
Proof A

ounts in HOL

Avra Cohn

University of Cambridge Computer Laboratory

New Museums Site, Pembroke Street

Cambridge, CB2 3QG, England.

Abstra
t:

This paper presents a method for extra
ting explanations of goal-

oriented proofs from the pro
ess of generating su
h proofs in the

HOL system. The aim has been to produ
e natural (if stylized)

explanations whi
h are phrased in
onventional terms, even where

the ta
ti
s used in generating the proof are spe
i�
 to HOL, HOL's

implementation, or me
hanized theorem proving in general. Inter-

nal forms of the explanations are
onstru
ted by enri
hing the ML

types that support goal-oriented proof in HOL, so that adequate

information
an be saved during the generation of a proof to enable

expli
it, annotated proof trees to be produ
ed. These trees are then

rendered in readable form by a suite of printing fun
tions.

1

A
knowledgements:

This work was supported by the S
ien
e and Engineering Resear
h

Coun
il, on Grant Thanks to Mike Gordon for his assistan
e,

and to everyone in the Cambridge Hardware Veri�
ation Group for

their interest and
omments.

2

Contents

1 Introdu
tion 6

1.1 The HOL System . 9

1.1.1 The Metalanguage and Logi
 9

1.1.2 Goal Oriented Proof 10

1.1.3 The Subgoal-Theorem Tree 11

1.2 An Example Textbook Proof 12

1.3 Design De
isions . 13

1.4 Related Work . 14

2 The Basi
 Idea 15

3 The Extended ML Types 22

4 Elementary Ta
ti
s 28

4.1 The Implementation of Named Ta
ti
s: (GEN TAC) 28

4.2 Solving a Goal: ACCEPT TAC 33

4.3 Naming New Assumptions: DISCH TAC 35

4.4 Transforming Subgoals: SUBST1 TAC 36

4.4.1 Impli
it Assumptions from Invalid Proof Steps 37

4.4.2 Impli
it Assumptions without Use 40

4.4.3 Impli
it Assumptions from Valid Proof Steps 41

4.4.4 A

ounting for Impli
it Assumptions 43

4.5 Multiple Subgoals: INDUCT TAC 46

4.6 Advan
ement or Solution: REWRITE TAC 48

4.6.1 Solution by REWRITE TAC 48

4.6.2 Advan
ement by REWRITE TAC 51

4.7 Adding an Assumption: ASSUME TAC 53

5 Conversions 54

6 Resolution 57

7 Popping Assumptions 63

7.1 Popping to Erase Used Assumptions 64

7.2 Popping to Repla
e an Assumption 65

7.3 Popping to Erase Irrelevant Assumptions 65

3

7.4 A

ounting for Popping Assumptions 66

7.4.1 A

ounting for Popping to Erase Used Assumptions . . 67

7.4.2 A

ounting for Popping to Repla
e Assumptions 70

7.4.3 A

ounting for Popping to Erase Irrelevant Assumptions 71

7.5 A

ounting for POP ASSUM LIST 74

7.6 A

ounting for SUBST ALL TAC 75

8 Continuations 82

8.1 The Disjun
tive Transformer 82

8.2 Implementation Issues . 93

8.3 Other Transformers whi
h Introdu
e Assumptions 93

8.3.1 The Dis
harging Transformer 93

8.3.2 The Choi
e Transformer 95

8.4 Transformers whi
h do not Introdu
e Assumptions 96

8.4.1 The Conjun
tion Transformer 96

8.4.2 The Resolution Transformers 106

9 Strip Fun
tions 108

9.1 The Strip Transformer in HOL 109

9.2 Stripping and Assuming a Theorem in HOL 110

9.3 The Strip Ta
ti
 in HOL . 112

9.4 A

ounting for The Strip Ta
ti
 113

9.4.1 The Implementation-Based A

ount 114

9.4.2 The Primitive A

ount 124

10 Transforming Proof A

ounts 128

11 Future Resear
h 132

12 Con
lusions 136

13 Referen
es 139

14 Appendix 140

4

Table of Figures

Figure 1 . ??

Figure 2 . ??

Figure 3 . ??

5

1 Introdu
tion

Proof a

ounts are intended to explain and do
ument HOL

1

proofs in some-

thing approa
hing
onventional or textbook terms. They do this for proofs

whi
h are generated `top down' in HOL through the appli
ation of ta
ti
s

to goals. Ta
ti
 and goals in HOL (as in LCF) are metalanguage
onstru
ts

whi
h are used to generate inferen
es in an underlying formal logi
. Thus, a

proof in the sense of a proof strategy (a pro
edure expressed as a stru
ture of

metalanguage ta
ti
s), when applied su

essfully to a goal, generates a proof

in the sense of a
hain of primitive inferen
es
ulminating in the desired

theorem. Proof a

ounts explain `proofs' in the former sense.

Generally, top-down (goal oriented) proofs in HOL
an be represented by

tree stru
tures of `proof steps', where ea
h step is a ta
ti
. A ta
ti

an be:

� One of HOL's built-in ta
ti
s

� The result of applying a ta
ti
-valued fun
tion when applied to argu-

ments of appropriate type

� A
ombination (su
h as alternation) of existing ta
ti
s

� A ta
ti
 implemented dire
tly in the metalanguage by a user

2

.

The ta
ti
s are
omposed into a tree stru
ture via the metalanguage
om-

binators THEN (for sequen
ing) or THENL (for sele
tive sequen
ing). Thus, for

ta
ti
s T

1

, T

2

, � � �, T

n

:

� T

1

THEN T

2

is a ta
ti
 whi
h, given a goal, �rst applies T

1

to the goal,

then applies T

2

to ea
h resulting subgoal.

� T

1

THENL [T

2

; � � �; T

n

℄ is a ta
ti

3

whi
h, to produ
e its results given a goal, �rst applies T

i

respe
tively

to the i results, for i from 2 to n.

1

The HOL (higher order logi
) system is a system designed by Mike Gordon for helping

to automate formal proofs in higher order logi
. It is based on Robin Milner's LCF system.

2

This last possibility, however, is not
onsidered in this paper.

3

This notation denotes the list of elements shown.

6

Given an initial goal, ea
h step of a proof results in a set of intermedi-

ate subgoals, whi
h, if and when established, are adequate to establish the

original goal. That is, ea
h proof step
omputes the fun
tion whi
h will map

the established subgoals (i.e. theorems) ba
k to a theorem establishing the

original goal, via logi
al inferen
e. Goals are de
omposed su

essively in this

way until they yield axioms or previously proved theorems; then the inter-

mediate fun
tions are applied to
onstru
t a
hain of theorems
ulminating

in the theorem establishing the initial goal.

Proofs in HOL are typi
ally performed during intera
tive sessions in whi
h

ta
ti
s are applied to su

essive goals, in the
ontext of a HOL theory

4

. Dur-

ing a su

essful intera
tion, the user is made aware of intermediate subgoals

as they are generated by ta
ti
s; and in due
ourse, of the theorem that estab-

lishes ea
h subgoal. However, this information is ephemeral, and is available

only at
ertain times during the intera
tive session. In the end, all that
an

be preserved of the working session within the HOL theory is the �nal theo-

rem itself. This is adequate in that the type system of HOL's metalanguage

assures that no theorem
an be
omputed ex
ept by inferen
es in the logi

5

;

and the logi
 itself has been shown
onsistent (Pitts, manual ref). However,

should a user wish to know more about the way in whi
h a proof was a

om-

plished after the working session is �nished, none of the intermediate goals

or theorems will have been saved in the relevant HOL theory.

As the HOL system stands, the only persistent re
ord that
an be kept of

the way in whi
h a formal proof was produ
ed is the text �le that a user keeps

{ optionally, of
ourse { in order to do
ument the intera
tive session. (Most

users do preserve, in some systemati
 way, the metalanguage pro
edures that

prove their theorems.) Re
ords of this sort are, however, extraneous to the

formal logi
 or any theory extending the logi
; they asso
iate only informally

with su
h theories.

In any
ase, the metalanguage text whi
h generates a proof is not ne
es-

sarily, in itself, a useful explanation of the proof strategy. Comments added

by the user may help, but inserting
omments by hand is tedious, diÆ
ult to

do in adequate detail, and not guaranteed to be a

urate. The metalanguage

4

A HOL theory
orresponds to a logi
al theory in the standard sense of an extension

of a logi
 via well-founded de�nitions and dedu
ed theorems.

5

This use of the type dis
ipline of the metalanguage was Milner's key idea in the LCF

system. It dispenses with the need to preserve primitive inferen
e sequen
es, but without

loss of se
urity.

7

text itself may not be a

urately saved, or wholly intelligible to a reader in

ertain situations. This is so parti
ularly

� For longer or more
omplex stru
tures of ta
ti
s

� For theorem-proving based, te
hni
al or HOL-spe
i�
 ta
ti
s

� When proof steps are spe
i�ed as the result of ta
ti
-valued fun
tions

applied to appropriate arguments (su
h spe
i�
ations may be arbitrar-

ily nested and
omplex)

� When ta
ti
-valued fun
tions produ
e ta
ti
s whi
h obs
ure individual

proof steps

� For
ontext or implementation dependent ta
ti
s (e.g. a ta
ti
 whi
h

refers to the `third
urrent assumption')

� For
ombined ta
ti
s (e.g.
ombined by the operator `ORELSE')

� When previously proved lemmas are denoted simply by name, or are

omputed in situ

� When parallel bran
hes of a proof are treated simultaneously by non-

bran
hing strategies

� When expert HOL users rely on personal styles of ta
ti
al proof not

familiar to other users.

In this paper, we propose what we hope is an intelligible, a

urate and

informative style of do
umentation of goal oriented proofs, and a method for

deriving proof explanations in this style automati
ally upon the appli
ation

of ta
ti
s to goals. The purpose of these proof a

ounts is to
larify and do
-

ument su

essfully
ompleted HOL proofs in a style free from HOL-related

or theorem-prover based terms and
on
epts; that is, as
lose in spirit as

is possible to textbook style proof presentations without involving natural

language expertise.

Possible future appli
ations of proof a

ounts might in
lude

� Debugging user-designed ta
ti
s

8

� Tools for tea
hing HOL

� Tools for improving su

essful proofs.

Further possible appli
ations are dis
ussed in

Although this paper is probably of most interest to HOL users, and does

not
ontain a presentation of the HOL system, we hope that the main ideas

will be
lear to other interested readers. Do
umentation of the HOL system

may be found in ().

All of the example sessions and remarks pertain to Version 11 of HOL

(1990). Minor modi�
ations for Version 12 (1991) are
urrently in progress.

1.1 The HOL System

1.1.1 The Metalanguage and Logi

LCF-based systems su
h as HOL are built around (i) a sequent
al
ulus,

and (ii) a programming language (ML, for metalanguage) in whi
h obje
ts

of the
al
ulus
an be represented and
omputed. In parti
ular, terms and

theorems of the logi

an be denoted, and proofs
an be
omputed. This

is done by representing rules of inferen
e as metalanguage fun
tions whi
h

map theorems (sometimes with various parameters) to new theorems; and

implementing these fun
tions as ML pro
edures.

ML's type system plays an essential role in enabling theorems to be pro-

te
ted as abstra
t types. Thus, one may inspe
t the
on
lusion or hypotheses

of a theorem (i.e. de
ompose a theorem into its synta
ti
 parts) but may not

onstru
t a theorem from its parts; theorems
an be produ
ed only by ap-

pli
ation of fun
tions expressing rules of inferen
e.

In re
ent years, the language ML has been interfa
ed to several logi
s in

the hope of assisting in the proof of theorems in these logi
s. The original

logi
 (PPLAMBDA) of the LCF system was intended for proofs about re
ur-

sive fun
tions de�ned in domains, whi
h are useful in algorithm and software

veri�
ation. In HOL, a version of Chur
h's higher-order predi
ate
al
ulus

(also
alled HOL) is used. This is intended for proofs about digital systems,

and for other areas in whi
h the issues of de�nedness and termination are

less
entral. The Nuprl system (...) uses the logi
 ITT (intuitionisti
 type

theory).

9

For many appli
ations, the full expressiveness of a general-purpose pro-

gramming language is not ne
essary; a set of primitive proof-building oper-

ations would suÆ
e. One of the
apabilities whi
h ML, as a full program-

ming language, provides { for users experimenting with proof methods, proof

styles, automation, and so on { is a way to express and test informal proof

strategies of their own design. These strategies
an be anything from very

simple proof te
hniques (for example: \In order to prove P , assume :P and

prove falsity") to sophisti
ated sear
hing heuristi
s. However, this paper

restri
ts itself to HOL's main built-in ta
ti
s.

1.1.2 Goal Oriented Proof

In both simple and
omplex
ases, the LCF-HOL methodology is geared to

the natural `ba
kward' style of proof often used in textbook presentations:

pro
eding from goal to subgoals via strategies, until re
ognizably trivial sub-

goals are rea
hed. Ea
h stage of the de
omposition is a

ompanied by a

justi�
ation fun
tion in whi
h is embedded the inferen
e pattern enabling

the move from established subgoal to established goals. The justi�
ation

is again a fun
tion: it maps the set of theorems purporting to a
hieve the

respe
tive subgoals to the theorem a
hieving the original goal { by invoking

the inferen
e pattern in question. (A theorem is said to a
hieve a goal if the

on
lusion of the theorem is the term of the goal, up to alpha-
onversion,

and the hypotheses of the theorem are a subset of the assumptions of the

goal.)

There are therefore two stages in a ta
ti
al proof: the sear
h stage, in

whi
h su

essive subgoals are generated until (and if) axioms or previously

established subgoals are produ
ed; and the justi�
ation stage in whi
h the-

orems a
hieving goals are dedu
ed in su

ession from theorems a
hieving

their subgoals, via formal inferen
e. These are often thought of as reverse

pro
esses, the �rst produ
ing and working down a tree stru
ture of subgoals,

and the se
ond working ba
k up to the original goal.

This proof style, of
ourse, is really no more than a
onvenient way of pre-

senting a proof, and of dressing the `real' proof, namely, the sequen
e of theo-

rems
ulminating in the desired theorem, where ea
h theorem in the sequen
e

is either an axiom or is a
onsequen
e of earlier theorems in the sequen
e.

The style
on
eals from the user the book-keeping pro
ess through whi
h

the real proof is
ontru
ted as the subgoals are de
omposed and eventually

10

a
hieved. Thus the simple strategy above (\In order to prove P , assume :P

and prove falsity") is a presentation of the inferen
e rule: \From the theorem

asserting falsity, under the assumption that P is false, derive the theorem

asserting P"; the strategy pa
kages the inferen
e rule in a
onvenient way.

The sequen
es of theorems
ulminating in a given theorem are not re
orded

as a result of performing a goal oriented proof; they are simply
omputations

o

urring in time. That is, the fun
tion representing ea
h inferen
e rule used

is applied to arguments, whi
h in turn means that the ML pro
edure rep-

resenting that fun
tion is exe
uted. Be
ause inferen
es are represented as

fun
tions, the proof (in the sense of the inferen
e sequen
e) is an ephemeral

part of the
omputation whi
h represents the goal oriented proof e�ort.

Proof a

ounts are based on enhan
ements of the metalanguage types of

goals, ta
ti
s and justi�
ations whi
h allow suÆ
ient additional information

to be re
orded for an explanation of the proof to be generated and preserved.

1.1.3 The Subgoal-Theorem Tree

The tree stru
ture of su

essive subgoals { together with a re
ord of the proof

steps leading from goals to subgoals, and the theorems a
hieving the various

goals { is a
on
ept whi
h is always in the ba
kground when ta
ti
al proofs

are performed in HOL. For example, appli
ation of the ta
ti
 en
oding the

strategy above (\In order to prove P , assume :P and prove falsity") to an

appropriate goal would always produ
e exa
tly one subgoal, and this would

be a
hieved by one theorem; the usual numeri
al indu
tion ta
ti
 would

produ
e two subgoals (the base and step
ases);
ase analyses would produ
e

at least two, and so on. However, su
h trees are neither represented expli
itly

in HOL nor open to exploration

6

.

The stru
ture of a
hieving theorems forms an essential part of the tree.

In a su

essful top-down proof, there is, for ea
h node (i.e. goal) of the

tree, starting at the leaves, a theorem a
hieving that goal. Where one goal

diverges (under the appli
ation of a ta
ti
) into several subgoals, the several

a
hieving theorems
onverge (by inferen
e) to produ
e one theorem. Thus

the numeri
al indu
tion strategy would indu
e two subgoals when applied to

6

The subgoal pa
kage in Version 11 of HOL, whi
h is an add-on fa
ility,
an be used

to manage the subgoal-theorem tree during a working session; it is based on a sta
k

representation of the tree. Again, however, this sta
k is not open to exploration by users;

nor is it expli
it, or preservable

11

a goal, and a justi�
ation fun
tion. The justi�
ation fun
tion at that node

would a

ept the two a
hieving theorems and produ
e the theorem a
hieving

the original goal.

The whole tree stru
ture representing the proof thus in
ludes the proof

steps, the subgoals, and the a
hieving theorems. Proof a

ounts are based

on an expli
it and preservable representation of this stru
ture of goals, proof

steps and theorems.

1.2 An Example Textbook Proof

To give an idea of the textbook style to whi
h proof a

ounts aspire, we

give some fragments of a real example. The proof from whi
h these are

taken is from \The Higher Arithmeti
" by H. Davenport. The proof is of the

uniqueness of prime fa
torization.

Theorem: Any natural number
an be represented in ... only one way as a

produ
t of primes.

Proof: We prove the uniqueness of fa
torization by indu
tion. This requires

us to prove it for any number n, on the assumption that it is already estab-

lished for all numbers less than n. If n itself is a prime, there is nothing to

prove. Suppose, then, that n is
omposite, and has two di�erent representa-

tions as produ
ts of primes, say

n = p q r � � � = p' q' r' � � �,

where p, q , r , � � � and p' , q' , r' , � � � are all primes. The same prime
an-

not o

ur in both representations, for if it did we
ould
an
el it and get

two di�erent representations of a smaller number, whi
h is
ontrary to the

indu
tion hypothesis.

.

.

.

Now
onsider the number n - p p' . This is a natural number less than n,

and so
an be expressed as a produ
t of primes in one and only one way.

.

.

.

This
ontradi
tion proves that n has only one fa
torization into primes.

12

This presentation of the proof has the following features:

� The presentation is in sophisti
ated but still stylized English, using

standard phrases su
h as \This requires us to prove � � �", \Suppose,

then, that� � �" and \Now
onsider � � �".

� It is generally presented in a goal oriented style, and this requires the

reader to maintain his lo
ation in the implied subgoal tree (and hen
e

to understand the s
ope of assumptions su
h as \Suppose, then, that

n is
omposite").

� Within the goal oriented format there are intervals of forward reasoning;

for example, \Now
onsider the number n - p p' . This is a natural

number less than n, and so � � �".

� Minor steps are omitted in pla
es; for example, \If n itself is a prime,

there is nothing to prove" { there is, of
ourse.

� The presentation is
ast in purely problem-related and logi
al terms {

i.e. it refers to numbers and their properties; to patterns of reasoning

su
h as proof by
ontradi
tion; and to standing assumptions su
h as

the indu
tion hypothesis { but to nothing more te
hni
al in the realm

of theorem-proving.

Our aim is to produ
e proof a

ounts whi
h have as many of these prop-

erties as possible without approa
hing the natural language issues. That is,

we will be satis�ed with pre-pa
kaged phrases in a tiny subset of English, as

long as the explanations are stru
tured in something approa
hing the
on-

ventional style, and depend on similar
on
epts.

1.3 Design De
isions

The
urrent prototype a

ounting fa
ility rests on the following design de
i-

sions:

� The fa
ility is not intera
tive in the �rst instan
e; i.e. is not intended to

be used whilst developing a proof, but rather to generate explanations

of su

essfully
ompleted proofs.

13

� The proof explained is the proof in the sense of the strategy rather than

the proof in the sense of the inferen
e sequen
e. A proof step is taken

to be a ta
ti
 without internal sequen
ing. These ta
ti
s are taken to

be the main proof steps.

� There is an expli
it data stru
ture to represent subgoal-theorem trees

with proof steps. Ea
h a

ount is a presentation of an instan
e of this

data stru
ture.

� The
onstru
tion of this tree is separated from its presentation. That

is, there is an internal representation of the tree, as well as a set of

printing fun
tions for produ
ing a readable rendition.

� We attempt to
apture the
hara
ter of the textbook prose but without

any natural language
apabilities.

� For the present, the basi
 HOL ta
ti
s are re-implemented to produ
e

a

ounts, and for this purpose are given distin
t names.

Improvements and elaborations are dis
ussed in ().

1.4 Related Work

The only other similar explanation fa
ility we know about is the one provided

for the Boyer-Moore theorem-prover (). As we understand it, the present

fa
ility di�ers from that one in the following ways:

� The Boyer-Moore fa
ility explains the a
tion of the (automati
) theo-

rem prover as it sear
hes for a proof. Though it sear
hes very eÆ
iently,

the explanation is still given in terms of the sear
h rather than of the

proof dire
tly. The fa
ility for HOL aims at explaining the proof found

rather than the sear
h pro
ess.

� The Boyer-Moore system produ
es explanatory text in real time, as the

proof sear
h is in progress. Ours re-runs
ompleted proofs in order to

generate explanations.

� The Boyer-Moore fa
ility does not (apparently)
onstru
t an expli
it

internal respresentation of an explanation, but rather, produ
es frag-

ments of explanation as a side e�e
t of the proof sear
h. We do aim

14

at
onstru
ting an internal representation { whi
h
an itself be trans-

formed, printed, et
.

� The Boyer-Moore fa
ility does give attention to the quality of the nat-

ural language produ
es, while ours does not.

2 The Basi
 Idea

In this
hapter we give an example of a su

essful proof session in HOL and

show, for this proof, the style and
ontent of the explanation being proposed.

The a

ounting fa
ility uses HOL's methods of subgoal de
omposition and

proof assembly to generate a proof a

ount as a side-e�e
t of performing a

goal oriented proof. The information preserved makes it possible to identify

ertain key `proof events' su
h as the solution of a subgoal, the splitting of

a goal into subgoals, proof by
ontradi
tion, assumptions made behinds the

s
enes, and invalid use of lemmas.

In the following HOL session, a simple theorem is proved: the asso
iativ-

ity of addition. (This is a
tually one of the theorems that is already proved in

the theory of arithmeti
 when HOL is entered.) The proof uses the theorem

alled ADD_CLAUSES:

ADD_CLAUSES =

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

This is the HOL session in whi
h the theorem ADD_ASSOC is proved

7

.

#let g = [℄,"!m n p. m + (n + p) = (m + n) + p";;

g = ([℄, "!m n p. m + (n + p) = (m + n) + p") : (* list # term)

#let ta
 = INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES℄;;

ta
 = - : ta
ti

#let gl,p = ta
 g;;

gl = [℄ : goal list

p = - : proof

#let ADD_ASSOC = p[℄;;

ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p

7

In the sessions that follow, we use HOL in mode in whi
h hypotheses of theorems

are printed in full; the ML top level printing fun
tion has been set to print hypotheses of

theorems in full.

15

In this session, a goal, g, is �rst
onstru
ted; it
onsists of the term to

be proved (namely, "!m n p. m + (n + p) = (m + n) + p"), together with

a list (initially empty) of assumptions whi
h may be used subsequently. A

ta
ti
 (ta
) is applied to the goal; the ta
ti
 is a fun
tion. The ta
ti
 is

formed by sequen
ing two of HOL's built-in ta
ti
s: a ta
ti
 INDUCT_TAC,

whi
h implements the numeri
al indu
tion strategy, and a ta
ti
 of the form

ASM_REWRITE_TAC l , (where l is a list of theorems), whi
h implements the

strategy of rewriting (simplifying) using (i) the theorems in the list l , (ii) any

of HOL's built-in basi
 rewriting theorems, and also (iii) any assumptions of

the goal in question

8

(hen
e the `ASM_' { the ta
ti
 REWRITE_TAC l would not

use the assumptions of the goal).

The appli
ation of ta
 to g yields a list of goals (gl), together with a

justi�
ation fun
tion (p). The list of goals represent the
olle
tion of sub-

goals whi
h, if all a
hieved, would suÆ
e to a
hieve the original goal. The

justi�
ation fun
tion maps the list of theorems (respe
tively) satisfying the

subgoals to a theorem a
hieving the original goal. The mapping
onsists of

a sequen
e of inferen
es leading from the given theorems to the desired theo-

rem. Thus, the intera
tion
onsists in two stages: the generation of subgoals

until there are no more subgoals; and the
onstru
tion of the proof through

inferen
e, based on the various justi�
ation fun
tions.

The theorem produ
ed
an be named and preserved for future use as part

of the logi
al theory in whi
h it was established; and the text of the ta
ti

an be saved in a �le (outside of the logi
al theory); but that is all that
an

be preserved of the proof pro
ess and proof session.

The ta
ti
 (ta
) in this
ase is so simple that at �rst sight it would seem

to point dire
tly to a proof explanation { whi
h might read:

To prove "!m n p. m + (n + p) = (m + n) + p", do indu
tion on m, and

then, for all resulting
ases, simplify with the fa
t ADD_CLAUSES, with any

urrent assumptions, and with the basi
 tautologies.

However, the explanation does not follow so obviously from examination of

ta
. First, the fa
t that the proof is by indu
tion depends on asso
iat-

ing the ML fun
tion name `INDUCT_TAC' with the strategy of mathemati
al

indu
tion. Se
ond, it a
tually requires some thought to per
eive that the

8

The assumptions are represented as terms t , so for purposes of rewriting they are

onsidered as theorems of the form t ` t

16

indu
tion step produ
es two subgoals even though the goal is solved by a

`linear' sequen
e of steps. It also takes some thought to realize that an in-

du
tion assumption applies in the step
ase, but not in the basis
ase (and

hen
e that ASM_REWRITE_TAC amounts to REWRITE_TAC in the basis
ase). It

requires further thought to state the indu
tion hypothesis pre
isely. Finally,

the name `ADD_CLAUSES' does not immediately reveal the theorem or de�ni-

tion denoted by that name. If the ta
ti
 were more
omplex, the pattern of

reasoning indi
ated might be even less obvious.

An equivalent ta
ti

ould be formed in this
ase by sele
tive sequen
ing;

this makes the underlying tree of subgoals, and hen
e the explanation, a little

learer:

#let gl,p =

(INDUCT_TAC

THENL [ASM_REWRITE_TAC[ADD_CLAUSES℄;ASM_REWRITE_TAC[ADD_CLAUSES℄℄) g;;

##gl = [℄ : goal list

p = - : proof

#let ADD_ASSOC = p[℄;;

ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p

but this form is verbose and thus often avoided.

Some further information is revealed by generating the proof in stages.

(Normally, the subgoal pa
kage would be used to do the book-keeping seen

here.) The head and tail of the list (gl1) of indu
tion subgoals are
omputed

respe
tively by the ML fun
tions hd and tl. Subsequent subgoal lists and

justi�
ation fun
tions are named as shown:

#let gl1,p1 = INDUCT_TAC g;;

gl1 =

[([℄, "!n p. 0 + (n + p) = (0 + n) + p");

(["!n p. m + (n + p) = (m + n) + p"℄,

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p")℄

: goal list

p1 = - : proof

#let gl2,p2 = ASM_REWRITE_TAC[ADD_CLAUSES℄(hd gl1);;

gl2 = [℄ : goal list

p2 = - : proof

#let th2 = p2[℄;;

th2 = |- !n p. 0 + (n + p) = (0 + n) + p

#let gl3,p3 = ASM_REWRITE_TAC[ADD_CLAUSES℄(hd(tl gl1));;

gl3 = [℄ : goal list

p3 = - : proof

17

#let th3 = p3[℄;;

th3 =

!n p. m + (n + p) = (m + n) + p

|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p

#let ADD_ASSOC = p1[th2;th3℄;;

ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p

Here, the list of subgoals, gl1, shows expli
itly the two intermediate sub-

goals produ
ed by the indu
tion step, and it
an be seen how ea
h is sub-

sequently a�e
ted by the rewriting step, and �nally a
hieved by a theorem.

However, though they
an be viewed, the goals, steps and theorems are nei-

ther stru
tured into a tree nor preserved, but are simply bound to ML iden-

ti�ers for the duration of the parti
ular HOL session in whi
h they o

ur.

The meaning of the name ADD_CLAUSES is still not expli
it; and the reasoning

pattern denoted by `INDUCT_TAC' still depends on knowing the names and

e�e
ts of the built-in ML fun
tions.

The
ompleted tree, if it
ould be seen now, might look something like

this

9

:

goal: [℄,"!m n p. m + (n + p) = (m + n) + p"

a
hieved by: |- !m n p. m + (n + p) = (m + n) + p

advan
ed by proof step: INDUCT_TAC

|

| |

goal: [℄, goal: ["!n p. m + (n + p) =

"!n p. 0 + (n + p) = (m + n) + p"℄,

(0 + n) + p" "!n p. (SUC m) + (n + p) =

((SUC m) + n) + p"

a
hieved by: |- !n p. 0 + (n + p) = a
hieved by: !n p. m + (n + p) =

(0 + n) + p (m + n) + p

|- !n p. (SUC m) + (n + p) =

| ((SUC m) + n) + p

|

| |

| |

solved by proof step: solved by proof step:

ASM_REWRITE_TAC[ADD_CLAUSES℄ ASM_REWRITE_TAC[ADD_CLAUSES℄

9

How it `looks' depends on the
onventions for displaying it, of
ourse.

