens despite the validity of the substitution

on the subgoal { that is, despite the fat that at the point where the sub-

stitution tati was applied, the ondition ~(x = 0) was already a standing

assumption. (This is not an automati e�et of ~(x = 0) having already been

an assumption { not all assumptions reappear thus.) The impliit assump-

tion introdued by the tati manifests itself in the e�et of the justi�ation

funtion of that tati, and for exatly the same reason as in the previous

two examples: the propagation of assumptions in the inferene rule for sub-

stitution.

42

4.4.4 Aounting for Impliit Assumptions

The �rst and seond examples (in Setions 4.4.1 and 4.4.2 respetively),

involving invalid reasoning, might be dismissed simply as poor HOL style;

indeed, suh reasoning is preluded by the HOL subgoal interfae in its most

restritive mode. However, in the third example, the reasoning is ompletely

valid, and the example in fat illustrates a ommonly used method in HOL

tatial proof. There are, in addition, several other (valid) ways in whih

assumptions an be aused to appear behind the senes, and these likewise

annot be dismissed as poor HOL style { they are features of HOL's urrent

design. (These other ways are disussed in) For all of these ases, it is

neessary, in proof aounts, to deal with the issue of impliit assumptions.

The aounting method we propose is to reord all assumptions that

pertain to a goal, whether or not they would be visible ordinarily. Impliit

assumptions are identi�ed by the boolean value false; this is the purpose of

the boolean omponent of an assumption of a named goal. Whether or when

impliit assumptions are printed is a feature of a partiular printing routine,

but the information is anyway available to print. (Currently, they are always

printed.)

With impliit assumptions reorded in aounts, the invalid use of substi-

tution seen above in the �rst (invalid) example (Setion 4.4.1) { whih might

well have puzzled the user { is aounted for as follows:

This is the attempted proof of the onjeture

>> example_5:

"PRE(SUC(PRE x)) = PRE x"

>>>> We substitute aording to the following equality:

~(x = 0) |- SUC(PRE x) = x.

Thus, it is suffiient to prove:

>> "PRE x = PRE x"

Assuming impliitly

The hypothesis of the equality: "~(x = 0)"

>>>> The theorem

|- PRE x = PRE x

is proposed to satisfy this.

This establishes

|- PRE x = PRE x

This establishes

~(x = 0) |- PRE(SUC(PRE x)) = PRE x

whih does not satisfy

43

>> "PRE(SUC(PRE x)) = PRE x"

This ompletes the attempted proof of the onjeture

>> example_5:

"PRE(SUC(PRE x)) = PRE x"

This aount lears up all the mystery from the situation: �rst, the sub-

goal deomposition reords the introdued assumption so that it an be seen

from the point at whih it beomes an assumption onward; seond, the transi-

tion (via the justi�ation of the substitution tati) from the establishment of

the theorem |- PRE x = PRE x to the theorem ~(x = 0) |- PRE(SUC(PRE x)) = PRE x

an be understood by referene to the impliit assumption of the relevant

subgoal; and �nally, the failure to ahieve the original goal (beause of the

additional hypothesis) is noted and made lear.

The aount of the seond example (Setion 4.4.2), in whih the (invalid)

substitution step has no e�et on the term of the goal, makes lear that

the step does have the side e�et of introduing an impliit assumption,

whih later manifests itself in the hain of ahieving theorems produed by

suessive justi�ations:

This is the attempted proof of the onjeture

>> example_6:

"PRE(SUC x) = x"

>>>> We substitute aording to the following equality:

~(x = 0) |- SUC(PRE x) = x.

Thus, it is suffiient to prove:

>> "PRE(SUC x) = x"

Assuming impliitly

The hypothesis of the equality: "~(x = 0)"

...

This establishes

|- PRE(SUC x) = x

This establishes

~(x = 0) |- PRE(SUC x) = x

whih does not satisfy

>> "PRE(SUC x) = x"

This ompletes the attempted proof of the onjeture

>> example_6:

"PRE(SUC x) = x"

The aount produed for the third (valid) example (Setion 4.4.3), in

whih the assumption ~(x = 0) belongs to the goal at the point where the

44

substitution is made, is again intended to lear up any mystery about the

reappearane of the impliit assumption in the hain of ahieving theorems:

This is the proof of the onjeture

>> example_7:

"PRE(SUC(PRE x)) = PRE x"

Assuming

The fat: "~(x = 0)"

>>>> We substitute aording to the following equality:

~(x = 0) |- SUC(PRE x) = x.

Thus, it is suffiient to prove:

>> "PRE x = PRE x"

Assuming

The fat: "~(x = 0)"

Assuming impliitly

The hypothesis of the equality: "~(x = 0)"

>>>> The theorem

|- PRE x = PRE x

is proposed to satisfy this.

This establishes

|- PRE x = PRE x

This establishes

~(x = 0) |- PRE(SUC(PRE x)) = PRE x

This ompletes the proof of the onjeture

>> example_7:

"PRE(SUC(PRE x)) = PRE x"

Assuming

The fat: "~(x = 0)"

The expliit assumption ~(x = 0), in the subgoal

>> "PRE x = PRE x"

Assuming

The fat: "~(x = 0)"

Assuming impliitly

The hypothesis of the equality: "~(x = 0)"

does not explain the dependene on ~(x = 0) of the orresponding ahieving

theorem

~(x = 0) |- PRE(SUC(PRE x)) = PRE x

The noting of the introdution of the impliit assumption, in eah of the

aounts of substitution, is ahieved by implementing NAMED_SUBST_TAC so

that whenever it is applied to a theorem, and the resulting tati to a goal,

45

any hypotheses of the theorem are reorded as impliit assumptions of the

subgoal being onstruted. Any suh assumption is labelled to indiate its

origin { in the ase of substitution with the string

`the hypothesis of the equality`

and with the boolean value false to indiate that it is an impliit assumption.

The only futher are required is that in extrating an ordinary goal from a

named goal (so that the results of the ordinary SUBST1_TAC an be omputed),

only expliit assumptions should be inluded; assumptions of the named goal

labelled with false are ignored. Impliit assumptions are inluded again,

however, in the named subgoal being onstruted by NAMED_SUBST_TAC { that

is, impliit assumptions persist from named goals to named subgoals, as one

would expet.

The printing routine for goals is then arranged to print expliit and im-

pliit assumptions separately (as illustrated in the aounts above). The

routine for printing whole aounts is arranged to produe an appropriate

message (again, as illustrated) when a andidate theorem fails to ahieve the

subgoal for whih it was intended; and when the theorem purporting to do

so fails to ahieve an initial (outermost) goal.

4.5 Multiple Subgoals: INDUCT TAC

The numerial indution tati is an example of a tati whih produes more

than one subgoal { it always produes one basis and and one step ase, when

it sueeds at all. In both subgoals, there is a transformed term; and in

the step goal, there is a di�erent assumptions list { a new assumption (the

indution hypothesis) is added. For example, the proof of the assoiativity

of addition (normally pre-proved in HOL) is by indution:

#let g = [℄,"!m n p. m + (n + p) = (m + n) + p";;

g = ([℄, "!m n p. m + (n + p) = (m + n) + p")

#let [g1;g2℄,p = INDUCT_TAC g;;

g1 = ([℄, "!n p. 0 + (n + p) = (0 + n) + p") : goal

g2 =

(["!n p. m + (n + p) = (m + n) + p"℄,

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p")

: goal

p = - : proof

46

The orresponding named goal is

mk_named_goal(`example_8`, [℄, "!m n p. m + (n + p) = (m + n) + p")

To speify the orresponding named tati NAMED_INDUCT_TAC requires

onstruting the two named subgoals from the two ordinary subgoals. This

in turn requires naming eah subgoal, and naming the new assumption of

the step subgoal. The named justi�ation is onstruted muh as for the

previous tatis. Here, it is a funtion that maps a list of two sub-aounts

to an aount of the original goal. The string `NAMED_INDUCT_TAC` identi�es

the tati used, and the indution variable (m) is reorded. When the whole

proof is ompleted and printed, the indution is aounted for as follows:

This is the proof of the onjeture

>> example_8:

"!m n p. m + (n + p) = (m + n) + p"

>>>> The proof is by mathematial indution on "m".

This gives two ases to prove, the basis and step:

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

>> indution step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indution hypothesis: "!n p. m + (n + p) = (m + n) + p"

The proof of the

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

is as follows:

...

This establishes

|- !n p. 0 + (n + p) = (0 + n) + p

The proof of the

>> indution step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indution hypothesis: "!n p. m + (n + p) = (m + n) + p"

is as follows:

...

This establishes

!n p. m + (n + p) = (m + n) + p

|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p

47

This establishes

|- !m n p. m + (n + p) = (m + n) + p

This ompletes the proof of the onjeture

>> example_8:

"!m n p. m + (n + p) = (m + n) + p"

In printing this aount, the aounts of the two subgoals are printed in

the order in whih the subgoals were announed. Sine there is more than one

subgoal, and the aount of eah an be arbitrarily long, eah sub-aount is

prefaed by a reminder of the subgoal to whih it pertains.

4.6 Advanement or Solution: REWRITE TAC

The funtion that implements HOL's rewriting sheme maps a list of theo-

rems (to be used as left-to-right rewrite rules) to a tati. For a given list l,

the tati REWRITE_TAC l (or any of the several variants of REWRITE_TAC, in-

luding ASM_REWRITE_TAC and so on { see ...) an produe a variable number

of subgoals: either none or one. That is, a goal an be solved by rewriting, or

it an be advaned to a single subgoal. In the former ase, as for ACCEPT_TAC,

an empty list of subgoals ensues. In the latter, the subgoal produed is un-

hanged as regards its assumption list, but may be hanged as regards the

term.

4.6.1 Solution by REWRITE TAC

The following list, ontaining one pre-proved HOL theorem, an be used to

omplete the proof in the previous example (Setion 4.5):

#let l = [ADD_CLAUSES℄;;

l =

[|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))℄

: thm list

In both the basis and step ases of that proof, it is suÆient to rewrite

using ADD_CLAUSES, using any assumptions pertaining at the time of rewriting,

48

and using a standard list of basi tautologies

12

. This strategy is implemented

by the tati ASM_REWRITE_TAC l. Thus the goal is solved by the tati

NAMED_INDUCT_TAC THEN

NAMED_ASM_REWRITE_TAC l

One the orresponding named tati NAMED_REWRITE_TAC is implemented,

the proedure for printing the aount of the rewriting proof step must hoose

between two ways of presenting the rewriting step: one whih gives a wording

appropriate to solution, and one for advanement only.

For solution, the aount below shows the presentation of the (advaning)

rewriting step in both ases:

This is the proof of the onjeture

>> example_8:

"!m n p. m + (n + p) = (m + n) + p"

>>>> The proof is by mathematial indution on "m".

This gives two ases to prove, the basis and step:

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

>> indution step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indution hypothesis: "!n p. m + (n + p) = (m + n) + p"

The proof of the

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

is as follows:

>>>> This follows by using the equality,

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

basi logial identities, and the assumptions made thus far.

This establishes

|- !n p. 0 + (n + p) = (0 + n) + p

The proof of the

>> indution step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indution hypothesis: "!n p. m + (n + p) = (m + n) + p"

12

All of HOL's rewriting funtions use these basi rewrite rules exept those with names

suÆxed by `PURE', suh as PURE ASM REWRITE TAC.

49

is as follows:

>>>> This follows by using the equality,

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

basi logial identities, and the assumptions made thus far.

This establishes

!n p. m + (n + p) = (m + n) + p

|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p

This establishes

|- !m n p. m + (n + p) = (m + n) + p

This ompletes the proof of the onjeture

>> example_8:

"!m n p. m + (n + p) = (m + n) + p"

In the implementation of NAMED_REWRITE_TAC, the list provided of poten-

tial rewrite theorems is saved so that it an be printed as part of the aount

of the rewriting step. A more sophistiated aount would perhaps not re-

port every potential rewrite theorem, but only those on whih hanges to the

term of the goal were based. Likewise, a more informative aount would

indiate, in both ases, whih, if any, of the basi logial identities were en-

gaged, and whih, if any, of the assumptions { by name. However, to report

only the rewrites atually engaged is beyond the sope of the urrent a-

ounting method, whih implements named tatis based on the values that

would be produed by the orresponding ordinary tatis (on the orrespond-

ing ordinary goals). The method treats the ordinary tatis as `blak boxes'.

To ause the ordinary rewriting tati to keep a reord of rewrites atually

engaged would involve re-implementing the existing rewriting tati (whih

happens to be partiularly omplex).

However, an analysis of the aount shown, giving all potential rewrite

rules, does have a use: an analysis of the aount might suggest to the user

some improvements to the tati used. In the basis ase, for example, the

funtion ASM_REWRITE_TAC was spei�ed, but in fat it is obvious from the

aount that no assumptions are present, and so REWRITE_TAC would have

suÆed. The user ould then deide whether

NAMED_INDUCT_TAC THENL

[NAMED_REWRITE_TAC l;

NAMED_ASM_REWRITE_TAC l℄

50

were preferable to the original tati.

It is worth noting here that the subgoal-theorem tree onstruted in the

proess of aounting is strutured exatly as the goal-oriented proof is atu-

ally performed. That is, although the original tati is spei�ed as a `linear'

sequene of two tatis, the indution proof step in fat yields two subgoals;

the sequening funtional THEN is de�ned so as to apply its seond argument

to all the subgoals produed by its �rst argument. In this way, the aount

lari�es the proof's atual struture in a way that is not neessarily made

apparent by the ML expression that generates the proof.

4.6.2 Advanement by REWRITE TAC

The aount of applying the following alternative tati to the goal illustrates

the wording for rewriting steps that do not solve goals. (It also happens to

demonstrate the simpler tati that is suÆient in the basis ase.) It divides

the rewriting step for the step ase into two rewriting steps (the seond using

the basi rewrites and assumptions only), but is still a linear tati.

NAMED_INDUCT_TAC THEN

NAMED_REWRITE_TAC[ADD_CLAUSES℄ THEN

NAMED_ASM_REWRITE_TAC[℄

The aount is then as follows, illustrating (in the step ase) the wording for

a rewriting step that does not solve a subgoal:

This is the proof of the onjeture

>> example_8:

"!m n p. m + (n + p) = (m + n) + p"

>>>> The proof is by mathematial indution on "m".

This gives two ases to prove, the basis and step:

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

>> indution step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indution hypothesis: "!n p. m + (n + p) = (m + n) + p"

The proof of the

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

is as follows:

>>>> This follows by using the equality

|- (0 + m = m) /\

51

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

and basi logial identities.

This establishes

|- !n p. 0 + (n + p) = (0 + n) + p

The proof of the

>> indution step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indution hypothesis: "!n p. m + (n + p) = (m + n) + p"

is as follows:

>>>> Using the following equality

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

and using basi tautologies, it is suffiient to prove:

>> "!n p. SUC(m + (n + p)) = SUC((m + n) + p)"

Assuming

The indution hypothesis: "!n p. m + (n + p) = (m + n) + p"

>>>> This follows from basi logial identities, as well as

the assumptions made thus far.

This establishes

!n p. m + (n + p) = (m + n) + p

|- !n p. SUC(m + (n + p)) = SUC((m + n) + p)

This establishes

!n p. m + (n + p) = (m + n) + p

|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p

This establishes

|- !m n p. m + (n + p) = (m + n) + p

This ompletes the proof of the onjeture

>> example_8:

"!m n p. m + (n + p) = (m + n) + p"

The aount lari�es the fat that the �rst rewriting step of the linear

tati solves the basis ase; this, again, is not immediately apparent from the

ML proedure.

Finally, as the point about invalidity made in Setion 4.4 applies also to

the rewriting funtions (whih take a list of theorems as their parameter);

any of the theorems on the list an introdue impliit assumptions, and these

52

assumptions are treated just as for substitution.

13

4.7 Adding an Assumption: ASSUME TAC

Like several tatis so far, ASSUME_TAC maps a theorem to a tati. It simply

adds the onlusion of the theorem provided to the assumption list, and jus-

ti�es this step by disharging the assumption and applying Modus Ponens.

Thus, an impliit assumption may again be introdued. The following a-

ount shows the wording for printing suh a proof step, and illustrates how

impliit assumptions an be raised by using ASSUME_TAC to aess assumptions

by text (a ommon method in HOL proofs).

For example, suppose we wish to prove

mk_named_goal(`example_9`, [℄, "(p = q) ==> (q = r) ==> (p = r)")

(for p, q and r) of some given type, by assuming the anteedents in turn, ap-

pealing to the transitivity of equality to derive as a new assumption "p = r",

and then using the new assumption as a rewrite rule. The aount of this

proof, using the orresponding NAMED_ASSUME_TAC is:

This is the proof of the onjeture

>> example_9:

"(p = q) ==> (q = r) ==> (p = r)"

>>>> It is suffiient to prove:

>> "(q = r) ==> (p = r)"

Assuming

The anteedent: "p = q"

>>>> It is suffiient to prove:

>> "p = r"

Assuming

The anteedent: "q = r"

The anteedent: "p = q"

>>>> We use the fat that

p = q, q = r |- p = r.

It is suffiient to prove:

>> "p = r"

13

Indeed, any of the assumptions that happens to be engaged as a rewrite rule by

ASM REWRITE TAC { but not those whih are not { must also, neessarily, introdue

an impliit assumption. However, these partiular impliit assumptions seem unlikely to

ause onfusion, and so are not reorded as impliit in the aounts.

53

Assuming

The added hypothesis: "p = r"

The anteedent: "q = r"

The anteedent: "p = q"

Assuming impliitly

The hypothesis of the theorem used: "p = q"

The hypothesis of the theorem used: "q = r"

>>>> This follows from basi logial identities, as well as

the assumptions made thus far.

This establishes

p = r |- p = r

This establishes

p = q, q = r |- p = r

This establishes

p = q |- (q = r) ==> (p = r)

This establishes

|- (p = q) ==> (q = r) ==> (p = r)

This ompletes the proof of the onjeture

>> example_9:

"(p = q) ==> (q = r) ==> (p = r)"

Note that the seond theorem established (p = q, q = r |- p = r) ar-

ries as hypotheses the two impliit assumptions of the theorem parameter to

ASSUME_TAC. This assumption step is explained by the phrase `We use the fat that

� � �'.

