

Optimizing Energy Efficiency and Quality of Service in Large Scale Web Server Environments

2016-12-17 GreenCom2016 --- Chengdu

Simon Kiertscher, Bettina Schnor University of Potsdam

Components of a Server-Load-Balancing (SLB) Cluster

Motivation

- 30% of servers world-wide are *comatose* according to [1] (2015, Stanford) and [2] (2008, Uptime Institute)
- Corresponds to 4GW
 The most power full nuclear power plant block on earth generates 1.5GW

https://de.wikipedia.org/wiki/Datei:Chooz_Nuclear_Power_Plant-9361.jpg

Energy Saving Daemon (CHERUB)

- Centralized approach no clients on back-ends
- Daemon located at master node polls the system in fixed time intervals to analyze its state
 - Status of every node
 - Load situation
- Depending on the state of the nodes, saved attributes and the load prediction, actions are performed for every node
- Online system we don't need any information about future load

Simulation - ClusterSim Architecture

Scalability Evaluation of an Energy-Aware Resource Management System for Clusters of Web Servers Kiertscher, Schnor

International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), Chicago, USA, July 2015

Simulation - Energy Accounting

- Using real data from SPECpower_ssj 2008 Benchmark (Systems from 2007-2015)
- No data about STR, Boot or Shutdown consumption

Used Metrics

- Quality of Service (QoS) in % using a 5 second timeout
- Request duration (RD) in milliseconds including waiting and processing time
- Energy consumption (EC) in Wh / Energy saved (ES) in %
- Number of physical state changes (PSCs) defined as the process to either turn on or turn off a node
- Score, a weighted ranking of the other 4 metrics

Varied Factors

Boot duration [s]	Backup [%]	Shutdown strategy	Explicit wait before boot [min]		
5, 30, 60, 120, 180	0,5,10,25	Aggressive vs. one-by-one	0, 1		

9

Used Workload and Optimum regarding EC/ES

- Peak load situation \rightarrow Worst Case
- Derived from real trace

Used Workload and Optimum (60 seconds boottime)

One of 80

11

Results QoS

Results Energy Saving

auto. sh., wait 0 auto. sh., wait 1	+ ×	seq. sh., wait 0 seq. sh., wait 1	*	
optimum saving		•		

Score - Results

strategy	boot duration in s	score	QoS in %	ES in %	Optimum Saving	RD in ms	PSCs	PSCs in Optimum Case	shutdown	wait in min	backup in %
HP	5	70.3	98.70	13.63	29.9	67	123	1094	seq.	0	25
	30	66.5	97.77	13.42	22.9	79	135	404	seq.	0	25
	60	63.6	97.16	11.44	19.0	78	159	249	seq.	0	25
	120	56.9	94.63	10.02	14.9	81	156	215	seq.	0	25
	180	53.1	92.32	10.64	11.0	80	148	181	seq.	0	25
LC	5	61.0	84.56	32.60	29.9	548	94	1094	seq.	1	0
	30	60.5	83.42	31.58	22.9	430	89	404	seq.	1	0
	60	56.3	83.13	30.12	19.0	401	105	249	seq.	1	0
	120	49.2	82.30	29.76	14.9	527	124	215	seq.	1	0
	180	43.1	78.00	34.25	11.0	1452	180	181	auto.	1	0
В	5	55.4	96.99	28.08	29.9	574	199	1094	auto.	0	10
	30	50.8	96.00	26.37	22.9	619	219	404	auto.	0	10
	60	47.8	94.73	26.08	19.0	658	211	249	auto.	0	10
	120	41.1	92.07	22.29	14.9	211	174	215	auto.	1	25
	180	33.9	84.66	28.74	11.0	626	173	181	auto.	1	10

Conclusion

- Strategy works in 100 node SLB-Setup
- Results are very close to the optimum (with fast hardware)
- Boot duration is a critical factor
- Backup has a linear influence on QoS and EC
- Aggressive shutdown can save up to 12,9 % extra energy in the peak load scenario
- Extra waiting time is not necessary if load forecasting is used

Thank you for your attention! Any Questions?

Contact: kiertscher@cs.uni-potsdam.de www.cs.uni-potsdam.de

Sources

- [1] "New data supports finding that 30 percent of servers are 'Comatose', indicating that nearly a third of capital in enterprise data centers is wasted" by Jonathan Koomey and Jon Taylor, 2015
- [2] "Revolutionizing Data Center Energy Efficiency" by James Kaplan, William Forrest, Noah Kindler, 2008