18

Using the subgoal pa
kage

10

, the subgoal-theorem tree is represented (but

only impli
itly within HOL) using sta
ks. However, the tree
annot be

sear
hed or examined, ex
ept by pro
eding with (or undoing) the intera
-

tive proof, and it
annot be preserved; and the problems of ADD_CLAUSES and

INDUCT_TAC still remain. In the session below, the
ommand set_goal has

the side e�e
t of putting a goal on the goal sta
k, and a
ommand of the form

expand ta
 applies ta
 to the goal at the top of the sta
k. Sibling subgoals are

sta
ked in left-to-right order, and the subgoal tree is traversed in left-to-right

order. A useful reminder of the next remaining subgoal is printed when a

goal is a
hieved. (Note that the hypotheses of a theorem is printed as `.'.)

#set_goal([℄,"!m n p. m + (n + p) = (m + n) + p");;

"!m n p. m + (n + p) = (m + n) + p"

() : void

#expand INDUCT_TAC;;

OK..

2 subgoals

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

["!n p. m + (n + p) = (m + n) + p" ℄

"!n p. 0 + (n + p) = (0 + n) + p"

() : void

#expand(ASM_REWRITE_TAC[ADD_CLAUSES℄);;

OK..

goal proved

|- !n p. 0 + (n + p) = (0 + n) + p

Previous subproof:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

["!n p. m + (n + p) = (m + n) + p" ℄

() : void

#expand(ASM_REWRITE_TAC[ADD_CLAUSES℄);;

OK..

goal proved

. |- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p

|- !m n p. m + (n + p) = (m + n) + p

Previous subproof:

goal proved

() : void

The proof a

ount fa
ility produ
es the following explanation of the same

proof. It does so as a result of applying to a goal based on the original goal a

10

of HOL Version 11 { that of HOL Version 12 is more sophisti
ated

19

ta
ti
 based on the given ta
ti
. The marker >>>> indi
ates a proof step, and

>>, a goal to be a
hieved. The subgoal tree is presented depth-�rst, left to

right. Theorems are shown as they are a
hieved. Ea
h return to a pending

subgoal is remarked:

This is the proof of the
onje
ture

>> ADD_ASSOC:

"!m n p. m + (n + p) = (m + n) + p"

>>>> The proof is by mathemati
al indu
tion on "m".

This gives two
ases to prove, the basis and step:

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

>> indu
tion step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indu
tion hypothesis: "!n p. m + (n + p) = (m + n) + p"

The proof of the

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

is as follows:

>>>> This follows by using the equality,

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

basi
 logi
al identities, and the assumptions made thus far.

This establishes

|- !n p. 0 + (n + p) = (0 + n) + p

The proof of the

>> indu
tion step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indu
tion hypothesis: "!n p. m + (n + p) = (m + n) + p"

is as follows:

>>>> This follows by using the equality,

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

basi
 logi
al identities, and the assumptions made thus far.

This establishes

!n p. m + (n + p) = (m + n) + p

|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p

This establishes

20

|- !m n p. m + (n + p) = (m + n) + p

This
ompletes the proof of the
onje
ture

>> ADD_ASSOC:

"!m n p. m + (n + p) = (m + n) + p"

In other words, all the information that is impli
it or ephemeral in the

intera
tive proof session, or simply bound to ML identi�ers in an ad ho
 way,

is now expli
itly stru
tured and saved. Be
ause it is saved, it
an be printed

in a readable form for later inspe
tion and study.

To produ
e the a

ount shown, the whole tree stru
ture of intermediate

subgoals, proof steps and and a
hieving theorems that is generated when a

ta
ti
 is applied to a goal is preserved in an internal form. Thus, the meaning

of names su
h as ADD_CLAUSES
an be shown; separate bran
hes of the tree

(su
h as the bran
hing into two
ases that is
aused by the indu
tion proof

step) are shown individually, even when the ta
ti
 is not phrased that way.

After the printing of one bran
h of the tree, a reminder
an be given of the

next pending bran
h. ML identi�ers su
h as `INDUCT_TAC' are referred to by

their meaning and e�e
t rather than simply by name. Most importantly, the

a

ount avoids using HOL-spe
i�
 terminology or
on
epts. For example,

referen
e is avoided to goals and subgoals,
urrent assumptions, ta
ti
s, and

rewrite rules.

The a

ount is produ
ed in the following way: First, the ML type of a goal

is modi�ed to in
lude more information, su
h as a name for ea
h assumption

of the goal, and a name for the whole goal (useful when more than one

subgoal is produ
ed at some stage). A new type, a

ount , is introdu
ed to

represent subgoal-theorem trees. Justi�
ations are re
on
eived as mapping

lists of a

ounts (of subgoals) to an a

ount (of the original goal). Next, the

ML type of a ta
ti
 is modi�ed to map a new type goal to a list of new type

subgoals together with a new type justi�
ation. Finally, a suite of printing

fun
tions is written in ML to enable the subgoal-theorem trees to be output

in an understandable format.

Further whole and partial examples of a

ounts o

ur throughout this

paper.

21

3 The Extended ML Types

The a

ounts depi
ted in the previous
hapter are based on more elaborate

types of goals, ta
ti
s, and justi�
ations than exist in HOL itself. The new

types enable enough information to be stored during the performan
e of a

goal oriented proof to generate a
omprehensible explanation afterwards.

In the existing system, the following expressions introdu
e the types for

justi�
ations (proofs), goals and ta
ti
s, respe
tively:

lettype proof = thm list -> thm ;;

lettype goal = term list # term;;

lettype ta
ti
 = goal -> ((goal list) # proof);;

A goal is a term together with a list of
urrent assumptions; and a ta
ti

maps a goal to a list of subgoals and a justi�
ation, where the justi�
a-

tion maps the theorems a
hieving the subgoals to the theorem a
hieving the

original goal.

For the purpose of produ
ing a

ounts, a new type, named goal , is intro-

du
ed (via a
onstru
tor fun
tion):

type named_goal =

mk_named_goal of string # (string # bool # term) list # term;;

A named goal of the form mk_named_goal(s,sbtl,t)
orresponds to an ordinary

goal tl,t , where the list of third
omponents of the elements of sbtl is simply

tl . That is, ea
h assumption of a named goal is a

ompanied by a name

(i.e. a string) and a boolean value (whose purpose is explained later); and

ea
h goal itself has a name (a string). The names are used in the printing of

a

ounts to identify
ertain assumptions, and to distinguishe among multiple

subgoals.

To spe
ify the stru
ture of an a

ount, we �rst introdu
e a type for proof

steps:

lettype proof_step =

string # term list # thm list;;

The string part of a proof step identi�es the fun
tion
omprising the step

(that is, a ta
ti
 or a ta
ti
-valued fun
tion); while the lists of terms and

theorems allow for parameters to be re
orded (in
ase the fun
tion
omprising

22

the step is not a ta
ti
 but a fun
tion mapping a term to a ta
ti
, a theorem

to a ta
ti
, et
).

An a

ount is de�ned re
ursively as
onsisting of a proof step (whi
h a
ts

on a goal), together with a list of the named subgoals indu
ed by that step;

a list of sub-a

ounts of the respe
tive subgoals; and a theorem (purporting

to a
hieve the original goal):

re
type named_a

ount =

mk_node of proof_step # (named_a

ount list) # (named_goal list) # thm;;

An auxiliary fun
tion extra
t_theorem sele
ts the theorem
omponent of an

a

ount. It is de�ned by:

let extra
t_theorem a
 =

let mk_node(ps,al,gl,th) = a
 in th;;

The relation of a
hievement between a theorem and a goal is the same

here as in HOL.

In the new s
heme, a justi�
ation (named proof) fun
tion simply maps a

list of (sub)a

ounts ba
k to an a

ount:

lettype named_proof =

(named_a

ount)list -> named_a

ount;;

This subsumes the justi�
ation in the HOL sense sin
e ea
h a

ount in
ludes

a theorem (as its fourth
omponent).

A ta
ti
, �nally, maps a named goal to a list of named subgoals and a

justi�
ation fun
tion:

lettype named_ta
ti
 =

named_goal -> (named_goal list) # named_proof;;

The re
ursiveness of a

ounts means that an a

ount is a tree stru
ture.

This gives an expli
it internal representation of the subgoal-proof tree asso-

iated with a goal oriented proof. A readable version then
an be produ
ed

by a suite of print fun
tions. These
an be arbitrarily sophisti
ated { for ex-

ample,
hoosing to present only `important' proof steps, and doing so using

natural language expertise. However, we
onsider only a simple presentation

in this paper, presenting every proof step, and doing so using unvarying,

stored phrases. Even so the print fun
tions are rather
ompli
ated.

23

There are two modes of printing named goals, one for goals whi
h are

either one of several goals to be printed together, or are the initial goals

in a proof; and one for solitary and non-initial goals. In either
ase, goals

are identi�ed with the symbol >>. The term is printed �rst (using HOL's

fun
tion for printing terms); then the labelled assumptions are announ
ed

and printed (using HOL's string and term printing fun
tions).

For example, the following is a named goal whose a

ount was displayed

in the previous
hapter ():

mk_named_goal(`ADD_ASSOC`, [℄, "!m n p. m + (n + p) = (m + n) + p")

The indu
tion ta
ti
 was applied to this goal to yield two subgoals. The

indu
tion step subgoal is printed as follows, sin
e it is one of two subgoals

produ
ed at on
e:

>> indu
tion step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indu
tion hypothesis: "!n p. m + (n + p) = (m + n) + p"

Printed as an only, non-initial goal it would look the same but without the

name of the goal:

>> "!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indu
tion hypothesis: "!n p. m + (n + p) = (m + n) + p"

There are also two modes of printing proof steps: one for steps whi
h

advan
e a goal and one for steps whi
h solve it. In either
ase, proof steps are

identi�ed by the symbol >>>>. The fun
tion whi
h prints a proof step looks

up the string identifying the step. This produ
es the appropriate phrases

for explaining that step. The elements lists of term and theorem parameters

may appear in the printed result. For example, the indu
tion step of the

proof in question is

(`NAMED_INDUCT_TAC`, ["m"℄, [℄)

and that step is presented as follows, in
luding the term parameter m:

>>>> The proof is by mathemati
al indu
tion on "m".

This gives two
ases to prove, the basis and step:

24

This step advan
es rather than solves the goal, and is worded a

ordingly. In

ontrast, the indu
tion
ase is subsequently solved by applying a rewriting

ta
ti
 whi
h uses any relevant
urrent assumptions as well as an existing

theorem of arithmeti
. The rewriting proof step is

(`NAMED_ASM_REWRITE_TAC`,

[℄,

[|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))℄)

and is printed as follows, in
luding the theorem parameter shown:

>>>> This follows by using the equality,

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

basi
 logi
al identities, and the assumptions made thus far.

An a

ount is presented (re
ursively) relative to a goal. Given a goal

and an a

ount of its proof, the print fun
tion �rst prints the proof step

omponent of the a

ount (i.e. the top node of the subgoal-proof tree). That

is either the only node of the tree (meaning that the goal was solved in

one step) or not (meaning that the goal is just advan
ed by the step); the

appropriate mode is thus sele
ted for printing the proof step.

Se
ond, the subgoal list
omponent of the a

ount is printed. Depending

on whether the list
ontains just one or more than one subgoal, the appro-

priate mode is sele
ted for printing the element(s) of the subgoal list.

Third, the suba

ounts are printed (re
ursively), relative to the respe
tive

subgoals. This is a

omplished by announ
ing, for ea
h subgoal-suba

ount

pair, that the proof of the subgoal is about to follow; then printing the

subgoal followed by the suba

ount. (Where there is only one su
h pair, the

announ
ement and the repeated printing of the subgoal are omitted.)

Finally, the theorem a
hieving the original goal is announ
ed and printed.

Where the theorem does not in fa
t a
hieve the goal, a message to that e�e
t

is also printed; an example of this
ontingen
y is shown in ().

In the example
ase, the original goal is

mk_named_goal(`ADD_ASSOC`, [℄, "!m n p. m + (n + p) = (m + n) + p")

25

and the internal representation of the whole a

ount is

mk_node((`NAMED_INDUCT_TAC`, ["m"℄, [℄),

[mk_node((`NAMED_ASM_REWRITE_TAC`,

[℄,

[|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))℄),

[℄,

[℄,

|- !n p. 0 + (n + p) = (0 + n) + p);

mk_node((`NAMED_ASM_REWRITE_TAC`,

[℄,

[|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))℄),

[℄,

[℄,

. |- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p)℄,

[mk_named_goal(`basis`, [℄, "!n p. 0 + (n + p) = (0 + n) + p");

mk_named_goal(`indu
tion step`,

[(`indu
tion hypothesis`,

true,

"!n p. m + (n + p) = (m + n) + p")℄,

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p")℄,

|- !m n p. m + (n + p) = (m + n) + p)

The whole a

ount is thus printed as follows:

>>>> The proof is by mathemati
al indu
tion on "m".

This gives two
ases to prove, the basis and step:

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

>> indu
tion step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indu
tion hypothesis: "!n p. m + (n + p) = (m + n) + p"

The proof of the

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

is as follows:

>>>> This follows by using the equality,

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

basi
 logi
al identities, and the assumptions made thus far.

26

This establishes

|- !n p. 0 + (n + p) = (0 + n) + p

The proof of the

>> indu
tion step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indu
tion hypothesis: "!n p. m + (n + p) = (m + n) + p"

is as follows:

>>>> This follows by using the equality,

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

basi
 logi
al identities, and the assumptions made thus far.

This establishes

!n p. m + (n + p) = (m + n) + p

|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p

This establishes

|- !m n p. m + (n + p) = (m + n) + p

In
ontexts in whi
h an a

ount to be printed is a top level a

ount rather

than a suba

ount of another, a prologue and epilogue are printed around

the rest of the printout. Here, the prologue is

This is the proof of the
onje
ture

>> ADD_ASSOC:

"!m n p. m + (n + p) = (m + n) + p"

and the epilogue is

This
ompletes the proof of the
onje
ture

>> ADD_ASSOC:

"!m n p. m + (n + p) = (m + n) + p"

This produ
es the whole a

ount shown in the previous
hapter. The al-

gorithm des
ribed for printing a

ounts determines the order in whi
h the

nodes of the subgoal-proof tree are printed: the tree is traversed depth �rst

and left to right. This method of printing a (tree-stru
tured) a

ount has the

advantage of produ
ing a `
at' result rather than a result mirroring the tree

stru
ture by use of indentation or other devi
e, whi
h is useful, as the a
-

ounts
an be inde�nitely deep. The method also maintains indi
ators of the

original tree stru
ture by repeating ea
h subgoal before giving its a

ount,

where there is more than one subgoal to be presented.

Further examples of printed a

ounts are shown throughout the paper.

27

4 Elementary Ta
ti
s

For the purpose of generating proof a

ounts, the ta
ti
s provided in HOL

an be represented by three groups of
orresponding named ta
ti
s:

1. Simple ta
ti
s whi
h mirror the
orresponding standard ta
ti
s, merely

elaborating them with names for their relevant values;

2. Complex ta
ti
s whi
h use the
orresponding standard ta
ti
s, but

whi
h then further pro
ess the results into more meaningful formats;

3. Ta
ti
s whose relation to natural patterns of reasoning is distant, and

for whi
h generating a

ounts raises philosophi
al problems; these
an-

not be implemented along the lines of the
orresponding standard ta
-

ti
s.

This se
tion and Se
tion (...) address the �rst group; Se
tions (...), (...)

and (...) address the se
ond group; and Se
tions (...), (...) and (...) address

the third.

In produ
ing an a

ount of the appli
ation of a ta
ti
 to a goal, it is

useful to know something about the possible out
omes of the appli
ation.

A parti
ular ta
ti
, when applied to a goal, either produ
es some number

of subgoals (together with a justi�
ation), or else it raises an ex
eption (i.e.

fails). Where a ta
ti
 su

eeds on a goal, the number of subgoals produ
ed

may be �xed for the ta
ti
, or it may vary inde�nitely, depending on the goal.

Some ta
ti
s have the
apa
ity to solve goals; i.e. to produ
e no subgoals

(together with an appropriate justi�
ation). Other ta
ti
s are able to advan
e

goals (i.e. to produ
e one or more subgoals); some
an do either. Finally,

a ta
ti
 that advan
es a goal
an do so by produ
ing subgoals either with

hanged lists of assumptions, or with
hanged terms { or both.

Based on the possible out
omes of applying a ta
ti
 to a goal, a s
heme

for
omprehensibly presenting the proof step it represents, and the subgoals

it indu
es,
an be designed. The treatment of a few simple ta
ti
s illustrates

the methods and the range of issues involved.

4.1 The Implementation of Named Ta
ti
s: (GEN TAC)

In this se
tion, we sket
h the way in whi
h simple named ta
ti
s are imple-

mented to produ
e a

ounts. GEN_TAC is used as an example.

28

The ta
ti
 GEN_TAC maps a goal with a universally quanti�ed term (i.e.

a term of the form !x.t[x℄ to a list with just one subgoal, whose term is

instantiated to the bound variable (or, if ne
essary, a fresh variable not free

anywhere in the goal). That is, the new term is of the form t[x'℄. GEN_TAC

fails on goals whose terms are not universally quanti�ed; where it su

eeds

it produ
es a subgoal list of �xed length (one). GEN_TAC
hanges the term of

a goal, where it su

eeds, but never the assumption list. It
annot solve a

goal, but only advan
e one.

The use of GEN_TAC is illustrated in the example below. Two new predi-

ates, DIVIDES and PRIME, are de�ned here:

DIVIDES_DEF = |- !m n. m DIVIDES n = ~(m = 0) /\ (?q. q * m = n)

PRIME_DEF =

|- !n. PRIME n = n > 1 /\ (!m. m DIVIDES n ==> (m = 1) \/ (m = n))

Suppose that a goal, g, is introdu
ed, as shown below, and that GEN_TAC is

applied to g to give a list (gl1) of one subgoal, and a justi�
ation fun
tion

(p1):

let g = [℄, "!n. (n > 1) ==> (?p. (PRIME p) /\ (p DIVIDES n))";;

g = ([℄, "!n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")

#let gl1,p1 = GEN_TAC g;;

gl1 = [([℄, "n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")℄ : goal list

p1 = - : proof

Given, eventually, the theorem th

th = |- n > 1 ==> (?p. PRIME p /\ p DIVIDES n)

the fun
tion p maps th to a theorem a
hieving g:

#p1[th℄;;

|- !n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)

To produ
e an a

ount of this goal-oriented proof, a
orresponding new

ta
ti
,
alled NAMED_GEN_TAC is de�ned. NAMED_GEN_TACmaps the
orrespond-

ing named goal to a list of one named goal, together with a named proof

(the justi�
ation). The justi�
ation, in turn, maps a list of one a

ount (the

a

ount of the one subgoal) to another a

ount (the a

ount of the original

goal). To de�ne NAMED_GEN_TAC, given an arbitrary named goal, requires (i)

the subgoal to be
onstru
ted and (ii) the justi�
ation to be spe
i�ed. The

orresponding named goal (ng),
alled `example_1`, is:

29

#let ng =

mk_named_goal(`example_1`,

[℄,

"!n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")

Sin
e it is easy to extra
t an ordinary goal from a named goal, the e�e
t

of the ordinary ta
ti
 GEN_TAC on the
orresponding ordinary goal
an be

omputed; this gives an ordinary subgoal and justi�
ation (as shown earlier).

To then
onstru
t the named subgoal using the ordinary subgoal is very

simple, sin
e the (named and
agged) assumptions of the original named

goal should not be
hanged by appli
ation of NAMED_GEN_TAC. The name of

the subgoal does not matter, sin
e it is an only subgoal, so the name of the

original goal is used, arbitrarily, as the subgoals's name. The term of the

subgoal is just the term of the ordinary subgoal. Thus the list of subgoals

produ
ed by NAMED_GEN_TAC on the named goal (ng) is:

[mk_named_goal(`example_1`,

[℄,

"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")℄

Computing the justi�
ation for a named goal is also straightforward. A

fun
tion is de�ned whi
h maps a list
ontaining one a

ount (the a

ount of

the named subgoal) to a new a

ount (the a

ount of the named goal). That

is, the new justi�
ation is spe
i�ed as a fun
tion of the form

\[a
:named a

ount℄. mk_node(..., ..., ..., ...)

with the parameter a
 representing the a

ount of the subgoal, and the four

slots representing the following
omponents:

1. The proof step;

2. The list
ontaining the sub-a

ount of the subgoal

3. The list
ontaining the subgoal, and

4. The theorem that a
hieves the subgoal.

The proof step
onsists of a string, to identify the ta
ti
 applied, a list of any

term parameters to be remembered, and a list of any theorem parameters.

NAMED_GEN_TAC (like GEN_TAC) does not involve theorem parameters, but does

30

involve a term: the term whi
h is instantiated. To identify the proof step,

the string `NAMED_GEN_TAC` will do. The new subgoal is known (as explained

above), so the third
omponent is easy. The list
ontaining the a

ount (a
)

of the subgoal is supplied to the justi�
ation (via the lambda binding), so this

gives the fourth item. Finally, the justi�
ation of the ordinary GEN_TAC has

already been
omputed. From the a

ount of the new subgoal, the theorem

a
hieving the new subgoal
an be extra
ted (it is the fourth
omponent of

the a

ount); then the ordinary justi�
ation
an be applied to that theorem

to produ
e the theorem a
hieving the main goal. Thus the new justi�
ation

is denoted by the expression

\[a
℄. mk_node((`NAMED_GEN_TAC`, ["n:num"℄, [℄),

[a
℄,

[mk_named_goal(`example_1`,

[℄,

"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")℄,

p1[extra
t_theorem a
℄)

When the named ta
ti
 is applied to the named goal, a list of named subgoals

and a named proof (justi�
ation) result:

#NAMED_GEN_TAC ng;;

([mk_named_goal(`example_1`,

[℄,

"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")℄,

-)

: (named_goal list # named_proof)

When the a

ount of the original goal ng is �nally produ
ed { by applying

the named proof to the a
tual a

ount of the subgoal { it is of the form

mk_node((`NAMED_GEN_TAC`, ["n"℄, [℄),

[mk_node($\
dots$)℄,

[mk_named_goal(`example_1`,

[℄,

"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)")℄,

|- !n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n))

: named_a

ount

where the \. . ." representing the a
tual a

ount of the subgoal may be

arbitrarily
omplex.

This internal representation is made readable by a suite of printing fun
-

tions whi
h (i) produ
e a linear layout, and (ii) use the strings re
ording

31

proof steps to look up a pa
kaged `explanation' of the strategy behind the

ta
ti
.

To print the a

ount of a named goal, the proof step is �rst announ
ed and

printed; then the subgoals are announ
ed and printed; then the a

ount of

ea
h subgoal is announ
ed and (re
ursively) printed; and �nally, the theorem

a
hieving the original goal is announ
ed and printed. To print a proof step

requires a print fun
tion de�ned as a large
onditional with a bran
h for ea
h

possible string whi
h identi�es a proof step. The print fun
tion provides a

natural wording for the step denoted by the string { that is, it des
ribes the

natural pattern of reasoning implemented by the ta
ti
 behind the step. To

print a goal involves identifying and printing the term of the goal, and then

identifying and printing the assumptions.

The printed form of the example a

ount is shown (partially) below. (As

we have not said anything about the proof of the subgoal, the the \� � �"

represents the printout of the a

ount of the subgoal.)

>>>> Consider an arbitrary "n":

We show:

>> "n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"

...

This establishes

|- n > 1 ==> (?p. PRIME p /\ p DIVIDES n)

This establishes

|- !n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)

The string `GEN_TAC` is used to generate the wording at \Consider an ar-

bitrary � � �" (and the term remembered then appears). The wording suggests

the natural pattern of reasoning in something like the way that a textbook

might put it. If an a

ount to be printed is the outermost a

ount of a

parti
ular proof, a prologue and epilogue are added around its printout:

This is the proof of the
onje
ture

>> example_1:

"!n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"

...

This
ompletes the proof of the
onje
ture

>> example_1:

"!n. n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"

32

The internal form of the a

ount
ould be rendered in many other ways,

of
ourse, ea
h with its own suite of print fun
tions. The parti
ular suite

that has been implemented reports every proof step in detail, and uses the

format shown.

Most of the named ta
ti
s
orresponding to simple HOL ta
ti
s are im-

plemented similarly way to GEN_TAC.

4.2 Solving a Goal: ACCEPT TAC

Several ta
ti
s are
apable, unlike GEN_TAC, of solving goals. The simplest

of these is ACCEPT_TAC, whi
h in fa
t only solves, and
annot advan
e, goals.

ACCEPT_TAC is a fun
tion whi
h maps a theorem to a ta
ti
 whi
h when ap-

plied to a goal either produ
es an empty list of subgoals, or else fails. The

former happens i� the
on
lusion of the theorem is the same as the term of the

goal (up to alpha-
onversion); in that
ase, the justi�
ation of ACCEPT_TAC,

applied to the
orresponding empty list of theorems, produ
es the same theo-

rem as provided to ACCEPT_TAC. This is demonstrated by solving the following

goal (whi
h might, perhaps be a
ase in a larger proof) using the pre-proved

HOL theorem MULT_SYM:

#let g = ["x > 0";"y > 0"℄,"x * y = y * x";;

g = (["x > 0"; "y > 0"℄, "x * y = y * x") : goal

#MULT_SYM;;

|- !m n. m * n = n * m

#let thm = SPECL ["x:num";"y:num"℄ (MULT_SYM);;

thm = |- x * y = y * x

#let gl,p = ACCEPT_TAC thm g;;

gl = [℄ : goal list

p = - : proof

#p[℄;;

|- x * y = y * x

The a

ount of this fragment of proof uses a wording to express the nat-

ural strategy behind ACCEPT_TAC. (In the
orresponding named goal, the two

assumptions are given names.)

This is the proof of the
onje
ture

>> example_2:

"x * y = y * x"

Assuming

33

The fa
t1: "x > 0"

The fa
t2: "y > 0"

>>>> The theorem

|- x * y = y * x

is proposed to satisfy this.

This establishes

|- x * y = y * x

This
ompletes the proof of the
onje
ture

>> example_2:

"x * y = y * x"

Assuming

The fa
t1: "x > 0"

The fa
t2: "y > 0"

Note that NAMED_ACCEPT_TAC must re
ord its theorem parameter in order

that the a

ount be understandable.

If the theorem to whi
h the justi�
ation of ACCEPT_TAC is applied has an

appropriate
on
lusion but fails to a
hieve the original goal through having

hypotheses beyond the assumptions of the goal, then this failure is noted at

the appropriate points in the a

ount { here, in the prologue and epilogue.

Suppose, for example, that we have proved the easy theorem thm', as shown

below, and that thm' is supplied to NAMED_ACCEPT_TAC in pla
e of thm:

x = 3 |- x * y = y * x

In HOL, an empty list of subgoals would again ensue, but the justi�
a-

tion would then produ
e the theorem x = 3 |- x * y = y * x. The a

ount

makes the nature of this failure
lear:

This is the attempted proof of the
onje
ture

>> example_2:

"x * y = y * x"

Assuming

The fa
t1: "x > 0"

The fa
t2: "y > 0"

>>>> The theorem

x = 3 |- x * y = y * x

is proposed to satisfy this.

This establishes

x = 3 |- x * y = y * x

whi
h does not satisfy

>> "x * y = y * x"

Assuming

34

The fa
t1: "x > 0"

The fa
t2: "y > 0"

This
ompletes the attempted proof of the
onje
ture

>> example_2:

"x * y = y * x"

Assuming

The fa
t1: "x > 0"

The fa
t2: "y > 0"

The wording seen in the prologue and epilogue are
hosen by the print

fun
tions when the a
hievement failure is dete
ted in the subgoal-proof tree

being printed.

NAMED_ACCEPT_TAC is implemented similarly to NAMED_GEN_TAC, ex
ept that

instead of
onstru
ting a list
ontaining one subgoal, it simply returns an

empty list of subgoals. The justi�
ation does not involve inferen
e { as

GEN_TAC's does, but simply maps the empty list of theorems to the theorem

provided. While the implementation of NAMED_GEN_TAC must remember a

term, that of NAMED_ACCEPT_TAC must remember the theorem parameter to

whi
h it was applied.