5 Conversions

A onversion in HOL is a funtion mapping a term to a theorem { that

is, a theorem parameterized on a term. For example, the onept of beta-

onversion is represented in HOL by the funtion BETA_CONV whih maps a

term (the beta redex) to a theorem expressing the redution:

#BETA_CONV "(\x. x > 0) 3";;

|- (\x. x > 0)3 = 3 > 0

Conversions provide a way of deriving partiular instanes of fats whih

annot themselves be expressed as theorems in the HOL logi. (To express

54

beta-onversion in general, for example, would require quanti�ation over

syntax lasses of logial expressions.)

To enable the use of suh equational theorems as redution tatis, a

funtion CONV_TAC is provided. CONV_TAC maps a given onversion to a tati

whih will perform the redution on a goal with suitable term. The tati

thus produed, when applied to a goal, will either fail to be appliable, or

will produe exatly one subgoal.

#CONV_TAC BETA_CONV;;

- : tati

#CONV_TAC BETA_CONV ([℄,"(\x. x > 0) 3");;

([([℄, "3 > 0")℄, -) : subgoals

The redution is justi�ed by a simple substitution.

To onstrut the aount of a proof step generated by applying a tati of

the form CONV_TAC , for some onversion , the usual method is used. The

theorem {

|- (\x. x > 0)3 = 3 > 0

{ whih justi�es the beta-redution step is saved as a theorem parameter

in the aount, for purposes of explanation. For example, to explain the

appliation of the named tati

NAMED_CONV_TAC BETA_CONV

to the goal

mk_named_goal(`example`,[℄,"(\x. x > 0) 3")

the aount produed is:

This is the proof of the onjeture

>> example:

"(\x. x > 0)3"

>>>> We use the instantiated theorem-shema

|- (\x. x > 0)3 = 3 > 0

making it suffiient to prove:

>> "3 > 0"

...

This establishes

55

|- 3 > 0

This establishes

|- (\x. x > 0)3

This ompletes the proof of the onjeture

>> example:

"(\x. x > 0)3"

Beause the named tati reords the partiular fat that was used, the

method gives a meaninful explanation however the onversion is expressed.

For example, the funtion DEPTH_CONV is one of several funtions whih trans-

form onversions to new onversions. The onversion (DEPTH_CONV BETA_CONV

produes a onversion whih will apply reursively { to arbitrary depth { to

all the beta-redexes of a term.)

For example, to explain the appliation of the named tati

NAMED_CONV_TAC (DEPTH_CONV BETA_CONV)

to the goal

(mk_named_goal(`example`,[℄,"(\x. x > 0)3 = ((\x. x > 0)4 = T)"))

the aount produed is:

This is the proof of the onjeture

>> example:

"(\x. x > 0)3 = ((\x. x > 0)4 = T)"

>>>> We use the instantiated theorem-shema

|- ((\x. x > 0)3 = ((\x. x > 0)4 = T)) = (3 > 0 = (4 > 0 = T))

making it suffiient to prove:

>> "3 > 0 = (4 > 0 = T)"

...

This establishes

|- 3 > 0 = (4 > 0 = T)

This establishes

|- (\x. x > 0)3 = ((\x. x > 0)4 = T)

This ompletes the proof of the onjeture

>> example:

"(\x. x > 0)3 = ((\x. x > 0)4 = T)"

56

For omplex expressions denoting a onversion, it ould be quite diÆ-

ult to reonstrut the tati produed by CONV_TAC when applied to that

onversion. The explanation makes it unneessary to remember what form

of theorem eah onversion (suh as BETA_CONV) gives on appropriate terms;

what e�ets the various onversion transformers (suh as DEPTH_CONV) have on

onversions in general; and in what sense the parameterized tati CONV_TAC

produes a tati given a onversion. The explanation instead supplies the

atual equational theorem justifying the redution.

6 Resolution

The `resolution' tatis provided in HOL { IMP_RES_TAC and RES_TAC { are

the basis of the seond group of named tatis. Members of this group rely

on the results of the orresponding ordinary tatis, but they further proess

the results so that they an be presented in a meaningful way

14

.

The funtion IMP_RES_TAC maps a theorem to a tati. It gives a way of

bringing to bear an impliative

15

axiom or previously proved theorem on a

goal by adding to the urrent assumptions of a goal a ertain subset of the

olletive diret and indiret onsequenes of that theorem together with the

urrent assumptions.

The onsequenes are found by attempting to math the anteedent of the

impliative theorem to eah existing assumption (i.e. andidate anteedent);

so determining an instantiation, wherever a math is made. The appropriate

instane of the onsequent of the impliation is then added as a new assump-

tion, to the subgoal. A single appliation of IMP_RES_TAC th to a goal, for a

theorem th, is suÆent for �nding all new assumptions of the form sought;

subsequent appliations of IMP_RES_TAC have no further e�et.

The instantiated onsequents are proessed before new the new subgoal(s)

are onstruted. If the onsequent is an n-ary disjuntion, n subgoals are

reated, one with eah respetive disjunt as a new assumption. If it is an n-

ary onjuntion, the n onjunts are added separately to the (single) subgoal.

(Existential and other onsequents are not further proessed.)

14

The resolution tatis are mis-named in that they do not do resolution in the lassial

sense (based on uni�ation), but simply some one-way mathing of an impliation to a

andidate anteedent, followed by forward inferene based on Modus Ponens .

15

Impliations, in this ontext, are taken in a generalized sense, as desribed in ...

57

The tati RES_TAC, on a goal, looks for pairs of resolvents within the

set of urrent assumptions. It onsiders eah impliative assumption against

the set of all other assumptions in the same way that IMP_RES_TAC resolves

an impliation against a set of assumptions. For eah impliation mathed,

RES_TAC similarly adds as a new assumption the appropriate instane of the

onsequent. Like IMP_RES_TAC, RES_TAC applied to a goal produes n subgoals

when the onsequent of a mathed impliation is an n-ry disjuntion. The

full set of results that RES_TAC is able to �nd is not neessarily found in a

single appliation of the tati; whether it is depends on the ordering of the

initial assumptions.

Both IMP_RES_TAC th and RES_TAC an either solve goals or advane them.

They an solve a goal either by deriving as a new assumption the term itself

of the goal, or by deriving falsity as a new assumption (in whih ase any-

thing desired ould be established, inluding the partiular term of the goal).

Where these tatis advane goals, they an produe an inde�nite number

of subgoals; just one subgoal if no math made involves an impliation with

a disjuntive onsequent; and more than one subgoal if at least one math

does so. Where these tatis advane a goal, they an add to the assumption

list, but they annot hange the term.

To onstrut the aount of a proof step involving one of the resolution

tatis involves omputing the results of the orresponding ordinary tati

on the orresponding ordinary goal, then identifying the nature of the result,

and (in the advanement ase) naming the relevant parts of subgoals. Where

the step solves the goal, diret solution and solution by ontradition are

distinguished. This is done by heking whether an arbitrary goal would also

be solved at that point. An appropriate string is then hosen to denote the

proof step so that the two solution ases an be printed appropriately. For

example, onsider the pre-proved theorem LESS_MONO:

#LESS_MONO;;

|- !m n. m < n ==> (SUC m) < (SUC n)

In the following proof, LESS_MONO is used to solve a trivially easy goal by

resolution:

#let g = ["p < q"℄,"SUC p < SUC q";;

g = (["p < q"℄, "(SUC p) < (SUC q)") : goal

#let gl,p = IMP_RES_TAC LESS_MONO g;;

gl = [℄ : goal list

58

p = - : proof

#let th = p[℄;;

th = . |- (SUC p) < (SUC q)

#print_all_thm th;;

p < q |- (SUC p) < (SUC q)

The aount generated by the named tati shows the wording used:

This is the proof of the onjeture

>> example:

"(SUC p) < (SUC q)"

Assuming

The fat: "p < q"

>>>> This follows diretly

by using the assumptions made thus far and the fat

|- !m n. m < n ==> (SUC m) < (SUC n).

This establishes

p < q |- (SUC p) < (SUC q)

This ompletes the proof of the onjeture

>> example:

"(SUC p) < (SUC q)"

Assuming

The fat: "p < q"

The next example demonstrates solution by ontradition. (Sine the

term of the goal does not matter, we use an arbitrary provable term t.) The

pre-proved theorem LESS_NOT_EQ is the theorem parameter:

#LESS_NOT_EQ;;

|- !m n. m < n ==> ~(m = n)

The impliation of LESS_NOT_EQ is taken by IMP_RES_TAC to be a form of the

anonial

|- m < n ==> (m = n) ==> F

Though IMP_RES_TAC this time sueeds by deriving a ontradition, there is

nothing in the following ordinary HOL session to indiate that fat:

#let g = ["p < q";"(p:num) = q"℄,"t:bool";;

g = (["p < q"; "p = q"℄, "t") : goal

#let gl,p = IMP_RES_TAC LESS_NOT_EQ g;;

gl = [℄ : goal list

59

p = - : proof

#let th = p[℄;;

th = .. |- t

#print_all_thm th;;

p < q, p = q |- t

The wording of the aount makes the proof method lear

16

:

This is the proof of the onjeture

>> example:

"t"

Assuming

The fat1: "p < q"

The fat2: "p = q"

>>>> This follows by ontradition,

using the assumptions made thus far and the fat

|- !m n. m < n ==> ~(m = n).

This establishes

p < q, p = q |- t

This ompletes the proof of the onjeture

>> example:

"t"

Assuming

The fat1: "p < q"

The fat2: "p = q"

Where resolution advanes a goal rather than solving it, this is indiated

in the aount; the new result is identi�ed. Here, LESS_MONO is again used:

This is the proof of the onjeture

>> example:

"t"

Assuming

The fat: "p < q"

>>>> From the assumptions made thus far and the fat

|- !m n. m < n ==> (SUC m) < (SUC n),

it is suffiient to prove the following:

>> "t"

Assuming

The onsequene: "(SUC p) < (SUC q)"

The fat: "p < q"

...

16

An alternative presentation ould print the anonial form of LESS NOT EQ (i.e. the

form atually used by the tati), if that were felt to be more informative.

60

This establishes

(SUC p) < (SUC q), p < q |- t

This establishes

p < q |- t

This ompletes the proof of the onjeture

>> example:

"t"

Assuming

The fat: "p < q"

Of ourse, there may be more than one new result; in that ase, the new

results are numbered in the order in whih they would ordinarily be added

to the assumptions in HOL:

This is the proof of the onjeture

>> example:

"t"

Assuming

The fat1: "p1 < q1"

The fat2: "p2 < q2"

>>>> From the assumptions made thus far and the fat

|- !m n. m < n ==> (SUC m) < (SUC n),

it is suffiient to prove the following:

>> "t"

Assuming

The onsequene 2: "(SUC p2) < (SUC q2)"

The onsequene 1: "(SUC p1) < (SUC q1)"

The fat1: "p1 < q1"

The fat2: "p2 < q2"

....

This establishes

(SUC p2) < (SUC q2), (SUC p1) < (SUC q1), p1 < q1, p2 < q2 |- t

This establishes

p1 < q1, p2 < q2 |- t

This ompletes the proof of the onjeture

>> example:

"t"

Assuming

The fat1: "p1 < q1"

The fat2: "p2 < q2"

As noted earlier, a resolvent with a disjuntive onlusion an ause a

ase split. If that happens, the ases are numbered and identi�ed in the

61

aount (and new results identi�ed as before). In the following example, we

resolve against the pre-proved LESS_LEMMA:

#let LESS_LEMMA1 = theorem `prim_re` `LESS_LEMMA1`;;

LESS_LEMMA1 = |- !m n. m < (SUC n) ==> (m = n) \/ m < n

This is the proof of the onjeture

>> example:

"t"

Assuming

The fat: "p < (SUC q)"

>>>> From the assumptions made thus far and the fat

|- !m n. m < (SUC n) ==> (m = n) \/ m < n,

it is suffiient to prove the following:

>> disjuntive ase 1 of 2:

"t"

Assuming

The onsequene: "p = q"

The fat: "p < (SUC q)"

>> disjuntive ase 2 of 2:

"t"

Assuming

The onsequene: "p < q"

The fat: "p < (SUC q)"

The proof of the

>> disjuntive ase 1 of 2:

"t"

Assuming

The onsequene: "p = q"

The fat: "p < (SUC q)"

is as follows:

....

This establishes

p = q, p < (SUC q) |- t

The proof of the

>> disjuntive ase 2 of 2:

"t"

Assuming

The onsequene: "p < q"

The fat: "p < (SUC q)"

is as follows:

....

This establishes

p < q, p < (SUC q) |- t

62

This establishes

p < (SUC q) |- t

This ompletes the proof of the onjeture

>> example:

"t"

Assuming

The fat: "p < (SUC q)"

Finally, the point made in (...) about impliit assumptions applies to any

tati of the form IMP_RES_TAC th; impliit assumptions may be introdued

by the theorem parameter th. RES_TAC does not have this property.

The implementations of NAMED_IMP_RES_TAC and NAMED_RES_TAC follow the

outlines of simpler implementations (...) but involve rather more proessing

of the ordinary results in order to build useful aounts into the named

funtions.

7 Popping Assumptions

There are several groups of funtions in HOL whose members produe new

tatis from old. Suh funtions might be alled `tati transformers'. One

suh group ontains the HOL funtion POP_ASSUM, whih maps a funtion f

of type thm -> tati to a new funtion of type tati so that

POP_ASSUM f = \((a.A),t). f (ASSUME a) (A,t)

That is, the funtion POP_ASSUM transforms f into a tati whih takes a goal

(with at least one term on the assumption list), removes the �rst term (a)

on the assumption list, assumes that term (to produe the theorem a |- a),

supplies that theorem to the funtion f (to yield a new tati), and �nally,

applies that tati to the redued goal (the goal without the leading assump-

tion).

The other two members of this group of funtions are POP_ASSUM_LIST

and SUBST_ALL_TAC. The method of viewing the assumption list of a goal as

a stak whih an be `popped' was developed for LCF by Larry Paulson (...).

The reasons for wishing to pop or remove an assumption before using it

may not be immediately apparent, as this tehnique does not orrespond to

any natural strategy. For example, in the textbook proof shown in (...), one

of the proof steps was:

63

If n itself is a prime, there is nothing to prove. Suppose, then,

that n is omposite...

The argument then ontinues until the desired fat is established for n, under

the assumption that n is omposite; and the assumption is used at some

point. It would sound very odd if, after the assumption were used, but

before the ase were solved, the proof were to ontinue:

...We now ease to assume that n is omposite, as this fat is no

longer required.

This sounds odd beause assumptions in a normal subgoaling framework

annot be `dropped' one they have been used, and they would normally be

used one introdued. In the example, the assumption that n is omposite

persists from subgoal to subgoal, past the point of its use, right until the

omposite ase of the proof is established. However, in proofs in HOL, there

are at least two reasons for wishing to give the appearane of dropping an

assumption from a subgoal, and one reason for atually doing so.

7.1 Popping to Erase Used Assumptions

The simplest reason for ausing an assumption to seem to vanish is that dur-

ing an interative session in whih proof steps are made one at a time, eah

subgoal of the proof tree is printed out to the user expliitly. To redue appar-

ent lutter, it has beome a ommon pratie to use the funtion POP_ASSUM

to supress the printing of assumptions that were but are no longer required.

Thus, appliation of the tati POP_ASSUM SUBST1_TAC not only e�ets a sub-

stitution (and without expliit mention of the substitution equation { i.e.

of the leading assumption), but also prevents the leading assumption from

appearing subsequently in the subgoal. It does not, of ourse, prevent the

theorem ahieving the original goal from depending on the popped assump-

tion, sine the justi�ation of POP_ASSUM SUBST1_TAC neessarily adds the

popped assumption to any theorem ahieving the subgoal.

#let g = ["x = 5"℄,"x > 0";;

g = (["x = 5"℄, "x > 0") : goal

#let gl,p = POP_ASSUM SUBST1_TAC g;;

gl = [([℄, "5 > 0")℄ : goal list

64

p = - : proof

...

th = |- 5 > 0

#print_all_thm(p[th℄);;

x = 5 |- x > 0

...

th' = x = 5 |- 5 > 0

#print_all_thm(p[th'℄);;

x = 5 |- x > 0

7.2 Popping to Replae an Assumption

The seond reason for popping an assumption is to re-introdue it imme-

diately in a di�erent form. For example, it may be onvenient to `replae'

an assumption of the form t1 = t2 with the equivalent t2 = t1, in whih

ase the original assumption is no longer required, and indeed, may be an

obstale if it does not o-exist happily with the new form (in this ase, for

example, it would prevent a subsequent appliation of ASM_REWRITE_TAC...

from terminating). One way to ahieve this is illustrated below:

#let g = ["5 = x"℄,"t:bool";;

g = (["5 = x"℄, "t") : goal

#let gl,p = POP_ASSUM (ASSUME_TAC o SYM) g;;

gl = [(["x = 5"℄, "t")℄ : goal list

p = - : proof

Again, the justi�ation of POP_ASSUM (ASSUME_TAC o SYM) neessarily pro-

dues a theorem depending on the popped assumption 5 = x, given a theorem

ahieving the subgoal { so the popped theorem is not gone, but simply not

printed.

7.3 Popping to Erase Irrelevant Assumptions

The third reason for popping assumptions is that in HOL proofs in whih

ertain kinds automation ome into play, useless assumptions are sometimes

introdued into subgoals; the resolution tatis (...), whih add to the as-

sumptions of a goal all the olletive onsequenes of a ertain type of the

existing assumptions (with or without an additional impliative lemma), are

65

notorious for this. Useless assumptions are therefore popped (and genuinely

dropped) in order to redue the onfusion (and lutter) that might result from

the presene of assumptions whih are never used and on whih nothing ever

atually depends. For example:

#let g = ["5 = x"℄,"t:bool";;

g = (["5 = x"℄, "t") : goal

#let gl,p = POP_ASSUM (\th. ALL_TAC) g;;

gl = [([℄, "t")℄ : goal list

p = - : (* list -> *)

...

th = |- t

#p[th℄;;

|- t

In this ase, the assumption 5 = x is genuinely lost; the justi�ation of

POP_ASSUM (\th. ALL_TAC)

17

{ or, to use a ombinator, POP_ASSUM (K ALL_TAC)

{ does not add the popped assumption to the theorem ahieving the goal.

This ases arises for any user-de�ned funtion whih shares the property of

genuinely dropping assumptions.

It is also the ase that if the ahieving theorem does depend on the lost

assumption, the justi�ation still maps that theorem to a theorem ahieving

the original goal, even though the subgoal is not ahieved:

#let g = ["5 = x"℄,"t:bool";;

g = (["5 = x"℄, "t") : goal

#let gl,p = POP_ASSUM (K ALL_TAC) g;;

gl = [([℄, "t")℄ : goal list

p = - : (* list -> *)

...