4.3 Naming New Assumptions: DISCH TAC

DISCH_TAC, like GEN_TAC,
an advan
e but not solve goals; and where it su
-

eeds, it produ
es exa
tly one subgoal. Unlike GEN_TAC, it not only
hanges

the term of a goal, but also
hanges the assumption list (by adding a new

assumption):

#let g = [℄,"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)";;

g = ([℄, "n > 1 ==> (?p. PRIME p /\ p DIVIDES n)") : (* list # term)

#let gl,p = DISCH_TAC g;;

gl = [(["n > 1"℄, "?p. PRIME p /\ p DIVIDES n")℄ : goal list

p = - : proof

On
e we have proved the theorem th

th = |- ?p. PRIME p /\ p DIVIDES n

we
an then apply the justi�
ation (p) to yield the theorem a
hieving the

original goal:

#p[th℄;;

|- n > 1 ==> (?p. PRIME p /\ p DIVIDES n)

35

The
orresponding named ta
ti
 is implemented along the lines of the

previous named ta
ti
s, ex
ept that it must in addition give a name to the

added assumption to indi
ate that this assumption was, in a previous goal,

the ante
edent of an impli
ation. The a

ount
onstru
ted by the named

ta
ti
 uses this name, and supplies a natural wording for the strategy, applied

to the
orresponding named goal:

This is the proof of the
onje
ture

>> example_3:

"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"

>>>> It is suffi
ient to prove:

>> "?p. PRIME p /\ p DIVIDES n"

Assuming

The ante
edent: "n > 1"

...

This establishes

n > 1 |- ?p. PRIME p /\ p DIVIDES n

This establishes

|- n > 1 ==> (?p. PRIME p /\ p DIVIDES n)

This
ompletes the proof of the
onje
ture

>> example_3:

"n > 1 ==> (?p. PRIME p /\ p DIVIDES n)"

4.4 Transforming Subgoals: SUBST1 TAC

The ML fun
tion SUBST1_TAC, like ACCEPT_TAC, maps a theorem to a ta
ti
.

The theorem must have a
on
lusion of equational form; it is is used to make

and justify a substitution throughout the term of a goal for all free instan
es

of the left hand side of the equation by the right hand side of the equation.

Like GEN_TAC, a ta
ti
 of the form SUBST1_TAC th, where it su

eeds, produ
es

a subgoal list of �xed length one. Also like GEN_TAC, it advan
es but does

not solve goals; and it transform the term of a goal but does not alter the

assumptions. For example:

#let g = [℄,"!n:num. n > 1 ==> n DIVIDES n";;

g = ([℄, "!n. n > 1 ==> n DIVIDES n")

Suppose that the theorem th is an instan
e of the de�nition of division:

th = |- n DIVIDES n = ~(n = 0) /\ (?q. q * n = n)

36

Then substituting throughout the goal a

ording to the spe
ialized form of

the de�nition, is a way of unfolding the goal into more basi
 terms:

#let gl1,p1 = (GEN_TAC THEN SUBST1_TAC th)g;;

gl1 = [([℄, "n > 1 ==> ~(n = 0) /\ (?q. q * n = n)")℄ : goal list

p1 = - : proof

The printed form of the a

ount on the
orresponding named goal explains

the e�e
t of SUBST_TAC:

This is the proof of the
onje
ture

>> example_4:

"!n. n > 1 ==> n DIVIDES n"

>>>> Consider an arbitrary "n":

We show:

>> "n > 1 ==> n DIVIDES n"

>>>> We substitute a

ording to the following equality:

|- n DIVIDES n = ~(n = 0) /\ (?q. q * n = n).

Thus, it is suffi
ient to prove:

>> "n > 1 ==> ~(n = 0) /\ (?q. q * n = n)"

...

This establishes

|- n > 1 ==> ~(n = 0) /\ (?q. q * n = n)

This establishes

|- n > 1 ==> n DIVIDES n

This establishes

|- !n. n > 1 ==> n DIVIDES n

This
ompletes the proof of the
onje
ture

>> example_4:

"!n. n > 1 ==> n DIVIDES n"

It
an be seen that the theorem parameter to NAMED_SUBST_TAC has to be re-

membered in order to explain fully the substitution { as for NAMED_ACCEPT_TAC.

The implementation is similar to previous ones.

4.4.1 Impli
it Assumptions from Invalid Proof Steps

Although SUBST_TAC is apparently straightforward, there is one diÆ
ulty that

may arise. To explain it, we use the arithmeti

onstants SUC and PRE, pro-

vided in HOL, for the su

essor and prede
essor fun
tions (respe
tively) on

37

the natural numbers. The prede
essor fun
tion is
hara
terized by the theo-

rem

|- (PRE 0 = 0) /\ (!m. PRE(SUC m) = m)

and about the su

essor we know that

|- !n. ~(SUC n = 0)

Suppose that the goal is to prove the following (for any x)

#let g = [℄, "PRE(SUC(PRE x)) = PRE x";;

g = ([℄, "PRE(SUC(PRE x)) = PRE x") : (* list # term)

and that we have already proved the theorem th:

~(x = 0) |- SUC(PRE x) = x

(whi
h is not diÆ
ult to prove).

If a user unwittingly were to try to pro
ede in HOL by making a substi-

tution based on the theorem th, the resulting subgoal would appear without

re
ording the fa
t that an assumption (~(x = 0)) had thereby been intro-

du
ed. The result would appear to be as hoped:

#let gl1,p1 = SUBST1_TAC th g;;

gl1 = [([℄, "PRE x = PRE x")℄ : goal list

p1 = - : proof

This subgoal
ould then be solved by appeal to re
exivity:

#let th' = REFL "PRE x";;

th' = |- PRE x = PRE x

#let gl2,p2 = ACCEPT_TAC th' (hd gl1);;

gl2 = [℄ : goal list

p2 = - : proof

#let th2 = p2[℄;;

th2 = |- PRE x = PRE x

This still appears to solve the problem; it leads to a theorem whi
h a
hieves

the one subgoal in gl1. However, the justi�
ation of the substitution (p1)

maps th2 to a theorem th1

38

#let th1 = p1[th2℄;;

th1 = . |- PRE(SUC(PRE x)) = PRE x

#print_all_thm th1;;

~(x = 0) |- PRE(SUC(PRE x)) = PRE x

whi
h, be
ause it is
ontingent on some hypothesis, does not a
hieve the

original goal. This sudden failure of a
hievement is the �rst indi
ation to the

user that an assumption has been introdu
ed `behind the s
enes' { as a result

of the theorem parameter to SUBST1_TAC having depended on the hypothesis

~(x = 0). The
ause of the failure may not be immediately apparent { even

after the hypothesis (printed by default as a dot) is examined.

Indeed, if instead of th' (|- PRE x = PRE x) we had proved an easy the-

orem th''

~(x = 0) |- PRE x = PRE x

and we had supplied th'' rather than th' as the solution of the subgoal in gl1

(i.e. ([℄, "PRE x = PRE x")), then the theorem (th2) whi
h was supplied

to the justi�
ation (p1) of the substitution would already depend on the

hypothesis ~(x = 0):

#let gl2,p2 = ACCEPT_TAC th'' (hd gl1);;

gl2 = [℄ : goal list

p2 = - : proof

#let th2 = p2[℄;;

th2 = . |- PRE x = PRE x

#print_all_thm th2;;

~(x = 0) |- PRE x = PRE x

#let th1 = p1[th2℄;;

th1 = . |- PRE(SUC(PRE x)) = PRE x

#print_all_thm th1;;

~(x = 0) |- PRE(SUC(PRE x)) = PRE x

As
an be seen, the end result is the same as before. That is, the justi�
ation

of the substitution (the fun
tion p1) \knows" about the invisible assumption

~(x = 0), so whether the justi�
ation is applied to the theorem with
on
lu-

sion PRE x = PRE x) with the hypothesis ~(x = 0) or without the hypothesis

makes no di�eren
e; in either
ase, the result is a theorem with the hypothe-

sis ~(x = 0). However, what the justi�
ation fun
tion \knows" is not readily

apparent to a user. We will take this behaviour of the justi�
ation to be the

39

riterion of whether a ta
ti
 applied to a given goal introdu
es an impli
it

assumption.

To see why the justi�
ation ne
essarily adds the hypothesis to the theo-

rem it returns, where it is la
king, one must examine the inferen
e rule for

substitution whi
h supports the substitution ta
ti
. The rule spe
i�es that

in using an established equality to substitute equals for equals throughout

the
on
lusion of a given theorem, the hypotheses of the equality theorem,

as well as the hypotheses of the theorem into whi
h the substitution is made,

are propagated through to the resulting theorem. (See ref, Ch 3.)

A |- t = u B |- P(t)

A u B |- P(u/t)

In general, a ta
ti
 is
alled invalid if it is able to generate, on some

goal, subgoals and a justi�
ation su
h that a
hieving the subgoals does not

ne
essarily entail, via the justi�
ation, a
hieving the goal. Invalidity ne
-

essarily
hara
terizes any ta
ti

onstru
ted by applying a fun
tion of type

thm -> ta
ti
 (or thm list -> ta
ti
), et
, to appropriate values to
reate

a ta
ti
. The property thereby pertains to quite a few of the
ommonly used

HOL ta
ti
s, in
luding DISCH_TAC, whi
h was des
ribed earlier, as well as

SUBST1_TAC. (See appendix ... listing all su
h HOL ta
ti
s.)

Any of these invalid ta
ti
s
an be applied validly or invalidly to goals.

SUBST1_TAC th, for example, was applied invalidly to the goal g, in the last

example, be
ause g in
luded no assumptions { in parti
ular, it did not in
lude

as an assumption the hypothesis ~(x = 0) of the substitution theorem th.

4.4.2 Impli
it Assumptions without Use

In the previous example, the theorem th was used in the substitution step;

it may appear that that is essential for the hypothesis ~(x = 0) to have been

made impli
itly. However, this is not so. Another example of the same sort

illustrates the subtle point that the appearan
e of the invisible assumption

does not depend on the theorem with the hypothesis having had an e�e
t on

the goal. In the following example, the attempted substitution has no e�e
t,

be
ause there is no suitable substitution instan
e for the term SUC(PRE x).

Suppose the goal is

#let g = [℄,"PRE(SUC x) = x";;

g = ([℄, "PRE(SUC x) = x") : (* list # term)

40

and the same substitution theorem, th (~(x = 0) |- SUC(PRE x) = x), is

engaged (but to no e�e
t):

#let gl,p = SUBST1_TAC th g;;

gl = [([℄, "PRE(SUC x) = x")℄ : goal list

p = - : proof

On
e the single subgoal is a
hieved { without our spe
ifying how { by a

theorem th'

#th';;

|- PRE(SUC x) = x

the justi�
ation
an be applied to give a result:

#p[th'℄;;

. |- PRE(SUC x) = x

#print_all_thm it;;

~(x = 0) |- PRE(SUC x) = x

Thus, despite the fa
t that the theorem th' itself a
hieves the subgoal

[℄, "PRE(SUC x) = x")

and the fa
t that the substitution ta
ti
 has had no e�e
t, the justi�
ation

(p) of the substitution ta
ti
 still produ
es a theorem depending on the

hypothesis ~(x = 0). That is, the substitution step ne
essarily introdu
es an

assumption behind the s
enes { by embedding that hypothesis in the fun
tion

that justi�es the (e�e
tive or ine�e
tive) substitution step.

11

4.4.3 Impli
it Assumptions from Valid Proof Steps

Although the appearan
e of the unexpe
ted hypothesis in the previous two

se
tions was
aused by an invalid use of a ta
ti
, the introdu
tion of invis-

ible assumptions does not arise only through invalidity { the me
hanism is

a
tually more subtle still. We return to the �rst substitution example (Se
-

tion 4.4.1) to illustrates the same e�e
t, but without the invalid use of ta
ti
s

and without failing to a
hieve the original goal.

Suppose we refer to the same theorem th:

11

Possibly, HOL's substitution ta
ti

ould be implemented so that if it dete
ted that it

has had no e�e
t it would return a justi�
ation that did not rely on the inferen
e rule for

substitution { whi
h is the origin of the hypothesis of the result. However, this would be

ompli
ated, probably ineÆ
ient, and would have to be done for quite a few other similarly

onstru
ted ta
ti
s.

41

~(x = 0) |- SUC(PRE x) = x

and this time use a goal resembling that of Se
tion 4.4.1, but whi
h in
ludes

the assumption in question to begin with:

#let g = ["~(x = 0)"℄, "(PRE(SUC(PRE x)) = PRE x)";;

g = (["~(x = 0)"℄, "PRE(SUC(PRE x)) = PRE x") : goal

The use of the substitution ta
ti
 is now valid:

#let gl1,p1 = SUBST1_TAC th (hd gl1);;

gl1 = [(["~(x = 0)"℄, "PRE x = PRE x")℄ : goal list

p1 = - : proof

If the theorem th' (as in Se
tion 4.4.1)

th' = |- PRE x = PRE x

or indeed th'' (also as in Se
tion 4.4.1)

~(x = 0) |- PRE x = PRE x

is now supplied as the solution to the goal in gl1, the justi�
ation (p1) of

the substitution { as before { produ
es a theorem (th2) that depends on the

ondition ~(x = 0). (This time, though, the resulting theorem does a
hieve

the goal g.)

#let gl2,p2 = ACCEPT_TAC th' (hd gl2);;

gl2 = [℄ : goal list

p2 = - : proof

#let th2 = p2[℄;;

th2 = |- PRE x = PRE x

#let th1 = p1[th2℄;;

th1 = . |- PRE(SUC(PRE x)) = PRE x

#print_all_thm th1;;

~(x = 0) |- PRE(SUC(PRE x)) = PRE x

The dependen
e on ~(x = 0) happens despite the validity of the substitution

on the subgoal { that is, despite the fa
t that at the point where the sub-

stitution ta
ti
 was applied, the
ondition ~(x = 0) was already a standing

assumption. (This is not an automati
 e�e
t of ~(x = 0) having already been

an assumption { not all assumptions reappear thus.) The impli
it assump-

tion introdu
ed by the ta
ti
 manifests itself in the e�e
t of the justi�
ation

fun
tion of that ta
ti
, and for exa
tly the same reason as in the previous

two examples: the propagation of assumptions in the inferen
e rule for sub-

stitution.

42

4.4.4 A

ounting for Impli
it Assumptions

The �rst and se
ond examples (in Se
tions 4.4.1 and 4.4.2 respe
tively),

involving invalid reasoning, might be dismissed simply as poor HOL style;

indeed, su
h reasoning is pre
luded by the HOL subgoal interfa
e in its most

restri
tive mode. However, in the third example, the reasoning is
ompletely

valid, and the example in fa
t illustrates a
ommonly used method in HOL

ta
ti
al proof. There are, in addition, several other (valid) ways in whi
h

assumptions
an be
aused to appear behind the s
enes, and these likewise

annot be dismissed as poor HOL style { they are features of HOL's
urrent

design. (These other ways are dis
ussed in) For all of these
ases, it is

ne
essary, in proof a

ounts, to deal with the issue of impli
it assumptions.

The a

ounting method we propose is to re
ord all assumptions that

pertain to a goal, whether or not they would be visible ordinarily. Impli
it

assumptions are identi�ed by the boolean value false; this is the purpose of

the boolean
omponent of an assumption of a named goal. Whether or when

impli
it assumptions are printed is a feature of a parti
ular printing routine,

but the information is anyway available to print. (Currently, they are always

printed.)

With impli
it assumptions re
orded in a

ounts, the invalid use of substi-

tution seen above in the �rst (invalid) example (Se
tion 4.4.1) { whi
h might

well have puzzled the user { is a

ounted for as follows:

This is the attempted proof of the
onje
ture

>> example_5:

"PRE(SUC(PRE x)) = PRE x"

>>>> We substitute a

ording to the following equality:

~(x = 0) |- SUC(PRE x) = x.

Thus, it is suffi
ient to prove:

>> "PRE x = PRE x"

Assuming impli
itly

The hypothesis of the equality: "~(x = 0)"

>>>> The theorem

|- PRE x = PRE x

is proposed to satisfy this.

This establishes

|- PRE x = PRE x

This establishes

~(x = 0) |- PRE(SUC(PRE x)) = PRE x

whi
h does not satisfy

43

>> "PRE(SUC(PRE x)) = PRE x"

This
ompletes the attempted proof of the
onje
ture

>> example_5:

"PRE(SUC(PRE x)) = PRE x"

This a

ount
lears up all the mystery from the situation: �rst, the sub-

goal de
omposition re
ords the introdu
ed assumption so that it
an be seen

from the point at whi
h it be
omes an assumption onward; se
ond, the transi-

tion (via the justi�
ation of the substitution ta
ti
) from the establishment of

the theorem |- PRE x = PRE x to the theorem ~(x = 0) |- PRE(SUC(PRE x)) = PRE x

an be understood by referen
e to the impli
it assumption of the relevant

subgoal; and �nally, the failure to a
hieve the original goal (be
ause of the

additional hypothesis) is noted and made
lear.

The a

ount of the se
ond example (Se
tion 4.4.2), in whi
h the (invalid)

substitution step has no e�e
t on the term of the goal, makes
lear that

the step does have the side e�e
t of introdu
ing an impli
it assumption,

whi
h later manifests itself in the
hain of a
hieving theorems produ
ed by

su

essive justi�
ations:

This is the attempted proof of the
onje
ture

>> example_6:

"PRE(SUC x) = x"

>>>> We substitute a

ording to the following equality:

~(x = 0) |- SUC(PRE x) = x.

Thus, it is suffi
ient to prove:

>> "PRE(SUC x) = x"

Assuming impli
itly

The hypothesis of the equality: "~(x = 0)"

...

This establishes

|- PRE(SUC x) = x

This establishes

~(x = 0) |- PRE(SUC x) = x

whi
h does not satisfy

>> "PRE(SUC x) = x"

This
ompletes the attempted proof of the
onje
ture

>> example_6:

"PRE(SUC x) = x"

The a

ount produ
ed for the third (valid) example (Se
tion 4.4.3), in

whi
h the assumption ~(x = 0) belongs to the goal at the point where the

44

substitution is made, is again intended to
lear up any mystery about the

reappearan
e of the impli
it assumption in the
hain of a
hieving theorems:

This is the proof of the
onje
ture

>> example_7:

"PRE(SUC(PRE x)) = PRE x"

Assuming

The fa
t: "~(x = 0)"

>>>> We substitute a

ording to the following equality:

~(x = 0) |- SUC(PRE x) = x.

Thus, it is suffi
ient to prove:

>> "PRE x = PRE x"

Assuming

The fa
t: "~(x = 0)"

Assuming impli
itly

The hypothesis of the equality: "~(x = 0)"

>>>> The theorem

|- PRE x = PRE x

is proposed to satisfy this.

This establishes

|- PRE x = PRE x

This establishes

~(x = 0) |- PRE(SUC(PRE x)) = PRE x

This
ompletes the proof of the
onje
ture

>> example_7:

"PRE(SUC(PRE x)) = PRE x"

Assuming

The fa
t: "~(x = 0)"

The expli
it assumption ~(x = 0), in the subgoal

>> "PRE x = PRE x"

Assuming

The fa
t: "~(x = 0)"

Assuming impli
itly

The hypothesis of the equality: "~(x = 0)"

does not explain the dependen
e on ~(x = 0) of the
orresponding a
hieving

theorem

~(x = 0) |- PRE(SUC(PRE x)) = PRE x

The noting of the introdu
tion of the impli
it assumption, in ea
h of the

a

ounts of substitution, is a
hieved by implementing NAMED_SUBST_TAC so

that whenever it is applied to a theorem, and the resulting ta
ti
 to a goal,

45

any hypotheses of the theorem are re
orded as impli
it assumptions of the

subgoal being
onstru
ted. Any su
h assumption is labelled to indi
ate its

origin { in the
ase of substitution with the string

`the hypothesis of the equality`

and with the boolean value false to indi
ate that it is an impli
it assumption.

The only futher
are required is that in extra
ting an ordinary goal from a

named goal (so that the results of the ordinary SUBST1_TAC
an be
omputed),

only expli
it assumptions should be in
luded; assumptions of the named goal

labelled with false are ignored. Impli
it assumptions are in
luded again,

however, in the named subgoal being
onstru
ted by NAMED_SUBST_TAC { that

is, impli
it assumptions persist from named goals to named subgoals, as one

would expe
t.

The printing routine for goals is then arranged to print expli
it and im-

pli
it assumptions separately (as illustrated in the a

ounts above). The

routine for printing whole a

ounts is arranged to produ
e an appropriate

message (again, as illustrated) when a
andidate theorem fails to a
hieve the

subgoal for whi
h it was intended; and when the theorem purporting to do

so fails to a
hieve an initial (outermost) goal.

4.5 Multiple Subgoals: INDUCT TAC

The numeri
al indu
tion ta
ti
 is an example of a ta
ti
 whi
h produ
es more

than one subgoal { it always produ
es one basis and and one step
ase, when

it su

eeds at all. In both subgoals, there is a transformed term; and in

the step goal, there is a di�erent assumptions list { a new assumption (the

indu
tion hypothesis) is added. For example, the proof of the asso
iativity

of addition (normally pre-proved in HOL) is by indu
tion:

#let g = [℄,"!m n p. m + (n + p) = (m + n) + p";;

g = ([℄, "!m n p. m + (n + p) = (m + n) + p")

#let [g1;g2℄,p = INDUCT_TAC g;;

g1 = ([℄, "!n p. 0 + (n + p) = (0 + n) + p") : goal

g2 =

(["!n p. m + (n + p) = (m + n) + p"℄,

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p")

: goal

p = - : proof

46

The
orresponding named goal is

mk_named_goal(`example_8`, [℄, "!m n p. m + (n + p) = (m + n) + p")

To spe
ify the
orresponding named ta
ti
 NAMED_INDUCT_TAC requires

onstru
ting the two named subgoals from the two ordinary subgoals. This

in turn requires naming ea
h subgoal, and naming the new assumption of

the step subgoal. The named justi�
ation is
onstru
ted mu
h as for the

previous ta
ti
s. Here, it is a fun
tion that maps a list of two sub-a

ounts

to an a

ount of the original goal. The string `NAMED_INDUCT_TAC` identi�es

the ta
ti
 used, and the indu
tion variable (m) is re
orded. When the whole

proof is
ompleted and printed, the indu
tion is a

ounted for as follows:

This is the proof of the
onje
ture

>> example_8:

"!m n p. m + (n + p) = (m + n) + p"

>>>> The proof is by mathemati
al indu
tion on "m".

This gives two
ases to prove, the basis and step:

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

>> indu
tion step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indu
tion hypothesis: "!n p. m + (n + p) = (m + n) + p"

The proof of the

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

is as follows:

...

This establishes

|- !n p. 0 + (n + p) = (0 + n) + p

The proof of the

>> indu
tion step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indu
tion hypothesis: "!n p. m + (n + p) = (m + n) + p"

is as follows:

...

This establishes

!n p. m + (n + p) = (m + n) + p

|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p

47

This establishes

|- !m n p. m + (n + p) = (m + n) + p

This
ompletes the proof of the
onje
ture

>> example_8:

"!m n p. m + (n + p) = (m + n) + p"

In printing this a

ount, the a

ounts of the two subgoals are printed in

the order in whi
h the subgoals were announ
ed. Sin
e there is more than one

subgoal, and the a

ount of ea
h
an be arbitrarily long, ea
h sub-a

ount is

prefa
ed by a reminder of the subgoal to whi
h it pertains.

4.6 Advan
ement or Solution: REWRITE TAC

The fun
tion that implements HOL's rewriting s
heme maps a list of theo-

rems (to be used as left-to-right rewrite rules) to a ta
ti
. For a given list l,

the ta
ti
 REWRITE_TAC l (or any of the several variants of REWRITE_TAC, in-

luding ASM_REWRITE_TAC and so on { see ...)
an produ
e a variable number

of subgoals: either none or one. That is, a goal
an be solved by rewriting, or

it
an be advan
ed to a single subgoal. In the former
ase, as for ACCEPT_TAC,

an empty list of subgoals ensues. In the latter, the subgoal produ
ed is un-

hanged as regards its assumption list, but may be
hanged as regards the

term.

4.6.1 Solution by REWRITE TAC

The following list,
ontaining one pre-proved HOL theorem,
an be used to

omplete the proof in the previous example (Se
tion 4.5):

#let l = [ADD_CLAUSES℄;;

l =

[|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))℄

: thm list

In both the basis and step
ases of that proof, it is suÆ
ient to rewrite

using ADD_CLAUSES, using any assumptions pertaining at the time of rewriting,

48

and using a standard list of basi
 tautologies

12

. This strategy is implemented

by the ta
ti
 ASM_REWRITE_TAC l. Thus the goal is solved by the ta
ti

NAMED_INDUCT_TAC THEN

NAMED_ASM_REWRITE_TAC l

On
e the
orresponding named ta
ti
 NAMED_REWRITE_TAC is implemented,

the pro
edure for printing the a

ount of the rewriting proof step must
hoose

between two ways of presenting the rewriting step: one whi
h gives a wording

appropriate to solution, and one for advan
ement only.

For solution, the a

ount below shows the presentation of the (advan
ing)

rewriting step in both
ases:

This is the proof of the
onje
ture

>> example_8:

"!m n p. m + (n + p) = (m + n) + p"

>>>> The proof is by mathemati
al indu
tion on "m".

This gives two
ases to prove, the basis and step:

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

>> indu
tion step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indu
tion hypothesis: "!n p. m + (n + p) = (m + n) + p"

The proof of the

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

is as follows:

>>>> This follows by using the equality,

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

basi
 logi
al identities, and the assumptions made thus far.

This establishes

|- !n p. 0 + (n + p) = (0 + n) + p

The proof of the

>> indu
tion step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indu
tion hypothesis: "!n p. m + (n + p) = (m + n) + p"

12

All of HOL's rewriting fun
tions use these basi
 rewrite rules ex
ept those with names

suÆxed by `PURE', su
h as PURE ASM REWRITE TAC.

49

is as follows:

>>>> This follows by using the equality,

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

basi
 logi
al identities, and the assumptions made thus far.

This establishes

!n p. m + (n + p) = (m + n) + p

|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p

This establishes

|- !m n p. m + (n + p) = (m + n) + p

This
ompletes the proof of the
onje
ture

>> example_8:

"!m n p. m + (n + p) = (m + n) + p"

In the implementation of NAMED_REWRITE_TAC, the list provided of poten-

tial rewrite theorems is saved so that it
an be printed as part of the a

ount

of the rewriting step. A more sophisti
ated a

ount would perhaps not re-

port every potential rewrite theorem, but only those on whi
h
hanges to the

term of the goal were based. Likewise, a more informative a

ount would

indi
ate, in both
ases, whi
h, if any, of the basi
 logi
al identities were en-

gaged, and whi
h, if any, of the assumptions { by name. However, to report

only the rewrites a
tually engaged is beyond the s
ope of the
urrent a
-

ounting method, whi
h implements named ta
ti
s based on the values that

would be produ
ed by the
orresponding ordinary ta
ti
s (on the
orrespond-

ing ordinary goals). The method treats the ordinary ta
ti
s as `bla
k boxes'.

To
ause the ordinary rewriting ta
ti
 to keep a re
ord of rewrites a
tually

engaged would involve re-implementing the existing rewriting ta
ti
 (whi
h

happens to be parti
ularly
omplex).

However, an analysis of the a

ount shown, giving all potential rewrite

rules, does have a use: an analysis of the a

ount might suggest to the user

some improvements to the ta
ti
 used. In the basis
ase, for example, the

fun
tion ASM_REWRITE_TAC was spe
i�ed, but in fa
t it is obvious from the

a

ount that no assumptions are present, and so REWRITE_TAC would have

suÆ
ed. The user
ould then de
ide whether

NAMED_INDUCT_TAC THENL

[NAMED_REWRITE_TAC l;

NAMED_ASM_REWRITE_TAC l℄

50

were preferable to the original ta
ti
.

It is worth noting here that the subgoal-theorem tree
onstru
ted in the

pro
ess of a

ounting is stru
tured exa
tly as the goal-oriented proof is a
tu-

ally performed. That is, although the original ta
ti
 is spe
i�ed as a `linear'

sequen
e of two ta
ti
s, the indu
tion proof step in fa
t yields two subgoals;

the sequen
ing fun
tional THEN is de�ned so as to apply its se
ond argument

to all the subgoals produ
ed by its �rst argument. In this way, the a

ount

lari�es the proof's a
tual stru
ture in a way that is not ne
essarily made

apparent by the ML expression that generates the proof.

4.6.2 Advan
ement by REWRITE TAC

The a

ount of applying the following alternative ta
ti
 to the goal illustrates

the wording for rewriting steps that do not solve goals. (It also happens to

demonstrate the simpler ta
ti
 that is suÆ
ient in the basis
ase.) It divides

the rewriting step for the step
ase into two rewriting steps (the se
ond using

the basi
 rewrites and assumptions only), but is still a linear ta
ti
.

NAMED_INDUCT_TAC THEN

NAMED_REWRITE_TAC[ADD_CLAUSES℄ THEN

NAMED_ASM_REWRITE_TAC[℄

The a

ount is then as follows, illustrating (in the step
ase) the wording for

a rewriting step that does not solve a subgoal:

This is the proof of the
onje
ture

>> example_8:

"!m n p. m + (n + p) = (m + n) + p"

>>>> The proof is by mathemati
al indu
tion on "m".

This gives two
ases to prove, the basis and step:

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

>> indu
tion step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indu
tion hypothesis: "!n p. m + (n + p) = (m + n) + p"

The proof of the

>> basis:

"!n p. 0 + (n + p) = (0 + n) + p"

is as follows:

>>>> This follows by using the equality

|- (0 + m = m) /\

51

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

and basi
 logi
al identities.