#print_all_thm th;;

5 = x |- t

#print_all_thm(p[th℄);;

5 = x |- t

7.4 Aounting for Popping Assumptions

For whatever reasons it is used, the assumption-popping strategy is perfetly

valid, sine a theorem that ahieves the subgoal less an assumption must

17

as POP ASSUM is urrently implemented in HOL

66

also ahieve a subgoal with that assumption, by the de�nition of ahievement.

Whether, in eah ase, popping assumptions is the best method for produing

the desired e�et is a question of style, taste and larity, but this is not the

question of interest here. Instead, the question is how to produe a natural

aount of a proof that relies on this tehnial and non-natural devie.

The key to produing suh aounts, in the �rst and seond ases, is

the onept of an impliit assumption, introdued in (...). This is suggested

by the way assumptions not visible in subgoals are nevertheless known to

justi�ations, exatly as happens when a tati is applied whih has been

onstruted from a theorem whose hypotheses do not orrespond to urrent

assumptions.

The aount desired would simply doument the tati atually applied,

show the subgoal with the popped assumption no longer expliit, but leave

no mystery about the persistene of the assumption in the justi�ation. That

is, the popped assumption would appear as impliit where it eased to appear

as expliit.

7.4.1 Aounting for Popping to Erase Used Assumptions

A sensible aount of the �rst ase (popping to erase used assumptions)

is onstruted by �rst de�ning a funtion NAMED_POP_ASSUM in parallel with

HOL's POP_ASSUM funtion. Thus, for a funtion f of type thm -> named_tati,

the funtion NAMED_POP_ASSUM f is a named tati whih when applied to a

named goal

1. �nds the term part (tm, say) of the �rst expliit assumption of a goal;

2. assumes tm to give a theorem tm |- tm and applies f to the resulting

theorem to form a named tati; and

3. applies the named tati f(ASSUME tm) to the named goal minus its

�rst expliit assumption.

This means that in relation to the redued goal, the new tati is bringing

to bear a theorem whih depends on a hypothesis not represented in the goal

{ namely, tm. Thus the situation is the same as in (...). The aount produed

for the �rst ase(Setion 7.1), in whih the tati POP_ASSUM SUBST1_TAC was

used to substitute with and dispense with the leading assumption, is as

follows:

67

This is the proof of the onjeture

>> example1:

"x > 0"

Assuming

The fat: "x = 5"

>>>> We substitute aording to the following equality:

x = 5 |- x = 5.

Thus, it is suffiient to prove:

>> "5 > 0"

Assuming impliitly

The hypothesis of the equality: "x = 5"

...

This establishes

|- 5 > 0

This establishes

x = 5 |- x > 0

This ompletes the proof of the onjeture

>> example1:

"x > 0"

Assuming

The fat: "x = 5"

This interpretation of NAMED_POP_ASSUM assures that when the popped as-

sumption (tm) is atually used (e.g. in this ase, by the substitution tati

NAMED_SUBST1_TAC(ASSUME tm)), it will neessarily be reorded in the substi-

tution subgoal as an impliit assumption. The aount desribes just one

proof step: the substitution. It does not mention the popping funtion,

but simply douments the `loss' of the expliit assumption at the point of

substitution, where the impliit assumption arises. This gives the e�et of

transferring the popped, expliit assumption to the list of impliit assump-

tions, whih is what was desired.

A di�erent interpretation of NAMED_POP_ASSUM f is to insist that a popped

assumption always be reorded as impliit. To implement this view, the

goal to whih the tati f(ASSUME tm) is applied does not have the popped

assumption removed, but simply marked as impliit.

If an impliit assumption is ultimately reorded in the �rst way, then

the same assumption is reorded as impliit in the new way. However, the

advantage of the new method over the �rst is that the new method is not om-

mitted to the phrasing with whih, in the �rst way, the funtion f identi�es

the impliit assumption { indiating that the assumption was used invalidly.

68

The �rst method is ommitted to this phrasing, as it is built into the a-

ount produed by the justi�ation of f; the name of the assumption before it

was popped annot be restored. (In the example, the impliit assumption is

labelled The hypothesis of the equality by NAMED_SUBST1_TAC.) Using the

new method, the name borne by the assumption in the previous subgoal

(fat, in the example) ould be retained (or some other preferred phrase

used instead). The disadvantage of the new method is that it does not over

the third ase (popping to erase irrelevant assumptions); we return to this

point in Setion 7.4.3.

An elaboration of NAMED_POP_ASSUM f is to have it notie when f is exatly

equivalent to NAMED_ASSUME_TAC, in whih ase there is no overall e�et. In

that ase, the justi�ation of f an be replaed with the identity justi�ation

(i.e. the funtion mapping a list ontaining one aount to that aount) so

that instead of the aount

This is the proof of the onjeture

>> example1:

"x > 0"

Assuming

The fat: "x = 5"

>>>> We use the assumption that

x = 5 |- x = 5.

It is suffiient to prove:

>> "x > 0"

Assuming

The added hypothesis: "x = 5"

Assuming impliitly

The hypothesis of the theorem used: "x = 5"

...

This establishes

x = 5 |- x > 0

...

whih douments the double re-assumption of x = 5 without it ever obviously

having been lost, the following less onfusing aount is produed:

This is the proof of the onjeture

>> example1:

"x > 0"

Assuming

The fat: "x = 5"

...

69

This establishes

x = 5 |- x > 0

...

This is a minor elaboration, as the exat situation desribed is infrequent,

and the trik does not extend to anything more omplex (i.e. to anything

involving modi�ation of the justi�ation of f).

7.4.2 Aounting for Popping to Replae Assumptions

The original interpretation of popping also gives a reasonable aount of the

seond ase: popping to replae an assumption (Setion 7.2). In the example

used, the tati POP_ASSUM (\th. ASSUME_TAC(SYM th)) was used to drop an

old assumption and add a new one, as if replaing the old one. The aount

produed is:

This is the proof of the onjeture

>> example2:

"t"

Assuming

The fat: "5 = x"

>>>> We use the fat that

5 = x |- x = 5.

It is suffiient to prove:

>> "t"

Assuming

The added hypothesis: "x = 5"

Assuming impliitly

The hypothesis of the theorem used: "5 = x"

...

This establishes

x = 5 |- t

This establishes

5 = x |- t

This ompletes the proof of the onjeture

>> example2:

"t"

Assuming

The fat: "5 = x"

Again, by using the new interpretation of popping (i.e. by insisting that

popped assumptions are immediately made impliit) the phrase

70

The hypothesis of the theorem used

identifying the impliit assumption, ould be varied as desired and does not

have to be the one seen above, whih was supplied by ASSUME_TAC.

7.4.3 Aounting for Popping to Erase Irrelevant Assumptions

The original interpretation of NAMED_POP_ASSUM also gives a natural aount of

the third ase (Setion 7.3), in whih an unneessary assumption is atually

dropped, and is not stithed into any justi�ation funtion. In the example

shown, POP_ASSUM (\th. ALL_TAC) (i.e. POP_ASSUM (K ALL_TAC)) was used

to give this e�et. The aount produed is:

This is the proof of the onjeture

>> example3:

"t"

Assuming

The fat: "5 = x"

>>>> It is suffiient to prove:

>> "t"

...

This establishes

|- t

This establishes

|- t

This ompletes the proof of the onjeture

>> example3:

"t"

Assuming

The fat: "5 = x"

The aount douments the loss of the assumption (a valid step), and

shows that when the subgoal is ultimately ahieved, the justi�ation of

the proof step returns a theorem whih does not depend on the original

(and lost) fat. This orresponds to { and explains { the behaviour of

POP_ASSUM (K ALL_TAC) in HOL, as shown in Setion 7.3.

It is also the ase, as mentioned in Setion 7.3, that the justi�ation

of POP_ASSUM (K ALL_TAC) maps the theorem 5 = x |- t to itself, and so

ahieves the original goal, even though the theorem does not ahieve the

71

subgoal. If the theorem 5 = x |- t is eventually established and then sup-

plied as the purported ahievement of the subgoal, the following aount

results:

This is the proof of the onjeture

>> example3:

"t"

Assuming

The fat: "5 = x"

>>>> It is suffiient to prove:

>> "t"

...

This establishes

5 = x |- t

whih does not satisfy

>> "t"

This establishes

5 = x |- t

This ompletes the proof of the onjeture

>> example3:

"t"

Assuming

The fat: "5 = x"

The loal failure is noted, as well as the ultimate ahievement of the original

goal. This also orresponds to { and explains { the behaviour of POP_ASSUM (K ALL_TAC)

in HOL.

In ontrast to this interpretation of NAMED_POP_ASSUM f { in whih the

popped assumption (tm) is allowed to appear or not in the ourse of applying

the tati f (ASSUME tm) to the goal ontaining no version of the assump-

tion { is the seond interpretation, in whih the popped assumption is made

impliit in the goal to whih the tati is applied. (We all this funtion

NAMED_POP_TRACE beause it neessarily leaves a `trae' of the popped as-

sumption.) Under the seond interpretation, the aount is:

This is the proof of the onjeture

>> example3:

"t"

Assuming

The fat: "5 = x"

>>>> It is suffiient to prove:

72

>> "t"

Assuming impliitly

The fat: "5 = x"

...

This establishes

|- t

This establishes

|- t

This ompletes the proof of the onjeture

>> example3:

"t"

Assuming

The fat: "5 = x"

Here, a reord of the popped assumption is kept, so it is not de�nitively

lost. This still orresponds to HOL's behaviour, but it no longer satis�es the

original de�nition of impliit assumptions, whih was based on the behaviour

of justi�ations. It seems desirable to retain the present de�nition of impliit

assumptions as the basis for explaining why ertain assumptions do or do

not appear as hypotheses of ertain theorems. Therefore, it seems sensible

to retain the original view of the pop operation, whih overs all three ases

adequately. However, there is another use for this version of the pop funtion;

it arises in the next setion.

An alternative might be to implement NAMED_POP_ASSUM f di�erently for

di�erent f, using the original view of popping for ases resembling the third

ase and the new view in others. Probably, the hoie would have to be

represented by a onditional within the implementation of a more general

pop funtion, as there seems no way in advane to tell whih sort of funtion

f one has been given. This would be a ompliated way around the problem,

if it ould be made to work at all.

The root of the diÆult with K ALL_TAC is the de�nition of ahievement in

HOL. This spei�es that a theorem's hypotheses need only be a subset of the

assumptions of the subgoal it purports to ahieve. If the de�nition required

the full set, the problem would not arise. A less drasti modi�ation of HOL,

however, would at least produe uniformity over all funtions to whih the

pop operator ould be applied; that would be to re-implement HOL's funtion

POP_ASSUM so that for any appropriate f, the justi�ation of POP_ASSUM f were

not simply the justi�ation (p, say) of f, but rather (ADD_ASSUM tm) o p.

73

where ADD_ASSUM : term -> thm -> thm is the inferene rule in HOL that

adds a hypothesis to a theorem. Under this de�nition, the two views of the

pop operator would be the same, so we ould use the seond, if desired, to

hoose a way of identifying the popped assumption.

7.5 Aounting for POP ASSUM LIST

The funtion POP_ASSUM_LIST is a generalization of POP_ASSUM whih removes

all of the assumptions of a goal and passes the list of (assumed) assumptions

to a funtion of type thm list -> tati. The aount is therefore similar;

for example, the following proof

#let g = ["x = 5";"y = 4"℄,"x > y";;

g = (["x = 5"; "y = 4"℄, "x > y") : goal

#let gl,p = POP_ASSUM_LIST SUBST_TAC g;;

gl = [([℄, "5 > 4")℄ : goal list

p = - : proof

...

th = |- 5 > 4

#print_all_thm(p[th℄);;

x = 5, y = 4 |- x > y

reeives the following aount:

This is the proof of the onjeture

>> example4:

"x > y"

Assuming

The fat: "x = 5"

The fat: "y = 4"

>>>> We substitute aording to the following equalities:

x = 5 |- x = 5

y = 4 |- y = 4.

Thus, it is suffiient to prove:

>> "5 > 4"

Assuming impliitly

The hypothesis of the equality: "x = 5"

The hypothesis of the equality: "y = 4"

...

This establishes

|- 5 > 4

74

This establishes

x = 5, y = 4 |- x > y

This ompletes the proof of the onjeture

>> example4:

"x > y"

Assuming

The fat: "x = 5"

The fat: "y = 4"

7.6 Aounting for SUBST ALL TAC

The funtion SUBST_ALL_TAC, of type thm -> tati, is not a tati trans-

former, but the tati SUBST_ALL_TAC th shares with POP_ASSUM f the property

of ausing assumptions of a goal to seem to disappear. SUBST_ALL_TAC uses an

equational theorem to e�et a substitution throughout the term of the goal

{ in the style of SUBST1_TAC { and also to e�et the substitution throughout

the assumption list. In partiular, SUBST_ALL_TAC th resembles POP_ASSUM f

when the latter is used for replaing assumptions by equivalent terms { and

at the same time, making the original assumptions impliit (Setion 7.2).

This, again, does not orrespond to a natural pattern of reasoning, and that

makes it diÆult to give a natural aount. The e�ets of SUBST_ALL_TAC are

illustrated in the following example:

rth = |- x = 1

#let g = ["(y:num) = x";"w > x";"w < 5"℄,"(z:num) = x";;

g = (["y = x"; "w > x"; "w < 5"℄, "z = x") : goal

#let gl,p = SUBST_ALL_TAC rth g;;

gl = [(["y = 1"; "w > 1"; "w < 5"℄, "z = 1")℄ : goal list

p = - : proof

...

th = y = 1, w > 1, w < 5 |- z = 1

#print_all_thm(p[th℄);;

y = x, w > x, w < 5 |- z = x

In HOL, SUBST_ALL_TAC happens to be implemented as an appliation of

SUBST1_TAC (to modify the term of the goal), sequened with a appliation

of POP_ASSUM_LIST (Setion 7.5) to a funtion that substitutes through and

re-assumes eah assumption (to modify the assumptions). That is, to modify

75

the assumptions, all are removed, and eah is transformed, then re-assumed.

Although the method of implemening named tatis so far has not been

to parallel the atual HOL implementation { the HOL funtions are taken

as `blak boxes' { one reason for trying to do so in this ase is to leave

the reording of the impliit assumptions to the ASSUME_TAC's, so that it is

automati.

The parallel implemantation satis�es:

NAMED_SUBST_ALL_TAC rth =

NAMED_SUBST1_TAC rth THEN

NAMED_POP_ASSUM_LIST

(\[th1;...;thn℄. ASSUME_TAC (SUBS [rth℄ thn)

THEN

.

.

.

THEN

ASSUME_TAC (SUBS [rth℄ th1))

The aount that is produed in this way turns out to be rather in-

srutable. Although this implementation of NAMED_SUBST_ALL_TAC gives the

orret end result, the intermediate proof steps { normally not visible { are

not what one would expet; they reveal loal failures of theorems to ahieve

subgoals:

This is the proof of the onjeture

>> example5:

"z = x"

Assuming

The fat1: "y = x"

The fat2: "w > x"

The fat3: "w < 5"

>>>> We substitute aording to the following equality:

|- x = 1.

Thus, it is suffiient to prove:

>> "z = 1"

Assuming

The fat1: "y = x"

The fat2: "w > x"

The fat3: "w < 5"

>>>> We use the assumption that

w < 5 |- w < 5.

It is suffiient to prove:

>> "z = 1"

Assuming

The added hypothesis: "w < 5"

Assuming impliitly

The hypothesis of the theorem used: "w < 5"

76

>>>> We use the fat that

w > x |- w > 1.

It is suffiient to prove:

>> "z = 1"

Assuming

The added hypothesis: "w > 1"

The added hypothesis: "w < 5"

Assuming impliitly

The hypothesis of the theorem used: "w > x"

The hypothesis of the theorem used: "w < 5"

>>>> We use the fat that

y = x |- y = 1.

It is suffiient to prove:

>> "z = 1"

Assuming

The added hypothesis: "y = 1"

The added hypothesis: "w > 1"

The added hypothesis: "w < 5"

Assuming impliitly

The hypothesis of the theorem used: "y = x"

The hypothesis of the theorem used: "w > x"

The hypothesis of the theorem used: "w < 5"

...

This establishes

y = 1, w > 1, w < 5 |- z = 1

This establishes

w > 1, w < 5, y = x |- z = 1

whih does not satisfy

>> "z = 1"

Assuming

The added hypothesis: "w > 1"

The added hypothesis: "w < 5"

Assuming impliitly

The hypothesis of the theorem used: "w > x"

The hypothesis of the theorem used: "w < 5"

This establishes

w < 5, y = x, w > x |- z = 1

whih does not satisfy

>> "z = 1"

Assuming

The added hypothesis: "w < 5"

Assuming impliitly

The hypothesis of the theorem used: "w < 5"

This establishes

y = x, w > x, w < 5 |- z = 1

77

This establishes

y = x, w > x, w < 5 |- z = x

This ompletes the proof of the onjeture

>> example5:

"z = x"

Assuming

The fat1: "y = x"

The fat2: "w > x"

The fat3: "w < 5"

That is, the �rst subgoal orretly reets the modi�ation of the term

part of the goal; but of the three subsequent subgoals that reet the re-

assumption of the modi�ed assumption terms, only the last one is orret: it

shows the three new assumptions and the three impliit assumptions as de-

sired. The other two subgoals reet intermediate states of the omputation

in whih ertain assumptions are missing { neither impliit nor expliit, but

held in temporary data strutures.

Whether the urrent implementation of SUBST_ALL_TAC in HOL is the best

one is not relevant here; nor is whether SUBST_ALL_TAC represents a `good'

style of reasoning. It is suÆient to note that, in this ase, following the

implementation is not a useful tehnique.

In any ase, this aount shown is awed in two other ways: (i) the

fat that the assumption w < 5 is not a�eted by the substitution would

be explained more learly if that assumption were not said to have been

proessed like the others (although it is); and (ii) the aount would be

less tedious and if it did not report the proessing of eah assumption in

sequene, but all together. The sequene results from the fat that although

POP_ASSUM_LIST removes all of the assumptions at one, ASSUME_TAC th is

not one of the HOL tatis for whih a simultaneous version is provided (as

SUBST_TAC is for SUBST1_TAC).

This suggests a seond approah: namely, to implement a funtion alled,

say, NAMED_ASSUME_LIST_TAC that generalizes NAMED_ASSUME_TAC. NAMED_ASSUME_LIST_TAC

omputes the e�et of adding a list of assumptions in sequene to a goal, then

presents and justi�es the result in one proof step, as though the assumptions

had been added simultaneously. Impliit assumptions are reorded as a mat-

ter of ourse by the internal ASSUME_TAC's. When the addition of the assump-

tions is pakaged into one step with its own aount, then NAMED_SUBST_ALL

an then be implemented to satisfy

78

NAMED_SUBST_ALL_TAC rth =

NAMED_SUBST1_TAC rth THEN

NAMED_POP_ASSUM_LIST

(\thl. NAMED_ASSUME_LIST_TAC [SUBS [rth℄ thn;

.

.

.

;

SUBS [rth℄ th1℄)

so that its aount spares the user the sequential omputation of the re-

assumptions. The aount thus produed for the example is:

This is the proof of the onjeture

>> example5:

"z = x"

Assuming

The fat1: "y = x"

The fat2: "w > x"

The fat3: "w < 5"

>>>> We substitute aording to the following equality:

|- x = 1.

Thus, it is suffiient to prove:

>> "z = 1"

Assuming

The fat1: "y = x"

The fat2: "w > x"

The fat3: "w < 5"

>>>> We use the fats that

y = x |- y = 1

w > x |- w > 1

w < 5 |- w < 5.

It is suffiient to prove:

>> "z = 1"

Assuming

The added hypothesis: "y = 1"

The added hypothesis: "w > 1"

The added hypothesis: "w < 5"

Assuming impliitly

The hypothesis of the theorem used: "y = x"

The hypothesis of the theorem used: "w > x"

The hypothesis of the theorem used: "w < 5"

...

This establishes

y = 1, w > 1, w < 5 |- z = 1

This establishes

y = x, w > x, w < 5 |- z = 1

This establishes

79

y = x, w > x, w < 5 |- z = x

This ompletes the proof of the onjeture

>> example5:

"z = x"

Assuming

The fat1: "y = x"

The fat2: "w > x"

The fat3: "w < 5"

This is a great improvement over the previous aount in showing only two

steps: the modi�ation of the term, and the one-step modi�ation of the

assumptions. It also has the property that the theorems returned by the

justi�ations respetively ahieve the subgoals shown.

A minor aw of this version is that there is no way, in passing ontrol from

NAMED_POP_ASSUM_LIST to NAMED_ASSUME_LIST_TAC, to make speial provisions

for partiular assumptions whih are not a�eted by substitution; thus w < 5,

in the example, has to be treated in the same way as the others. This auses

a slight obsurity in the aount.

It was noted in Setion 7.4.1 that NAMED_POP_ASSUM ould be elaborated,

in the ase that NAMED_POP_ASSUM f had no net e�et, to return the iden-

tity justi�ation, and so omit the aount of the re-assumption on the re-

dued goal. The orresponding generalization of NAMED_POP_ASSUM_LIST per-

tains when NAMED_POP_ASSUM_LIST f has no net e�et { that is, when all

the popped assumptions reappear intat and in order. This elaboration of

NAMED_POP_ASSUM_LIST would only help with NAMED_SUBST_ALL_TAC where no

assumption were a�eted by substitution; that is, the hoie is between re-

porting the re-assumption of all the modi�ed assumptions, or reporting noth-

ing.

A more serious aw is that in implementing NAMED_SUBST_ALL_TAC in a

di�erent manner than HOL's SUBST_ALL_TAC, it is not neessarily the ase

that the two omputations are (in a suitable sense) equivalent { the aount

therefore might not be explaining the HOL proof. This would at least require

an argument about the two omputations.

The third (and last) approah we onsider is to implement NAMED_SUBST_ALL_TAC

itself as a unit funtion with a one-step aount. To ompute its results,

NAMED_SUBST_ALL_TAC analyzes the results of applying SUBST_ALL_TAC to the

orresponding ordinary goal, and then presents the results as if derived in

one stroke. As part of the presentation, unhanged assumptions are notied

80

and presented as if no substitution had been attempted. The analysis stage

allows the new assumptions as well as the impliit (old) assumptions to be

named in a meaningful way (rather than in due ourse by ASSUME_TAC).

The implementation of NAMED_SUBST_ALL_TAC in terms of SUBST_ALL_TAC

is not diÆult, but it does involve a ertain amount of internal analysis. The

aount produed is as follows:

This is the proof of the onjeture

>> example5:

"z = x"

Assuming

The fat1: "y = x"

The fat2: "w > x"

The fat3: "w < 5"

>>>> We substitute aording to the following equality:

|- x = 1.

(likewise restating any assumptions made thus far whih involve "x").

Thus, it is suffiient to prove:

>> "z = 1"

Assuming

The new fat1: "y = 1"

The new fat2: "w > 1"

The fat3: "w < 5"

Assuming impliitly

The old fat1: "y = x"

The old fat2: "w > x"

...

This establishes

y = 1, w > 1, w < 5 |- z = 1

This establishes

y = x, w > x, w < 5 |- z = x

This ompletes the proof of the onjeture

>> example5:

"z = x"

Assuming

The fat1: "y = x"

The fat2: "w > x"

The fat3: "w < 5"

This approah has the advantages of using the implementation of HOL's

orresponding tati in the usual way, so there is no issue of di�ering om-

putations. It also allows for a learer naming sheme in the aount pro-

dued. Finally, it gives an opportunity to note the rather odd pattern of

81

reasoning being used, at the node in the subgoal-proof tree representing the

NAMED_SUBST_TAC step (before the subgoal in the aount).

However, there is a new diÆulty: whereas, in the previous attempts at

an aount, the new assumptions assumptions (made by NAMED_ASSUME_TAC)

automatially aused the impliit assumptions to be reorded, there is no

way to do this given only the results of the ordinary SUBST_ALL_TAC. In-

stead, the impliit assumptions (i.e. those original assumptions whih would

be a�eted by substitution) have to be identi�ed and added as part of the

presentation. Thus, there is again an argument to be made that HOL's be-

haviour is reeted here: it has to be argued that the diret implementation

of NAMED_SUBST_ALL_TAC produes the same impliit assumptions that an be

observed by experiment in HOL itself.

Whether the seond or the third approah is best is diÆult to say, but

in any ase, the �rst approah is learly not adequate.

NAMED_SUBST_ALL_TAC th is the �rst example of a named tati with a om-

plex implementation (p. ...). A meaningful aount neither parallels the HOL

implementation of the ordinary tati nor follows diretly from it, but re-

quires some new funtion to be implemented diretly (NAMED_ASSUME_LIST_TAC,

in the seond approah, or NAMED_SUBST_ALL_TAC itself, in the third). The

next suh example are the strip funtions (Setion ...).

8 Continuations

The HOL funtions in the next group to be onsidered also produe new

tatis from old, as do the funtions in the previous hapter. The members

of this group di�er from funtions suh as POP_ASSUM in that they all ause

some inferene to be done behind the senes, and they an also a�et the

term parts of goals, in addition to the assumptions. The onealed inferenes

give the e�et of performing two proof steps in one. The diÆulty in giving

aounts for these funtions is to explain the onealed inferenes oherently.

8.1 The Disjuntive Transformer

A typial example is DISJ_CASES_THEN, whih maps a funtion f of type

thm -> tati and a disjuntive theorem to a new tati. For the sake of

82

example, suppose that a new type, :voltage, has been introdued, with

exatly two values, hi and lo. The new type is haraterized by:

|- !(v:voltage). (v = hi) \/ (v = lo)

Suppose also that there is an operator, AND, suh that

|- hi AND hi = hi

and

|- lo AND lo = lo

The e�et of DISJ_CASES_THEN is illustrated below The goal is to show (for

all v) that v AND v = v, given that hi AND hi = hi and lo AND lo = lo.

#let g = [℄,"v AND v = v";;

g = ([℄, "v AND v = v") : (* list # term)

...

th = |- (v = hi) \/ (v = lo)

#let gl,p = DISJ_CASES_THEN SUBST1_TAC th g;;

gl = [([℄, "hi AND hi = hi"); ([℄, "lo AND lo = lo")℄ : goal list

p = - : proof

...

#th1 = |- hi AND hi = hi

th2 = |- lo AND lo = lo

th1' = v = hi |- hi AND hi = hi

th2' = v = lo |- lo AND lo = lo

#p[th1;th2℄;;

|- v AND v = v

#p[th1';th2'℄;;

|- v AND v = v

In the example, the new tati DISJ_CASES_THEN SUBST1_TAC th maps the

goal to two subgoals by extrating from the disjuntive theorem

|- (v = hi) \/ (v = lo)

the two disjunt terms, v = hi and v = lo, assuming these, and using the

two resulting theorems { in parallel { as parameters to two appliations of

the substitution funtion. The two new subgoals are the values of

83

SUBST1_TAC (ASSUME "v = hi") g

and

SUBST1_TAC (ASSUME "v = lo") g

The subgoals arry the impliit assumptions v = hi and v = lo respetively;

these are introdued, in eah ase, by the at of assuming the disjunt term.

The justi�ation (p) relies on (i) the inferene rule for substitution (see Se-

tion ...) and (ii) the rule for disjuntion (DISJ_CASES, see Desription ...).

The substitution rule adds the respetive assumptions to the two ahieving

theorems if they are not already present:

...

th1 = |- hi AND hi = hi

th2 = |- lo AND lo = lo

#let gl1,p1 = SUBST1_TAC (ASSUME "v = hi") g;;

gl1 = [([℄, "hi and hi = hi")℄ : goal list

p1 = - : proof

#print_all_thm(p1[th1℄);;

v = hi |- v and v = v

#let gl2,p2 = SUBST1_TAC (ASSUME "v = lo") g;;

gl2 = [([℄, "lo and lo = lo")℄ : goal list

p2 = - : proof

#print_all_thm(p2[th2℄);;

v = lo |- v and v = v

The disjuntion rule then dismisses the two added assumptions as it ombines

the two ahieving theorems to yield the theorem ahieving g:

#print_all_thm(DISJ_CASES th (p1[th1℄) (p2[th2℄));;

|- v AND v = v

The addition of the impliit assumptions to the subgoals does not depend

on the funtion f to whih DISJ_CASES_THEN is applied, but rather, on the

assumptions being made at all; for example, using the funtion K ALL_TAC

to throw away the assumed terms, as in Setion ..., we have the following

results (having established above, for all v, that |- v AND v = v):

84

#let gl,p = DISJ_CASES_THEN (K ALL_TAC) th g;;

gl = [([℄, "v AND v = v"); ([℄, "v AND v = v")℄ : goal list

p = - : proof

...

#th1'' = |- v AND v = v

th2'' = |- v AND v = v

th1''' = v = hi |- v AND v = v

th2''' = v = lo |- v AND v = v

#p[th1'';th2''℄;;

|- v AND v = v

#p[th1''';th2'''℄;;

|- v AND v = v

In any ase, the tati DISJ_CASES_THEN SUBST1_TAC th, in one step, splits

a goal into two subgoals by applying two distint substitutions { based on

the disjutive theorem th { in parallel to the original goal. In this one-step

proess, the assumptions v = hi and v = lo do not appear expliitly; they

are added and then dismissed only behind the senes, when the justi�ation

funtion is applied. This one-step proess shown below is more elegant than

the straightforward two-step proess shown below, as the latter (i) requires

expliit referene to the terms v = hi and v = lo, and (ii) leaves the two

`used' assumptions in the respetive subgoals after the substitutions based

on them have been made:

#let gl3,p3 = DISJ_CASES_TAC th g;;

gl3 =

[(["v = hi"℄, "v AND v = v"); (["v = lo"℄, "v AND v = v")℄

: goal list

p3 = - : proof

#let gl4,p4 = SUBST1_TAC(ASSUME "v = hi")(hd gl3);;

gl4 = [(["v = hi"℄, "hi AND hi = hi")℄ : goal list

p4 = - : proof

#let gl5,p5 = SUBST1_TAC(ASSUME "v = lo")(hd(tl gl3));;

gl5 = [(["v = lo"℄, "lo AND lo = lo")℄ : goal list

p5 = - : proof

#let th4 = p4[th1℄;;

th4 = . |- v AND v = v

#print_all_thm th4;;

v = hi |- v AND v = v

#let th5 = p5[th2℄;;

th5 = . |- v AND v = v

85

#print_all_thm th5;;

v = lo |- v AND v = v

#print_all_thm(p3[th4;th5℄);;

|- v AND v = v

From the viewpoint of aounts, however, the one-step tati presents dif-

�ulties. It was possible (Setion ...) to report the tati POP_ASSUM SUBST1_TAC

in one step, as a substitution. That was possible beause the tati trans-

former POP_ASSUM simply supplied the argument for an appliation of NAMED_SUBST1_TAC

to an amended goal. The tati DISJ_CASES_THEN SUBST1_TAC th, in ontrast,

annot be explained learly in one step (e.g. as a substitution), beause it

onsists internally of a disjuntive split into two idential subgoals followed

by distint and parallel substitutions on two `opies' of the original goal.

In the urrent example, what has to be explained is the move from the

named goal (ng, say)

>> "v AND v = v"

to the two named subgoals

>> "hi AND hi = hi"

and

>> "lo AND lo = lo"

and this move is not explained by any single existing tati.

Even by devoting a node in the subgoal-proof tree to the appliation of

ompound tatis of the form NAMED_DISJ_CASES_THEN f th, so that there

is an opportunity for hoosing a wording to explain the disjuntive split, a

oherent aount still annot be produed. (This is demonstrated below.)

To devote a node in this way, NAMED_DISJ_CASES_THEN is implemented in

parallel with the HOL implementation of the ordinary tati DISJ_CASES_THEN

f th. The proof step of the node is identi�ed by a string, say `NAMED_DISJ_CASES_THEN`.

In the example ase,

NAMED_DISJ_CASES_THEN NAMED_SUBST1_TAC th ng

would ompute

86

NAMED_SUBST1_TAC (ASSUME "v = hi") ng

and

NAMED_SUBST1_TAC (ASSUME "v = lo") ng

and then use the pair of resulting subgoals and justi�ations to onstrut

the justi�ation. The justi�ation is the funtion whih when given the

two respetive sub-aounts returns an aount onsisting of (i) the single

ombined proof step, (ii) the two subgoals, (iii) the two sub-aounts, and

(iv) the method for omputing the ahieving theorem: namely, by applying

the two justi�ations respetively to the two sub-aounts, seleting the two

theorems from within these aounts, and ombining these theorems to justify

the disjuntive split. The aount thus produed is:

This is the proof of the onjeture

>> example1:

"v AND v = v"

>>>> We onsider the two ases suggested by the fat

|- (v = hi) \/ (v = lo),

namely

v = hi |- v = hi

and

v = lo |- v = lo

It is thus suffiient to prove the following:

>> left disjuntive ase:

"hi AND hi = hi"

Assuming impliitly

The hypothesis of the equality: "v = hi"

>> right disjuntive ase:

"lo AND lo = lo"

Assuming impliitly

The hypothesis of the equality: "v = lo"

The proof of the

>> left disjuntive ase:

"hi AND hi = hi"

Assuming impliitly

The hypothesis of the equality: "v = hi"

is as follows:

...

This establishes

|- hi AND hi = hi

The proof of the

>> right disjuntive ase:

87

"lo AND lo = lo"

Assuming impliitly

The hypothesis of the equality: "v = lo"

is as follows:

...

This establishes

|- lo AND lo = lo

This establishes

|- v AND v = v

This ompletes the proof of the onjeture

>> example1:

"v AND v = v"

The problem with this aount is that although it explains the disjun-

tive split, it does not provide any opportunity for reporting or explaining the

substitutions; the node that is onstruted for the ompound step branhes

diretly into the two subgoals, eah with an aount of its own. The substi-

tutions are justi�ed, internally to the tati, as part of the ombined justi�-

ation. The only evidene in the aount that any substitutions took plae

is the move from the term v AND v = v to the terms hi AND hi = hi and

lo AND lo = lo { and the impliit assumption that is introdued in eah

ase. Aounts of the substitutions are thus not part of the aount of the

ombined step.

In this ase, it might be possible for a user to guess that the unexplained

step was substitution, but it might not be possible to guess for a more om-

plex funtion than substitution.

The aount produed in this way beomes even more obsure when one

of the subgoals is atually solved by the onealed step. In the shemati

example below, the funtion \th.NAMED_REWRITE_TAC[th℄ is used in plae of

NAMED_SUBST1_TAC so that one of the subgoals an be solved. (P is some

property true of lo.)

This is the proof of the onjeture

>> example2:

"(v = hi) \/ P v"

>>>> We onsider the two ases suggested by the fat

|- (v = hi) \/ (v = lo),

namely

v = hi |- v = hi

and

88

v = lo |- v = lo

It is thus suffiient to prove the following:

>> "(lo = hi) \/ P lo"

Assuming impliitly

The hypothesis of the equality: "v = lo"

...

This establishes

|- (lo = hi) \/ P lo

This establishes

|- (v = hi) \/ P v

This ompletes the proof of the onjeture

>> example2:

"(v = hi) \/ P v"

In this aount, the v = hi subgoal is solved internally (by rewriting) without

ever having been displayed; so as well as the unexplained funtion (rewriting),

the missing ase and the the way in whih the funtion solved the missing

ase would also have to be guessed. The point also applies where both ases

are generated and solved internally by the ombined tati. A trivial example

illustrates this:

This is the proof of the onjeture

>> example3:

"(v = hi) \/ (v = lo)"

>>>> This follows by onsidering the two ases suggested by the fat

|- (v = hi) \/ (v = lo),

namely

v = hi |- v = hi

and

v = lo |- v = lo

This establishes

|- (v = hi) \/ (v = lo)

This ompletes the proof of the onjeture

>> example3:

"(v = hi) \/ (v = lo)"

To give a lear aount of a tati of the form NAMED_DISJ_CASES_THEN f

th, it is therefore neessary to generate more than one node of the subgoal-

proof tree. The disjuntive split is aorded a node of its own, and this

branhes into a node for eah appliation of the seond tati. Thus an

aount attahes to the disjuntion node, as well as to eah of the daughter

nodes; so all steps are explained.

89

In the framework of proof aounts, a node represents the appliation of

a tati to a goal to produe subgoals and a justi�ation. Without altering

the basi framework, this means that the disjuntive split has to be regarded

as the appliation of a tati. One possibility is to use the existing named

tati NAMED_DISJ_CASES_TAC th to implement the split.

The e�et of applying the straightforward disjuntion tati is simply to

reate two subgoals with the respetive disjunts as expliit assumptions.