This establishes

|- !n p. 0 + (n + p) = (0 + n) + p

The proof of the

>> indu
tion step:

"!n p. (SUC m) + (n + p) = ((SUC m) + n) + p"

Assuming

The indu
tion hypothesis: "!n p. m + (n + p) = (m + n) + p"

is as follows:

>>>> Using the following equality

|- (0 + m = m) /\

(m + 0 = m) /\

((SUC m) + n = SUC(m + n)) /\

(m + (SUC n) = SUC(m + n))

and using basi
 tautologies, it is suffi
ient to prove:

>> "!n p. SUC(m + (n + p)) = SUC((m + n) + p)"

Assuming

The indu
tion hypothesis: "!n p. m + (n + p) = (m + n) + p"

>>>> This follows from basi
 logi
al identities, as well as

the assumptions made thus far.

This establishes

!n p. m + (n + p) = (m + n) + p

|- !n p. SUC(m + (n + p)) = SUC((m + n) + p)

This establishes

!n p. m + (n + p) = (m + n) + p

|- !n p. (SUC m) + (n + p) = ((SUC m) + n) + p

This establishes

|- !m n p. m + (n + p) = (m + n) + p

This
ompletes the proof of the
onje
ture

>> example_8:

"!m n p. m + (n + p) = (m + n) + p"

The a

ount
lari�es the fa
t that the �rst rewriting step of the linear

ta
ti
 solves the basis
ase; this, again, is not immediately apparent from the

ML pro
edure.

Finally, as the point about invalidity made in Se
tion 4.4 applies also to

the rewriting fun
tions (whi
h take a list of theorems as their parameter);

any of the theorems on the list
an introdu
e impli
it assumptions, and these

52

assumptions are treated just as for substitution.

13

4.7 Adding an Assumption: ASSUME TAC

Like several ta
ti
s so far, ASSUME_TAC maps a theorem to a ta
ti
. It simply

adds the
on
lusion of the theorem provided to the assumption list, and jus-

ti�es this step by dis
harging the assumption and applying Modus Ponens.

Thus, an impli
it assumption may again be introdu
ed. The following a
-

ount shows the wording for printing su
h a proof step, and illustrates how

impli
it assumptions
an be raised by using ASSUME_TAC to a

ess assumptions

by text (a
ommon method in HOL proofs).

For example, suppose we wish to prove

mk_named_goal(`example_9`, [℄, "(p = q) ==> (q = r) ==> (p = r)")

(for p, q and r) of some given type, by assuming the ante
edents in turn, ap-

pealing to the transitivity of equality to derive as a new assumption "p = r",

and then using the new assumption as a rewrite rule. The a

ount of this

proof, using the
orresponding NAMED_ASSUME_TAC is:

This is the proof of the
onje
ture

>> example_9:

"(p = q) ==> (q = r) ==> (p = r)"

>>>> It is suffi
ient to prove:

>> "(q = r) ==> (p = r)"

Assuming

The ante
edent: "p = q"

>>>> It is suffi
ient to prove:

>> "p = r"

Assuming

The ante
edent: "q = r"

The ante
edent: "p = q"

>>>> We use the fa
t that

p = q, q = r |- p = r.

It is suffi
ient to prove:

>> "p = r"

13

Indeed, any of the assumptions that happens to be engaged as a rewrite rule by

ASM REWRITE TAC { but not those whi
h are not { must also, ne
essarily, introdu
e

an impli
it assumption. However, these parti
ular impli
it assumptions seem unlikely to

ause
onfusion, and so are not re
orded as impli
it in the a

ounts.

53

Assuming

The added hypothesis: "p = r"

The ante
edent: "q = r"

The ante
edent: "p = q"

Assuming impli
itly

The hypothesis of the theorem used: "p = q"

The hypothesis of the theorem used: "q = r"

>>>> This follows from basi
 logi
al identities, as well as

the assumptions made thus far.

This establishes

p = r |- p = r

This establishes

p = q, q = r |- p = r

This establishes

p = q |- (q = r) ==> (p = r)

This establishes

|- (p = q) ==> (q = r) ==> (p = r)

This
ompletes the proof of the
onje
ture

>> example_9:

"(p = q) ==> (q = r) ==> (p = r)"

Note that the se
ond theorem established (p = q, q = r |- p = r)
ar-

ries as hypotheses the two impli
it assumptions of the theorem parameter to

ASSUME_TAC. This assumption step is explained by the phrase `We use the fa
t that

� � �'.

5 Conversions

A
onversion in HOL is a fun
tion mapping a term to a theorem { that

is, a theorem parameterized on a term. For example, the
on
ept of beta-

onversion is represented in HOL by the fun
tion BETA_CONV whi
h maps a

term (the beta redex) to a theorem expressing the redu
tion:

#BETA_CONV "(\x. x > 0) 3";;

|- (\x. x > 0)3 = 3 > 0

Conversions provide a way of deriving parti
ular instan
es of fa
ts whi
h

annot themselves be expressed as theorems in the HOL logi
. (To express

54

beta-
onversion in general, for example, would require quanti�
ation over

syntax
lasses of logi
al expressions.)

To enable the use of su
h equational theorems as redu
tion ta
ti
s, a

fun
tion CONV_TAC is provided. CONV_TAC maps a given
onversion to a ta
ti

whi
h will perform the redu
tion on a goal with suitable term. The ta
ti

thus produ
ed, when applied to a goal, will either fail to be appli
able, or

will produ
e exa
tly one subgoal.

#CONV_TAC BETA_CONV;;

- : ta
ti

#CONV_TAC BETA_CONV ([℄,"(\x. x > 0) 3");;

([([℄, "3 > 0")℄, -) : subgoals

The redu
tion is justi�ed by a simple substitution.

To
onstru
t the a

ount of a proof step generated by applying a ta
ti
 of

the form CONV_TAC
, for some
onversion
, the usual method is used. The

theorem {

|- (\x. x > 0)3 = 3 > 0

{ whi
h justi�es the beta-redu
tion step is saved as a theorem parameter

in the a

ount, for purposes of explanation. For example, to explain the

appli
ation of the named ta
ti

NAMED_CONV_TAC BETA_CONV

to the goal

mk_named_goal(`example`,[℄,"(\x. x > 0) 3")

the a

ount produ
ed is:

This is the proof of the
onje
ture

>> example:

"(\x. x > 0)3"

>>>> We use the instantiated theorem-s
hema

|- (\x. x > 0)3 = 3 > 0

making it suffi
ient to prove:

>> "3 > 0"

...

This establishes

55

|- 3 > 0

This establishes

|- (\x. x > 0)3

This
ompletes the proof of the
onje
ture

>> example:

"(\x. x > 0)3"

Be
ause the named ta
ti
 re
ords the parti
ular fa
t that was used, the

method gives a meaninful explanation however the
onversion is expressed.

For example, the fun
tion DEPTH_CONV is one of several fun
tions whi
h trans-

form
onversions to new
onversions. The
onversion (DEPTH_CONV BETA_CONV

produ
es a
onversion whi
h will apply re
ursively { to arbitrary depth { to

all the beta-redexes of a term.)

For example, to explain the appli
ation of the named ta
ti

NAMED_CONV_TAC (DEPTH_CONV BETA_CONV)

to the goal

(mk_named_goal(`example`,[℄,"(\x. x > 0)3 = ((\x. x > 0)4 = T)"))

the a

ount produ
ed is:

This is the proof of the
onje
ture

>> example:

"(\x. x > 0)3 = ((\x. x > 0)4 = T)"

>>>> We use the instantiated theorem-s
hema

|- ((\x. x > 0)3 = ((\x. x > 0)4 = T)) = (3 > 0 = (4 > 0 = T))

making it suffi
ient to prove:

>> "3 > 0 = (4 > 0 = T)"

...

This establishes

|- 3 > 0 = (4 > 0 = T)

This establishes

|- (\x. x > 0)3 = ((\x. x > 0)4 = T)

This
ompletes the proof of the
onje
ture

>> example:

"(\x. x > 0)3 = ((\x. x > 0)4 = T)"

56

For
omplex expressions denoting a
onversion, it
ould be quite diÆ-

ult to re
onstru
t the ta
ti
 produ
ed by CONV_TAC when applied to that

onversion. The explanation makes it unne
essary to remember what form

of theorem ea
h
onversion (su
h as BETA_CONV) gives on appropriate terms;

what e�e
ts the various
onversion transformers (su
h as DEPTH_CONV) have on

onversions in general; and in what sense the parameterized ta
ti
 CONV_TAC

produ
es a ta
ti
 given a
onversion. The explanation instead supplies the

a
tual equational theorem justifying the redu
tion.

6 Resolution

The `resolution' ta
ti
s provided in HOL { IMP_RES_TAC and RES_TAC { are

the basis of the se
ond group of named ta
ti
s. Members of this group rely

on the results of the
orresponding ordinary ta
ti
s, but they further pro
ess

the results so that they
an be presented in a meaningful way

14

.

The fun
tion IMP_RES_TAC maps a theorem to a ta
ti
. It gives a way of

bringing to bear an impli
ative

15

axiom or previously proved theorem on a

goal by adding to the
urrent assumptions of a goal a
ertain subset of the

olle
tive dire
t and indire
t
onsequen
es of that theorem together with the

urrent assumptions.

The
onsequen
es are found by attempting to mat
h the ante
edent of the

impli
ative theorem to ea
h existing assumption (i.e.
andidate ante
edent);

so determining an instantiation, wherever a mat
h is made. The appropriate

instan
e of the
onsequent of the impli
ation is then added as a new assump-

tion, to the subgoal. A single appli
ation of IMP_RES_TAC th to a goal, for a

theorem th, is suÆ
ent for �nding all new assumptions of the form sought;

subsequent appli
ations of IMP_RES_TAC have no further e�e
t.

The instantiated
onsequents are pro
essed before new the new subgoal(s)

are
onstru
ted. If the
onsequent is an n-ary disjun
tion, n subgoals are

reated, one with ea
h respe
tive disjun
t as a new assumption. If it is an n-

ary
onjun
tion, the n
onjun
ts are added separately to the (single) subgoal.

(Existential and other
onsequents are not further pro
essed.)

14

The resolution ta
ti
s are mis-named in that they do not do resolution in the
lassi
al

sense (based on uni�
ation), but simply some one-way mat
hing of an impli
ation to a

andidate ante
edent, followed by forward inferen
e based on Modus Ponens .

15

Impli
ations, in this
ontext, are taken in a generalized sense, as des
ribed in ...

57

The ta
ti
 RES_TAC, on a goal, looks for pairs of resolvents within the

set of
urrent assumptions. It
onsiders ea
h impli
ative assumption against

the set of all other assumptions in the same way that IMP_RES_TAC resolves

an impli
ation against a set of assumptions. For ea
h impli
ation mat
hed,

RES_TAC similarly adds as a new assumption the appropriate instan
e of the

onsequent. Like IMP_RES_TAC, RES_TAC applied to a goal produ
es n subgoals

when the
onsequent of a mat
hed impli
ation is an n-ry disjun
tion. The

full set of results that RES_TAC is able to �nd is not ne
essarily found in a

single appli
ation of the ta
ti
; whether it is depends on the ordering of the

initial assumptions.

Both IMP_RES_TAC th and RES_TAC
an either solve goals or advan
e them.

They
an solve a goal either by deriving as a new assumption the term itself

of the goal, or by deriving falsity as a new assumption (in whi
h
ase any-

thing desired
ould be established, in
luding the parti
ular term of the goal).

Where these ta
ti
s advan
e goals, they
an produ
e an inde�nite number

of subgoals; just one subgoal if no mat
h made involves an impli
ation with

a disjun
tive
onsequent; and more than one subgoal if at least one mat
h

does so. Where these ta
ti
s advan
e a goal, they
an add to the assumption

list, but they
annot
hange the term.

To
onstru
t the a

ount of a proof step involving one of the resolution

ta
ti
s involves
omputing the results of the
orresponding ordinary ta
ti

on the
orresponding ordinary goal, then identifying the nature of the result,

and (in the advan
ement
ase) naming the relevant parts of subgoals. Where

the step solves the goal, dire
t solution and solution by
ontradi
tion are

distinguished. This is done by
he
king whether an arbitrary goal would also

be solved at that point. An appropriate string is then
hosen to denote the

proof step so that the two solution
ases
an be printed appropriately. For

example,
onsider the pre-proved theorem LESS_MONO:

#LESS_MONO;;

|- !m n. m < n ==> (SUC m) < (SUC n)

In the following proof, LESS_MONO is used to solve a trivially easy goal by

resolution:

#let g = ["p < q"℄,"SUC p < SUC q";;

g = (["p < q"℄, "(SUC p) < (SUC q)") : goal

#let gl,p = IMP_RES_TAC LESS_MONO g;;

gl = [℄ : goal list

58

p = - : proof

#let th = p[℄;;

th = . |- (SUC p) < (SUC q)

#print_all_thm th;;

p < q |- (SUC p) < (SUC q)

The a

ount generated by the named ta
ti
 shows the wording used:

This is the proof of the
onje
ture

>> example:

"(SUC p) < (SUC q)"

Assuming

The fa
t: "p < q"

>>>> This follows dire
tly

by using the assumptions made thus far and the fa
t

|- !m n. m < n ==> (SUC m) < (SUC n).

This establishes

p < q |- (SUC p) < (SUC q)

This
ompletes the proof of the
onje
ture

>> example:

"(SUC p) < (SUC q)"

Assuming

The fa
t: "p < q"

The next example demonstrates solution by
ontradi
tion. (Sin
e the

term of the goal does not matter, we use an arbitrary provable term t.) The

pre-proved theorem LESS_NOT_EQ is the theorem parameter:

#LESS_NOT_EQ;;

|- !m n. m < n ==> ~(m = n)

The impli
ation of LESS_NOT_EQ is taken by IMP_RES_TAC to be a form of the

anoni
al

|- m < n ==> (m = n) ==> F

Though IMP_RES_TAC this time su

eeds by deriving a
ontradi
tion, there is

nothing in the following ordinary HOL session to indi
ate that fa
t:

#let g = ["p < q";"(p:num) = q"℄,"t:bool";;

g = (["p < q"; "p = q"℄, "t") : goal

#let gl,p = IMP_RES_TAC LESS_NOT_EQ g;;

gl = [℄ : goal list

59

p = - : proof

#let th = p[℄;;

th = .. |- t

#print_all_thm th;;

p < q, p = q |- t

The wording of the a

ount makes the proof method
lear

16

:

This is the proof of the
onje
ture

>> example:

"t"

Assuming

The fa
t1: "p < q"

The fa
t2: "p = q"

>>>> This follows by
ontradi
tion,

using the assumptions made thus far and the fa
t

|- !m n. m < n ==> ~(m = n).

This establishes

p < q, p = q |- t

This
ompletes the proof of the
onje
ture

>> example:

"t"

Assuming

The fa
t1: "p < q"

The fa
t2: "p = q"

Where resolution advan
es a goal rather than solving it, this is indi
ated

in the a

ount; the new result is identi�ed. Here, LESS_MONO is again used:

This is the proof of the
onje
ture

>> example:

"t"

Assuming

The fa
t: "p < q"

>>>> From the assumptions made thus far and the fa
t

|- !m n. m < n ==> (SUC m) < (SUC n),

it is suffi
ient to prove the following:

>> "t"

Assuming

The
onsequen
e: "(SUC p) < (SUC q)"

The fa
t: "p < q"

...

16

An alternative presentation
ould print the
anoni
al form of LESS NOT EQ (i.e. the

form a
tually used by the ta
ti
), if that were felt to be more informative.

60

This establishes

(SUC p) < (SUC q), p < q |- t

This establishes

p < q |- t

This
ompletes the proof of the
onje
ture

>> example:

"t"

Assuming

The fa
t: "p < q"

Of
ourse, there may be more than one new result; in that
ase, the new

results are numbered in the order in whi
h they would ordinarily be added

to the assumptions in HOL:

This is the proof of the
onje
ture

>> example:

"t"

Assuming

The fa
t1: "p1 < q1"

The fa
t2: "p2 < q2"

>>>> From the assumptions made thus far and the fa
t

|- !m n. m < n ==> (SUC m) < (SUC n),

it is suffi
ient to prove the following:

>> "t"

Assuming

The
onsequen
e 2: "(SUC p2) < (SUC q2)"

The
onsequen
e 1: "(SUC p1) < (SUC q1)"

The fa
t1: "p1 < q1"

The fa
t2: "p2 < q2"

....

This establishes

(SUC p2) < (SUC q2), (SUC p1) < (SUC q1), p1 < q1, p2 < q2 |- t

This establishes

p1 < q1, p2 < q2 |- t

This
ompletes the proof of the
onje
ture

>> example:

"t"

Assuming

The fa
t1: "p1 < q1"

The fa
t2: "p2 < q2"

As noted earlier, a resolvent with a disjun
tive
on
lusion
an
ause a

ase split. If that happens, the
ases are numbered and identi�ed in the

61

a

ount (and new results identi�ed as before). In the following example, we

resolve against the pre-proved LESS_LEMMA:

#let LESS_LEMMA1 = theorem `prim_re
` `LESS_LEMMA1`;;

LESS_LEMMA1 = |- !m n. m < (SUC n) ==> (m = n) \/ m < n

This is the proof of the
onje
ture

>> example:

"t"

Assuming

The fa
t: "p < (SUC q)"

>>>> From the assumptions made thus far and the fa
t

|- !m n. m < (SUC n) ==> (m = n) \/ m < n,

it is suffi
ient to prove the following:

>> disjun
tive
ase 1 of 2:

"t"

Assuming

The
onsequen
e: "p = q"

The fa
t: "p < (SUC q)"

>> disjun
tive
ase 2 of 2:

"t"

Assuming

The
onsequen
e: "p < q"

The fa
t: "p < (SUC q)"

The proof of the

>> disjun
tive
ase 1 of 2:

"t"

Assuming

The
onsequen
e: "p = q"

The fa
t: "p < (SUC q)"

is as follows:

....

This establishes

p = q, p < (SUC q) |- t

The proof of the

>> disjun
tive
ase 2 of 2:

"t"

Assuming

The
onsequen
e: "p < q"

The fa
t: "p < (SUC q)"

is as follows:

....

This establishes

p < q, p < (SUC q) |- t

62

This establishes

p < (SUC q) |- t

This
ompletes the proof of the
onje
ture

>> example:

"t"

Assuming

The fa
t: "p < (SUC q)"

Finally, the point made in (...) about impli
it assumptions applies to any

ta
ti
 of the form IMP_RES_TAC th; impli
it assumptions may be introdu
ed

by the theorem parameter th. RES_TAC does not have this property.

The implementations of NAMED_IMP_RES_TAC and NAMED_RES_TAC follow the

outlines of simpler implementations (...) but involve rather more pro
essing

of the ordinary results in order to build useful a

ounts into the named

fun
tions.

7 Popping Assumptions

There are several groups of fun
tions in HOL whose members produ
e new

ta
ti
s from old. Su
h fun
tions might be
alled `ta
ti
 transformers'. One

su
h group
ontains the HOL fun
tion POP_ASSUM, whi
h maps a fun
tion f

of type thm -> ta
ti
 to a new fun
tion of type ta
ti
 so that

POP_ASSUM f = \((a.A),t). f (ASSUME a) (A,t)

That is, the fun
tion POP_ASSUM transforms f into a ta
ti
 whi
h takes a goal

(with at least one term on the assumption list), removes the �rst term (a)

on the assumption list, assumes that term (to produ
e the theorem a |- a),

supplies that theorem to the fun
tion f (to yield a new ta
ti
), and �nally,

applies that ta
ti
 to the redu
ed goal (the goal without the leading assump-

tion).

The other two members of this group of fun
tions are POP_ASSUM_LIST

and SUBST_ALL_TAC. The method of viewing the assumption list of a goal as

a sta
k whi
h
an be `popped' was developed for LCF by Larry Paulson (...).

The reasons for wishing to pop or remove an assumption before using it

may not be immediately apparent, as this te
hnique does not
orrespond to

any natural strategy. For example, in the textbook proof shown in (...), one

of the proof steps was:

63

If n itself is a prime, there is nothing to prove. Suppose, then,

that n is
omposite...

The argument then
ontinues until the desired fa
t is established for n, under

the assumption that n is
omposite; and the assumption is used at some

point. It would sound very odd if, after the assumption were used, but

before the
ase were solved, the proof were to
ontinue:

...We now
ease to assume that n is
omposite, as this fa
t is no

longer required.

This sounds odd be
ause assumptions in a normal subgoaling framework

annot be `dropped' on
e they have been used, and they would normally be

used on
e introdu
ed. In the example, the assumption that n is
omposite

persists from subgoal to subgoal, past the point of its use, right until the

omposite
ase of the proof is established. However, in proofs in HOL, there

are at least two reasons for wishing to give the appearan
e of dropping an

assumption from a subgoal, and one reason for a
tually doing so.

7.1 Popping to Erase Used Assumptions

The simplest reason for
ausing an assumption to seem to vanish is that dur-

ing an intera
tive session in whi
h proof steps are made one at a time, ea
h

subgoal of the proof tree is printed out to the user expli
itly. To redu
e appar-

ent
lutter, it has be
ome a
ommon pra
ti
e to use the fun
tion POP_ASSUM

to supress the printing of assumptions that were but are no longer required.

Thus, appli
ation of the ta
ti
 POP_ASSUM SUBST1_TAC not only e�e
ts a sub-

stitution (and without expli
it mention of the substitution equation { i.e.

of the leading assumption), but also prevents the leading assumption from

appearing subsequently in the subgoal. It does not, of
ourse, prevent the

theorem a
hieving the original goal from depending on the popped assump-

tion, sin
e the justi�
ation of POP_ASSUM SUBST1_TAC ne
essarily adds the

popped assumption to any theorem a
hieving the subgoal.

#let g = ["x = 5"℄,"x > 0";;

g = (["x = 5"℄, "x > 0") : goal

#let gl,p = POP_ASSUM SUBST1_TAC g;;

gl = [([℄, "5 > 0")℄ : goal list

64

p = - : proof

...

th = |- 5 > 0

#print_all_thm(p[th℄);;

x = 5 |- x > 0

...

th' = x = 5 |- 5 > 0

#print_all_thm(p[th'℄);;

x = 5 |- x > 0

7.2 Popping to Repla
e an Assumption

The se
ond reason for popping an assumption is to re-introdu
e it imme-

diately in a di�erent form. For example, it may be
onvenient to `repla
e'

an assumption of the form t1 = t2 with the equivalent t2 = t1, in whi
h

ase the original assumption is no longer required, and indeed, may be an

obsta
le if it does not
o-exist happily with the new form (in this
ase, for

example, it would prevent a subsequent appli
ation of ASM_REWRITE_TAC...

from terminating). One way to a
hieve this is illustrated below:

#let g = ["5 = x"℄,"t:bool";;

g = (["5 = x"℄, "t") : goal

#let gl,p = POP_ASSUM (ASSUME_TAC o SYM) g;;

gl = [(["x = 5"℄, "t")℄ : goal list

p = - : proof

Again, the justi�
ation of POP_ASSUM (ASSUME_TAC o SYM) ne
essarily pro-

du
es a theorem depending on the popped assumption 5 = x, given a theorem

a
hieving the subgoal { so the popped theorem is not gone, but simply not

printed.

7.3 Popping to Erase Irrelevant Assumptions

The third reason for popping assumptions is that in HOL proofs in whi
h

ertain kinds automation
ome into play, useless assumptions are sometimes

introdu
ed into subgoals; the resolution ta
ti
s (...), whi
h add to the as-

sumptions of a goal all the
olle
tive
onsequen
es of a
ertain type of the

existing assumptions (with or without an additional impli
ative lemma), are

65

notorious for this. Useless assumptions are therefore popped (and genuinely

dropped) in order to redu
e the
onfusion (and
lutter) that might result from

the presen
e of assumptions whi
h are never used and on whi
h nothing ever

a
tually depends. For example:

#let g = ["5 = x"℄,"t:bool";;

g = (["5 = x"℄, "t") : goal

#let gl,p = POP_ASSUM (\th. ALL_TAC) g;;

gl = [([℄, "t")℄ : goal list

p = - : (* list -> *)

...

th = |- t

#p[th℄;;

|- t

In this
ase, the assumption 5 = x is genuinely lost; the justi�
ation of

POP_ASSUM (\th. ALL_TAC)

17

{ or, to use a
ombinator, POP_ASSUM (K ALL_TAC)

{ does not add the popped assumption to the theorem a
hieving the goal.

This
ases arises for any user-de�ned fun
tion whi
h shares the property of

genuinely dropping assumptions.

It is also the
ase that if the a
hieving theorem does depend on the lost

assumption, the justi�
ation still maps that theorem to a theorem a
hieving

the original goal, even though the subgoal is not a
hieved:

#let g = ["5 = x"℄,"t:bool";;

g = (["5 = x"℄, "t") : goal

#let gl,p = POP_ASSUM (K ALL_TAC) g;;

gl = [([℄, "t")℄ : goal list

p = - : (* list -> *)

...

#print_all_thm th;;

5 = x |- t

#print_all_thm(p[th℄);;

5 = x |- t

7.4 A

ounting for Popping Assumptions

For whatever reasons it is used, the assumption-popping strategy is perfe
tly

valid, sin
e a theorem that a
hieves the subgoal less an assumption must

17

as POP ASSUM is
urrently implemented in HOL

66

also a
hieve a subgoal with that assumption, by the de�nition of a
hievement.

Whether, in ea
h
ase, popping assumptions is the best method for produ
ing

the desired e�e
t is a question of style, taste and
larity, but this is not the

question of interest here. Instead, the question is how to produ
e a natural

a

ount of a proof that relies on this te
hni
al and non-natural devi
e.

The key to produ
ing su
h a

ounts, in the �rst and se
ond
ases, is

the
on
ept of an impli
it assumption, introdu
ed in (...). This is suggested

by the way assumptions not visible in subgoals are nevertheless known to

justi�
ations, exa
tly as happens when a ta
ti
 is applied whi
h has been

onstru
ted from a theorem whose hypotheses do not
orrespond to
urrent

assumptions.

The a

ount desired would simply do
ument the ta
ti
 a
tually applied,

show the subgoal with the popped assumption no longer expli
it, but leave

no mystery about the persisten
e of the assumption in the justi�
ation. That

is, the popped assumption would appear as impli
it where it
eased to appear

as expli
it.

7.4.1 A

ounting for Popping to Erase Used Assumptions

A sensible a

ount of the �rst
ase (popping to erase used assumptions)

is
onstru
ted by �rst de�ning a fun
tion NAMED_POP_ASSUM in parallel with

HOL's POP_ASSUM fun
tion. Thus, for a fun
tion f of type thm -> named_ta
ti
,

the fun
tion NAMED_POP_ASSUM f is a named ta
ti
 whi
h when applied to a

named goal

1. �nds the term part (tm, say) of the �rst expli
it assumption of a goal;

2. assumes tm to give a theorem tm |- tm and applies f to the resulting

theorem to form a named ta
ti
; and

3. applies the named ta
ti
 f(ASSUME tm) to the named goal minus its

�rst expli
it assumption.

This means that in relation to the redu
ed goal, the new ta
ti
 is bringing

to bear a theorem whi
h depends on a hypothesis not represented in the goal

{ namely, tm. Thus the situation is the same as in (...). The a

ount produ
ed

for the �rst
ase(Se
tion 7.1), in whi
h the ta
ti
 POP_ASSUM SUBST1_TAC was

used to substitute with and dispense with the leading assumption, is as

follows:

67

This is the proof of the
onje
ture

>> example1:

"x > 0"

Assuming

The fa
t: "x = 5"

>>>> We substitute a

ording to the following equality:

x = 5 |- x = 5.

Thus, it is suffi
ient to prove:

>> "5 > 0"

Assuming impli
itly

The hypothesis of the equality: "x = 5"

...

This establishes

|- 5 > 0

This establishes

x = 5 |- x > 0

This
ompletes the proof of the
onje
ture

>> example1:

"x > 0"

Assuming

The fa
t: "x = 5"

This interpretation of NAMED_POP_ASSUM assures that when the popped as-

sumption (tm) is a
tually used (e.g. in this
ase, by the substitution ta
ti

NAMED_SUBST1_TAC(ASSUME tm)), it will ne
essarily be re
orded in the substi-

tution subgoal as an impli
it assumption. The a

ount des
ribes just one

proof step: the substitution. It does not mention the popping fun
tion,

but simply do
uments the `loss' of the expli
it assumption at the point of

substitution, where the impli
it assumption arises. This gives the e�e
t of

transferring the popped, expli
it assumption to the list of impli
it assump-

tions, whi
h is what was desired.

A di�erent interpretation of NAMED_POP_ASSUM f is to insist that a popped

assumption always be re
orded as impli
it. To implement this view, the

goal to whi
h the ta
ti
 f(ASSUME tm) is applied does not have the popped

assumption removed, but simply marked as impli
it.

If an impli
it assumption is ultimately re
orded in the �rst way, then

the same assumption is re
orded as impli
it in the new way. However, the

advantage of the new method over the �rst is that the new method is not
om-

mitted to the phrasing with whi
h, in the �rst way, the fun
tion f identi�es

the impli
it assumption { indi
ating that the assumption was used invalidly.