To produe the same end result as the tati NAMED_DISJ_CASES_THEN f th,

the tati NAMED_DISJ_CASES_TAC th must be sequened with a tati whih

in eah ase removes the new expliit assumption term from eah subgoal,

assumes it, passes the resulting theorem as paramaters to f , and applies the

resulting tati to the subgoal.

This suggests a popping operation. Furthermore, it suggests a popping

operation whih neessarily keeps the popped term as an impliit assumption,

sine, by its implementation, an appliation of the tati DISJ_CASES_THEN

f th to a goal always adds the respetive disjunt terms of the onlusion

of th as impliit assumptions to its two resulting subgoals. (Insisting on

keeping the popped term only makes a di�erene where f has the property

of throwing away its theorem parameter, e.g. where f is K NAMED_ALL_TAC.

For the purpose of suint printing of aounts in this hapter, we will not

insist on keeping the popped term { the issue of lost assumptions does not

arise in any of the examples.)

If we de�ne NAMED_DISJ_CASES_THEN f th to be NAMED_DISJ_CASES_TAC th

THEN NAMED_POP_TRACE f (see Setion ...), then the aount produed in the

example ase is as shown below. (Sine NAMED_DISJ_CASES_TAC th produes

two subgoals, the sequener THEN auses NAMED_POP_TRACE f to be applied to

eah.)

This is the proof of the onjeture

>> example1:

"v AND v = v"

>>>> We onsider the two ases suggested by the fat

|- (v = hi) \/ (v = lo)

>> left disjunt ase:

"v AND v = v"

Assuming

The left disjunt: "v = hi"

>> right disjunt ase:

"v AND v = v"

90

Assuming

The right disjunt: "v = lo"

The proof of the

>> left disjunt ase:

"v AND v = v"

Assuming

The left disjunt: "v = hi"

is as follows:

>>>> We substitute aording to the following equality:

v = hi |- v = hi.

Thus, it is suffiient to prove:

>> "hi AND hi = hi"

Assuming impliitly

The hypothesis of the equality: "v = hi"

The left disjunt: "v = hi"

...

This establishes

|- hi AND hi = hi

This establishes

v = hi |- v AND v = v

The proof of the

>> right disjunt ase:

"v AND v = v"

Assuming

The right disjunt: "v = lo"

is as follows:

>>>> We substitute aording to the following equality:

v = lo |- v = lo.

Thus, it is suffiient to prove:

>> "lo AND lo = lo"

Assuming impliitly

The hypothesis of the equality: "v = lo"

The right disjunt: "v = lo"

...

This establishes

|- lo AND lo = lo

This establishes

v = lo |- v AND v = v

This establishes

|- v AND v = v

This ompletes the proof of the onjeture

>> example1:

"v AND v = v"

91

This seems a reasonable aount.

When the funtion f is NAMED_ASSUME_TAC, the mehanism internal to the

named popping funtions, desribed in Setion ..., automatially assures that

there is no unneessary aounting; the aount of NAMED_DISJ_CASES_THEN

NAMED_ASSUME_TAC th on ng is:

This is the proof of the onjeture

>> example1:

"v AND v = v"

>>>> We onsider the two ases suggested by the fat

|- (v = hi) \/ (v = lo)

>> left disjunt ase:

"v AND v = v"

Assuming

The left disjunt: "v = hi"

>> right disjunt ase:

"v AND v = v"

Assuming

The right disjunt: "v = lo"

The proof of the

>> left disjunt ase:

"v AND v = v"

Assuming

The left disjunt: "v = hi"

is as follows:

...

This establishes

v = hi |- v AND v = v

The proof of the

>> right disjunt ase:

"v AND v = v"

Assuming

The right disjunt: "v = lo"

is as follows:

...

This establishes

v = lo |- v AND v = v

This establishes

|- v AND v = v

This ompletes the proof of the onjeture

>> example1:

"v AND v = v"

92

8.2 Implementation Issues

The only real fault of the sheme desribed above is its ineÆieny. This re-

sults from the fat that, in HOL, transformers suh as DISJ_CASES_THEN are

taken as primitives, and tatis suh as DISJ_CASES_TAC th are elaborations

of the primitives. Thus, DISJ_CASES_TAC is implemented as DISJ_CASES_THEN

applied to ASSUME_TAC. The implementation of the named funtions, as de-

sribed in Setion 8.1, reverses HOL's order of dependeny. Thus, unfortu-

nately, the omputation of NAMED_DISJ_CASES_THEN requires NAMED_DISJ_CASES_TAC

to be omputed, whih requires DISJ_CASES_TAC, whih requires DISJ_CASES_THEN;

two translations are made, internally, to produe the desired aount.

HOL's partiular hoie of primitive funtions is useful for implementa-

tion purposes, and it also provides the user of the system with tati-building

tools rather than with spei� tatis; variations of DISJ_CASES_TAC are de-

�ned easily via DISJ_CASES_THEN. However, the HOL system is not generally

presented or learned in the implementation's order of dependeny; simple ta-

tis usually are presented �rst and `advaned' funtions later. Thus, for many

users, it probably seems natural to regard DISJ_CASES_TAC as the primitive

funtion and DISJ_CASES_THEN as the elaboration, as is done for produing

aounts.

In any ase, funtions suh as NAMED_DISJ_CASES_TAC ould be imple-

mented diretly, rather than in terms of DISJ_CASES_TAC (and hene of DISJ_CASES_THEN

and ASSUME_TAC). This option involves more work to implement, but the main

objetion to it is that it makes it less lear that the same proof is being per-

formed as in the ordinary system. Con�dene would require an argument

that the same inferene hains were generated either way.

8.3 Other Transformers whih Introdue Assumptions

The method for implementing NAMED_DISJ_CASES_THEN an be applied to sev-

eral other tati transformers in HOL whih similarly ause impliit assump-

tions to be generated.

8.3.1 The Disharging Transformer

By implemenating NAMED_DISCH_THEN f as NAMED_DISCH_TAC THEN NAMED_POP_TRACE

f , a omprehensible two-step aount is produed for a one-step tati.

93

The e�et of the transformer DISCH_THEN is illustrated below. For exam-

ple, for the goal

g = ([℄, "(v = hi) ==> (v AND v = v)")

we have, in one step,

#let gl,p = DISCH_THEN SUBST1_TAC g;;

gl = [([℄, "hi AND hi = hi")℄ : goal list

p = - : proof

where:

...

th1 = |- hi AND hi = hi

th2 = v = hi |- hi AND hi = hi

#p[th1℄;;

|- (v = hi) ==> (v AND v = v)

#p[th2℄;;

|- (v = hi) ==> (v AND v = v)

Under the implementation suggested, the two-step aount of the one-step

tati (whih introdues an impliit assumption) is as follows:

This is the proof of the onjeture

>> example4:

"(v = hi) ==> (v AND v = v)"

>>>> It is suffiient to prove:

>> "v AND v = v"

Assuming

The anteedent: "v = hi"

>>>> We substitute aording to the following equality:

v = hi |- v = hi.

Thus, it is suffiient to prove:

>> "hi AND hi = hi"

Assuming impliitly

The hypothesis of the equality: "v = hi"

The anteedent: "v = hi"

...

This establishes

|- hi AND hi = hi

This establishes

94

v = hi |- v AND v = v

This establishes

|- (v = hi) ==> (v AND v = v)

This ompletes the proof of the onjeture

>> example4:

"(v = hi) ==> (v AND v = v)"

8.3.2 The Choie Transformer

Analogously, by implemenating NAMED_CHOOSE_THEN f as NAMED_CHOOSE_TAC THEN NAMED_POP_TRACE

f , a omprehensible two-step aount is produed for a one-step tati.

The following shemati example illustrates the use of CHOOSE_THEN, using

the fat that (for all y) |- ?x. y = PRE x). (Q is some property true of all

numbers.)

...

th = |- ?x. y = PRE x

#let g = [℄, "(Q:num -> bool) y";;

g = ([℄, "Q y") : (* list # term)

#let gl,p = CHOOSE_THEN SUBST1_TAC th g;;

gl = [([℄, "Q(PRE x)")℄ : goal list

p = - : proof

...

thm = |- Q(PRE x)

thm' = y = PRE x |- Q(PRE x)

#p[thm℄;;

|- Q y

#p[thm'℄;;

|- Q y

Like DISJ_CASES_THEN, CHOOSE_THEN f introdues an impliit assumption; in

this ase, y = PRE x, the assumption about the witness onstant.

The implementation of NAMED_CHOOSE_THEN f as NAMED_CHOOSE_TAC THEN NAMED_POP_TRACE

f gives the following two-step aount for the example:

This is the proof of the onjeture

>> example5:

"Q y"

>>>> Using the term "x"

as a witness to the fat

95

|- ?x. y = PRE x

it is suffiient to prove:

>> "Q y"

Assuming

The witness hypothesis: "y = PRE x"

>>>> We substitute aording to the following equality:

y = PRE x |- y = PRE x.

Thus, it is suffiient to prove:

>> "Q(PRE x)"

Assuming impliitly

The hypothesis of the equality: "y = PRE x"

The witness hypothesis: "y = PRE x"

...

This establishes

|- Q(PRE x)

This establishes

y = PRE x |- Q y

This establishes

|- Q y

This ompletes the proof of the onjeture

>> example5:

"Q y"

This again seems a reasonable explanation.

8.4 Transformers whih do not Introdue Assumptions

The transformers that do not introdue impliit assumptions are CONJUNCTS_THEN

and the resolution funtions IMP_RES_THEN and RES_THEN. A di�erent ap-

proah is used for these than for the others.

8.4.1 The Conjuntion Transformer

The transformer CONJUNCTS_THEN is di�erent from those desribed thus far

in that it does not introdue impliit assumptions. Given a onjuntive

theorem, it is possible to infer the two onjunts immediately. Hene, neither

of the two onjunt terms (nor the onjuntive term itself) has to be assumed

impliitly during the deomposition of the goal (and hene dismissed later

when the justi�ation of the onjuntive split is applied). The inferene ould

96

be deferred in this way, but there is a small eonomy of inferene steps in

not doing so.

The e�et of CONJUNCTS_THEN is illustrated by the following example, using

a onsequene of the fat |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n)):

...

th = |- (0 + n = n) /\ ((SUC m) + n = SUC(m + n))

#let g = [℄,"(SUC m) + n = SUC(m + (0 + n))";;

g = ([℄, "(SUC m) + n = SUC(m + (0 + n))") : (* list # term)

#let gl,p = CONJUNCTS_THEN SUBST1_TAC th g;;

gl = [([℄, "SUC(m + n) = SUC(m + n)")℄ : goal list

p = - : proof

...

thm = |- SUC(m + n) = SUC(m + n)

thm' = 0 + m = m, (SUC m) + n = SUC(m + n) |- SUC(m + n) = SUC(m + n)

thm'' = (0 + n = n) /\ ((SUC m) + n = SUC(m + n)) |- SUC(m + n) = SUC(m + n)

#p[thm℄;;

|- (SUC m) + n = SUC(m + (0 + n))

#print_all_thm(p[thm'℄);;

0 + m = m, (SUC m) + n = SUC(m + n) |- (SUC m) + n = SUC(m + (0 + n))

#print_all_thm(p[thm''℄);;

(0 + n = n) /\ ((SUC m) + n = SUC(m + n))

|- (SUC m) + n = SUC(m + (0 + n))

As illustrated, neither of the the onjunts nor the onjuntion is an impliit

assumption of the subgoal.

As it happens, there is no funtion `CONJUNCTS_TAC', analogous to DISJ_CASES_TAC,

provided in HOL. CONJUNCTS_TAC th, by analogy, would be de�ned as CONJUNCTS_THEN ASSUME_TAC th;

in the above example, this would return, in one step, the subgoal

["(SUC m) + n = SUC(m + n)"; "0 + m = m"℄,

"(SUC(0 + m)) + n = SUC(m + n)"

It might seem useful to de�ne the funtion NAMED_CONJUNCTS_TAC so that

NAMED_CONJUNCTS_THEN ould be de�ned in terms of it, by analogy with NAMED_DISJ_CASES_THEN

and the others. However, no fution NAMED_CONJUNCTS_TAC that introdues

assumptions an support a NAMED_CONJUNCTS_THEN that satisfatorily models

CONJUNCTS_THEN, sine CONJUNCTS_THEN does not introdue any (expliit or

impliit) assumptions.

97

To illustrate this point, it is easy to implement a NAMED_CONJUNCTS_TAC

whih adds the onjunts (and justi�es the additions). The aount of that

muh, in the example ase, is:

This is the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the two separate theorems implied by the fat

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

It is thus suffiient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The seond onjunt: "(SUC m) + n = SUC(m + n)"

The first onjunt: "0 + n = n"

...

This establishes

(SUC m) + n = SUC(m + n), 0 + n = n |- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This ompletes the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

If the funtion NAMED_CONJUNCTS_THENwere now de�ned as NAMED_CONJUNCTS_TAC

followed by two popping operations in sequene, the aount of

NAMED_CONJUNCTS_THEN NAMED_SUBST1_TAC th ng

in the example ase, is:

This is the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the two separate theorems implied by the fat

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

It is thus suffiient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The seond onjunt: "(SUC m) + n = SUC(m + n)"

The first onjunt: "0 + n = n"

>>>> We substitute aording to the following equality:

(SUC m) + n = SUC(m + n) |- (SUC m) + n = SUC(m + n).

Thus, it is suffiient to prove:

98

>> "SUC(m + n) = SUC(m + (0 + n))"

Assuming

The first onjunt: "0 + n = n"

Assuming impliitly

The hypothesis of the equality: "(SUC m) + n = SUC(m + n)"

The seond onjunt: "(SUC m) + n = SUC(m + n)"

>>>> We substitute aording to the following equality:

0 + n = n |- 0 + n = n.

Thus, it is suffiient to prove:

>> "SUC(m + n) = SUC(m + n)"

Assuming impliitly

The hypothesis of the equality: "0 + n = n"

The first onjunt: "0 + n = n"

The hypothesis of the equality: "(SUC m) + n = SUC(m + n)"

The seond onjunt: "(SUC m) + n = SUC(m + n)"

...

This establishes

|- SUC(m + n) = SUC(m + n)

This establishes

0 + n = n |- SUC(m + n) = SUC(m + (0 + n))

This establishes

0 + n = n, (SUC m) + n = SUC(m + n) |- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This ompletes the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

This is a good aount in that it is in three steps: the onjuntive split and the

two sequential substitutions. The aounts of the substitutions are produed

diretly via the funtion NAMED_SUBST1_TAC. The inferene hain generated is

arguably the same as that generated by CONJUNCTS_THEN SUBST1_TAC th g,

with the addition of the inferenes in whih the added assumptions are in-

trodued and dismissed. However, the subgoal thus arries 0 + n = n and

(SUC m) + n = SUC(m + n) as impliit assumptions, whih is not satisfatory.

In the aount of

CONJUNCTS_THEN NAMED_ASSUME_TAC th ng

impliit asusmptions are not an issue; and the aount produed in the same

99

way as the above is therefore satisfatory. It is also onise beause, inter-

nally, the popping funtion noties and omits the pop and re-assume steps:

This is the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the two separate theorems implied by the fat

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

It is thus suffiient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The seond onjunt: "(SUC m) + n = SUC(m + n)"

The first onjunt: "0 + n = n"

...

This establishes

(SUC m) + n = SUC(m + n), 0 + n = n |- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This ompletes the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

However, a more serious defet of this implementation of NAMED_CONJUNCTS_THEN

is that the sequential popping operations produe the wrong e�et in on-

texts in whih the assumption stak is disturbed by the �rst popping opera-

tion (whih may itself involve further transformers) before the seond takes

plae. (This sort of disturbane is a general problem in the stak approah,

and was a fator motivating the development

of the transformer funtions.)

The defet an be repaired by taking NAMED_CONJUNCTS_TAC simply to be

NAMED_ASSUME_TAC, and NAMED_CONJUNCTS_THEN f th to NAMED_CONJUNCTS_TAC

th followed by the popping of the whole added onjuntion { to a funtion

that infers the two separate theorems, and then applies f to the two theorems

in sequene. The aount of the example, under this interpretation, is:

This is the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the fat that

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

It is suffiient to prove:

100

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

>>>> We substitute aording to the following equality:

(0 + n = n) /\ ((SUC m) + n = SUC(m + n)) |- 0 + n = n.

Thus, it is suffiient to prove:

>> "(SUC m) + n = SUC(m + n)"

Assuming impliitly

The hypothesis of the equality: "(0 + n = n) /\

((SUC m) + n = SUC(m + n))"

The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

>>>> We substitute aording to the following equality:

(0 + n = n) /\ ((SUC m) + n = SUC(m + n))

|- (SUC m) + n = SUC(m + n).

Thus, it is suffiient to prove:

>> "SUC(m + n) = SUC(m + n)"

Assuming impliitly

The hypothesis of the equality: "(0 + n = n) /\

((SUC m) + n = SUC(m + n))"

The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

...

This establishes

|- SUC(m + n) = SUC(m + n)

This establishes

(0 + n = n) /\ ((SUC m) + n = SUC(m + n)) |- (SUC m) + n = SUC(m + n)

This establishes

(0 + n = n) /\ ((SUC m) + n = SUC(m + n))

|- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This ompletes the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

Here, the onjuntion is mentioned, if not split, in one step, and the sub-

stitutions have adequate aounts of their own. This avoids the defet of the

previous method, but it still, likewise, generates a undesired impliit assump-

tion. In addition, the aount of NAMED_CONJUNCTS_THEN NAMED_ASSUME_TAC

is now more awkward, sine there is no pop and re-assume step to omit:

This is the proof of the onjeture

>> example7:

101

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the fat that

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

It is suffiient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

>>>> We use the fat that

(0 + n = n) /\ ((SUC m) + n = SUC(m + n)) |- 0 + n = n.

It is suffiient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The added hypothesis: "0 + n = n"

Assuming impliitly

The hypothesis of the theorem used: "(0 + n = n) /\

((SUC m) + n = SUC(m + n))"

The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

>>>> We use the fat that

(0 + n = n) /\ ((SUC m) + n = SUC(m + n))

|- (SUC m) + n = SUC(m + n).

It is suffiient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The added hypothesis: "(SUC m) + n = SUC(m + n)"

The added hypothesis: "0 + n = n"

Assuming impliitly

The hypothesis of the theorem used: "(0 + n = n) /\

((SUC m) + n = SUC(m + n))"

The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

...

This establishes

(SUC m) + n = SUC(m + n), 0 + n = n |- (SUC m) + n = SUC(m + (0 + n))

This establishes

0 + n = n, (0 + n = n) /\ ((SUC m) + n = SUC(m + n))

|- (SUC m) + n = SUC(m + (0 + n))

This establishes

(0 + n = n) /\ ((SUC m) + n = SUC(m + n))

|- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This ompletes the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

102

In both interpretations disussed so far, undesired impliit assumptions

are added to the subgoal. Omitting the NAMED_CONJUNCTS_TAC step, whih

auses this problem, is still not a good solution; this time, beause it obsures

the origin of the onjunts:

This is the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We substitute aording to the following equality:

|- 0 + n = n.

Thus, it is suffiient to prove:

>> "(SUC m) + n = SUC(m + n)"

>>>> We substitute aording to the following equality:

|- (SUC m) + n = SUC(m + n).

Thus, it is suffiient to prove:

>> "SUC(m + n) = SUC(m + n)"

...

This establishes

|- SUC(m + n) = SUC(m + n)

This establishes

|- (SUC m) + n = SUC(m + n)

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This ompletes the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

The only remaining solution would seem to be to inlude a step in whih

the onjuntion is at least mentioned, but in whih no assumptions are added.

In the urrent framework, this requires that the aount of the �rst step

inlude a subgoal, albeit unhanged from the previous subgoal. The aount

by this method is not therefore perfetly tidy, but does at least model HOL's

CONJUNCTS_THEN funtion:

This is the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the two separate theorems implied by the fat

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

The two theorems are used in sequene. We are showing:

103

>> "(SUC m) + n = SUC(m + (0 + n))"

>>>> We substitute aording to the following equality:

|- 0 + n = n.

Thus, it is suffiient to prove:

>> "(SUC m) + n = SUC(m + n)"

>>>> We substitute aording to the following equality:

|- (SUC m) + n = SUC(m + n).

Thus, it is suffiient to prove:

>> "SUC(m + n) = SUC(m + n)"

...

This establishes

|- SUC(m + n) = SUC(m + n)

This establishes

|- (SUC m) + n = SUC(m + n)

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This ompletes the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

In the event of f being NAMED_ASSUME_TAC, the aount is now:

This is the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the two separate theorems implied by the fat

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

The two theorems are used in sequene. We are showing:

>> "(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the fat that

|- 0 + n = n.

It is suffiient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The added hypothesis: "0 + n = n"

>>>> We use the fat that

|- (SUC m) + n = SUC(m + n).

It is suffiient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

104

Assuming

The added hypothesis: "(SUC m) + n = SUC(m + n)"

The added hypothesis: "0 + n = n"

...

This establishes

(SUC m) + n = SUC(m + n), 0 + n = n |- (SUC m) + n = SUC(m + (0 + n))

This establishes

0 + n = n |- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This ompletes the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

Aminor re�nement of this solution is to implement NAMED_CONJUNCTS_THEN

to notie when f is e�etively the same as NAMED_ASSUME_TAC, and where it

is, to use instead a trivial variant of NAMED_ASSUME_TAC whih labels the new

assumptions as onjunts. (The point of this re�nement is made lear in

Setion ...). The previous aount is now:

This is the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the two separate theorems implied by the fat

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

The two theorems are used in sequene. We are showing:

>> "(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the fat that

|- 0 + n = n.

It is suffiient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The left onjunt: "0 + n = n"

>>>> We use the fat that

|- (SUC m) + n = SUC(m + n).

It is suffiient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The right onjunt: "(SUC m) + n = SUC(m + n)"

The left onjunt: "0 + n = n"

105

...

This establishes

(SUC m) + n = SUC(m + n), 0 + n = n |- (SUC m) + n = SUC(m + (0 + n))

This establishes

0 + n = n |- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This ompletes the proof of the onjeture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

8.4.2 The Resolution Transformers

The resolution funtions IMP_RES_THEN and RES_THEN, like the funtion CONJUNCTS_THEN,

are implemented in suh a way that the appliation of the tatis of the form

IMP_RES_THEN f th and RES_THEN f th to a goal do not introdue any assump-

tions, expliit or impliit, into the resulting subgoal. For example:

th = |- !x. x < 1 ==> (x = 0)

#let g = ["x < 1";"y < 1"℄,"(x = 0) /\ (y = 0)";;

g = (["x < 1"; "y < 1"℄, "(x = 0) /\ (y = 0)") : goal

#let gl,p = IMP_RES_THEN SUBST1_TAC th g;;

gl = [(["x < 1"; "y < 1"℄, "(0 = 0) /\ (0 = 0)")℄ : goal list

p = - : proof

...

thm = |- (0 = 0) /\ (0 = 0)

thm' = y = 0, x = 0 |- (0 = 0) /\ (0 = 0)

thm'' = !x. x < 1 ==> (x = 0) |- (0 = 0) /\ (0 = 0)

#print_all_thm(p[thm℄);;

y < 1, x < 1 |- (x = 0) /\ (y = 0)

#print_all_thm(p[thm'℄);;

y = 0, x = 0, y < 1, x < 1 |- (x = 0) /\ (y = 0)

#print_all_thm(p[thm''℄);;

!x. x < 1 ==> (x = 0), y < 1, x < 1 |- (x = 0) /\ (y = 0)

Therefore, the implementations of NAMED_IMP_RES_THEN and NAMED_RES_THEN

should have the same behaviour as IMP_RES_THEN and RES_THEN with respet

106

to assumptions. The tehnique used to implement CONJUNCTS_THEN an be

adapted here; a whole proof step, in whih the subgoal does not hange, is

devoted to displaying the resolvents, and the appliations of the funtion

f are desribed in subsequent steps. Care must be taken in implementing

NAMED_IMP_RES_THEN and RES_THEN that the resolvents are used singly by f

in the same order as in the orresponding ordinary funtions.

This is the proof of the onjeture

>> example10:

"(x = 0) /\ (y = 0)"

Assuming

The fat1: "x < 1"

The fat2: "y < 1"

>>>> We use the theorem

|- !x. x < 1 ==> (x = 0)

to derive the following onsequenes from the assumptions made thus far:

x < 1 |- x = 0

y < 1 |- y = 0

These theorems are used in sequene. We are showing:

>> "(x = 0) /\ (y = 0)"

Assuming

The fat1: "x < 1"

The fat2: "y < 1"

>>>> We substitute aording to the following equality:

x < 1 |- x = 0.

Thus, it is suffiient to prove:

>> "(0 = 0) /\ (y = 0)"

Assuming

The fat1: "x < 1"

The fat2: "y < 1"

Assuming impliitly

The hypothesis of the equality: "x < 1"

>>>> We substitute aording to the following equality:

y < 1 |- y = 0.

Thus, it is suffiient to prove:

>> "(0 = 0) /\ (0 = 0)"

Assuming

The fat1: "x < 1"

The fat2: "y < 1"

Assuming impliitly

The hypothesis of the equality: "y < 1"

The hypothesis of the equality: "x < 1"

...

This establishes

|- (0 = 0) /\ (0 = 0)

This establishes

107

y < 1 |- (0 = 0) /\ (y = 0)

This establishes

y < 1, x < 1 |- (x = 0) /\ (y = 0)

This establishes

y < 1, x < 1 |- (x = 0) /\ (y = 0)

This ompletes the proof of the onjeture

>> example10:

"(x = 0) /\ (y = 0)"

Assuming

The fat1: "x < 1"

The fat2: "y < 1"

This seems a reasonably lear aount. The fat that an impliit as-

sumption is generated for eah resolvent (i.e. for eah theorem passed to

the substitution funtion { x < 1, for example, is generated for the resolvent

x = 0) is a no more minor imperfetion, as these terms must be hypotheses

of the �nal theorem in any ase. That is, these terms are impliit assump-

tions in the sense that whether of not they are hypotheses of the theorem

ahieving the �nal subgoal, they will be hypotheses of the theorem ahieving

the original goal.

To devote a separate step to the use of eah resolvent might seem tedious,

but this is in fat the unseen e�et of applying the ordinary IMP_RES_THEN f

th. It is not in general the ase that the sequene of uses of the resolvent-

based theorems an be expressed as a single use of a list of theorems. For

example, while a sequene of substitutions (via SUBST1_TAC) an be expressed

as a single use of substitution (via SUBST_TAC), the same is not true of the

funtions \th. REWRITE_TAC [th℄ and REWRITE_TAC.

The funtion NAMED_RES_THEN is handled in a similar way to NAMED_IMP_RES_THEN.

9 Strip Funtions

The strip funtions are examples of HOL tatis that do not orrespond

to single `natural' proof steps; they are onvenient tatis that do one of

several simple steps, and are often repeated to do at one all suh simple

steps that possibly an be done. They are also examples of tati whose

implementations makes lever use of higher order funtions (namely, the

funtions desribed in Chapter ...), and as a result are diÆult to understand

108

immediately. Some of the issues raised by the e�ort to give an aount of an

appliation of the strip funtions are:

� To what extent to deompose the omplex step into primitive (natural)

steps;

� To what extent to give the aount in terms of the implementation;

� How to identify the subgoals produed (and their assumptions) so that

no mystery remains about their origin or parts.

9.1 The Strip Transformer in HOL

The basi stripping tool in HOL is the strip funtion STRIP_THM_THEN. Given a

funtion tta from theorems to tatis, a theorem th, and a goal g, STRIP_THM_THEN

inspets the top level struture the onlusion of th and hooses amongst

the tati transformers CONJUNCTS_THEN, DISJ_CASES_THEN and CHOOSE_THEN,

for onlusions whih are onjuntions, disjuntions or existential terms, re-

spetively, at the top level (and it fails for other terms). (The three tati

transformers are explained in Chapter ...)

STRIP_THM_THEN = FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN℄

where

FIRST_TCL [ttl1;...;ttln℄ = ttl1 ORELSE_TCL ... ORELSE_TCL ttln

where

(ttl1: thm_tatial) ORELSE_TCL (ttl2: thm_tatial) tta th =

(ttl1 tta th) ? (ttl2 tta th)

(meaning: the value of the ttl1 tta th unless that evaluation fails, in

whih ase the value of ttl2 tta th). The appropriate tati transformer

is then applied to tta; then the resulting funtion to th; and �nally, the

resulting tati to g. This is illustated by the following shemati examples:

109

...

g = ([℄, "t")

th1 = |- p1 /\ p2

th2 = |- p1 \/ p2

th3 = |- ?x. P x

#STRIP_THM_THEN ASSUME_TAC th1 g;;

([(["p2"; "p1"℄, "t")℄, -) : subgoals

#STRIP_THM_THEN ASSUME_TAC th2 g;;

([(["p1"℄, "t"); (["p2"℄, "t")℄, -) : subgoals

#STRIP_THM_THEN ASSUME_TAC th3 g;;

([(["P x"℄, "t")℄, -) : subgoals

STRIP_THM_THEN underlies the �rst of the two main strip tatis in HOL:

STRIP_ASSUME_TAC th.

9.2 Stripping and Assuming a Theorem in HOL

The tati STRIP_ASSUME_TAC th, applied to a goal g, maps the theorem th to

one or more sets of lauses (terms), and assumes eah set of terms (in the fash-

ion of ASSUME_TAC) in a separate subgoal. The term part of eah of the sub-

goals is unhanged. Eah set of lauses is a subset of the basi (lowest level)

disjunts, onjunts and witness subterms of the original term (with sepa-

rate subgoals being formed for disjunts). The e�et of STRIP_ASSUME_TAC is

illustrated with shemati theorems and goal:

#let g = [℄,"t:bool";;

g = ([℄, "t") : (* list # term)

...

th1 = |- p1 /\ p2

th2 = |- (p1 \/ p2) /\ (p3 \/ p4)

th3 = |- (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)

#STRIP_ASSUME_TAC th1 g;;

([(["p2"; "p1"℄, "t")℄, -) : subgoals

#STRIP_ASSUME_TAC th2 g;;

([(["p3"; "p1"℄, "t");

(["p4"; "p1"℄, "t");

(["p3"; "p2"℄, "t");

(["p4"; "p2"℄, "t")℄,

-)

: subgoals

110

#STRIP_ASSUME_TAC th3 g;;

([(["x < 2"; "p3"; "p2"; "p1"℄, "t"); (["x < 2"; "p3"; "p2"℄, "t")℄, -)

: subgoals

In eah ase, the lauses added to eah subgoal are not themselves on-

juntions, disjuntions or existential terms. The �rst theorem is mapped to a

single subgoal, with the two onjunts as separate assumptions. The seond

theorem indues a four-way disjuntive split, where the four subgoals have

two lauses (disjunts) eah. The third would have eight subgoals, but two

of these of these are solved internally beause they are inonsistent, and two

more beause they are trivially true (i.e. they inlude the term t itself as an

assumption). The two internal solutions prelude further ase analysis, so

that only six ases are atually generated. Of the two remaining subgoals,

the seond an be simpli�ed to omit mention of the tautologous lause (T)

and so inludes only three lauses as assumptions. Both subgoals inlude the

witness term p2.

STRIP_ASSUME_TAC is implemented by repeated use of STRIP_ASSUME_THEN

and a version of ASSUME_TAC:

STRIP_ASSUME_TAC = (REPEAT_TCL STRIP_THM_THEN) CHECK_ASSUME_TAC

where

REPEAT_TCL (ttl: thm_tatial) tta th =

((ttl THEN_TCL (REPEAT_TCL ttl)) ORELSE_TCL I) tta th

and

(ttl1: thm_tatial) THEN_TCL (ttl2: thm_tatial) tta = ttl1 (ttl2 tta)

Rather than assuming the �nal lauses via ASSUME_TAC, STRIP_ASSUME_TAC

uses the more seletive funtion (CHECK_ASSUME_TAC) whih noties and solves

ontraditions (via CONTR_TAC), and solutions (via ACCEPT_TAC). This intro-

dues the possibility, therefore, of STRIP_ASSUME_TAC solving a goal. (CHECK_ASSUME_TAC

also delines to add tautologous lauses as assumptions.)

To summarize:

STRIP_ASSUME_TAC th g

is

111

(REPEAT_TCL STRIP_THM_THEN) CHECK_ASSUME_TAC th g

whih is

(REPEAT_TCL (FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN℄))

CHECK_ASSUME_TAC th g

whih in turn is

(((FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN℄) THEN_TCL

(REPEAT_TCL ((FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN℄)))) ORELSE_TCL

I) CHECK_ASSUME_TAC th g

In the ase of th2 and g, above, for example, the ultimate `hain' of theorem

transformers ontains two elements: CONJUNCTS_THEN THEN_TCL DISJ_CASES_THEN:

#CONJUNCTS_THEN (DISJ_CASES_THEN CHECK_ASSUME_TAC);;

- : thm_tati

#(CONJUNCTS_THEN THEN_TCL DISJ_CASES_THEN) CHECK_ASSUME_TAC th2 g;;

([(["p3"; "p1"℄, "t");

(["p4"; "p1"℄, "t");

(["p3"; "p2"℄, "t");

(["p4"; "p2"℄, "t")℄,

-)

In general, REPEAT_TCL STRIP_THM_THEN results in a hain of funtions

f

1

,...,f

n

of type thm_tatial suh that then STRIP_ASSUME_TAC is equal to

f

1

(f

2

(....(f

n

CHECK_ASSUME_TAC)...)).

STRIP_ASSUME_TAC supports the two seond of the two main strip tatis

in HOL: STRIP_TAC th.

9.3 The Strip Tati in HOL

The other main stripping tati in HOL is STRIP_TAC, whih performs one

syntati layer of stripping on a given goal. On goals whose terms are uni-

versally quanti�ed, STRIP_TAC spei�es to a variant of the quanti�ed vari-

able. On goals whose terms are onjuntions, it produes a pair of separate

subgoals. The other possibility, aside from failure, is that the term is an

impliation, in whih ase the anteedent is taken apart into sets of lauses

(by STRIP_ASSUME_TAC), and eah set is assumed in a separate subgoal (whose

term is the onsequent of the impliation). That is,

112

STRIP_TAC = STRIP_GOAL_THEN STRIP_ASSUME_TAC

where

STRIP_GOAL_THEN tta = FIRST [GEN_TAC; CONJ_TAC; DISCH_THEN tta℄

STRIP_TAC inherits from STRIP_ASSUME_TAC the ability to solve ertain

goals. Also, as is usual in HOL, a term of the form ~t is regarded as being

t ==> F so that STRIP_TAC approahes the proof of ~t as a proof by ontra-

dition.

STRIP_TAC is illustrated by adapting the theorems used above to illustrate

STRIP_ASSUME_TAC { the anteedents are deomposed into disjunts, onjunts

and witness terms:

g1 = ([℄, "p1 /\ p2 ==> t")

g2 = ([℄, "(p1 \/ p2) /\ (p3 \/ p4) ==> t")

g3 = ([℄, "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t")

#STRIP_TAC g1;;

([(["p2"; "p1"℄, "t")℄, -) : subgoals

#STRIP_TAC g2;;

([(["p3"; "p1"℄, "t");

(["p4"; "p1"℄, "t");

(["p3"; "p2"℄, "t");

(["p4"; "p2"℄, "t")℄,

-)

: subgoals

#STRIP_TAC g3;;

([(["x < 2"; "p3"; "p2"; "p1"℄, "t"); (["x < 2"; "p3"; "p2"℄, "t")℄, -)

: subgoals

Beause of the inner repeat onstrut, an inde�nite number of subgoals

an result from an appliation of STRIP_TAC. That is, there may be any num-

ber of disjuntive splits, and of the subgoals generated, some may be solved.

9.4 Aounting for The Strip Tati

One method of implementing NAMED_STRIP_TAC, to supply an aount of

the stripping proess applied to a named goal, is to regard stripping as

a ompound proof step not to be aounted for as a single proof step.

This is ahieved by implementing NAMED_STRIP_TAC in parallel with HOL's

STRIP_TAC, based on (likewise parallel) implementations of NAMED_STRIP_GOAL_THEN,

113

NAMED_STRIP_ASSUME_TAC, NAMED_STRIP_THM_THEN, NAMED_REPEAT_TCL, and so

on. By this method, the job of onstruting the aount of the stripping ta-

ti is handed over to the funtions NAMED_CONJUNCTS_THEN and so on, giving,

in the end, a full aount of the proessing of the goal, with eah step in the

proess explained as a separate proof step.

A seond method of implementing NAMED_STRIP_TAC is to gather and pro-

ess the results of applying NAMED_STRIP_TAC. This gives an aount of strip-

ping as a single proof step. (The results of applying HOL's STRIP_TAC, to

the orresponding ordinary goal { in the style of many other named tatis'

implementations { does not give enough information to onstrut a useful

aount.)