68

The �rst method is
ommitted to this phrasing, as it is built into the a
-

ount produ
ed by the justi�
ation of f; the name of the assumption before it

was popped
annot be restored. (In the example, the impli
it assumption is

labelled The hypothesis of the equality by NAMED_SUBST1_TAC.) Using the

new method, the name borne by the assumption in the previous subgoal

(fa
t, in the example)
ould be retained (or some other preferred phrase

used instead). The disadvantage of the new method is that it does not
over

the third
ase (popping to erase irrelevant assumptions); we return to this

point in Se
tion 7.4.3.

An elaboration of NAMED_POP_ASSUM f is to have it noti
e when f is exa
tly

equivalent to NAMED_ASSUME_TAC, in whi
h
ase there is no overall e�e
t. In

that
ase, the justi�
ation of f
an be repla
ed with the identity justi�
ation

(i.e. the fun
tion mapping a list
ontaining one a

ount to that a

ount) so

that instead of the a

ount

This is the proof of the
onje
ture

>> example1:

"x > 0"

Assuming

The fa
t: "x = 5"

>>>> We use the assumption that

x = 5 |- x = 5.

It is suffi
ient to prove:

>> "x > 0"

Assuming

The added hypothesis: "x = 5"

Assuming impli
itly

The hypothesis of the theorem used: "x = 5"

...

This establishes

x = 5 |- x > 0

...

whi
h do
uments the double re-assumption of x = 5 without it ever obviously

having been lost, the following less
onfusing a

ount is produ
ed:

This is the proof of the
onje
ture

>> example1:

"x > 0"

Assuming

The fa
t: "x = 5"

...

69

This establishes

x = 5 |- x > 0

...

This is a minor elaboration, as the exa
t situation des
ribed is infrequent,

and the tri
k does not extend to anything more
omplex (i.e. to anything

involving modi�
ation of the justi�
ation of f).

7.4.2 A

ounting for Popping to Repla
e Assumptions

The original interpretation of popping also gives a reasonable a

ount of the

se
ond
ase: popping to repla
e an assumption (Se
tion 7.2). In the example

used, the ta
ti
 POP_ASSUM (\th. ASSUME_TAC(SYM th)) was used to drop an

old assumption and add a new one, as if repla
ing the old one. The a

ount

produ
ed is:

This is the proof of the
onje
ture

>> example2:

"t"

Assuming

The fa
t: "5 = x"

>>>> We use the fa
t that

5 = x |- x = 5.

It is suffi
ient to prove:

>> "t"

Assuming

The added hypothesis: "x = 5"

Assuming impli
itly

The hypothesis of the theorem used: "5 = x"

...

This establishes

x = 5 |- t

This establishes

5 = x |- t

This
ompletes the proof of the
onje
ture

>> example2:

"t"

Assuming

The fa
t: "5 = x"

Again, by using the new interpretation of popping (i.e. by insisting that

popped assumptions are immediately made impli
it) the phrase

70

The hypothesis of the theorem used

identifying the impli
it assumption,
ould be varied as desired and does not

have to be the one seen above, whi
h was supplied by ASSUME_TAC.

7.4.3 A

ounting for Popping to Erase Irrelevant Assumptions

The original interpretation of NAMED_POP_ASSUM also gives a natural a

ount of

the third
ase (Se
tion 7.3), in whi
h an unne
essary assumption is a
tually

dropped, and is not stit
hed into any justi�
ation fun
tion. In the example

shown, POP_ASSUM (\th. ALL_TAC) (i.e. POP_ASSUM (K ALL_TAC)) was used

to give this e�e
t. The a

ount produ
ed is:

This is the proof of the
onje
ture

>> example3:

"t"

Assuming

The fa
t: "5 = x"

>>>> It is suffi
ient to prove:

>> "t"

...

This establishes

|- t

This establishes

|- t

This
ompletes the proof of the
onje
ture

>> example3:

"t"

Assuming

The fa
t: "5 = x"

The a

ount do
uments the loss of the assumption (a valid step), and

shows that when the subgoal is ultimately a
hieved, the justi�
ation of

the proof step returns a theorem whi
h does not depend on the original

(and lost) fa
t. This
orresponds to { and explains { the behaviour of

POP_ASSUM (K ALL_TAC) in HOL, as shown in Se
tion 7.3.

It is also the
ase, as mentioned in Se
tion 7.3, that the justi�
ation

of POP_ASSUM (K ALL_TAC) maps the theorem 5 = x |- t to itself, and so

a
hieves the original goal, even though the theorem does not a
hieve the

71

subgoal. If the theorem 5 = x |- t is eventually established and then sup-

plied as the purported a
hievement of the subgoal, the following a

ount

results:

This is the proof of the
onje
ture

>> example3:

"t"

Assuming

The fa
t: "5 = x"

>>>> It is suffi
ient to prove:

>> "t"

...

This establishes

5 = x |- t

whi
h does not satisfy

>> "t"

This establishes

5 = x |- t

This
ompletes the proof of the
onje
ture

>> example3:

"t"

Assuming

The fa
t: "5 = x"

The lo
al failure is noted, as well as the ultimate a
hievement of the original

goal. This also
orresponds to { and explains { the behaviour of POP_ASSUM (K ALL_TAC)

in HOL.

In
ontrast to this interpretation of NAMED_POP_ASSUM f { in whi
h the

popped assumption (tm) is allowed to appear or not in the
ourse of applying

the ta
ti
 f (ASSUME tm) to the goal
ontaining no version of the assump-

tion { is the se
ond interpretation, in whi
h the popped assumption is made

impli
it in the goal to whi
h the ta
ti
 is applied. (We
all this fun
tion

NAMED_POP_TRACE be
ause it ne
essarily leaves a `tra
e' of the popped as-

sumption.) Under the se
ond interpretation, the a

ount is:

This is the proof of the
onje
ture

>> example3:

"t"

Assuming

The fa
t: "5 = x"

>>>> It is suffi
ient to prove:

72

>> "t"

Assuming impli
itly

The fa
t: "5 = x"

...

This establishes

|- t

This establishes

|- t

This
ompletes the proof of the
onje
ture

>> example3:

"t"

Assuming

The fa
t: "5 = x"

Here, a re
ord of the popped assumption is kept, so it is not de�nitively

lost. This still
orresponds to HOL's behaviour, but it no longer satis�es the

original de�nition of impli
it assumptions, whi
h was based on the behaviour

of justi�
ations. It seems desirable to retain the present de�nition of impli
it

assumptions as the basis for explaining why
ertain assumptions do or do

not appear as hypotheses of
ertain theorems. Therefore, it seems sensible

to retain the original view of the pop operation, whi
h
overs all three
ases

adequately. However, there is another use for this version of the pop fun
tion;

it arises in the next se
tion.

An alternative might be to implement NAMED_POP_ASSUM f di�erently for

di�erent f, using the original view of popping for
ases resembling the third

ase and the new view in others. Probably, the
hoi
e would have to be

represented by a
onditional within the implementation of a more general

pop fun
tion, as there seems no way in advan
e to tell whi
h sort of fun
tion

f one has been given. This would be a
ompli
ated way around the problem,

if it
ould be made to work at all.

The root of the diÆ
ult with K ALL_TAC is the de�nition of a
hievement in

HOL. This spe
i�es that a theorem's hypotheses need only be a subset of the

assumptions of the subgoal it purports to a
hieve. If the de�nition required

the full set, the problem would not arise. A less drasti
 modi�
ation of HOL,

however, would at least produ
e uniformity over all fun
tions to whi
h the

pop operator
ould be applied; that would be to re-implement HOL's fun
tion

POP_ASSUM so that for any appropriate f, the justi�
ation of POP_ASSUM f were

not simply the justi�
ation (p, say) of f, but rather (ADD_ASSUM tm) o p.

73

where ADD_ASSUM : term -> thm -> thm is the inferen
e rule in HOL that

adds a hypothesis to a theorem. Under this de�nition, the two views of the

pop operator would be the same, so we
ould use the se
ond, if desired, to

hoose a way of identifying the popped assumption.

7.5 A

ounting for POP ASSUM LIST

The fun
tion POP_ASSUM_LIST is a generalization of POP_ASSUM whi
h removes

all of the assumptions of a goal and passes the list of (assumed) assumptions

to a fun
tion of type thm list -> ta
ti
. The a

ount is therefore similar;

for example, the following proof

#let g = ["x = 5";"y = 4"℄,"x > y";;

g = (["x = 5"; "y = 4"℄, "x > y") : goal

#let gl,p = POP_ASSUM_LIST SUBST_TAC g;;

gl = [([℄, "5 > 4")℄ : goal list

p = - : proof

...

th = |- 5 > 4

#print_all_thm(p[th℄);;

x = 5, y = 4 |- x > y

re
eives the following a

ount:

This is the proof of the
onje
ture

>> example4:

"x > y"

Assuming

The fa
t: "x = 5"

The fa
t: "y = 4"

>>>> We substitute a

ording to the following equalities:

x = 5 |- x = 5

y = 4 |- y = 4.

Thus, it is suffi
ient to prove:

>> "5 > 4"

Assuming impli
itly

The hypothesis of the equality: "x = 5"

The hypothesis of the equality: "y = 4"

...

This establishes

|- 5 > 4

74

This establishes

x = 5, y = 4 |- x > y

This
ompletes the proof of the
onje
ture

>> example4:

"x > y"

Assuming

The fa
t: "x = 5"

The fa
t: "y = 4"

7.6 A

ounting for SUBST ALL TAC

The fun
tion SUBST_ALL_TAC, of type thm -> ta
ti
, is not a ta
ti
 trans-

former, but the ta
ti
 SUBST_ALL_TAC th shares with POP_ASSUM f the property

of
ausing assumptions of a goal to seem to disappear. SUBST_ALL_TAC uses an

equational theorem to e�e
t a substitution throughout the term of the goal

{ in the style of SUBST1_TAC { and also to e�e
t the substitution throughout

the assumption list. In parti
ular, SUBST_ALL_TAC th resembles POP_ASSUM f

when the latter is used for repla
ing assumptions by equivalent terms { and

at the same time, making the original assumptions impli
it (Se
tion 7.2).

This, again, does not
orrespond to a natural pattern of reasoning, and that

makes it diÆ
ult to give a natural a

ount. The e�e
ts of SUBST_ALL_TAC are

illustrated in the following example:

rth = |- x = 1

#let g = ["(y:num) = x";"w > x";"w < 5"℄,"(z:num) = x";;

g = (["y = x"; "w > x"; "w < 5"℄, "z = x") : goal

#let gl,p = SUBST_ALL_TAC rth g;;

gl = [(["y = 1"; "w > 1"; "w < 5"℄, "z = 1")℄ : goal list

p = - : proof

...

th = y = 1, w > 1, w < 5 |- z = 1

#print_all_thm(p[th℄);;

y = x, w > x, w < 5 |- z = x

In HOL, SUBST_ALL_TAC happens to be implemented as an appli
ation of

SUBST1_TAC (to modify the term of the goal), sequen
ed with a appli
ation

of POP_ASSUM_LIST (Se
tion 7.5) to a fun
tion that substitutes through and

re-assumes ea
h assumption (to modify the assumptions). That is, to modify

75

the assumptions, all are removed, and ea
h is transformed, then re-assumed.

Although the method of implemening named ta
ti
s so far has not been

to parallel the a
tual HOL implementation { the HOL fun
tions are taken

as `bla
k boxes' { one reason for trying to do so in this
ase is to leave

the re
ording of the impli
it assumptions to the ASSUME_TAC's, so that it is

automati
.

The parallel implemantation satis�es:

NAMED_SUBST_ALL_TAC rth =

NAMED_SUBST1_TAC rth THEN

NAMED_POP_ASSUM_LIST

(\[th1;...;thn℄. ASSUME_TAC (SUBS [rth℄ thn)

THEN

.

.

.

THEN

ASSUME_TAC (SUBS [rth℄ th1))

The a

ount that is produ
ed in this way turns out to be rather in-

s
rutable. Although this implementation of NAMED_SUBST_ALL_TAC gives the

orre
t end result, the intermediate proof steps { normally not visible { are

not what one would expe
t; they reveal lo
al failures of theorems to a
hieve

subgoals:

This is the proof of the
onje
ture

>> example5:

"z = x"

Assuming

The fa
t1: "y = x"

The fa
t2: "w > x"

The fa
t3: "w < 5"

>>>> We substitute a

ording to the following equality:

|- x = 1.

Thus, it is suffi
ient to prove:

>> "z = 1"

Assuming

The fa
t1: "y = x"

The fa
t2: "w > x"

The fa
t3: "w < 5"

>>>> We use the assumption that

w < 5 |- w < 5.

It is suffi
ient to prove:

>> "z = 1"

Assuming

The added hypothesis: "w < 5"

Assuming impli
itly

The hypothesis of the theorem used: "w < 5"

76

>>>> We use the fa
t that

w > x |- w > 1.

It is suffi
ient to prove:

>> "z = 1"

Assuming

The added hypothesis: "w > 1"

The added hypothesis: "w < 5"

Assuming impli
itly

The hypothesis of the theorem used: "w > x"

The hypothesis of the theorem used: "w < 5"

>>>> We use the fa
t that

y = x |- y = 1.

It is suffi
ient to prove:

>> "z = 1"

Assuming

The added hypothesis: "y = 1"

The added hypothesis: "w > 1"

The added hypothesis: "w < 5"

Assuming impli
itly

The hypothesis of the theorem used: "y = x"

The hypothesis of the theorem used: "w > x"

The hypothesis of the theorem used: "w < 5"

...

This establishes

y = 1, w > 1, w < 5 |- z = 1

This establishes

w > 1, w < 5, y = x |- z = 1

whi
h does not satisfy

>> "z = 1"

Assuming

The added hypothesis: "w > 1"

The added hypothesis: "w < 5"

Assuming impli
itly

The hypothesis of the theorem used: "w > x"

The hypothesis of the theorem used: "w < 5"

This establishes

w < 5, y = x, w > x |- z = 1

whi
h does not satisfy

>> "z = 1"

Assuming

The added hypothesis: "w < 5"

Assuming impli
itly

The hypothesis of the theorem used: "w < 5"

This establishes

y = x, w > x, w < 5 |- z = 1

77

This establishes

y = x, w > x, w < 5 |- z = x

This
ompletes the proof of the
onje
ture

>> example5:

"z = x"

Assuming

The fa
t1: "y = x"

The fa
t2: "w > x"

The fa
t3: "w < 5"

That is, the �rst subgoal
orre
tly re
e
ts the modi�
ation of the term

part of the goal; but of the three subsequent subgoals that re
e
t the re-

assumption of the modi�ed assumption terms, only the last one is
orre
t: it

shows the three new assumptions and the three impli
it assumptions as de-

sired. The other two subgoals re
e
t intermediate states of the
omputation

in whi
h
ertain assumptions are missing { neither impli
it nor expli
it, but

held in temporary data stru
tures.

Whether the
urrent implementation of SUBST_ALL_TAC in HOL is the best

one is not relevant here; nor is whether SUBST_ALL_TAC represents a `good'

style of reasoning. It is suÆ
ient to note that, in this
ase, following the

implementation is not a useful te
hnique.

In any
ase, this a

ount shown is
awed in two other ways: (i) the

fa
t that the assumption w < 5 is not a�e
ted by the substitution would

be explained more
learly if that assumption were not said to have been

pro
essed like the others (although it is); and (ii) the a

ount would be

less tedious and if it did not report the pro
essing of ea
h assumption in

sequen
e, but all together. The sequen
e results from the fa
t that although

POP_ASSUM_LIST removes all of the assumptions at on
e, ASSUME_TAC th is

not one of the HOL ta
ti
s for whi
h a simultaneous version is provided (as

SUBST_TAC is for SUBST1_TAC).

This suggests a se
ond approa
h: namely, to implement a fun
tion
alled,

say, NAMED_ASSUME_LIST_TAC that generalizes NAMED_ASSUME_TAC. NAMED_ASSUME_LIST_TAC

omputes the e�e
t of adding a list of assumptions in sequen
e to a goal, then

presents and justi�es the result in one proof step, as though the assumptions

had been added simultaneously. Impli
it assumptions are re
orded as a mat-

ter of
ourse by the internal ASSUME_TAC's. When the addition of the assump-

tions is pa
kaged into one step with its own a

ount, then NAMED_SUBST_ALL

an then be implemented to satisfy

78

NAMED_SUBST_ALL_TAC rth =

NAMED_SUBST1_TAC rth THEN

NAMED_POP_ASSUM_LIST

(\thl. NAMED_ASSUME_LIST_TAC [SUBS [rth℄ thn;

.

.

.

;

SUBS [rth℄ th1℄)

so that its a

ount spares the user the sequential
omputation of the re-

assumptions. The a

ount thus produ
ed for the example is:

This is the proof of the
onje
ture

>> example5:

"z = x"

Assuming

The fa
t1: "y = x"

The fa
t2: "w > x"

The fa
t3: "w < 5"

>>>> We substitute a

ording to the following equality:

|- x = 1.

Thus, it is suffi
ient to prove:

>> "z = 1"

Assuming

The fa
t1: "y = x"

The fa
t2: "w > x"

The fa
t3: "w < 5"

>>>> We use the fa
ts that

y = x |- y = 1

w > x |- w > 1

w < 5 |- w < 5.

It is suffi
ient to prove:

>> "z = 1"

Assuming

The added hypothesis: "y = 1"

The added hypothesis: "w > 1"

The added hypothesis: "w < 5"

Assuming impli
itly

The hypothesis of the theorem used: "y = x"

The hypothesis of the theorem used: "w > x"

The hypothesis of the theorem used: "w < 5"

...

This establishes

y = 1, w > 1, w < 5 |- z = 1

This establishes

y = x, w > x, w < 5 |- z = 1

This establishes

79

y = x, w > x, w < 5 |- z = x

This
ompletes the proof of the
onje
ture

>> example5:

"z = x"

Assuming

The fa
t1: "y = x"

The fa
t2: "w > x"

The fa
t3: "w < 5"

This is a great improvement over the previous a

ount in showing only two

steps: the modi�
ation of the term, and the one-step modi�
ation of the

assumptions. It also has the property that the theorems returned by the

justi�
ations respe
tively a
hieve the subgoals shown.

A minor
aw of this version is that there is no way, in passing
ontrol from

NAMED_POP_ASSUM_LIST to NAMED_ASSUME_LIST_TAC, to make spe
ial provisions

for parti
ular assumptions whi
h are not a�e
ted by substitution; thus w < 5,

in the example, has to be treated in the same way as the others. This
auses

a slight obs
urity in the a

ount.

It was noted in Se
tion 7.4.1 that NAMED_POP_ASSUM
ould be elaborated,

in the
ase that NAMED_POP_ASSUM f had no net e�e
t, to return the iden-

tity justi�
ation, and so omit the a

ount of the re-assumption on the re-

du
ed goal. The
orresponding generalization of NAMED_POP_ASSUM_LIST per-

tains when NAMED_POP_ASSUM_LIST f has no net e�e
t { that is, when all

the popped assumptions reappear inta
t and in order. This elaboration of

NAMED_POP_ASSUM_LIST would only help with NAMED_SUBST_ALL_TAC where no

assumption were a�e
ted by substitution; that is, the
hoi
e is between re-

porting the re-assumption of all the modi�ed assumptions, or reporting noth-

ing.

A more serious
aw is that in implementing NAMED_SUBST_ALL_TAC in a

di�erent manner than HOL's SUBST_ALL_TAC, it is not ne
essarily the
ase

that the two
omputations are (in a suitable sense) equivalent { the a

ount

therefore might not be explaining the HOL proof. This would at least require

an argument about the two
omputations.

The third (and last) approa
h we
onsider is to implement NAMED_SUBST_ALL_TAC

itself as a unit fun
tion with a one-step a
ount. To
ompute its results,

NAMED_SUBST_ALL_TAC analyzes the results of applying SUBST_ALL_TAC to the

orresponding ordinary goal, and then presents the results as if derived in

one stroke. As part of the presentation, un
hanged assumptions are noti
ed

80

and presented as if no substitution had been attempted. The analysis stage

allows the new assumptions as well as the impli
it (old) assumptions to be

named in a meaningful way (rather than in due
ourse by ASSUME_TAC).

The implementation of NAMED_SUBST_ALL_TAC in terms of SUBST_ALL_TAC

is not diÆ
ult, but it does involve a
ertain amount of internal analysis. The

a

ount produ
ed is as follows:

This is the proof of the
onje
ture

>> example5:

"z = x"

Assuming

The fa
t1: "y = x"

The fa
t2: "w > x"

The fa
t3: "w < 5"

>>>> We substitute a

ording to the following equality:

|- x = 1.

(likewise restating any assumptions made thus far whi
h involve "x").

Thus, it is suffi
ient to prove:

>> "z = 1"

Assuming

The new fa
t1: "y = 1"

The new fa
t2: "w > 1"

The fa
t3: "w < 5"

Assuming impli
itly

The old fa
t1: "y = x"

The old fa
t2: "w > x"

...

This establishes

y = 1, w > 1, w < 5 |- z = 1

This establishes

y = x, w > x, w < 5 |- z = x

This
ompletes the proof of the
onje
ture

>> example5:

"z = x"

Assuming

The fa
t1: "y = x"

The fa
t2: "w > x"

The fa
t3: "w < 5"

This approa
h has the advantages of using the implementation of HOL's

orresponding ta
ti
 in the usual way, so there is no issue of di�ering
om-

putations. It also allows for a
learer naming s
heme in the a

ount pro-

du
ed. Finally, it gives an opportunity to note the rather odd pattern of

81

reasoning being used, at the node in the subgoal-proof tree representing the

NAMED_SUBST_TAC step (before the subgoal in the a

ount).

However, there is a new diÆ
ulty: whereas, in the previous attempts at

an a

ount, the new assumptions assumptions (made by NAMED_ASSUME_TAC)

automati
ally
aused the impli
it assumptions to be re
orded, there is no

way to do this given only the results of the ordinary SUBST_ALL_TAC. In-

stead, the impli
it assumptions (i.e. those original assumptions whi
h would

be a�e
ted by substitution) have to be identi�ed and added as part of the

presentation. Thus, there is again an argument to be made that HOL's be-

haviour is re
e
ted here: it has to be argued that the dire
t implementation

of NAMED_SUBST_ALL_TAC produ
es the same impli
it assumptions that
an be

observed by experiment in HOL itself.

Whether the se
ond or the third approa
h is best is diÆ
ult to say, but

in any
ase, the �rst approa
h is
learly not adequate.

NAMED_SUBST_ALL_TAC th is the �rst example of a named ta
ti
 with a
om-

plex implementation (p. ...). A meaningful a

ount neither parallels the HOL

implementation of the ordinary ta
ti
 nor follows dire
tly from it, but re-

quires some new fun
tion to be implemented dire
tly (NAMED_ASSUME_LIST_TAC,

in the se
ond approa
h, or NAMED_SUBST_ALL_TAC itself, in the third). The

next su
h example are the strip fun
tions (Se
tion ...).

8 Continuations

The HOL fun
tions in the next group to be
onsidered also produ
e new

ta
ti
s from old, as do the fun
tions in the previous
hapter. The members

of this group di�er from fun
tions su
h as POP_ASSUM in that they all
ause

some inferen
e to be done behind the s
enes, and they
an also a�e
t the

term parts of goals, in addition to the assumptions. The
on
ealed inferen
es

give the e�e
t of performing two proof steps in one. The diÆ
ulty in giving

a

ounts for these fun
tions is to explain the
on
ealed inferen
es
oherently.

8.1 The Disjun
tive Transformer

A typi
al example is DISJ_CASES_THEN, whi
h maps a fun
tion f of type

thm -> ta
ti
 and a disjun
tive theorem to a new ta
ti
. For the sake of

82

example, suppose that a new type, :voltage, has been introdu
ed, with

exa
tly two values, hi and lo. The new type is
hara
terized by:

|- !(v:voltage). (v = hi) \/ (v = lo)

Suppose also that there is an operator, AND, su
h that

|- hi AND hi = hi

and

|- lo AND lo = lo

The e�e
t of DISJ_CASES_THEN is illustrated below The goal is to show (for

all v) that v AND v = v, given that hi AND hi = hi and lo AND lo = lo.

#let g = [℄,"v AND v = v";;

g = ([℄, "v AND v = v") : (* list # term)

...

th = |- (v = hi) \/ (v = lo)

#let gl,p = DISJ_CASES_THEN SUBST1_TAC th g;;

gl = [([℄, "hi AND hi = hi"); ([℄, "lo AND lo = lo")℄ : goal list

p = - : proof

...

#th1 = |- hi AND hi = hi

th2 = |- lo AND lo = lo

th1' = v = hi |- hi AND hi = hi

th2' = v = lo |- lo AND lo = lo

#p[th1;th2℄;;

|- v AND v = v

#p[th1';th2'℄;;

|- v AND v = v

In the example, the new ta
ti
 DISJ_CASES_THEN SUBST1_TAC th maps the

goal to two subgoals by extra
ting from the disjun
tive theorem

|- (v = hi) \/ (v = lo)

the two disjun
t terms, v = hi and v = lo, assuming these, and using the

two resulting theorems { in parallel { as parameters to two appli
ations of

the substitution fun
tion. The two new subgoals are the values of

83

SUBST1_TAC (ASSUME "v = hi") g

and

SUBST1_TAC (ASSUME "v = lo") g

The subgoals
arry the impli
it assumptions v = hi and v = lo respe
tively;

these are introdu
ed, in ea
h
ase, by the a
t of assuming the disjun
t term.

The justi�
ation (p) relies on (i) the inferen
e rule for substitution (see Se
-

tion ...) and (ii) the rule for disjun
tion (DISJ_CASES, see Des
ription ...).

The substitution rule adds the respe
tive assumptions to the two a
hieving

theorems if they are not already present:

...

th1 = |- hi AND hi = hi

th2 = |- lo AND lo = lo

#let gl1,p1 = SUBST1_TAC (ASSUME "v = hi") g;;

gl1 = [([℄, "hi and hi = hi")℄ : goal list

p1 = - : proof

#print_all_thm(p1[th1℄);;

v = hi |- v and v = v

#let gl2,p2 = SUBST1_TAC (ASSUME "v = lo") g;;

gl2 = [([℄, "lo and lo = lo")℄ : goal list

p2 = - : proof

#print_all_thm(p2[th2℄);;

v = lo |- v and v = v

The disjun
tion rule then dismisses the two added assumptions as it
ombines

the two a
hieving theorems to yield the theorem a
hieving g:

#print_all_thm(DISJ_CASES th (p1[th1℄) (p2[th2℄));;

|- v AND v = v

The addition of the impli
it assumptions to the subgoals does not depend

on the fun
tion f to whi
h DISJ_CASES_THEN is applied, but rather, on the

assumptions being made at all; for example, using the fun
tion K ALL_TAC

to throw away the assumed terms, as in Se
tion ..., we have the following

results (having established above, for all v, that |- v AND v = v):

84

#let gl,p = DISJ_CASES_THEN (K ALL_TAC) th g;;

gl = [([℄, "v AND v = v"); ([℄, "v AND v = v")℄ : goal list

p = - : proof

...

#th1'' = |- v AND v = v

th2'' = |- v AND v = v

th1''' = v = hi |- v AND v = v

th2''' = v = lo |- v AND v = v

#p[th1'';th2''℄;;

|- v AND v = v

#p[th1''';th2'''℄;;

|- v AND v = v

In any
ase, the ta
ti
 DISJ_CASES_THEN SUBST1_TAC th, in one step, splits

a goal into two subgoals by applying two distin
t substitutions { based on

the disju
tive theorem th { in parallel to the original goal. In this one-step

pro
ess, the assumptions v = hi and v = lo do not appear expli
itly; they

are added and then dismissed only behind the s
enes, when the justi�
ation

fun
tion is applied. This one-step pro
ess shown below is more elegant than

the straightforward two-step pro
ess shown below, as the latter (i) requires

expli
it referen
e to the terms v = hi and v = lo, and (ii) leaves the two

`used' assumptions in the respe
tive subgoals after the substitutions based

on them have been made:

#let gl3,p3 = DISJ_CASES_TAC th g;;

gl3 =

[(["v = hi"℄, "v AND v = v"); (["v = lo"℄, "v AND v = v")℄

: goal list

p3 = - : proof

#let gl4,p4 = SUBST1_TAC(ASSUME "v = hi")(hd gl3);;

gl4 = [(["v = hi"℄, "hi AND hi = hi")℄ : goal list

p4 = - : proof

#let gl5,p5 = SUBST1_TAC(ASSUME "v = lo")(hd(tl gl3));;

gl5 = [(["v = lo"℄, "lo AND lo = lo")℄ : goal list

p5 = - : proof

#let th4 = p4[th1℄;;

th4 = . |- v AND v = v

#print_all_thm th4;;

v = hi |- v AND v = v

#let th5 = p5[th2℄;;

th5 = . |- v AND v = v

85

#print_all_thm th5;;

v = lo |- v AND v = v

#print_all_thm(p3[th4;th5℄);;

|- v AND v = v

From the viewpoint of a

ounts, however, the one-step ta
ti
 presents dif-

�
ulties. It was possible (Se
tion ...) to report the ta
ti
 POP_ASSUM SUBST1_TAC

in one step, as a substitution. That was possible be
ause the ta
ti
 trans-

former POP_ASSUM simply supplied the argument for an appli
ation of NAMED_SUBST1_TAC

to an amended goal. The ta
ti
 DISJ_CASES_THEN SUBST1_TAC th, in
ontrast,

annot be explained
learly in one step (e.g. as a substitution), be
ause it

onsists internally of a disjun
tive split into two identi
al subgoals followed

by distin
t and parallel substitutions on two `
opies' of the original goal.