We explain both methods, and leave the hoie to be deided aording

to partiular needs.

9.4.1 The Implementation-Based Aount

One all of the basi funtion are implemented for named goals, the tati

NAMED_STRIP_TAC is easy to implement in parallel with the HOL implemen-

tation. We onsider three orresponding named goals:

ng1 = mk_named_goal(`example1`, [℄, "p1 /\ p2 ==> t")

ng2 = mk_named_goal(`example2`, [℄, "(p1 \/ p2) /\ (p3 \/ p4) ==> t")

ng3 =

mk_named_goal(`example3`,

[℄,

"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t")

To these we apply the version of NAMED_STRIP_TAC implemented in parallel

with HOL's STRIP_TAC. In the �rst example, applying NAMED_STRIP_TAC to ng1

gives one subgoal:

>> "t"

Assuming

The right onjunt: "p2"

The left onjunt: "p1"

Assuming impliitly

The anteedent: "p1 /\ p2"

The justi�ation is onstruted, as for HOL's STRIP_TAC, from the justi�-

ations of the onstituent funtions when the tati is applied. Given an

aount of the subgoal, the justi�ation returns an aount of the whole

stripping step:

114

This is the proof of the onjeture

>> example1:

"p1 /\ p2 ==> t"

>>>> It is suffiient to prove:

>> "t"

Assuming

The anteedent: "p1 /\ p2"

>>>> We use the two separate theorems implied by the assumption

p1 /\ p2 |- p1 /\ p2.

The two theorems are used in sequene. We are showing:

>> "t"

Assuming impliitly

The anteedent: "p1 /\ p2"

>>>> We use the fat that

p1 /\ p2 |- p1.

It is suffiient to prove:

>> "t"

Assuming

The left onjunt: "p1"

Assuming impliitly

The anteedent: "p1 /\ p2"

>>>> We use the fat that

p1 /\ p2 |- p2.

It is suffiient to prove:

>> "t"

Assuming

The right onjunt: "p2"

The left onjunt: "p1"

Assuming impliitly

The anteedent: "p1 /\ p2"

...

This establishes

p1, p2 |- t

This establishes

p1, p1 /\ p2 |- t

This establishes

p1 /\ p2 |- t

This establishes

p1 /\ p2 |- t

This establishes

|- p1 /\ p2 ==> t

115

This ompletes the proof of the onjeture

>> example1:

"p1 /\ p2 ==> t"

The aount is straightforward; its seond proof step is the one devoted

by CONJUNCTS_THEN to explaining the onjuntive split of the anteedent as-

sumption. The subgoal produed by this step is unhanged from the previous

subgoal exept for `disappearane' of the (no longer needed) anteedent as-

sumption at that point. The last subgoal shown has the anteedent of the

original impliation entirely taken apart, as a result of the steps determined

by applying NAMED_STRIP_TAC to ng1.

When the hain of funtions determined by applying NAMED_STRIP_TAC

to a given goal is longer, and espeially when it involves ase splits (as it

would in the seond example), the aount in the present style beomes

more tedious and onfusing. It is onfusing, in partiular, beause there is

a sequene of binary ase splits to be presented, and the resulting ases are

repeatedly labelled as the left disjunt ase or the right disjunt ase.

The atual subgoal being onsidered at ertain points in the presentation an

be identi�ed only via the onvention that in printing a subgoal-proof tree in

depth-�rst fashion, the next (awaiting) subgoal is re-printed immediately

after a leaf has been printed.

Despite the inonvenienes, it still sometimes the ase that the aount

desired is the one that lays out all the stages of the stripping proess. For ex-

ample, the learest explanation is produed for the third ase by this method.

Here, as mentioned earlier, there are two subgoals produed out of the six

generated internally. These are:

>> left disjunt ase:

"t"

Assuming

The witness hypothesis: "x < 2"

The left disjunt: "p3"

The left disjunt: "p2"

The left disjunt: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

and

>> left disjunt ase:

"t"

116

Assuming

The witness hypothesis: "x < 2"

The left disjunt: "p3"

The left disjunt: "p2"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

In the lengthy aount produed by applying the justi�ation, however, all six

ases are displayed, and it is explained learly how the four internal ases are

solved (this information being provided by the named tatis that ultimately

solve the internal goals). In ontrast, it is not lear in HOL itself (see ...)

how many ases were atually generated, nor of these, whih were solved,

and how.

This is the proof of the onjeture

>> example3:

"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t"

>>>> It is suffiient to prove:

>> "t"

Assuming

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We use the two separate theorems implied by the assumption

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)

|- (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2).

The two theorems are used in sequene. We are showing:

>> "t"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We onsider the two ases suggested by the fat

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p1 \/ T

>> left disjunt ase:

"t"

Assuming

The left disjunt: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>> right disjunt ase:

"t"

Assuming

The right disjunt: "T"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

The proof of the

>> left disjunt ase:

117

"t"

Assuming

The left disjunt: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> We use the two separate theorems implied by the fat

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)

|- (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2).

The two theorems are used in sequene. We are showing:

>> "t"

Assuming

The left disjunt: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We onsider the two ases suggested by the fat

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p2 \/ F

>> left disjunt ase:

"t"

Assuming

The left disjunt: "p2"

The left disjunt: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>> right disjunt ase:

"t"

Assuming

The right disjunt: "F"

The left disjunt: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

The proof of the

>> left disjunt ase:

"t"

Assuming

The left disjunt: "p2"

The left disjunt: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> We use the two separate theorems implied by the fat

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)

|- (p3 \/ t) /\ (?x. x < 2).

The two theorems are used in sequene. We are showing:

>> "t"

Assuming

The left disjunt: "p2"

The left disjunt: "p1"

118

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We onsider the two ases suggested by the fat

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p3 \/ t

>> left disjunt ase:

"t"

Assuming

The left disjunt: "p3"

The left disjunt: "p2"

The left disjunt: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>> right disjunt ase:

"t"

Assuming

The right disjunt: "t"

The left disjunt: "p2"

The left disjunt: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

The proof of the

>> left disjunt ase:

"t"

Assuming

The left disjunt: "p3"

The left disjunt: "p2"

The left disjunt: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> Using the term "x"

as a witness to the fat

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- ?x. x < 2

it is suffiient to prove:

>> "t"

Assuming

The witness hypothesis: "x < 2"

The left disjunt: "p3"

The left disjunt: "p2"

The left disjunt: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

...

This establishes

x < 2, p1, p2, p3 |- t

This establishes

119

p3, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p1, p2 |- t

The proof of the

>> right disjunt ase:

"t"

Assuming

The right disjunt: "t"

The left disjunt: "p2"

The left disjunt: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> The theorem

t |- t

is proposed to satisfy this.

This establishes

t |- t

This establishes

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p1, p2 |- t

This establishes

p2, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p1 |- t

The proof of the

>> right disjunt ase:

"t"

Assuming

The right disjunt: "F"

The left disjunt: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> This follows vauously (by ontradition) from the theorem

F |- F

This establishes

F |- t

This establishes

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p1 |- t

This establishes

p1, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- t

The proof of the

>> right disjunt ase:

"t"

Assuming

The right disjunt: "T"

Assuming impliitly

120

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> It is suffiient to prove:

>> "t"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We use the two separate theorems implied by the fat

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)

|- (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2).

The two theorems are used in sequene. We are showing:

>> "t"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We onsider the two ases suggested by the fat

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p2 \/ F

>> left disjunt ase:

"t"

Assuming

The left disjunt: "p2"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>> right disjunt ase:

"t"

Assuming

The right disjunt: "F"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

The proof of the

>> left disjunt ase:

"t"

Assuming

The left disjunt: "p2"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> We use the two separate theorems implied by the fat

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)

|- (p3 \/ t) /\ (?x. x < 2).

The two theorems are used in sequene. We are showing:

>> "t"

Assuming

The left disjunt: "p2"

121

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We onsider the two ases suggested by the fat

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p3 \/ t

>> left disjunt ase:

"t"

Assuming

The left disjunt: "p3"

The left disjunt: "p2"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>> right disjunt ase:

"t"

Assuming

The right disjunt: "t"

The left disjunt: "p2"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

The proof of the

>> left disjunt ase:

"t"

Assuming

The left disjunt: "p3"

The left disjunt: "p2"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> Using the term "x"

as a witness to the fat

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- ?x. x < 2

it is suffiient to prove:

>> "t"

Assuming

The witness hypothesis: "x < 2"

The left disjunt: "p3"

The left disjunt: "p2"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

...

This establishes

x < 2, p2, p3 |- t

This establishes

122

p3, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p2 |- t

The proof of the

>> right disjunt ase:

"t"

Assuming

The right disjunt: "t"

The left disjunt: "p2"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> The theorem

t |- t

is proposed to satisfy this.

This establishes

t |- t

This establishes

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p2 |- t

This establishes

p2, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- t

The proof of the

>> right disjunt ase:

"t"

Assuming

The right disjunt: "F"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> This follows vauously (by ontradition) from the theorem

F |- F

This establishes

F |- t

This establishes

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- t

...

This establishes

|- (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t

This ompletes the proof of the onjeture

>> example3:

"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t"

123

9.4.2 The Primitive Aount

It may be the ase that the explanation of the stripping proess is not wanted,

as above, in terms of the entire hain of steps, inluding the subgoals solved

internally and the methods used { but simply in one unit strip step. If so,

the strip funtion ould not be implemented as above, in parallel with HOL's

implementation.

Neither an it be implemented diretly in an analogous way to many

other tatis { by gathering and organizing the results of applying HOL's

STRIP_TAC to the orresponding ordinary goal; this method does not give an

adequate aount beause the results of STRIP_TAC in themselves a�ord no

means of identifying the subgoals (and parts of subgoals) resulting from the

stripping proess.

Instead, the one-step funtion (NAMED_PRIM_STRIP_TAC, for `primitive strip

tati') is implemented indiretly by applying the full-aount version (NAMED_STRIP_TAC)

to the goal and then proessing those results into a single aount. NAMED_STRIP_TAC

gives enough information { via its onstituent funtions NAMED_CONJUNCTS_THEN

and so on { to be able to identify the results in a meaningful way for aount-

ing purposes.

The proessing that is required on the results of applying NAMED_STRIP_TAC

is quite elaborate. First, some simple proessing greatly improve the aount:

� Provision has to be made for the goal being ompletely solved, as that

outome is presented di�erently than a set of subgoals;

� It has to be notied if the original goal is a negated term, so that the

proof an be presented as a proof by ontradition;

� The term parameters of any appliations of NAMED_GEN_TAC should be

reorded; even though an individual generalization step is not going to

be reported, this information may be required.

The more omplex proessing relates to the fat, observed earlier, that

a single appliation of STRIP_TAC to an impliative goal an give rise to an

inde�nite number of subgoals, through a sequene of disjuntive splits of

the anteedent, and through internal solutions. Subgoals arising in this way

will always be identi�ed (via NAMED_STRIP_TAC) as left disjunt ase or

right disjunt ase. The �nal set of subgoals arising in this way an be

reast by NAMED_PRIM_STRIP_TAC as a numbered sequene of disjuntive ases.

124

Withing eah subgoal produed by NAMED_STRIP_TAC on an impliative

goal, there may be various lauses (arising from the anteedent) whih are

identi�ed as wintness hypotheses, left or right disjunts, or left or right on-

junts. From these labels, the onjunts' and disjunts' names an be reor-

ganized in numbered sequenes.

For example, in the third ase, it was mentioned earlier that the two

visible subgoals (to be solved) were

>> left disjunt ase:

"t"

Assuming

The witness hypothesis: "x < 2"

The left disjunt: "p3"

The left disjunt: "p2"

The left disjunt: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

and

>> left disjunt ase:

"t"

Assuming

The witness hypothesis: "x < 2"

The left disjunt: "p3"

The left disjunt: "p2"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

These an be reast and printed, respetively, as

>> disjuntive ase 1 of 2:

"t"

Assuming

The witness hypothesis: "x < 2"

The disjunt 3: "p3"

The disjunt 2: "p2"

The disjunt 1: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

and

>> disjuntive ase 2 of 2:

"t"

Assuming

The witness hypothesis: "x < 2"

125

The disjunt 2: "p3"

The disjunt 1: "p2"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

The primitive aount of the stripping step is then:

This is the proof of the onjeture

>> example3:

"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t"

>>>> It is suffiient to prove the following:

>> disjuntive ase 1 of 2:

"t"

Assuming

The witness hypothesis: "x < 2"

The disjunt 3: "p3"

The disjunt 2: "p2"

The disjunt 1: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>> disjuntive ase 2 of 2:

"t"

Assuming

The witness hypothesis: "x < 2"

The disjunt 2: "p3"

The disjunt 1: "p2"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

The proof of the

>> disjuntive ase 1 of 2:

"t"

Assuming

The witness hypothesis: "x < 2"

The disjunt 3: "p3"

The disjunt 2: "p2"

The disjunt 1: "p1"

Assuming impliitly

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

...

This establishes

p1, p2, p3, x < 2 |- t

The proof of the

>> disjuntive ase 2 of 2:

"t"

126

Assuming

The witness hypothesis: "x < 2"

The disjunt 2: "p3"

The disjunt 1: "p2"

Assuming impliitly

The right disjunt: "T"

The anteedent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

...

This establishes

p2, p3, x < 2 |- t

This establishes

|- (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t

This ompletes the proof of the onjeture

>> example3:

"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t"

This aount of applying NAMED_PRIM_STRIP_TAC does not explain the gen-

eration and solution of the four internal subgoals, but it does mirror the tati

STRIP_TAC, whih takes apart the anteedent of an impliative goal and deals

with the resulting lauses in a single proof step.

NAMED_PRIM_STRIP_TAC is implemented as an elaboration of the more basi

NAMED_STRIP_TAC; it gives similar subgoals (the same with some renaming),

but a di�erent aount. That is, NAMED_PRIM_STRIP_TAC omputes the sub-

goals and justi�ation (p, say) given by NAMED_STRIP_TAC, but then uses p to

onstrut is own aount. Its own aount simply maps a given list of sub-

aounts to an aount (i.e. a node) with a name of its own, ontaining the

given list of sub-aounts, the list of (proessed) subgoals, and the theorem

omponent of the aount got by applying p to the list of sub-aounts. In

this way, the theorem ahieved is the only omponent of the long aount

(the aount of NAMED_STRIP_TAC) that appears expliitly in the new aount

(the aount of NAMED_PRIM_STRIP_TAC), although the same atual inferenes

are generated in both ases.

In a similar way, other patterns of inferene also ould be implemented

to give one-step aounts. One simple instane of this would be a tati to

apply and aount for NAMED_PRIM_STRIP_TAC repeatedly, in one step; this

would be useful sine REPEAT STRIP_TAC is a very ommonly used beginning

to proofs.

127

This idea forms the basis of a method for ompating long and exessively

detailed aounts. Deiding whih further patterns of inferene ould be

presented oherently by being ompated into unit steps is a matter for future

researh.

10 Transforming Proof Aounts

One the subgoal-proof tree has been extrated from the performane of a

HOL proof, it an, in theory, be presented in a variety of ways { though just

one style of presentation has been implemented to date. A further extension,

however, is to transform the subgoal-proof tree itself before it is printed.

This would be done in the interest of produing a learer or more elegant

proof, removing unneessary proof steps, and so on. Suh transformations

would be based on a belief that the proof { in the sense of the sequene of

inferene steps orresponding to the subgoal-roof tree { were either preserved

or were transformed in a validity-preserving way by the transformation of

the tree

18

. This belief would be supported by a `meta-argument' about the

transformation rather than a re-derivation of the proof in the logi; that is,

the orrespondene of the new tree to a proof would be informal.

To date, two partiular kinds of transformations have been implemented,

to test this idea. Under the �rst transformation, uninterrupted sequenes of

generalization steps are ompated into a single, multiple generalization step

(and the subgoal-proof tree reassembled aordingly). Under the seond,

steps whih have no e�et on a goal are removed and the remaining tree

splied together appropriately.

The following printed aount results from a repeated appliation of

NAMED_STRIP_TAC to the goal shown:

This is the proof of the onjeture

>> example:

"!x y z. x < y /\ y < z ==> x < z"

>>>> Consider an arbitrary "x":

We show:

18

The subgoal-proof tree as de�ned does not inlude the inferene sequene, but just

the subset onsisting of the theorems ahieving the subgoals. These are produed, when

the proof is performed, by omputing the inferene sequenes in full; that is the sense in

whih there is a orrespondene.

128

>> "!y z. x < y /\ y < z ==> x < z"

>>>> Consider an arbitrary "y":

We show:

>> "!z. x < y /\ y < z ==> x < z"

>>>> Consider an arbitrary "z":

We show:

>> "x < y /\ y < z ==> x < z"

...

When the subgoal-proof tree whih underlies this aount is transformed

in the �rst way, a new tree is produed. The new tree is printed as follows:

This is the proof of the onjeture

>> example:

"!x y z. x < y /\ y < z ==> x < z"

>>>> Considering arbitrary "x", "y", "z",

we show:

>> "x < y /\ y < z ==> x < z"

...

This transformation is ahieved by olleting from the original tree all

uninterrupted sequenes of steps whih are equivalent in e�et to general-

izations and then representing eah sequene as a single node in a new tree.

The single node is oneived as representing a multiple generalization tati

{ a tati equivalent in its e�et to an appliation of REPEAT GEN_TAC but

onsidered as a single proof step. Steps equivalent in e�et to generalizations

might have been generated by appliation of GEN_TAC, or might have been

generated indiretly, e.g. via appliation of STRIP_TAC, provided that indi-

ret generalizations manage to reord the variable in question in the same

way that GEN_TAC does.

That is, an aount of the form

mk_node((`NAMED_GEN_TAC`, ["x"℄, [℄),

[mk_node((`NAMED_GEN_TAC`, ["y"℄, [℄),

[mk_node((`NAMED_GEN_TAC`, ["z"℄, [℄),

... ,

[mk_named_goal(`example`,

[℄,

"x < y /\ y < z ==> x < z")℄,

|- !z. x < y /\ y < z ==> x < z)℄ ,

[mk_named_goal(`example`,

129

[℄,

"!z. x < y /\ y < z ==> x < z")℄,

|- !y z. x < y /\ y < z ==> x < z)℄,

[mk_named_goal(`example`, [℄, "!y z. x < y /\ y < z ==> x < z")℄,

|- !x y z. x < y /\ y < z ==> x < z)

beomes an aount of the form

mk_node((`MULTI_NAMED_GEN_TAC`, ["x"; "y"; "z"℄, [℄),

... ,

[mk_named_goal(`example`, [℄, "x < y /\ y < z ==> x < z")℄,

|- !x y z. x < y /\ y < z ==> x < z)

where MULTI_NAMED_GEN_TAC is a new kind of node (suggesting a hypothetial

new tati) with its own printing onvention. (The node and its printing

format must of ourse be known to the printing funtions in advane.)