In the
urrent example, what has to be explained is the move from the

named goal (ng, say)

>> "v AND v = v"

to the two named subgoals

>> "hi AND hi = hi"

and

>> "lo AND lo = lo"

and this move is not explained by any single existing ta
ti
.

Even by devoting a node in the subgoal-proof tree to the appli
ation of

ompound ta
ti
s of the form NAMED_DISJ_CASES_THEN f th, so that there

is an opportunity for
hoosing a wording to explain the disjun
tive split, a

oherent a

ount still
annot be produ
ed. (This is demonstrated below.)

To devote a node in this way, NAMED_DISJ_CASES_THEN is implemented in

parallel with the HOL implementation of the ordinary ta
ti
 DISJ_CASES_THEN

f th. The proof step of the node is identi�ed by a string, say `NAMED_DISJ_CASES_THEN`.

In the example
ase,

NAMED_DISJ_CASES_THEN NAMED_SUBST1_TAC th ng

would
ompute

86

NAMED_SUBST1_TAC (ASSUME "v = hi") ng

and

NAMED_SUBST1_TAC (ASSUME "v = lo") ng

and then use the pair of resulting subgoals and justi�
ations to
onstru
t

the justi�
ation. The justi�
ation is the fun
tion whi
h when given the

two respe
tive sub-a

ounts returns an a

ount
onsisting of (i) the single

ombined proof step, (ii) the two subgoals, (iii) the two sub-a

ounts, and

(iv) the method for
omputing the a
hieving theorem: namely, by applying

the two justi�
ations respe
tively to the two sub-a

ounts, sele
ting the two

theorems from within these a

ounts, and
ombining these theorems to justify

the disjun
tive split. The a

ount thus produ
ed is:

This is the proof of the
onje
ture

>> example1:

"v AND v = v"

>>>> We
onsider the two
ases suggested by the fa
t

|- (v = hi) \/ (v = lo),

namely

v = hi |- v = hi

and

v = lo |- v = lo

It is thus suffi
ient to prove the following:

>> left disjun
tive
ase:

"hi AND hi = hi"

Assuming impli
itly

The hypothesis of the equality: "v = hi"

>> right disjun
tive
ase:

"lo AND lo = lo"

Assuming impli
itly

The hypothesis of the equality: "v = lo"

The proof of the

>> left disjun
tive
ase:

"hi AND hi = hi"

Assuming impli
itly

The hypothesis of the equality: "v = hi"

is as follows:

...

This establishes

|- hi AND hi = hi

The proof of the

>> right disjun
tive
ase:

87

"lo AND lo = lo"

Assuming impli
itly

The hypothesis of the equality: "v = lo"

is as follows:

...

This establishes

|- lo AND lo = lo

This establishes

|- v AND v = v

This
ompletes the proof of the
onje
ture

>> example1:

"v AND v = v"

The problem with this a

ount is that although it explains the disjun
-

tive split, it does not provide any opportunity for reporting or explaining the

substitutions; the node that is
onstru
ted for the
ompound step bran
hes

dire
tly into the two subgoals, ea
h with an a

ount of its own. The substi-

tutions are justi�ed, internally to the ta
ti
, as part of the
ombined justi�-

ation. The only eviden
e in the a

ount that any substitutions took pla
e

is the move from the term v AND v = v to the terms hi AND hi = hi and

lo AND lo = lo { and the impli
it assumption that is introdu
ed in ea
h

ase. A

ounts of the substitutions are thus not part of the a

ount of the

ombined step.

In this
ase, it might be possible for a user to guess that the unexplained

step was substitution, but it might not be possible to guess for a more
om-

plex fun
tion than substitution.

The a

ount produ
ed in this way be
omes even more obs
ure when one

of the subgoals is a
tually solved by the
on
ealed step. In the s
hemati

example below, the fun
tion \th.NAMED_REWRITE_TAC[th℄ is used in pla
e of

NAMED_SUBST1_TAC so that one of the subgoals
an be solved. (P is some

property true of lo.)

This is the proof of the
onje
ture

>> example2:

"(v = hi) \/ P v"

>>>> We
onsider the two
ases suggested by the fa
t

|- (v = hi) \/ (v = lo),

namely

v = hi |- v = hi

and

88

v = lo |- v = lo

It is thus suffi
ient to prove the following:

>> "(lo = hi) \/ P lo"

Assuming impli
itly

The hypothesis of the equality: "v = lo"

...

This establishes

|- (lo = hi) \/ P lo

This establishes

|- (v = hi) \/ P v

This
ompletes the proof of the
onje
ture

>> example2:

"(v = hi) \/ P v"

In this a

ount, the v = hi subgoal is solved internally (by rewriting) without

ever having been displayed; so as well as the unexplained fun
tion (rewriting),

the missing
ase and the the way in whi
h the fun
tion solved the missing

ase would also have to be guessed. The point also applies where both
ases

are generated and solved internally by the
ombined ta
ti
. A trivial example

illustrates this:

This is the proof of the
onje
ture

>> example3:

"(v = hi) \/ (v = lo)"

>>>> This follows by
onsidering the two
ases suggested by the fa
t

|- (v = hi) \/ (v = lo),

namely

v = hi |- v = hi

and

v = lo |- v = lo

This establishes

|- (v = hi) \/ (v = lo)

This
ompletes the proof of the
onje
ture

>> example3:

"(v = hi) \/ (v = lo)"

To give a
lear a

ount of a ta
ti
 of the form NAMED_DISJ_CASES_THEN f

th, it is therefore ne
essary to generate more than one node of the subgoal-

proof tree. The disjun
tive split is a

orded a node of its own, and this

bran
hes into a node for ea
h appli
ation of the se
ond ta
ti
. Thus an

a

ount atta
hes to the disjun
tion node, as well as to ea
h of the daughter

nodes; so all steps are explained.

89

In the framework of proof a

ounts, a node represents the appli
ation of

a ta
ti
 to a goal to produ
e subgoals and a justi�
ation. Without altering

the basi
 framework, this means that the disjun
tive split has to be regarded

as the appli
ation of a ta
ti
. One possibility is to use the existing named

ta
ti
 NAMED_DISJ_CASES_TAC th to implement the split.

The e�e
t of applying the straightforward disjun
tion ta
ti
 is simply to

reate two subgoals with the respe
tive disjun
ts as expli
it assumptions.

To produ
e the same end result as the ta
ti
 NAMED_DISJ_CASES_THEN f th,

the ta
ti
 NAMED_DISJ_CASES_TAC th must be sequen
ed with a ta
ti
 whi
h

in ea
h
ase removes the new expli
it assumption term from ea
h subgoal,

assumes it, passes the resulting theorem as paramaters to f , and applies the

resulting ta
ti
 to the subgoal.

This suggests a popping operation. Furthermore, it suggests a popping

operation whi
h ne
essarily keeps the popped term as an impli
it assumption,

sin
e, by its implementation, an appli
ation of the ta
ti
 DISJ_CASES_THEN

f th to a goal always adds the respe
tive disjun
t terms of the
on
lusion

of th as impli
it assumptions to its two resulting subgoals. (Insisting on

keeping the popped term only makes a di�eren
e where f has the property

of throwing away its theorem parameter, e.g. where f is K NAMED_ALL_TAC.

For the purpose of su

in
t printing of a

ounts in this
hapter, we will not

insist on keeping the popped term { the issue of lost assumptions does not

arise in any of the examples.)

If we de�ne NAMED_DISJ_CASES_THEN f th to be NAMED_DISJ_CASES_TAC th

THEN NAMED_POP_TRACE f (see Se
tion ...), then the a

ount produ
ed in the

example
ase is as shown below. (Sin
e NAMED_DISJ_CASES_TAC th produ
es

two subgoals, the sequen
er THEN
auses NAMED_POP_TRACE f to be applied to

ea
h.)

This is the proof of the
onje
ture

>> example1:

"v AND v = v"

>>>> We
onsider the two
ases suggested by the fa
t

|- (v = hi) \/ (v = lo)

>> left disjun
t
ase:

"v AND v = v"

Assuming

The left disjun
t: "v = hi"

>> right disjun
t
ase:

"v AND v = v"

90

Assuming

The right disjun
t: "v = lo"

The proof of the

>> left disjun
t
ase:

"v AND v = v"

Assuming

The left disjun
t: "v = hi"

is as follows:

>>>> We substitute a

ording to the following equality:

v = hi |- v = hi.

Thus, it is suffi
ient to prove:

>> "hi AND hi = hi"

Assuming impli
itly

The hypothesis of the equality: "v = hi"

The left disjun
t: "v = hi"

...

This establishes

|- hi AND hi = hi

This establishes

v = hi |- v AND v = v

The proof of the

>> right disjun
t
ase:

"v AND v = v"

Assuming

The right disjun
t: "v = lo"

is as follows:

>>>> We substitute a

ording to the following equality:

v = lo |- v = lo.

Thus, it is suffi
ient to prove:

>> "lo AND lo = lo"

Assuming impli
itly

The hypothesis of the equality: "v = lo"

The right disjun
t: "v = lo"

...

This establishes

|- lo AND lo = lo

This establishes

v = lo |- v AND v = v

This establishes

|- v AND v = v

This
ompletes the proof of the
onje
ture

>> example1:

"v AND v = v"

91

This seems a reasonable a

ount.

When the fun
tion f is NAMED_ASSUME_TAC, the me
hanism internal to the

named popping fun
tions, des
ribed in Se
tion ..., automati
ally assures that

there is no unne
essary a

ounting; the a

ount of NAMED_DISJ_CASES_THEN

NAMED_ASSUME_TAC th on ng is:

This is the proof of the
onje
ture

>> example1:

"v AND v = v"

>>>> We
onsider the two
ases suggested by the fa
t

|- (v = hi) \/ (v = lo)

>> left disjun
t
ase:

"v AND v = v"

Assuming

The left disjun
t: "v = hi"

>> right disjun
t
ase:

"v AND v = v"

Assuming

The right disjun
t: "v = lo"

The proof of the

>> left disjun
t
ase:

"v AND v = v"

Assuming

The left disjun
t: "v = hi"

is as follows:

...

This establishes

v = hi |- v AND v = v

The proof of the

>> right disjun
t
ase:

"v AND v = v"

Assuming

The right disjun
t: "v = lo"

is as follows:

...

This establishes

v = lo |- v AND v = v

This establishes

|- v AND v = v

This
ompletes the proof of the
onje
ture

>> example1:

"v AND v = v"

92

8.2 Implementation Issues

The only real fault of the s
heme des
ribed above is its ineÆ
ien
y. This re-

sults from the fa
t that, in HOL, transformers su
h as DISJ_CASES_THEN are

taken as primitives, and ta
ti
s su
h as DISJ_CASES_TAC th are elaborations

of the primitives. Thus, DISJ_CASES_TAC is implemented as DISJ_CASES_THEN

applied to ASSUME_TAC. The implementation of the named fun
tions, as de-

s
ribed in Se
tion 8.1, reverses HOL's order of dependen
y. Thus, unfortu-

nately, the
omputation of NAMED_DISJ_CASES_THEN requires NAMED_DISJ_CASES_TAC

to be
omputed, whi
h requires DISJ_CASES_TAC, whi
h requires DISJ_CASES_THEN;

two translations are made, internally, to produ
e the desired a

ount.

HOL's parti
ular
hoi
e of primitive fun
tions is useful for implementa-

tion purposes, and it also provides the user of the system with ta
ti
-building

tools rather than with spe
i�
 ta
ti
s; variations of DISJ_CASES_TAC are de-

�ned easily via DISJ_CASES_THEN. However, the HOL system is not generally

presented or learned in the implementation's order of dependen
y; simple ta
-

ti
s usually are presented �rst and `advan
ed' fun
tions later. Thus, for many

users, it probably seems natural to regard DISJ_CASES_TAC as the primitive

fun
tion and DISJ_CASES_THEN as the elaboration, as is done for produ
ing

a

ounts.

In any
ase, fun
tions su
h as NAMED_DISJ_CASES_TAC
ould be imple-

mented dire
tly, rather than in terms of DISJ_CASES_TAC (and hen
e of DISJ_CASES_THEN

and ASSUME_TAC). This option involves more work to implement, but the main

obje
tion to it is that it makes it less
lear that the same proof is being per-

formed as in the ordinary system. Con�den
e would require an argument

that the same inferen
e
hains were generated either way.

8.3 Other Transformers whi
h Introdu
e Assumptions

The method for implementing NAMED_DISJ_CASES_THEN
an be applied to sev-

eral other ta
ti
 transformers in HOL whi
h similarly
ause impli
it assump-

tions to be generated.

8.3.1 The Dis
harging Transformer

By implemenating NAMED_DISCH_THEN f as NAMED_DISCH_TAC THEN NAMED_POP_TRACE

f , a
omprehensible two-step a

ount is produ
ed for a one-step ta
ti
.

93

The e�e
t of the transformer DISCH_THEN is illustrated below. For exam-

ple, for the goal

g = ([℄, "(v = hi) ==> (v AND v = v)")

we have, in one step,

#let gl,p = DISCH_THEN SUBST1_TAC g;;

gl = [([℄, "hi AND hi = hi")℄ : goal list

p = - : proof

where:

...

th1 = |- hi AND hi = hi

th2 = v = hi |- hi AND hi = hi

#p[th1℄;;

|- (v = hi) ==> (v AND v = v)

#p[th2℄;;

|- (v = hi) ==> (v AND v = v)

Under the implementation suggested, the two-step a

ount of the one-step

ta
ti
 (whi
h introdu
es an impli
it assumption) is as follows:

This is the proof of the
onje
ture

>> example4:

"(v = hi) ==> (v AND v = v)"

>>>> It is suffi
ient to prove:

>> "v AND v = v"

Assuming

The ante
edent: "v = hi"

>>>> We substitute a

ording to the following equality:

v = hi |- v = hi.

Thus, it is suffi
ient to prove:

>> "hi AND hi = hi"

Assuming impli
itly

The hypothesis of the equality: "v = hi"

The ante
edent: "v = hi"

...

This establishes

|- hi AND hi = hi

This establishes

94

v = hi |- v AND v = v

This establishes

|- (v = hi) ==> (v AND v = v)

This
ompletes the proof of the
onje
ture

>> example4:

"(v = hi) ==> (v AND v = v)"

8.3.2 The Choi
e Transformer

Analogously, by implemenating NAMED_CHOOSE_THEN f as NAMED_CHOOSE_TAC THEN NAMED_POP_TRACE

f , a
omprehensible two-step a

ount is produ
ed for a one-step ta
ti
.

The following s
hemati
 example illustrates the use of CHOOSE_THEN, using

the fa
t that (for all y) |- ?x. y = PRE x). (Q is some property true of all

numbers.)

...

th = |- ?x. y = PRE x

#let g = [℄, "(Q:num -> bool) y";;

g = ([℄, "Q y") : (* list # term)

#let gl,p = CHOOSE_THEN SUBST1_TAC th g;;

gl = [([℄, "Q(PRE x)")℄ : goal list

p = - : proof

...

thm = |- Q(PRE x)

thm' = y = PRE x |- Q(PRE x)

#p[thm℄;;

|- Q y

#p[thm'℄;;

|- Q y

Like DISJ_CASES_THEN, CHOOSE_THEN f introdu
es an impli
it assumption; in

this
ase, y = PRE x, the assumption about the witness
onstant.

The implementation of NAMED_CHOOSE_THEN f as NAMED_CHOOSE_TAC THEN NAMED_POP_TRACE

f gives the following two-step a

ount for the example:

This is the proof of the
onje
ture

>> example5:

"Q y"

>>>> Using the term "x"

as a witness to the fa
t

95

|- ?x. y = PRE x

it is suffi
ient to prove:

>> "Q y"

Assuming

The witness hypothesis: "y = PRE x"

>>>> We substitute a

ording to the following equality:

y = PRE x |- y = PRE x.

Thus, it is suffi
ient to prove:

>> "Q(PRE x)"

Assuming impli
itly

The hypothesis of the equality: "y = PRE x"

The witness hypothesis: "y = PRE x"

...

This establishes

|- Q(PRE x)

This establishes

y = PRE x |- Q y

This establishes

|- Q y

This
ompletes the proof of the
onje
ture

>> example5:

"Q y"

This again seems a reasonable explanation.

8.4 Transformers whi
h do not Introdu
e Assumptions

The transformers that do not introdu
e impli
it assumptions are CONJUNCTS_THEN

and the resolution fun
tions IMP_RES_THEN and RES_THEN. A di�erent ap-

proa
h is used for these than for the others.

8.4.1 The Conjun
tion Transformer

The transformer CONJUNCTS_THEN is di�erent from those des
ribed thus far

in that it does not introdu
e impli
it assumptions. Given a
onjun
tive

theorem, it is possible to infer the two
onjun
ts immediately. Hen
e, neither

of the two
onjun
t terms (nor the
onjun
tive term itself) has to be assumed

impli
itly during the de
omposition of the goal (and hen
e dismissed later

when the justi�
ation of the
onjun
tive split is applied). The inferen
e
ould

96

be deferred in this way, but there is a small e
onomy of inferen
e steps in

not doing so.

The e�e
t of CONJUNCTS_THEN is illustrated by the following example, using

a
onsequen
e of the fa
t |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n)):

...

th = |- (0 + n = n) /\ ((SUC m) + n = SUC(m + n))

#let g = [℄,"(SUC m) + n = SUC(m + (0 + n))";;

g = ([℄, "(SUC m) + n = SUC(m + (0 + n))") : (* list # term)

#let gl,p = CONJUNCTS_THEN SUBST1_TAC th g;;

gl = [([℄, "SUC(m + n) = SUC(m + n)")℄ : goal list

p = - : proof

...

thm = |- SUC(m + n) = SUC(m + n)

thm' = 0 + m = m, (SUC m) + n = SUC(m + n) |- SUC(m + n) = SUC(m + n)

thm'' = (0 + n = n) /\ ((SUC m) + n = SUC(m + n)) |- SUC(m + n) = SUC(m + n)

#p[thm℄;;

|- (SUC m) + n = SUC(m + (0 + n))

#print_all_thm(p[thm'℄);;

0 + m = m, (SUC m) + n = SUC(m + n) |- (SUC m) + n = SUC(m + (0 + n))

#print_all_thm(p[thm''℄);;

(0 + n = n) /\ ((SUC m) + n = SUC(m + n))

|- (SUC m) + n = SUC(m + (0 + n))

As illustrated, neither of the the
onjun
ts nor the
onjun
tion is an impli
it

assumption of the subgoal.

As it happens, there is no fun
tion `CONJUNCTS_TAC', analogous to DISJ_CASES_TAC,

provided in HOL. CONJUNCTS_TAC th, by analogy, would be de�ned as CONJUNCTS_THEN ASSUME_TAC th;

in the above example, this would return, in one step, the subgoal

["(SUC m) + n = SUC(m + n)"; "0 + m = m"℄,

"(SUC(0 + m)) + n = SUC(m + n)"

It might seem useful to de�ne the fun
tion NAMED_CONJUNCTS_TAC so that

NAMED_CONJUNCTS_THEN
ould be de�ned in terms of it, by analogy with NAMED_DISJ_CASES_THEN

and the others. However, no fu
tion NAMED_CONJUNCTS_TAC that introdu
es

assumptions
an support a NAMED_CONJUNCTS_THEN that satisfa
torily models

CONJUNCTS_THEN, sin
e CONJUNCTS_THEN does not introdu
e any (expli
it or

impli
it) assumptions.

97

To illustrate this point, it is easy to implement a NAMED_CONJUNCTS_TAC

whi
h adds the
onjun
ts (and justi�es the additions). The a

ount of that

mu
h, in the example
ase, is:

This is the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the two separate theorems implied by the fa
t

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

It is thus suffi
ient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The se
ond
onjun
t: "(SUC m) + n = SUC(m + n)"

The first
onjun
t: "0 + n = n"

...

This establishes

(SUC m) + n = SUC(m + n), 0 + n = n |- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This
ompletes the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

If the fun
tion NAMED_CONJUNCTS_THENwere now de�ned as NAMED_CONJUNCTS_TAC

followed by two popping operations in sequen
e, the a

ount of

NAMED_CONJUNCTS_THEN NAMED_SUBST1_TAC th ng

in the example
ase, is:

This is the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the two separate theorems implied by the fa
t

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

It is thus suffi
ient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The se
ond
onjun
t: "(SUC m) + n = SUC(m + n)"

The first
onjun
t: "0 + n = n"

>>>> We substitute a

ording to the following equality:

(SUC m) + n = SUC(m + n) |- (SUC m) + n = SUC(m + n).

Thus, it is suffi
ient to prove:

98

>> "SUC(m + n) = SUC(m + (0 + n))"

Assuming

The first
onjun
t: "0 + n = n"

Assuming impli
itly

The hypothesis of the equality: "(SUC m) + n = SUC(m + n)"

The se
ond
onjun
t: "(SUC m) + n = SUC(m + n)"

>>>> We substitute a

ording to the following equality:

0 + n = n |- 0 + n = n.

Thus, it is suffi
ient to prove:

>> "SUC(m + n) = SUC(m + n)"

Assuming impli
itly

The hypothesis of the equality: "0 + n = n"

The first
onjun
t: "0 + n = n"

The hypothesis of the equality: "(SUC m) + n = SUC(m + n)"

The se
ond
onjun
t: "(SUC m) + n = SUC(m + n)"

...

This establishes

|- SUC(m + n) = SUC(m + n)

This establishes

0 + n = n |- SUC(m + n) = SUC(m + (0 + n))

This establishes

0 + n = n, (SUC m) + n = SUC(m + n) |- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This
ompletes the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

This is a good a

ount in that it is in three steps: the
onjun
tive split and the

two sequential substitutions. The a

ounts of the substitutions are produ
ed

dire
tly via the fun
tion NAMED_SUBST1_TAC. The inferen
e
hain generated is

arguably the same as that generated by CONJUNCTS_THEN SUBST1_TAC th g,

with the addition of the inferen
es in whi
h the added assumptions are in-

trodu
ed and dismissed. However, the subgoal thus
arries 0 + n = n and

(SUC m) + n = SUC(m + n) as impli
it assumptions, whi
h is not satisfa
tory.

In the a

ount of

CONJUNCTS_THEN NAMED_ASSUME_TAC th ng

impli
it asusmptions are not an issue; and the a

ount produ
ed in the same

99

way as the above is therefore satisfa
tory. It is also
on
ise be
ause, inter-

nally, the popping fun
tion noti
es and omits the pop and re-assume steps:

This is the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the two separate theorems implied by the fa
t

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

It is thus suffi
ient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The se
ond
onjun
t: "(SUC m) + n = SUC(m + n)"

The first
onjun
t: "0 + n = n"

...

This establishes

(SUC m) + n = SUC(m + n), 0 + n = n |- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This
ompletes the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

However, a more serious defe
t of this implementation of NAMED_CONJUNCTS_THEN

is that the sequential popping operations produ
e the wrong e�e
t in
on-

texts in whi
h the assumption sta
k is disturbed by the �rst popping opera-

tion (whi
h may itself involve further transformers) before the se
ond takes

pla
e. (This sort of disturban
e is a general problem in the sta
k approa
h,

and was a fa
tor motivating the development

of the transformer fun
tions.)

The defe
t
an be repaired by taking NAMED_CONJUNCTS_TAC simply to be

NAMED_ASSUME_TAC, and NAMED_CONJUNCTS_THEN f th to NAMED_CONJUNCTS_TAC

th followed by the popping of the whole added
onjun
tion { to a fun
tion

that infers the two separate theorems, and then applies f to the two theorems

in sequen
e. The a

ount of the example, under this interpretation, is:

This is the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the fa
t that

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

It is suffi
ient to prove:

100

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

>>>> We substitute a

ording to the following equality:

(0 + n = n) /\ ((SUC m) + n = SUC(m + n)) |- 0 + n = n.

Thus, it is suffi
ient to prove:

>> "(SUC m) + n = SUC(m + n)"

Assuming impli
itly

The hypothesis of the equality: "(0 + n = n) /\

((SUC m) + n = SUC(m + n))"

The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

>>>> We substitute a

ording to the following equality:

(0 + n = n) /\ ((SUC m) + n = SUC(m + n))

|- (SUC m) + n = SUC(m + n).

Thus, it is suffi
ient to prove:

>> "SUC(m + n) = SUC(m + n)"

Assuming impli
itly

The hypothesis of the equality: "(0 + n = n) /\

((SUC m) + n = SUC(m + n))"

The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

...

This establishes

|- SUC(m + n) = SUC(m + n)

This establishes

(0 + n = n) /\ ((SUC m) + n = SUC(m + n)) |- (SUC m) + n = SUC(m + n)

This establishes

(0 + n = n) /\ ((SUC m) + n = SUC(m + n))

|- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This
ompletes the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

Here, the
onjun
tion is mentioned, if not split, in one step, and the sub-

stitutions have adequate a

ounts of their own. This avoids the defe
t of the

previous method, but it still, likewise, generates a undesired impli
it assump-

tion. In addition, the a

ount of NAMED_CONJUNCTS_THEN NAMED_ASSUME_TAC

is now more awkward, sin
e there is no pop and re-assume step to omit:

This is the proof of the
onje
ture

>> example7:

101

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the fa
t that

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

It is suffi
ient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

>>>> We use the fa
t that

(0 + n = n) /\ ((SUC m) + n = SUC(m + n)) |- 0 + n = n.

It is suffi
ient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The added hypothesis: "0 + n = n"

Assuming impli
itly

The hypothesis of the theorem used: "(0 + n = n) /\

((SUC m) + n = SUC(m + n))"

The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

>>>> We use the fa
t that

(0 + n = n) /\ ((SUC m) + n = SUC(m + n))

|- (SUC m) + n = SUC(m + n).

It is suffi
ient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The added hypothesis: "(SUC m) + n = SUC(m + n)"

The added hypothesis: "0 + n = n"

Assuming impli
itly

The hypothesis of the theorem used: "(0 + n = n) /\

((SUC m) + n = SUC(m + n))"

The added hypothesis: "(0 + n = n) /\ ((SUC m) + n = SUC(m + n))"

...

This establishes

(SUC m) + n = SUC(m + n), 0 + n = n |- (SUC m) + n = SUC(m + (0 + n))

This establishes

0 + n = n, (0 + n = n) /\ ((SUC m) + n = SUC(m + n))

|- (SUC m) + n = SUC(m + (0 + n))

This establishes

(0 + n = n) /\ ((SUC m) + n = SUC(m + n))

|- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This
ompletes the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

102

In both interpretations dis
ussed so far, undesired impli
it assumptions

are added to the subgoal. Omitting the NAMED_CONJUNCTS_TAC step, whi
h

auses this problem, is still not a good solution; this time, be
ause it obs
ures

the origin of the
onjun
ts:

This is the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We substitute a

ording to the following equality:

|- 0 + n = n.

Thus, it is suffi
ient to prove:

>> "(SUC m) + n = SUC(m + n)"

>>>> We substitute a

ording to the following equality:

|- (SUC m) + n = SUC(m + n).

Thus, it is suffi
ient to prove:

>> "SUC(m + n) = SUC(m + n)"

...

This establishes

|- SUC(m + n) = SUC(m + n)

This establishes

|- (SUC m) + n = SUC(m + n)

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This
ompletes the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

The only remaining solution would seem to be to in
lude a step in whi
h

the
onjun
tion is at least mentioned, but in whi
h no assumptions are added.

In the
urrent framework, this requires that the a

ount of the �rst step

in
lude a subgoal, albeit un
hanged from the previous subgoal. The a

ount

by this method is not therefore perfe
tly tidy, but does at least model HOL's

CONJUNCTS_THEN fun
tion:

This is the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the two separate theorems implied by the fa
t

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

The two theorems are used in sequen
e. We are showing:

103

>> "(SUC m) + n = SUC(m + (0 + n))"

>>>> We substitute a

ording to the following equality:

|- 0 + n = n.

Thus, it is suffi
ient to prove:

>> "(SUC m) + n = SUC(m + n)"

>>>> We substitute a

ording to the following equality:

|- (SUC m) + n = SUC(m + n).

Thus, it is suffi
ient to prove:

>> "SUC(m + n) = SUC(m + n)"

...

This establishes

|- SUC(m + n) = SUC(m + n)

This establishes

|- (SUC m) + n = SUC(m + n)

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This
ompletes the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

In the event of f being NAMED_ASSUME_TAC, the a

ount is now:

This is the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the two separate theorems implied by the fa
t

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

The two theorems are used in sequen
e. We are showing:

>> "(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the fa
t that

|- 0 + n = n.

It is suffi
ient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The added hypothesis: "0 + n = n"

>>>> We use the fa
t that

|- (SUC m) + n = SUC(m + n).

It is suffi
ient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

104

Assuming

The added hypothesis: "(SUC m) + n = SUC(m + n)"

The added hypothesis: "0 + n = n"

...

This establishes

(SUC m) + n = SUC(m + n), 0 + n = n |- (SUC m) + n = SUC(m + (0 + n))

This establishes

0 + n = n |- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This
ompletes the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

Aminor re�nement of this solution is to implement NAMED_CONJUNCTS_THEN

to noti
e when f is e�e
tively the same as NAMED_ASSUME_TAC, and where it

is, to use instead a trivial variant of NAMED_ASSUME_TAC whi
h labels the new

assumptions as
onjun
ts. (The point of this re�nement is made
lear in

Se
tion ...). The previous a

ount is now:

This is the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the two separate theorems implied by the fa
t

|- (0 + n = n) /\ ((SUC m) + n = SUC(m + n)).

The two theorems are used in sequen
e. We are showing:

>> "(SUC m) + n = SUC(m + (0 + n))"

>>>> We use the fa
t that

|- 0 + n = n.

It is suffi
ient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The left
onjun
t: "0 + n = n"

>>>> We use the fa
t that

|- (SUC m) + n = SUC(m + n).

It is suffi
ient to prove:

>> "(SUC m) + n = SUC(m + (0 + n))"

Assuming

The right
onjun
t: "(SUC m) + n = SUC(m + n)"

The left
onjun
t: "0 + n = n"

105

...

This establishes

(SUC m) + n = SUC(m + n), 0 + n = n |- (SUC m) + n = SUC(m + (0 + n))

This establishes

0 + n = n |- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This establishes

|- (SUC m) + n = SUC(m + (0 + n))

This
ompletes the proof of the
onje
ture

>> example7:

"(SUC m) + n = SUC(m + (0 + n))"

8.4.2 The Resolution Transformers

The resolution fun
tions IMP_RES_THEN and RES_THEN, like the fun
tion CONJUNCTS_THEN,

are implemented in su
h a way that the appli
ation of the ta
ti
s of the form

IMP_RES_THEN f th and RES_THEN f th to a goal do not introdu
e any assump-

tions, expli
it or impli
it, into the resulting subgoal. For example:

th = |- !x. x < 1 ==> (x = 0)

#let g = ["x < 1";"y < 1"℄,"(x = 0) /\ (y = 0)";;

g = (["x < 1"; "y < 1"℄, "(x = 0) /\ (y = 0)") : goal

#let gl,p = IMP_RES_THEN SUBST1_TAC th g;;

gl = [(["x < 1"; "y < 1"℄, "(0 = 0) /\ (0 = 0)")℄ : goal list

p = - : proof

...

thm = |- (0 = 0) /\ (0 = 0)

thm' = y = 0, x = 0 |- (0 = 0) /\ (0 = 0)

thm'' = !x. x < 1 ==> (x = 0) |- (0 = 0) /\ (0 = 0)

#print_all_thm(p[thm℄);;

y < 1, x < 1 |- (x = 0) /\ (y = 0)

#print_all_thm(p[thm'℄);;

y = 0, x = 0, y < 1, x < 1 |- (x = 0) /\ (y = 0)

#print_all_thm(p[thm''℄);;

!x. x < 1 ==> (x = 0), y < 1, x < 1 |- (x = 0) /\ (y = 0)

Therefore, the implementations of NAMED_IMP_RES_THEN and NAMED_RES_THEN

should have the same behaviour as IMP_RES_THEN and RES_THEN with respe
t

106

to assumptions. The te
hnique used to implement CONJUNCTS_THEN
an be

adapted here; a whole proof step, in whi
h the subgoal does not
hange, is

devoted to displaying the resolvents, and the appli
ations of the fun
tion

f are des
ribed in subsequent steps. Care must be taken in implementing

NAMED_IMP_RES_THEN and RES_THEN that the resolvents are used singly by f

in the same order as in the
orresponding ordinary fun
tions.

This is the proof of the
onje
ture

>> example10:

"(x = 0) /\ (y = 0)"

Assuming

The fa
t1: "x < 1"

The fa
t2: "y < 1"

>>>> We use the theorem

|- !x. x < 1 ==> (x = 0)

to derive the following
onsequen
es from the assumptions made thus far:

x < 1 |- x = 0

y < 1 |- y = 0

These theorems are used in sequen
e. We are showing:

>> "(x = 0) /\ (y = 0)"

Assuming

The fa
t1: "x < 1"

The fa
t2: "y < 1"

>>>> We substitute a

ording to the following equality:

x < 1 |- x = 0.

Thus, it is suffi
ient to prove:

>> "(0 = 0) /\ (y = 0)"

Assuming

The fa
t1: "x < 1"

The fa
t2: "y < 1"

Assuming impli
itly

The hypothesis of the equality: "x < 1"

>>>> We substitute a

ording to the following equality:

y < 1 |- y = 0.

Thus, it is suffi
ient to prove:

>> "(0 = 0) /\ (0 = 0)"

Assuming

The fa
t1: "x < 1"

The fa
t2: "y < 1"

Assuming impli
itly

The hypothesis of the equality: "y < 1"

The hypothesis of the equality: "x < 1"

...

This establishes

|- (0 = 0) /\ (0 = 0)

This establishes

107

y < 1 |- (0 = 0) /\ (y = 0)

This establishes

y < 1, x < 1 |- (x = 0) /\ (y = 0)

This establishes

y < 1, x < 1 |- (x = 0) /\ (y = 0)

This
ompletes the proof of the
onje
ture

>> example10:

"(x = 0) /\ (y = 0)"

Assuming

The fa
t1: "x < 1"

The fa
t2: "y < 1"

This seems a reasonably
lear a

ount. The fa
t that an impli
it as-

sumption is generated for ea
h resolvent (i.e. for ea
h theorem passed to

the substitution fun
tion { x < 1, for example, is generated for the resolvent

x = 0) is a no more minor imperfe
tion, as these terms must be hypotheses

of the �nal theorem in any
ase. That is, these terms are impli
it assump-

tions in the sense that whether of not they are hypotheses of the theorem

a
hieving the �nal subgoal, they will be hypotheses of the theorem a
hieving

the original goal.

To devote a separate step to the use of ea
h resolvent might seem tedious,

but this is in fa
t the unseen e�e
t of applying the ordinary IMP_RES_THEN f

th. It is not in general the
ase that the sequen
e of uses of the resolvent-

based theorems
an be expressed as a single use of a list of theorems. For

example, while a sequen
e of substitutions (via SUBST1_TAC)
an be expressed

as a single use of substitution (via SUBST_TAC), the same is not true of the

fun
tions \th. REWRITE_TAC [th℄ and REWRITE_TAC.

The fun
tion NAMED_RES_THEN is handled in a similar way to NAMED_IMP_RES_THEN.

9 Strip Fun
tions

The strip fun
tions are examples of HOL ta
ti
s that do not
orrespond

to single `natural' proof steps; they are
onvenient ta
ti
s that do one of

several simple steps, and are often repeated to do at on
e all su
h simple

steps that possibly
an be done. They are also examples of ta
ti
 whose

implementations makes
lever use of higher order fun
tions (namely, the

fun
tions des
ribed in Chapter ...), and as a result are diÆ
ult to understand

108

immediately. Some of the issues raised by the e�ort to give an a

ount of an

appli
ation of the strip fun
tions are:

� To what extent to de
ompose the
omplex step into primitive (natural)

steps;

� To what extent to give the a

ount in terms of the implementation;

� How to identify the subgoals produ
ed (and their assumptions) so that

no mystery remains about their origin or parts.

9.1 The Strip Transformer in HOL

The basi
 stripping tool in HOL is the strip fun
tion STRIP_THM_THEN. Given a

fun
tion tta
 from theorems to ta
ti
s, a theorem th, and a goal g, STRIP_THM_THEN

inspe
ts the top level stru
ture the
on
lusion of th and
hooses amongst

the ta
ti
 transformers CONJUNCTS_THEN, DISJ_CASES_THEN and CHOOSE_THEN,

for
on
lusions whi
h are
onjun
tions, disjun
tions or existential terms, re-

spe
tively, at the top level (and it fails for other terms). (The three ta
ti

transformers are explained in Chapter ...)

STRIP_THM_THEN = FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN℄

where

FIRST_TCL [tt
l1;...;tt
ln℄ = tt
l1 ORELSE_TCL ... ORELSE_TCL tt
ln

where

(tt
l1: thm_ta
ti
al) ORELSE_TCL (tt
l2: thm_ta
ti
al) tta
 th =

(tt
l1 tta
 th) ? (tt
l2 tta
 th)

(meaning: the value of the tt
l1 tta
 th unless that evaluation fails, in

whi
h
ase the value of tt
l2 tta
 th). The appropriate ta
ti
 transformer

is then applied to tta
; then the resulting fun
tion to th; and �nally, the

resulting ta
ti
 to g. This is illustated by the following s
hemati
 examples:

109

...

g = ([℄, "t")

th1 = |- p1 /\ p2

th2 = |- p1 \/ p2

th3 = |- ?x. P x

#STRIP_THM_THEN ASSUME_TAC th1 g;;

([(["p2"; "p1"℄, "t")℄, -) : subgoals

#STRIP_THM_THEN ASSUME_TAC th2 g;;

([(["p1"℄, "t"); (["p2"℄, "t")℄, -) : subgoals

#STRIP_THM_THEN ASSUME_TAC th3 g;;

([(["P x"℄, "t")℄, -) : subgoals

STRIP_THM_THEN underlies the �rst of the two main strip ta
ti
s in HOL:

STRIP_ASSUME_TAC th.

9.2 Stripping and Assuming a Theorem in HOL

The ta
ti
 STRIP_ASSUME_TAC th, applied to a goal g, maps the theorem th to

one or more sets of
lauses (terms), and assumes ea
h set of terms (in the fash-

ion of ASSUME_TAC) in a separate subgoal. The term part of ea
h of the sub-

goals is un
hanged. Ea
h set of
lauses is a subset of the basi
 (lowest level)

disjun
ts,
onjun
ts and witness subterms of the original term (with sepa-

rate subgoals being formed for disjun
ts). The e�e
t of STRIP_ASSUME_TAC is

illustrated with s
hemati
 theorems and goal:

#let g = [℄,"t:bool";;

g = ([℄, "t") : (* list # term)

...

th1 = |- p1 /\ p2

th2 = |- (p1 \/ p2) /\ (p3 \/ p4)

th3 = |- (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)

#STRIP_ASSUME_TAC th1 g;;

([(["p2"; "p1"℄, "t")℄, -) : subgoals

#STRIP_ASSUME_TAC th2 g;;

([(["p3"; "p1"℄, "t");

(["p4"; "p1"℄, "t");

(["p3"; "p2"℄, "t");

(["p4"; "p2"℄, "t")℄,

-)

: subgoals

110

#STRIP_ASSUME_TAC th3 g;;

([(["x < 2"; "p3"; "p2"; "p1"℄, "t"); (["x < 2"; "p3"; "p2"℄, "t")℄, -)

: subgoals

In ea
h
ase, the
lauses added to ea
h subgoal are not themselves
on-

jun
tions, disjun
tions or existential terms. The �rst theorem is mapped to a

single subgoal, with the two
onjun
ts as separate assumptions. The se
ond

theorem indu
es a four-way disjun
tive split, where the four subgoals have

two
lauses (disjun
ts) ea
h. The third would have eight subgoals, but two

of these of these are solved internally be
ause they are in
onsistent, and two

more be
ause they are trivially true (i.e. they in
lude the term t itself as an

assumption). The two internal solutions pre
lude further
ase analysis, so

that only six
ases are a
tually generated. Of the two remaining subgoals,

the se
ond
an be simpli�ed to omit mention of the tautologous
lause (T)

and so in
ludes only three
lauses as assumptions. Both subgoals in
lude the

witness term p2.

STRIP_ASSUME_TAC is implemented by repeated use of STRIP_ASSUME_THEN

and a version of ASSUME_TAC:

STRIP_ASSUME_TAC = (REPEAT_TCL STRIP_THM_THEN) CHECK_ASSUME_TAC

where

REPEAT_TCL (tt
l: thm_ta
ti
al) tta
 th =

((tt
l THEN_TCL (REPEAT_TCL tt
l)) ORELSE_TCL I) tta
 th

and

(tt
l1: thm_ta
ti
al) THEN_TCL (tt
l2: thm_ta
ti
al) tta
 = tt
l1 (tt
l2 tta
)

Rather than assuming the �nal
lauses via ASSUME_TAC, STRIP_ASSUME_TAC

uses the more sele
tive fun
tion (CHECK_ASSUME_TAC) whi
h noti
es and solves

ontradi
tions (via CONTR_TAC), and solutions (via ACCEPT_TAC). This intro-

du
es the possibility, therefore, of STRIP_ASSUME_TAC solving a goal. (CHECK_ASSUME_TAC

also de
lines to add tautologous
lauses as assumptions.)

To summarize:

STRIP_ASSUME_TAC th g

is

111

(REPEAT_TCL STRIP_THM_THEN) CHECK_ASSUME_TAC th g

whi
h is

(REPEAT_TCL (FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN℄))

CHECK_ASSUME_TAC th g

whi
h in turn is

(((FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN℄) THEN_TCL

(REPEAT_TCL ((FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN; CHOOSE_THEN℄)))) ORELSE_TCL

I) CHECK_ASSUME_TAC th g

In the
ase of th2 and g, above, for example, the ultimate `
hain' of theorem

transformers
ontains two elements: CONJUNCTS_THEN THEN_TCL DISJ_CASES_THEN:

#CONJUNCTS_THEN (DISJ_CASES_THEN CHECK_ASSUME_TAC);;

- : thm_ta
ti

#(CONJUNCTS_THEN THEN_TCL DISJ_CASES_THEN) CHECK_ASSUME_TAC th2 g;;

([(["p3"; "p1"℄, "t");

(["p4"; "p1"℄, "t");

(["p3"; "p2"℄, "t");

(["p4"; "p2"℄, "t")℄,

-)

In general, REPEAT_TCL STRIP_THM_THEN results in a
hain of fun
tions

f

1

,...,f

n

of type thm_ta
ti
al su
h that then STRIP_ASSUME_TAC is equal to

f

1

(f

2

(....(f

n

CHECK_ASSUME_TAC)...)).

STRIP_ASSUME_TAC supports the two se
ond of the two main strip ta
ti
s

in HOL: STRIP_TAC th.

9.3 The Strip Ta
ti
 in HOL

The other main stripping ta
ti
 in HOL is STRIP_TAC, whi
h performs one

synta
ti
 layer of stripping on a given goal. On goals whose terms are uni-

versally quanti�ed, STRIP_TAC spe
i�es to a variant of the quanti�ed vari-

able. On goals whose terms are
onjun
tions, it produ
es a pair of separate

subgoals. The other possibility, aside from failure, is that the term is an

impli
ation, in whi
h
ase the ante
edent is taken apart into sets of
lauses

(by STRIP_ASSUME_TAC), and ea
h set is assumed in a separate subgoal (whose

term is the
onsequent of the impli
ation). That is,

112

STRIP_TAC = STRIP_GOAL_THEN STRIP_ASSUME_TAC

where

STRIP_GOAL_THEN tta
 = FIRST [GEN_TAC; CONJ_TAC; DISCH_THEN tta
℄

STRIP_TAC inherits from STRIP_ASSUME_TAC the ability to solve
ertain

goals. Also, as is usual in HOL, a term of the form ~t is regarded as being

t ==> F so that STRIP_TAC approa
hes the proof of ~t as a proof by
ontra-

di
tion.

STRIP_TAC is illustrated by adapting the theorems used above to illustrate

STRIP_ASSUME_TAC { the ante
edents are de
omposed into disjun
ts,
onjun
ts

and witness terms:

g1 = ([℄, "p1 /\ p2 ==> t")

g2 = ([℄, "(p1 \/ p2) /\ (p3 \/ p4) ==> t")

g3 = ([℄, "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t")

#STRIP_TAC g1;;

([(["p2"; "p1"℄, "t")℄, -) : subgoals

#STRIP_TAC g2;;

([(["p3"; "p1"℄, "t");

(["p4"; "p1"℄, "t");

(["p3"; "p2"℄, "t");

(["p4"; "p2"℄, "t")℄,

-)

: subgoals

#STRIP_TAC g3;;

([(["x < 2"; "p3"; "p2"; "p1"℄, "t"); (["x < 2"; "p3"; "p2"℄, "t")℄, -)

: subgoals

Be
ause of the inner repeat
onstru
t, an inde�nite number of subgoals

an result from an appli
ation of STRIP_TAC. That is, there may be any num-

ber of disjun
tive splits, and of the subgoals generated, some may be solved.

9.4 A

ounting for The Strip Ta
ti

One method of implementing NAMED_STRIP_TAC, to supply an a

ount of

the stripping pro
ess applied to a named goal, is to regard stripping as

a
ompound proof step not to be a

ounted for as a single proof step.

This is a
hieved by implementing NAMED_STRIP_TAC in parallel with HOL's

STRIP_TAC, based on (likewise parallel) implementations of NAMED_STRIP_GOAL_THEN,

113

NAMED_STRIP_ASSUME_TAC, NAMED_STRIP_THM_THEN, NAMED_REPEAT_TCL, and so

on. By this method, the job of
onstru
ting the a

ount of the stripping ta
-

ti
 is handed over to the fun
tions NAMED_CONJUNCTS_THEN and so on, giving,

in the end, a full a

ount of the pro
essing of the goal, with ea
h step in the

pro
ess explained as a separate proof step.

A se
ond method of implementing NAMED_STRIP_TAC is to gather and pro-

ess the results of applying NAMED_STRIP_TAC. This gives an a

ount of strip-

ping as a single proof step. (The results of applying HOL's STRIP_TAC, to

the
orresponding ordinary goal { in the style of many other named ta
ti
s'

implementations { does not give enough information to
onstru
t a useful

a

ount.)

We explain both methods, and leave the
hoi
e to be de
ided a

ording

to parti
ular needs.

9.4.1 The Implementation-Based A

ount

On
e all of the basi
 fun
tion are implemented for named goals, the ta
ti

NAMED_STRIP_TAC is easy to implement in parallel with the HOL implemen-

tation. We
onsider three
orresponding named goals:

ng1 = mk_named_goal(`example1`, [℄, "p1 /\ p2 ==> t")

ng2 = mk_named_goal(`example2`, [℄, "(p1 \/ p2) /\ (p3 \/ p4) ==> t")

ng3 =

mk_named_goal(`example3`,

[℄,

"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t")

To these we apply the version of NAMED_STRIP_TAC implemented in parallel

with HOL's STRIP_TAC. In the �rst example, applying NAMED_STRIP_TAC to ng1

gives one subgoal:

>> "t"

Assuming

The right
onjun
t: "p2"

The left
onjun
t: "p1"

Assuming impli
itly

The ante
edent: "p1 /\ p2"

The justi�
ation is
onstru
ted, as for HOL's STRIP_TAC, from the justi�-

ations of the
onstituent fun
tions when the ta
ti
 is applied. Given an

a

ount of the subgoal, the justi�
ation returns an a

ount of the whole

stripping step:

114

This is the proof of the
onje
ture

>> example1:

"p1 /\ p2 ==> t"

>>>> It is suffi
ient to prove:

>> "t"

Assuming

The ante
edent: "p1 /\ p2"

>>>> We use the two separate theorems implied by the assumption

p1 /\ p2 |- p1 /\ p2.

The two theorems are used in sequen
e. We are showing:

>> "t"

Assuming impli
itly

The ante
edent: "p1 /\ p2"

>>>> We use the fa
t that

p1 /\ p2 |- p1.

It is suffi
ient to prove:

>> "t"

Assuming

The left
onjun
t: "p1"

Assuming impli
itly

The ante
edent: "p1 /\ p2"

>>>> We use the fa
t that

p1 /\ p2 |- p2.

It is suffi
ient to prove:

>> "t"

Assuming

The right
onjun
t: "p2"

The left
onjun
t: "p1"

Assuming impli
itly

The ante
edent: "p1 /\ p2"

...

This establishes

p1, p2 |- t

This establishes

p1, p1 /\ p2 |- t

This establishes

p1 /\ p2 |- t

This establishes

p1 /\ p2 |- t

This establishes

|- p1 /\ p2 ==> t

115

This
ompletes the proof of the
onje
ture

>> example1:

"p1 /\ p2 ==> t"

The a

ount is straightforward; its se
ond proof step is the one devoted

by CONJUNCTS_THEN to explaining the
onjun
tive split of the ante
edent as-

sumption. The subgoal produ
ed by this step is un
hanged from the previous

subgoal ex
ept for `disappearan
e' of the (no longer needed) ante
edent as-

sumption at that point. The last subgoal shown has the ante
edent of the

original impli
ation entirely taken apart, as a result of the steps determined

by applying NAMED_STRIP_TAC to ng1.

When the
hain of fun
tions determined by applying NAMED_STRIP_TAC

to a given goal is longer, and espe
ially when it involves
ase splits (as it

would in the se
ond example), the a

ount in the present style be
omes

more tedious and
onfusing. It is
onfusing, in parti
ular, be
ause there is

a sequen
e of binary
ase splits to be presented, and the resulting
ases are

repeatedly labelled as the left disjun
t
ase or the right disjun
t
ase.

The a
tual subgoal being
onsidered at
ertain points in the presentation
an

be identi�ed only via the
onvention that in printing a subgoal-proof tree in

depth-�rst fashion, the next (awaiting) subgoal is re-printed immediately

after a leaf has been printed.

Despite the in
onvenien
es, it still sometimes the
ase that the a

ount

desired is the one that lays out all the stages of the stripping pro
ess. For ex-

ample, the
learest explanation is produ
ed for the third
ase by this method.

Here, as mentioned earlier, there are two subgoals produ
ed out of the six

generated internally. These are:

>> left disjun
t
ase:

"t"

Assuming

The witness hypothesis: "x < 2"

The left disjun
t: "p3"

The left disjun
t: "p2"

The left disjun
t: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

and

>> left disjun
t
ase:

"t"

116

Assuming

The witness hypothesis: "x < 2"

The left disjun
t: "p3"

The left disjun
t: "p2"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

In the lengthy a

ount produ
ed by applying the justi�
ation, however, all six

ases are displayed, and it is explained
learly how the four internal
ases are

solved (this information being provided by the named ta
ti
s that ultimately

solve the internal goals). In
ontrast, it is not
lear in HOL itself (see ...)

how many
ases were a
tually generated, nor of these, whi
h were solved,

and how.

This is the proof of the
onje
ture

>> example3:

"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t"

>>>> It is suffi
ient to prove:

>> "t"

Assuming

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We use the two separate theorems implied by the assumption

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)

|- (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2).

The two theorems are used in sequen
e. We are showing:

>> "t"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We
onsider the two
ases suggested by the fa
t

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p1 \/ T

>> left disjun
t
ase:

"t"

Assuming

The left disjun
t: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>> right disjun
t
ase:

"t"

Assuming

The right disjun
t: "T"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

The proof of the

>> left disjun
t
ase:

117

"t"

Assuming

The left disjun
t: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> We use the two separate theorems implied by the fa
t

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)

|- (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2).

The two theorems are used in sequen
e. We are showing:

>> "t"

Assuming

The left disjun
t: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We
onsider the two
ases suggested by the fa
t

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p2 \/ F

>> left disjun
t
ase:

"t"

Assuming

The left disjun
t: "p2"

The left disjun
t: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>> right disjun
t
ase:

"t"

Assuming

The right disjun
t: "F"

The left disjun
t: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

The proof of the

>> left disjun
t
ase:

"t"

Assuming

The left disjun
t: "p2"

The left disjun
t: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> We use the two separate theorems implied by the fa
t

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)

|- (p3 \/ t) /\ (?x. x < 2).

The two theorems are used in sequen
e. We are showing:

>> "t"

Assuming

The left disjun
t: "p2"

The left disjun
t: "p1"

118

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We
onsider the two
ases suggested by the fa
t

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p3 \/ t

>> left disjun
t
ase:

"t"

Assuming

The left disjun
t: "p3"

The left disjun
t: "p2"

The left disjun
t: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>> right disjun
t
ase:

"t"

Assuming

The right disjun
t: "t"

The left disjun
t: "p2"

The left disjun
t: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

The proof of the

>> left disjun
t
ase:

"t"

Assuming

The left disjun
t: "p3"

The left disjun
t: "p2"

The left disjun
t: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> Using the term "x"

as a witness to the fa
t

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- ?x. x < 2

it is suffi
ient to prove:

>> "t"

Assuming

The witness hypothesis: "x < 2"

The left disjun
t: "p3"

The left disjun
t: "p2"

The left disjun
t: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

...

This establishes

x < 2, p1, p2, p3 |- t

This establishes

119

p3, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p1, p2 |- t

The proof of the

>> right disjun
t
ase:

"t"

Assuming

The right disjun
t: "t"

The left disjun
t: "p2"

The left disjun
t: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> The theorem

t |- t

is proposed to satisfy this.

This establishes

t |- t

This establishes

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p1, p2 |- t

This establishes

p2, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p1 |- t

The proof of the

>> right disjun
t
ase:

"t"

Assuming

The right disjun
t: "F"

The left disjun
t: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> This follows va
uously (by
ontradi
tion) from the theorem

F |- F

This establishes

F |- t

This establishes

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p1 |- t

This establishes

p1, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- t

The proof of the

>> right disjun
t
ase:

"t"

Assuming

The right disjun
t: "T"

Assuming impli
itly

120

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> It is suffi
ient to prove:

>> "t"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We use the two separate theorems implied by the fa
t

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)

|- (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2).

The two theorems are used in sequen
e. We are showing:

>> "t"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We
onsider the two
ases suggested by the fa
t

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p2 \/ F

>> left disjun
t
ase:

"t"

Assuming

The left disjun
t: "p2"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>> right disjun
t
ase:

"t"

Assuming

The right disjun
t: "F"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

The proof of the

>> left disjun
t
ase:

"t"

Assuming

The left disjun
t: "p2"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> We use the two separate theorems implied by the fa
t

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)

|- (p3 \/ t) /\ (?x. x < 2).

The two theorems are used in sequen
e. We are showing:

>> "t"

Assuming

The left disjun
t: "p2"

121

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>>>> We
onsider the two
ases suggested by the fa
t

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- p3 \/ t

>> left disjun
t
ase:

"t"

Assuming

The left disjun
t: "p3"

The left disjun
t: "p2"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>> right disjun
t
ase:

"t"

Assuming

The right disjun
t: "t"

The left disjun
t: "p2"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

The proof of the

>> left disjun
t
ase:

"t"

Assuming

The left disjun
t: "p3"

The left disjun
t: "p2"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> Using the term "x"

as a witness to the fa
t

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- ?x. x < 2

it is suffi
ient to prove:

>> "t"

Assuming

The witness hypothesis: "x < 2"

The left disjun
t: "p3"

The left disjun
t: "p2"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

...

This establishes

x < 2, p2, p3 |- t

This establishes

122

p3, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p2 |- t

The proof of the

>> right disjun
t
ase:

"t"

Assuming

The right disjun
t: "t"

The left disjun
t: "p2"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> The theorem

t |- t

is proposed to satisfy this.

This establishes

t |- t

This establishes

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2), p2 |- t

This establishes

p2, (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- t

The proof of the

>> right disjun
t
ase:

"t"

Assuming

The right disjun
t: "F"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

>>>> This follows va
uously (by
ontradi
tion) from the theorem

F |- F

This establishes

F |- t

This establishes

(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) |- t

...

This establishes

|- (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t

This
ompletes the proof of the
onje
ture

>> example3:

"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t"

123

9.4.2 The Primitive A

ount

It may be the
ase that the explanation of the stripping pro
ess is not wanted,

as above, in terms of the entire
hain of steps, in
luding the subgoals solved

internally and the methods used { but simply in one unit strip step. If so,

the strip fun
tion
ould not be implemented as above, in parallel with HOL's

implementation.

Neither
an it be implemented dire
tly in an analogous way to many

other ta
ti
s { by gathering and organizing the results of applying HOL's

STRIP_TAC to the
orresponding ordinary goal; this method does not give an

adequate a

ount be
ause the results of STRIP_TAC in themselves a�ord no

means of identifying the subgoals (and parts of subgoals) resulting from the

stripping pro
ess.

Instead, the one-step fun
tion (NAMED_PRIM_STRIP_TAC, for `primitive strip

ta
ti
') is implemented indire
tly by applying the full-a

ount version (NAMED_STRIP_TAC)

to the goal and then pro
essing those results into a single a

ount. NAMED_STRIP_TAC

gives enough information { via its
onstituent fun
tions NAMED_CONJUNCTS_THEN

and so on { to be able to identify the results in a meaningful way for a

ount-

ing purposes.

The pro
essing that is required on the results of applying NAMED_STRIP_TAC

is quite elaborate. First, some simple pro
essing greatly improve the a

ount:

� Provision has to be made for the goal being
ompletely solved, as that

out
ome is presented di�erently than a set of subgoals;

� It has to be noti
ed if the original goal is a negated term, so that the

proof
an be presented as a proof by
ontradi
tion;

� The term parameters of any appli
ations of NAMED_GEN_TAC should be

re
orded; even though an individual generalization step is not going to

be reported, this information may be required.