Redundant proof steps arise for a variety of reasons; for example, the use

of tatis whih never fail (e.g. rewriting), or linear tatis whih advane one

branh of a proof but whih neither fail nor have any e�et on the another

branh. For example, if the goal of the previous example is attaked by

applying to it the (rather odd) tati

NAMED_REWRITE_TAC [℄ THEN

NAMED_STRIP_TAC THEN

NAMED_REWRITE_TAC [℄

so that only the STRIP_TAC advanes the proof, the following aount is

printed:

This is the proof of the onjeture

>> example:

"!x y z. x < y /\ y < z ==> x < z"

>>>> Using basi tautologies, it is suffiient to prove:

>> "!x y z. x < y /\ y < z ==> x < z"

>>>> Consider an arbitrary "x":

We show:

>> "!y z. x < y /\ y < z ==> x < z"

>>>> Using basi tautologies, it is suffiient to prove:

>> "!y z. x < y /\ y < z ==> x < z"

...

Under the seond transformation, the redundant steps are removed from the

tree, and the resulting tree is printed as follows:

130

This is the proof of the onjeture

>> example:

"!x y z. x < y /\ y < z ==> x < z"

>>>> Consider an arbitrary "x":

We show:

>> "!y z. x < y /\ y < z ==> x < z"

...

This transformation is ahieved by searhing for nodes whih have ex-

atly one diret desendent node, and for whih the subgoal is the same as

the goal

19

. Where there is a single unhanged subgoal, the transformation

involves removing the subgoal node from the tree and spliing up the rest

of the tree aordingly. The transformation applies reursively throughout

tree.

In the example above, the original aount has the form

mk_node((`NAMED_REWRITE_TAC`, [℄, [℄),

[mk_node((`NAMED_GEN_TAC`, ["x"℄, [℄),

[mk_node((`NAMED_REWRITE_TAC`, [℄, [℄),

... ,

[mk_named_goal(`example`,

[℄,

"!y z. x < y /\ y < z ==> x < z")℄,

|- !y z. x < y /\ y < z ==> x < z)℄,

[mk_named_goal(`example`,

[℄,

"!y z. x < y /\ y < z ==> x < z")℄,

|- !x y z. x < y /\ y < z ==> x < z)℄,

[mk_named_goal(`example`,

[℄,

"!x y z. x < y /\ y < z ==> x < z")℄,

|- !x y z. x < y /\ y < z ==> x < z)

while the transformed tree has the form

mk_node((`NAMED_GEN_TAC`, ["x"℄, [℄),

...

[mk_named_goal(`example`, [℄, "!y z. x < y /\ y < z ==> x < z")℄,

|- !x y z. x < y /\ y < z ==> x < z)

Both of the transformations an be done in a single ombined transfor-

mation whih applies repeatedly until neither tranformation an assist.

19

`The same' is taken in the �rst instane to mean idential exept for the goals' names,

though more subtlety may be alled for in treating impliit assumptions, et.

131

Another use of suh transformations might be to print impliit assumption

more seletively (e.g. where they are dupliated), or not at all (in ontexts

where they are not of interest).

Some elaborations along these lines are mentioned in Chapter ... on future

researh ideas. The two desribed here are very simple transformations, but

the idea ould be extended to more sophistiated transformations whih re-

sulted in aounts whih are preferred for some purpose. It is worth stressing

again, however, that transforming and re-printing the internal respresenta-

tion of a proof does not entail re-proving anything. The transformed trees

may indeed fail to represent valid proofs { despite any informal arguments

that they do, the trees may no longer orrespond to valid proofs.

To ahieve a diret orrespondene, it might be possible, as a side e�et of

transforming the tree, in some ases, to derive automatially the new tati

that orresponds to the transformed tree, and then to try to apply that tati

to the original goal. If this worked, it would produe the new (genuine) tree

diretly. Clearly, this makes no sense where a hypothetial tati is suggested

(suh as MULTI_NAMED_GEN_TAC, mentioned earlier), but it should be possible,

for example, for the seond kind of transformation. However, this idea is

mere speulation at present.

11 Future Researh

We mention briey in this Chapter some extensions of the aount faility

whih we hope to make in future work. These are grouped as pratial and

theoretial extensions.

Some theoretial extensions are as follows:

� The idea of transforming trees before printing (Chapter ...) ould be

extended to more sophistiated transformations. One sort of transfor-

mation whih might be helpful would be the seletive presentation of

proof steps, with the ellipsis or omission of other steps. For example, it

might be desired, partiularly in long proofs, to produe aounts on-

sisting only of the major or important proof steps. The full aounts

shown in this paper are probably too long and detailed for some pur-

poses. Part of the researh would be to deide whih steps in whih

ontexts are `important'.

132

� We also mentioned (in Chapter ...) the idea of extrating from the

transformation proess enough information to be able to onstrut the

transformed tati, at least in ertain ases. A partiular appliation

of this would be to rephrase HOL tatis in some desired style. For

example, one the subgoal-proof tree is known, the ompound tati

whih produed the tree might ould be rephrased to be more linear (so

that separate branhes are generated by one at sequene of tatis) or

less linear (so that seletive sequening { THENL, for instane { were used

where branhing ours). This would be useful where suh uniformity

of style is desired.

� At present, it is required that a proof be suessfully ompleted in HOL

before an aount an be generated { by re-performing the proof in a

di�erent mode. It might also be useful to be able to work pieewise and

interatively; that is, to generate an aount of one step within a proof.

This would be useful, for example, for understanding mysterious single

steps in ompleted proofs, or for assessing the e�et of diÆult steps

in a proof in progress. An interative faility would involve hanging

the new ML types (Chapter ...) to some extent, sine an aount,

as things stand, inludes the ahieving theorem assoiated with eah

node. However, the basi onepts should make some sort of interative

faility possible.

� In onnetion with the above point, another role of the aount fail-

ity might be as a proof debugging aid. That is, where a proof fails,

or proeeds on an unexpeted ourse, the explanation of ertain steps

may be valuable in traing the ause of the problem. Having aess to

the subgoal and its purported ahieving theorem at a problem point

may provide the key to understanding the failure. Here, any impliit

assumptions (whih will be aessible) may also shed light on the prob-

lem. Aounts seem partiularly useful where a tati implemented by

a user diretly in ML fails in some way.

� It would also be useful if the aount faility ould be integrated with

another faility for explaining segments of forward proof. (A faility

for explaining forward proofs is part of a urrently proposed researh

grant.) If explanations of the interludes of forward proof whih some-

times our in goal-oriented proofs ould be generated, it would be

133

possible to give more information within aounts as presented so far.

For example, where a rewrite rule is derived by a sequene of forward

inferenes, the existing aount faility would just report a rewriting

event based on the theorem resulting from the forward inferene. If the

inferene ould itself be explained, the new theorem would not appear

as if by magi, but would be aounted for meaningfully.

� In relation to the above point, one slightly unsatisfatory feature of the

aounts produed urrently for rewiting steps is that a rewriting step

of a proof is reported based on all of the (potential) rewrites provided.

In fat, it would be more informative to be told whih rewrites were a-

tually engaged and whih were not, in eah ase. There appeared to be

no simple, aurate way to do this within the aounting sheme pre-

sented. `Named' tatis were generally implemented by elaborating on

the results of the original tatis; original tatis were taken as `blak

boxes'. Rewriting, in partiular, has a omplex and sensitive imple-

mentation in HOL, it seemed sensible to avoid trying to re-implement

it aurately. It also seemed within the spirit to the urrent aount

pakage not to re-implement it. However, if there were already a way

of traing the atual steps of the rewriting proess as part of a system

for explaining forward proofs, this would make a valuable addition to

the existing proof aount faility for rewriting.

� It might be worth making a wider study of textbook-style proof presen-

tations with the aim of improving the style of proof aount printouts.

� The HOL pakage for introduing reursive data types and automati-

ally generating indution rules for them was designed and implemented

by Tom Melham (...). Derivation of indution rules follows from the

de�nitions that haraterize the new reursive data type. We have dis-

ussed numerial indution only in this paper (...), but it would be very

desirable if, from any new reursive type de�nition, one ould automat-

ially generate the `named' tati whih would produe the appropriate

aount. This seems in priniple to be possible, but has not yet been

studied arefully.

� It seems possible that the naming of assumptions in the new system of

ML types needed for generating aounts may have other appliations.

134

One obvious appliation is the aessing of assumptions by name rather

than by position in the (arbitrary) order imposed by a partiular HOL

implementation. That is, if an indution hypothesis is identi�ed by

the string `indution hypothesis`, then one ought to be able to say

something like `rewrite using the indution hypothesis as a rewrite rule'

rather than `rewrite using the third assumption (whih I happen to

believe is the indution hypothesis, at the moment)'. This would be

a great onveniene to the user, and moreover would produe muh

learer aounts.

� It would be desirable to test many more examples of ML onstruts

whih users employ in generating proofs in HOL, partiularly the more

omplex ones. There is probably too muh bias in examples onstruted

for the purpose.

Some pratial extensions are as follows:

� The �rst projet is to prepare a leaner and more eÆient implemen-

tation suitable for being released with the HOL system (along with

suitable doumentation). The faility should also be better interfaed

to the HOL system, and easier to use. For example, one would like

to swith into a mode in whih aounts were generated (and swith

out again, perhaps) without having to use new names for tatis (e.g.

NAMED_STRIP_TAC for STRIP_TAC, et).

� The existing aounts faility applies, of ourse, only to standard HOL

tatis. For users who implement their own tatis (in ML rather than

as ombinations of standard funtions), there is no way to produe

aounts exept by implementing diretly the original tatis as named

tatis. It might be possible to provide an interfae for allowing users

to aomplish this more easily. The interfae ould, for example, ask

the user what to all the subgoals and any new assumptions, and so

on, and then implement the original tati in a uniform way.

� New printing styles should be tried; the one used in this paper is only

a �rst attempt.

� A new pakage for managing goal-oriented proofs (i.e. a new subgoal

pakage) has reently been implemented by Sara Kalvala (...). (This is

135

a standard part of the HOL 12 implementation.) This pakage involves

an internal respresentation of the proof tree, and inludes a means

of extrating the text of a tati from the interation during whih a

proof is developed. It would be interesting to explore the relation of

that pakage to the aount faility, and any ways in whih the two

ould be ombined, or ould bene�t from eah others' tehniques and

ideas.

� It was mentioned (Chapter ...) that the standard funtion POP_ASSUM

auses a slight anomaly in that its justi�ation does not `replae' the

lost assumption in a given ahieving theorem. This was partiularly

apparent in tatis suh as POP_ASSUM(K ALL_TAC). One small future

experiment would be to re-implement POP_ASSUM so that its justi�a-

tion did add the popped assumption to the inoming theorem, and to

establish that this repair worked orretly with other funtions. If so,

the idea of impliit assumptions would beome simpler. (This point

relates to the disussion on pages ...).

12 Conlusions

The main purpose of the work desribed here has been to test the feasi-

bility of extrating a onventional or `natural' explanation of a proof from

the proess of performing the proof in HOL (in goal-oriented fashion). It

was intended that this explanation be free of onepts spei� to HOL or

to mehanized theorem-proving, even where the HOL tatis used were spe-

ialized or obsure. The main questions were: ould enough information be

extrated from the appliation fo tatis to a goal to ompose an explanation

oif the proof? What was is the essential information? What is involved in

presenting it in readable form?

So far, the ideas for assembling explanations seem to have worked well,

and the explanations produed, at least for the basi tatis and tati on-

strutions seem reasonable. However, a great deal more experimentation

with real proofs (and in partiular with other users' proofs) is still required.

We plan to pursue this in future. As mentioned in Chapter ..., the aounts

produed at the moment are probably too detailed and exhaustive for some

purposes, and it is planned also in future to experiment with ideas for on-

136

densing them. The partiular style and layout used in this paper are only

preliminary, and these may hange with experiene. At prsent, what we

have is a basis for explaining proofs, and a framework in whih to introdue

re�nements.

The main obstale thus far to produing aounts was dealing with tatis

formed by applying `ontinuation' funtionals to tatis. Though this is a

exible and onvenient method for the HOL user, suh onstruts have the

e�et of performing some of the proof steps behind the senes, and doing

more than one major proof step at a time. The resulting leap is therefore

diÆult to explain. We have proposed one way of spelling out suh steps (in

Chapter ...) whih seems to produe a omprehensible story. The method

proposed may appear slightly unsatisfatory in that it reverses the diretion

of the HOL implementation, in whih the higher order funtionals (e.g. the

ontinuations) are primary and the ordinary tatis are de�ned in their terms;

the method for produing aounts in these ases takes the tatis as primary

and the higher-order onstruts de�ned in terms of them. However, there

is no real reason to insist that the onepts and tools of the HOL user be

determined by what happens to be the implementation of HOL. For example,

the HOL system is normally taught by presenting simple tatis �rst, and

tati onstrutions later on (if at all).

A seond, related obstale (see Chapter ...) was the use of the set of ur-

rent assumptions as a stak or array, in whih the position of an assumption

{ whih is again just an artefat of the HOL implementation { provides a

means of aessing assumptions. This approah oasionally also involves the

apparent `dropping' of assumptions one they are `used', partly as a means

of ontrolling the size of the assumption set. Our analysis points to various

oneptual problems in this style of proof, but as the method is now popular

in the HOL ommunity, it seemed neessary to provide a way of aounting

for proof steps based on a stak or array of assumptions. We think that the

method proposed in Chapter ... is quite satisfatory.

The means of overoming both of the above obstales, and to the prob-

lem of invalid proof steps as well (see Chapter ...), suggested the notion of

impliit assumptions. That onept is introdued in Chapter By making

aessible all the assumptions whih hold at a given stage in a goal-oriented

proof, but whih are not normally made expliit, several mysteries about

HOL proofs an be leared up. At the same time, always printing impliit

assumptions reates a ertain amount of lutter. Further work is planned on

137

how to deide exatly when printing impliit assumptions is useful.

138

13 Referenes

139

14 Appendix

This appendix lists (i) the ML funtions whih work as they are under the

new system of ML types (desribed in Chapter ...); (ii) the ML funtions

whih have been re-implemented for the new system of types; and (iii) new

funtions whih have been implemented for the new system of types. Eah

funtion is listed with its main appearane in the text.

The funtions whih do not require modi�ation for HOL (Version 11) are:

THEN

THENL

MAP_EVERY

EVERY

FIRST

MAP_FIRST

NO_TAC

ORELSE

REPEAT

THENC

The funtions whih have been re-implemented are:

NAMED_GEN_TAC

NAMED_X_GEN_TAC

NAMED_INDUCT_TAC

NAMED_SUBST_TAC

NAMED_SUBST1_TAC

NAMED_BOOL_CASES_TAC

NAMED_COND_CASES_TAC

NAMED_SPEC_TAC

NAMED_ASSUME_TAC

NAMED_ACCEPT_TAC

NAMED_ASM_CASES_TAC

NAMED_CONJ_TAC

NAMED_LIST_INDUCT_TAC

NAMED_ALL_TAC

NAMED_EQ_TAC

NAMED_CONV_TAC

NAMED_EXISTS_TAC

NAMED_MP_TAC

NAMED_UNDISCH_TAC

NAMED_CONTR_TAC

NAMED_DISCARD_TAC

NAMED_MATCH_MP_TAC

NAMED_MATCH_ACCEPT_TAC

NAMED_SUBST_OCCS_TAC

NAMED_BETA_TAC

NAMED_REWRITE_TAC

NAMED_ASM_REWRITE_TAC

NAMED_PURE_REWRITE_TAC

NAMED_ONCE_REWRITE_TAC

NAMED_PURE_ASM_REWRITE_TAC

NAMED_PURE_ONCE_REWRITE_TAC

NAMED_ONCE_ASM_REWRITE_TAC

NAMED_PURE_ONCE_ASM_REWRITE_TAC

NAMED_DISCH_TAC

NAMED_DISCH_THEN

140

NAMED_DISJ_CASES_TAC

NAMED_DISJ_CASES_THEN2

NAMED_DISJ_CASES_THEN

NAMED_X_CHOOSE_TAC

NAMED_X_CHOOSE_THEN

NAMED_CHOOSE_TAC

NAMED_CHOOSE_THEN

NAMED_CONJ_ASSUME_TAC2

NAMED_CONJUNCTS_THEN2

NAMED_CONJUNCTS_THEN

NAMED_IMP_RES_TAC

NAMED_RES_TAC

NAMED_IMP_RES_ASSUME_TAC

NAMED_IMP_RES_THEN

NAMED_RES_ASSUME_TAC

NAMED_RES_THEN

$MY_THEN_TCL

$MY_ORELSE_TCL

MY_REPEAT_TCL

MY_ALL_THEN

MY_NO_THEN

MY_EVERY_TCL

MY_FIRST_TCL

NAMED_CHECK_ASSUME_TAC

NAMED_STRIP_THM_THEN

NAMED_STRIP_ASSUME_TAC

NAMED_STRIP_GOAL_THEN

NAMED_STRIP_TAC

NAMED_SUBST_ALL_TAC

NAMED_ASSUME_LIST_TAC

NAMED_ASSUM_LIST

NAMED_FIRST_ASSUM

NAMED_CHANGED_TAC

NAMED_REFL_TAC

NAMED_THEN_TCL

NAMED_ORELSE_TCL

NAMED_REPEAT_TCL

NAMED_EVERY_TCL

NAMED_FIRST_TCL

NAMED_ALL_THEN

NAMED_NO_THEN

The new funtions whih have been implemented are:

C_NAMED_ASSUME_TAC1

C_NAMED_ASSUME_TAC2

NAMED_POP_TRACE

NAMED_POP_TRACE'

NAMED_POP_TRACE''

NAMED_POP_TRACE'''

NAMED_POP_ASSUM

NAMED_POP_ASSUM'

NAMED_POP_TRACE_LIST

NAMED_POP_TRACE_LIST'

NAMED_POP_TRACE_LIST''

NAMED_POP_ASSUM_LIST

NAMED_BASIC_IMP_RES_TAC

NAMED_PRIM_STRIP_TAC

141