The more
omplex pro
essing relates to the fa
t, observed earlier, that

a single appli
ation of STRIP_TAC to an impli
ative goal
an give rise to an

inde�nite number of subgoals, through a sequen
e of disjun
tive splits of

the ante
edent, and through internal solutions. Subgoals arising in this way

will always be identi�ed (via NAMED_STRIP_TAC) as left disjun
t
ase or

right disjun
t
ase. The �nal set of subgoals arising in this way
an be

re
ast by NAMED_PRIM_STRIP_TAC as a numbered sequen
e of disjun
tive
ases.

124

Withing ea
h subgoal produ
ed by NAMED_STRIP_TAC on an impli
ative

goal, there may be various
lauses (arising from the ante
edent) whi
h are

identi�ed as wintness hypotheses, left or right disjun
ts, or left or right
on-

jun
ts. From these labels, the
onjun
ts' and disjun
ts' names
an be reor-

ganized in numbered sequen
es.

For example, in the third
ase, it was mentioned earlier that the two

visible subgoals (to be solved) were

>> left disjun
t
ase:

"t"

Assuming

The witness hypothesis: "x < 2"

The left disjun
t: "p3"

The left disjun
t: "p2"

The left disjun
t: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

and

>> left disjun
t
ase:

"t"

Assuming

The witness hypothesis: "x < 2"

The left disjun
t: "p3"

The left disjun
t: "p2"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

These
an be re
ast and printed, respe
tively, as

>> disjun
tive
ase 1 of 2:

"t"

Assuming

The witness hypothesis: "x < 2"

The disjun
t 3: "p3"

The disjun
t 2: "p2"

The disjun
t 1: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

and

>> disjun
tive
ase 2 of 2:

"t"

Assuming

The witness hypothesis: "x < 2"

125

The disjun
t 2: "p3"

The disjun
t 1: "p2"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

The primitive a

ount of the stripping step is then:

This is the proof of the
onje
ture

>> example3:

"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t"

>>>> It is suffi
ient to prove the following:

>> disjun
tive
ase 1 of 2:

"t"

Assuming

The witness hypothesis: "x < 2"

The disjun
t 3: "p3"

The disjun
t 2: "p2"

The disjun
t 1: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

>> disjun
tive
ase 2 of 2:

"t"

Assuming

The witness hypothesis: "x < 2"

The disjun
t 2: "p3"

The disjun
t 1: "p2"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

The proof of the

>> disjun
tive
ase 1 of 2:

"t"

Assuming

The witness hypothesis: "x < 2"

The disjun
t 3: "p3"

The disjun
t 2: "p2"

The disjun
t 1: "p1"

Assuming impli
itly

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

...

This establishes

p1, p2, p3, x < 2 |- t

The proof of the

>> disjun
tive
ase 2 of 2:

"t"

126

Assuming

The witness hypothesis: "x < 2"

The disjun
t 2: "p3"

The disjun
t 1: "p2"

Assuming impli
itly

The right disjun
t: "T"

The ante
edent: "(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2)"

is as follows:

...

This establishes

p2, p3, x < 2 |- t

This establishes

|- (p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t

This
ompletes the proof of the
onje
ture

>> example3:

"(p1 \/ T) /\ (p2 \/ F) /\ (p3 \/ t) /\ (?x. x < 2) ==> t"

This a

ount of applying NAMED_PRIM_STRIP_TAC does not explain the gen-

eration and solution of the four internal subgoals, but it does mirror the ta
ti

STRIP_TAC, whi
h takes apart the ante
edent of an impli
ative goal and deals

with the resulting
lauses in a single proof step.

NAMED_PRIM_STRIP_TAC is implemented as an elaboration of the more basi

NAMED_STRIP_TAC; it gives similar subgoals (the same with some renaming),

but a di�erent a

ount. That is, NAMED_PRIM_STRIP_TAC
omputes the sub-

goals and justi�
ation (p, say) given by NAMED_STRIP_TAC, but then uses p to

onstru
t is own a

ount. Its own a

ount simply maps a given list of sub-

a

ounts to an a

ount (i.e. a node) with a name of its own,
ontaining the

given list of sub-a

ounts, the list of (pro
essed) subgoals, and the theorem

omponent of the a

ount got by applying p to the list of sub-a

ounts. In

this way, the theorem a
hieved is the only
omponent of the long a

ount

(the a

ount of NAMED_STRIP_TAC) that appears expli
itly in the new a

ount

(the a

ount of NAMED_PRIM_STRIP_TAC), although the same a
tual inferen
es

are generated in both
ases.

In a similar way, other patterns of inferen
e also
ould be implemented

to give one-step a

ounts. One simple instan
e of this would be a ta
ti
 to

apply and a

ount for NAMED_PRIM_STRIP_TAC repeatedly, in one step; this

would be useful sin
e REPEAT STRIP_TAC is a very
ommonly used beginning

to proofs.

127

This idea forms the basis of a method for
ompa
ting long and ex
essively

detailed a

ounts. De
iding whi
h further patterns of inferen
e
ould be

presented
oherently by being
ompa
ted into unit steps is a matter for future

resear
h.

10 Transforming Proof A

ounts

On
e the subgoal-proof tree has been extra
ted from the performan
e of a

HOL proof, it
an, in theory, be presented in a variety of ways { though just

one style of presentation has been implemented to date. A further extension,

however, is to transform the subgoal-proof tree itself before it is printed.

This would be done in the interest of produ
ing a
learer or more elegant

proof, removing unne
essary proof steps, and so on. Su
h transformations

would be based on a belief that the proof { in the sense of the sequen
e of

inferen
e steps
orresponding to the subgoal-roof tree { were either preserved

or were transformed in a validity-preserving way by the transformation of

the tree

18

. This belief would be supported by a `meta-argument' about the

transformation rather than a re-derivation of the proof in the logi
; that is,

the
orresponden
e of the new tree to a proof would be informal.

To date, two parti
ular kinds of transformations have been implemented,

to test this idea. Under the �rst transformation, uninterrupted sequen
es of

generalization steps are
ompa
ted into a single, multiple generalization step

(and the subgoal-proof tree reassembled a

ordingly). Under the se
ond,

steps whi
h have no e�e
t on a goal are removed and the remaining tree

spli
ed together appropriately.

The following printed a

ount results from a repeated appli
ation of

NAMED_STRIP_TAC to the goal shown:

This is the proof of the
onje
ture

>> example:

"!x y z. x < y /\ y < z ==> x < z"

>>>> Consider an arbitrary "x":

We show:

18

The subgoal-proof tree as de�ned does not in
lude the inferen
e sequen
e, but just

the subset
onsisting of the theorems a
hieving the subgoals. These are produ
ed, when

the proof is performed, by
omputing the inferen
e sequen
es in full; that is the sense in

whi
h there is a
orresponden
e.

128

>> "!y z. x < y /\ y < z ==> x < z"

>>>> Consider an arbitrary "y":

We show:

>> "!z. x < y /\ y < z ==> x < z"

>>>> Consider an arbitrary "z":

We show:

>> "x < y /\ y < z ==> x < z"

...

When the subgoal-proof tree whi
h underlies this a

ount is transformed

in the �rst way, a new tree is produ
ed. The new tree is printed as follows:

This is the proof of the
onje
ture

>> example:

"!x y z. x < y /\ y < z ==> x < z"

>>>> Considering arbitrary "x", "y", "z",

we show:

>> "x < y /\ y < z ==> x < z"

...

This transformation is a
hieved by
olle
ting from the original tree all

uninterrupted sequen
es of steps whi
h are equivalent in e�e
t to general-

izations and then representing ea
h sequen
e as a single node in a new tree.

The single node is
on
eived as representing a multiple generalization ta
ti

{ a ta
ti
 equivalent in its e�e
t to an appli
ation of REPEAT GEN_TAC but

onsidered as a single proof step. Steps equivalent in e�e
t to generalizations

might have been generated by appli
ation of GEN_TAC, or might have been

generated indire
tly, e.g. via appli
ation of STRIP_TAC, provided that indi-

re
t generalizations manage to re
ord the variable in question in the same

way that GEN_TAC does.

That is, an a

ount of the form

mk_node((`NAMED_GEN_TAC`, ["x"℄, [℄),

[mk_node((`NAMED_GEN_TAC`, ["y"℄, [℄),

[mk_node((`NAMED_GEN_TAC`, ["z"℄, [℄),

... ,

[mk_named_goal(`example`,

[℄,

"x < y /\ y < z ==> x < z")℄,

|- !z. x < y /\ y < z ==> x < z)℄ ,

[mk_named_goal(`example`,

129

[℄,

"!z. x < y /\ y < z ==> x < z")℄,

|- !y z. x < y /\ y < z ==> x < z)℄,

[mk_named_goal(`example`, [℄, "!y z. x < y /\ y < z ==> x < z")℄,

|- !x y z. x < y /\ y < z ==> x < z)

be
omes an a

ount of the form

mk_node((`MULTI_NAMED_GEN_TAC`, ["x"; "y"; "z"℄, [℄),

... ,

[mk_named_goal(`example`, [℄, "x < y /\ y < z ==> x < z")℄,

|- !x y z. x < y /\ y < z ==> x < z)

where MULTI_NAMED_GEN_TAC is a new kind of node (suggesting a hypotheti
al

new ta
ti
) with its own printing
onvention. (The node and its printing

format must of
ourse be known to the printing fun
tions in advan
e.)

Redundant proof steps arise for a variety of reasons; for example, the use

of ta
ti
s whi
h never fail (e.g. rewriting), or linear ta
ti
s whi
h advan
e one

bran
h of a proof but whi
h neither fail nor have any e�e
t on the another

bran
h. For example, if the goal of the previous example is atta
ked by

applying to it the (rather odd) ta
ti

NAMED_REWRITE_TAC [℄ THEN

NAMED_STRIP_TAC THEN

NAMED_REWRITE_TAC [℄

so that only the STRIP_TAC advan
es the proof, the following a

ount is

printed:

This is the proof of the
onje
ture

>> example:

"!x y z. x < y /\ y < z ==> x < z"

>>>> Using basi
 tautologies, it is suffi
ient to prove:

>> "!x y z. x < y /\ y < z ==> x < z"

>>>> Consider an arbitrary "x":

We show:

>> "!y z. x < y /\ y < z ==> x < z"

>>>> Using basi
 tautologies, it is suffi
ient to prove:

>> "!y z. x < y /\ y < z ==> x < z"

...

Under the se
ond transformation, the redundant steps are removed from the

tree, and the resulting tree is printed as follows:

130

This is the proof of the
onje
ture

>> example:

"!x y z. x < y /\ y < z ==> x < z"

>>>> Consider an arbitrary "x":

We show:

>> "!y z. x < y /\ y < z ==> x < z"

...

This transformation is a
hieved by sear
hing for nodes whi
h have ex-

a
tly one dire
t des
endent node, and for whi
h the subgoal is the same as

the goal

19

. Where there is a single un
hanged subgoal, the transformation

involves removing the subgoal node from the tree and spli
ing up the rest

of the tree a

ordingly. The transformation applies re
ursively throughout

tree.

In the example above, the original a

ount has the form

mk_node((`NAMED_REWRITE_TAC`, [℄, [℄),

[mk_node((`NAMED_GEN_TAC`, ["x"℄, [℄),

[mk_node((`NAMED_REWRITE_TAC`, [℄, [℄),

... ,

[mk_named_goal(`example`,

[℄,

"!y z. x < y /\ y < z ==> x < z")℄,

|- !y z. x < y /\ y < z ==> x < z)℄,

[mk_named_goal(`example`,

[℄,

"!y z. x < y /\ y < z ==> x < z")℄,

|- !x y z. x < y /\ y < z ==> x < z)℄,

[mk_named_goal(`example`,

[℄,

"!x y z. x < y /\ y < z ==> x < z")℄,

|- !x y z. x < y /\ y < z ==> x < z)

while the transformed tree has the form

mk_node((`NAMED_GEN_TAC`, ["x"℄, [℄),

...

[mk_named_goal(`example`, [℄, "!y z. x < y /\ y < z ==> x < z")℄,

|- !x y z. x < y /\ y < z ==> x < z)

Both of the transformations
an be done in a single
ombined transfor-

mation whi
h applies repeatedly until neither tranformation
an assist.

19

`The same' is taken in the �rst instan
e to mean identi
al ex
ept for the goals' names,

though more subtlety may be
alled for in treating impli
it assumptions, et
.

131

Another use of su
h transformations might be to print impli
it assumption

more sele
tively (e.g. where they are dupli
ated), or not at all (in
ontexts

where they are not of interest).

Some elaborations along these lines are mentioned in Chapter ... on future

resear
h ideas. The two des
ribed here are very simple transformations, but

the idea
ould be extended to more sophisti
ated transformations whi
h re-

sulted in a

ounts whi
h are preferred for some purpose. It is worth stressing

again, however, that transforming and re-printing the internal respresenta-

tion of a proof does not entail re-proving anything. The transformed trees

may indeed fail to represent valid proofs { despite any informal arguments

that they do, the trees may no longer
orrespond to valid proofs.

To a
hieve a dire
t
orresponden
e, it might be possible, as a side e�e
t of

transforming the tree, in some
ases, to derive automati
ally the new ta
ti

that
orresponds to the transformed tree, and then to try to apply that ta
ti

to the original goal. If this worked, it would produ
e the new (genuine) tree

dire
tly. Clearly, this makes no sense where a hypotheti
al ta
ti
 is suggested

(su
h as MULTI_NAMED_GEN_TAC, mentioned earlier), but it should be possible,

for example, for the se
ond kind of transformation. However, this idea is

mere spe
ulation at present.

11 Future Resear
h

We mention brie
y in this Chapter some extensions of the a

ount fa
ility

whi
h we hope to make in future work. These are grouped as pra
ti
al and

theoreti
al extensions.

Some theoreti
al extensions are as follows:

� The idea of transforming trees before printing (Chapter ...)
ould be

extended to more sophisti
ated transformations. One sort of transfor-

mation whi
h might be helpful would be the sele
tive presentation of

proof steps, with the ellipsis or omission of other steps. For example, it

might be desired, parti
ularly in long proofs, to produ
e a

ounts
on-

sisting only of the major or important proof steps. The full a

ounts

shown in this paper are probably too long and detailed for some pur-

poses. Part of the resear
h would be to de
ide whi
h steps in whi
h

ontexts are `important'.

132

� We also mentioned (in Chapter ...) the idea of extra
ting from the

transformation pro
ess enough information to be able to
onstru
t the

transformed ta
ti
, at least in
ertain
ases. A parti
ular appli
ation

of this would be to rephrase HOL ta
ti
s in some desired style. For

example, on
e the subgoal-proof tree is known, the
ompound ta
ti

whi
h produ
ed the tree might
ould be rephrased to be more linear (so

that separate bran
hes are generated by one
at sequen
e of ta
ti
s) or

less linear (so that sele
tive sequen
ing { THENL, for instan
e { were used

where bran
hing o

urs). This would be useful where su
h uniformity

of style is desired.

� At present, it is required that a proof be su

essfully
ompleted in HOL

before an a

ount
an be generated { by re-performing the proof in a

di�erent mode. It might also be useful to be able to work pie
ewise and

intera
tively; that is, to generate an a

ount of one step within a proof.

This would be useful, for example, for understanding mysterious single

steps in
ompleted proofs, or for assessing the e�e
t of diÆ
ult steps

in a proof in progress. An intera
tive fa
ility would involve
hanging

the new ML types (Chapter ...) to some extent, sin
e an a

ount,

as things stand, in
ludes the a
hieving theorem asso
iated with ea
h

node. However, the basi

on
epts should make some sort of intera
tive

fa
ility possible.

� In
onne
tion with the above point, another role of the a

ount fa
il-

ity might be as a proof debugging aid. That is, where a proof fails,

or pro
eeds on an unexpe
ted
ourse, the explanation of
ertain steps

may be valuable in tra
ing the
ause of the problem. Having a

ess to

the subgoal and its purported a
hieving theorem at a problem point

may provide the key to understanding the failure. Here, any impli
it

assumptions (whi
h will be a

essible) may also shed light on the prob-

lem. A

ounts seem parti
ularly useful where a ta
ti
 implemented by

a user dire
tly in ML fails in some way.

� It would also be useful if the a

ount fa
ility
ould be integrated with

another fa
ility for explaining segments of forward proof. (A fa
ility

for explaining forward proofs is part of a
urrently proposed resear
h

grant.) If explanations of the interludes of forward proof whi
h some-

times o

ur in goal-oriented proofs
ould be generated, it would be

133

possible to give more information within a

ounts as presented so far.

For example, where a rewrite rule is derived by a sequen
e of forward

inferen
es, the existing a

ount fa
ility would just report a rewriting

event based on the theorem resulting from the forward inferen
e. If the

inferen
e
ould itself be explained, the new theorem would not appear

as if by magi
, but would be a

ounted for meaningfully.

� In relation to the above point, one slightly unsatisfa
tory feature of the

a

ounts produ
ed
urrently for rewiting steps is that a rewriting step

of a proof is reported based on all of the (potential) rewrites provided.

In fa
t, it would be more informative to be told whi
h rewrites were a
-

tually engaged and whi
h were not, in ea
h
ase. There appeared to be

no simple, a

urate way to do this within the a

ounting s
heme pre-

sented. `Named' ta
ti
s were generally implemented by elaborating on

the results of the original ta
ti
s; original ta
ti
s were taken as `bla
k

boxes'. Rewriting, in parti
ular, has a
omplex and sensitive imple-

mentation in HOL, it seemed sensible to avoid trying to re-implement

it a

urately. It also seemed within the spirit to the
urrent a

ount

pa
kage not to re-implement it. However, if there were already a way

of tra
ing the a
tual steps of the rewriting pro
ess as part of a system

for explaining forward proofs, this would make a valuable addition to

the existing proof a

ount fa
ility for rewriting.

� It might be worth making a wider study of textbook-style proof presen-

tations with the aim of improving the style of proof a

ount printouts.

� The HOL pa
kage for introdu
ing re
ursive data types and automati-

ally generating indu
tion rules for them was designed and implemented

by Tom Melham (...). Derivation of indu
tion rules follows from the

de�nitions that
hara
terize the new re
ursive data type. We have dis-

ussed numeri
al indu
tion only in this paper (...), but it would be very

desirable if, from any new re
ursive type de�nition, one
ould automat-

i
ally generate the `named' ta
ti
 whi
h would produ
e the appropriate

a

ount. This seems in prin
iple to be possible, but has not yet been

studied
arefully.

� It seems possible that the naming of assumptions in the new system of

ML types needed for generating a

ounts may have other appli
ations.

134

One obvious appli
ation is the a

essing of assumptions by name rather

than by position in the (arbitrary) order imposed by a parti
ular HOL

implementation. That is, if an indu
tion hypothesis is identi�ed by

the string `indu
tion hypothesis`, then one ought to be able to say

something like `rewrite using the indu
tion hypothesis as a rewrite rule'

rather than `rewrite using the third assumption (whi
h I happen to

believe is the indu
tion hypothesis, at the moment)'. This would be

a great
onvenien
e to the user, and moreover would produ
e mu
h

learer a

ounts.

� It would be desirable to test many more examples of ML
onstru
ts

whi
h users employ in generating proofs in HOL, parti
ularly the more

omplex ones. There is probably too mu
h bias in examples
onstru
ted

for the purpose.

Some pra
ti
al extensions are as follows:

� The �rst proje
t is to prepare a
leaner and more eÆ
ient implemen-

tation suitable for being released with the HOL system (along with

suitable do
umentation). The fa
ility should also be better interfa
ed

to the HOL system, and easier to use. For example, one would like

to swit
h into a mode in whi
h a

ounts were generated (and swit
h

out again, perhaps) without having to use new names for ta
ti
s (e.g.

NAMED_STRIP_TAC for STRIP_TAC, et
).

� The existing a

ounts fa
ility applies, of
ourse, only to standard HOL

ta
ti
s. For users who implement their own ta
ti
s (in ML rather than

as
ombinations of standard fun
tions), there is no way to produ
e

a

ounts ex
ept by implementing dire
tly the original ta
ti
s as named

ta
ti
s. It might be possible to provide an interfa
e for allowing users

to a

omplish this more easily. The interfa
e
ould, for example, ask

the user what to
all the subgoals and any new assumptions, and so

on, and then implement the original ta
ti
 in a uniform way.

� New printing styles should be tried; the one used in this paper is only

a �rst attempt.

� A new pa
kage for managing goal-oriented proofs (i.e. a new subgoal

pa
kage) has re
ently been implemented by Sara Kalvala (...). (This is

135

a standard part of the HOL 12 implementation.) This pa
kage involves

an internal respresentation of the proof tree, and in
ludes a means

of extra
ting the text of a ta
ti
 from the intera
tion during whi
h a

proof is developed. It would be interesting to explore the relation of

that pa
kage to the a

ount fa
ility, and any ways in whi
h the two

ould be
ombined, or
ould bene�t from ea
h others' te
hniques and

ideas.

� It was mentioned (Chapter ...) that the standard fun
tion POP_ASSUM

auses a slight anomaly in that its justi�
ation does not `repla
e' the

lost assumption in a given a
hieving theorem. This was parti
ularly

apparent in ta
ti
s su
h as POP_ASSUM(K ALL_TAC). One small future

experiment would be to re-implement POP_ASSUM so that its justi�
a-

tion did add the popped assumption to the in
oming theorem, and to

establish that this repair worked
orre
tly with other fun
tions. If so,

the idea of impli
it assumptions would be
ome simpler. (This point

relates to the dis
ussion on pages ...).

12 Con
lusions

The main purpose of the work des
ribed here has been to test the feasi-

bility of extra
ting a
onventional or `natural' explanation of a proof from

the pro
ess of performing the proof in HOL (in goal-oriented fashion). It

was intended that this explanation be free of
on
epts spe
i�
 to HOL or

to me
hanized theorem-proving, even where the HOL ta
ti
s used were spe-

ialized or obs
ure. The main questions were:
ould enough information be

extra
ted from the appli
ation fo ta
ti
s to a goal to
ompose an explanation

oif the proof? What was is the essential information? What is involved in

presenting it in readable form?

So far, the ideas for assembling explanations seem to have worked well,

and the explanations produ
ed, at least for the basi
 ta
ti
s and ta
ti

on-

stru
tions seem reasonable. However, a great deal more experimentation

with real proofs (and in parti
ular with other users' proofs) is still required.

We plan to pursue this in future. As mentioned in Chapter ..., the a

ounts

produ
ed at the moment are probably too detailed and exhaustive for some

purposes, and it is planned also in future to experiment with ideas for
on-

136

densing them. The parti
ular style and layout used in this paper are only

preliminary, and these may
hange with experien
e. At prsent, what we

have is a basis for explaining proofs, and a framework in whi
h to introdu
e

re�nements.

The main obsta
le thus far to produ
ing a

ounts was dealing with ta
ti
s

formed by applying `
ontinuation' fun
tionals to ta
ti
s. Though this is a

exible and
onvenient method for the HOL user, su
h
onstru
ts have the

e�e
t of performing some of the proof steps behind the s
enes, and doing

more than one major proof step at a time. The resulting leap is therefore

diÆ
ult to explain. We have proposed one way of spelling out su
h steps (in

Chapter ...) whi
h seems to produ
e a
omprehensible story. The method

proposed may appear slightly unsatisfa
tory in that it reverses the dire
tion

of the HOL implementation, in whi
h the higher order fun
tionals (e.g. the

ontinuations) are primary and the ordinary ta
ti
s are de�ned in their terms;

the method for produ
ing a

ounts in these
ases takes the ta
ti
s as primary

and the higher-order
onstru
ts de�ned in terms of them. However, there

is no real reason to insist that the
on
epts and tools of the HOL user be

determined by what happens to be the implementation of HOL. For example,

the HOL system is normally taught by presenting simple ta
ti
s �rst, and

ta
ti

onstru
tions later on (if at all).

A se
ond, related obsta
le (see Chapter ...) was the use of the set of
ur-

rent assumptions as a sta
k or array, in whi
h the position of an assumption

{ whi
h is again just an artefa
t of the HOL implementation { provides a

means of a

essing assumptions. This approa
h o

asionally also involves the

apparent `dropping' of assumptions on
e they are `used', partly as a means

of
ontrolling the size of the assumption set. Our analysis points to various

on
eptual problems in this style of proof, but as the method is now popular

in the HOL
ommunity, it seemed ne
essary to provide a way of a

ounting

for proof steps based on a sta
k or array of assumptions. We think that the

method proposed in Chapter ... is quite satisfa
tory.

The means of over
oming both of the above obsta
les, and to the prob-

lem of invalid proof steps as well (see Chapter ...), suggested the notion of

impli
it assumptions. That
on
ept is introdu
ed in Chapter By making

a

essible all the assumptions whi
h hold at a given stage in a goal-oriented

proof, but whi
h are not normally made expli
it, several mysteries about

HOL proofs
an be
leared up. At the same time, always printing impli
it

assumptions
reates a
ertain amount of
lutter. Further work is planned on

137

how to de
ide exa
tly when printing impli
it assumptions is useful.

138

13 Referen
es

139

14 Appendix

This appendix lists (i) the ML fun
tions whi
h work as they are under the

new system of ML types (des
ribed in Chapter ...); (ii) the ML fun
tions

whi
h have been re-implemented for the new system of types; and (iii) new

fun
tions whi
h have been implemented for the new system of types. Ea
h

fun
tion is listed with its main appearan
e in the text.

The fun
tions whi
h do not require modi�
ation for HOL (Version 11) are:

THEN

THENL

MAP_EVERY

EVERY

FIRST

MAP_FIRST

NO_TAC

ORELSE

REPEAT

THENC

The fun
tions whi
h have been re-implemented are:

NAMED_GEN_TAC

NAMED_X_GEN_TAC

NAMED_INDUCT_TAC

NAMED_SUBST_TAC

NAMED_SUBST1_TAC

NAMED_BOOL_CASES_TAC

NAMED_COND_CASES_TAC

NAMED_SPEC_TAC

NAMED_ASSUME_TAC

NAMED_ACCEPT_TAC

NAMED_ASM_CASES_TAC

NAMED_CONJ_TAC

NAMED_LIST_INDUCT_TAC

NAMED_ALL_TAC

NAMED_EQ_TAC

NAMED_CONV_TAC

NAMED_EXISTS_TAC

NAMED_MP_TAC

NAMED_UNDISCH_TAC

NAMED_CONTR_TAC

NAMED_DISCARD_TAC

NAMED_MATCH_MP_TAC

NAMED_MATCH_ACCEPT_TAC

NAMED_SUBST_OCCS_TAC

NAMED_BETA_TAC

NAMED_REWRITE_TAC

NAMED_ASM_REWRITE_TAC

NAMED_PURE_REWRITE_TAC

NAMED_ONCE_REWRITE_TAC

NAMED_PURE_ASM_REWRITE_TAC

NAMED_PURE_ONCE_REWRITE_TAC

NAMED_ONCE_ASM_REWRITE_TAC

NAMED_PURE_ONCE_ASM_REWRITE_TAC

NAMED_DISCH_TAC

NAMED_DISCH_THEN

140

NAMED_DISJ_CASES_TAC

NAMED_DISJ_CASES_THEN2

NAMED_DISJ_CASES_THEN

NAMED_X_CHOOSE_TAC

NAMED_X_CHOOSE_THEN

NAMED_CHOOSE_TAC

NAMED_CHOOSE_THEN

NAMED_CONJ_ASSUME_TAC2

NAMED_CONJUNCTS_THEN2

NAMED_CONJUNCTS_THEN

NAMED_IMP_RES_TAC

NAMED_RES_TAC

NAMED_IMP_RES_ASSUME_TAC

NAMED_IMP_RES_THEN

NAMED_RES_ASSUME_TAC

NAMED_RES_THEN

$MY_THEN_TCL

$MY_ORELSE_TCL

MY_REPEAT_TCL

MY_ALL_THEN

MY_NO_THEN

MY_EVERY_TCL

MY_FIRST_TCL

NAMED_CHECK_ASSUME_TAC

NAMED_STRIP_THM_THEN

NAMED_STRIP_ASSUME_TAC

NAMED_STRIP_GOAL_THEN

NAMED_STRIP_TAC

NAMED_SUBST_ALL_TAC

NAMED_ASSUME_LIST_TAC

NAMED_ASSUM_LIST

NAMED_FIRST_ASSUM

NAMED_CHANGED_TAC

NAMED_REFL_TAC

NAMED_THEN_TCL

NAMED_ORELSE_TCL

NAMED_REPEAT_TCL

NAMED_EVERY_TCL

NAMED_FIRST_TCL

NAMED_ALL_THEN

NAMED_NO_THEN

The new fun
tions whi
h have been implemented are:

C_NAMED_ASSUME_TAC1

C_NAMED_ASSUME_TAC2

NAMED_POP_TRACE

NAMED_POP_TRACE'

NAMED_POP_TRACE''

NAMED_POP_TRACE'''

NAMED_POP_ASSUM

NAMED_POP_ASSUM'

NAMED_POP_TRACE_LIST

NAMED_POP_TRACE_LIST'

NAMED_POP_TRACE_LIST''

NAMED_POP_ASSUM_LIST

NAMED_BASIC_IMP_RES_TAC

NAMED_PRIM_STRIP_TAC

141

