
A Performance and Scalability Analysis of the Tsunami
Simulation EasyWave for Different Multi-Core Architectures and

Programming Models

Steffen Christgau, Johannes Spazier, Bettina Schnor
Institute for Computational Science, University of Potsdam, Potsdam, Germany

email: {christgau, schnor, spazier}@cs.uni-potsdam.de

Berichte Institut für Informatik und Computational Science
UP, ISSN 0946-7580, TR-2015-1

A Performance and Scalability Analysis of the Tsunami Simulation EasyWave for
Different Multi-Core Architectures and Programming Models

Steffen Christgau, Johannes Spazier, Bettina Schnor
Institute for Computational Science, University of Potsdam, Potsdam, Germany

email: {christgau, schnor, spazier}@cs.uni-potsdam.de

Abstract—In this paper, the performance and scalability
of different multi-core systems is experimentally evaluated
for the Tsunami simulation EasyWave. The target platforms
include a standard Ivy Bridge Xeon processor, an Intel
Xeon Phi accelerator card, and also a GPU. OpenMP, MPI
and CUDA were used to parallelize the program to these
platforms. The absolute performance of the application on
the different platforms is compared, and limiting factors are
analyzed based on the application’s scaling behavior.

Keywords-multi-core architectures, cache awareness, hy-
brid programming, scientific application, performance eval-
uation

I. INTRODUCTION

Multi- and many-core systems, like multi-core CPUs,
GPUs or accelerators enable applications to be executed
fast if the application fits to the according hardware
architecture. In this paper, we investigate the scaling of the
stencil computation EasyWave [1] on different many-core
systems. The application simulates the spatial propagation
of a Tsunami wave that has been caused by a seismic
event. The main purpose of EasyWave is its use in a
Tsunami early warning center. Within such a center, sensor
data is aggregated. In case of a seismic event, data such as
estimations of the event’s position and magnitude is used
as input for EasyWave. In case EasyWave detects a hazard
for a certain region, the operators of the warning center
issue appropriate warnings to the government and people.

Due to the time critical character of the use-case, the
application should run as fast as possible while providing
accurate results to avoid false-positives as well as false-
negatives. In prior work, it was shown that EasyWave
can benefit significantly from the use of GPUs [2]. The
originally sequential C++ application was ported to differ-
ent generations of NVidia Tesla GPUs (Tesla and Fermi
architecture) using CUDA and OpenACC. The runtime of
a realistic single-run scenario was reduced from about five
minutes to a few seconds, which is already acceptable
for operators in early warning centers to decide on the
situation and disseminate warnings.

In this paper, we compare the performance of EasyWave
on different many-core architectures using also different
parallel programming models: a parallel OpenMP version
on a multi-core CPU as well as on the Xeon Phi and a
single GPU using CUDA. On the Xeon Phi, offloading and
native co-processor execution are examined. We compare
both the absolute runtimes where applicable since this is
the critical metric for the warning center operators, and the
scalability of the application on the different architectures.

The scalability results will help to derive implications for
porting other applications to these platforms.

The remainder of this paper is organized as follows:
In the next section, the experimental environments and
their technical details are presented alongside a short
description of the used programming model. EasyWave is
presented in Section III. After that, the different employed
parallelization techniques for EasyWave are explained in
detail. Section V presents and discusses the experimental
results. In Section VI, an overview of related work is
given, followed by a conclusion and summary.

II. ENVIRONMENT AND PROGRAMMING MODELS

We tested the following three different platforms: A
powerful conventional server system using a single Ivy
Bridge Xeon processor, an Intel Xeon Phi 7120D, and a
NVIDIA Tesla K40m GPGPU. A summary of the hard-
and software configuration is shown in Table I.

A. Multi-core CPU

The multi-core CPU system is a conventional Intel Xeon
server processor that consists of 10 cores. All cores share a
last level cache and have private L2 and L1 which remain
consistent due to the cache coherence protocol used in that
processor. Further, the CPU’s specification states it owns
four memory channels and is able to deliver 59,7 GB/s of
memory bandwidth [3]. Although the processor supports
HyperThreading and TurboBoost, both technologies were
not used respectively disabled to prevent disturbing the
experimental results.

OpenMP [4] is used as framework to parallelize Easy-
Wave. Among other frameworks such as POSIX pthreads,
Cilk, or Intel Thread Building Blocks, OpenMP allows an
easy yet efficient parallelization of the code. To compile
the code, the Intel Compiler version 14.0.2 was used.

B. Intel Xeon Phi Co-processor

The Intel Xeon Phi 7120P (also known as Knights
Corner) is a co-processor card attached to a host system
via PCI-Express connection. It is based on the Many
Integrated Core (MIC) architecture and consists of 61
processor cores that are derived from the original Intel
Pentium architecture and execute program code in order.
The cores are connected via a bidirectional ring which is
realized by three rings for each direction: a data block
ring, an address ring, and an acknowledgment ring. This
bidirectional ring serves as means for memory transactions
and maintains the coherence between the caches.

Accelerator Machine GPU machine
property Multi-Core CPU Accelerator GPU Host
model Intel Xeon E5-2690v2 Intel Xeon Phi 7120D Tesla K40m Intel Xeon E5-2690v2
frequency 3.0 GHz 1.24 GHz 746 MHz 3.0 GHz
cores/threads 10/20 61/244 2880 cores 10/20
memory 128 GB DDR3 16 GB GDDR5 12 GB GDDR5 64 GB DDR3
cache 32 KB L1 32 KB L1 48 KB L1 32 KB L1

256 KB L2 512 KB L2 1536 KB L2 256 KB L2
25 MB L3 (shared) - - 25 MB L3 (shared)

vector unit 256 b (AVX) 512 b - 256 b (AVX)
interconnect PCIe to Phi on-chip rings PCIe InfiniBand
operating system Linux 3.0.76 Linux 2.6.38.8 (none) Linux 2.6.32
prog. model OpenMP OpenMP, MPI, hybr. CUDA/SIMT MPI

Table I: Hard- and software parameters of the programming environments.

As extension to the old Pentium processor, the cores
possess a vector unit capable of handling 512 bits of data
in parallel. Additionally, each core has support for four
hardware threads (SMT). As one core is dedicated to the
stream-lined Linux OS running on the SMP-like accel-
erator, a maximum number of 240 hardware threads can
be used to execute an application. The L1 and L2 caches
are dedicated to each core and are coherent among the
chip [5]. The main memory on the accelerator comprises
16 GB.

For the co-processor, basically two different execution
modes are available to run a program: First, the native
mode that requires cross-compilation of the whole applica-
tion (including dependencies, such as third-party libraries)
and runs the whole application on the accelerator. To
exploit the parallelism of the Xeon Phi, a parallelization
has to be done. For this, implementations of well-known
techniques like OpenMP or the Message Passing Interface
(MPI) [6] are available. While the former requires com-
piler support, the latter requires an MPI implementation
for the target platform. In the second execution mode, only
some functions, most likely the compute-intensive ones,
are compiled for and executed on the Phi. This mode is
called offload and requires support by the compiler.

In our experiments, we used the Intel compiler Version
14.0.2 to compile EasyWave for the Xeon Phi. The tools
that supported the development and execution of the
generated code were included in the Intel C++ Studio XE1
2013 SP1. The MPI implementation we used was Intel
MPI version 4.1.0.024.

C. Single GPU

In addition to the mentioned multi-core systems, an
NVIDIA Tesla K40m GPU (Kepler architecture) is in-
cluded in the comparison to evaluate the performance of
a high-end GPU. As GPUs provide hardware support for
computing massively parallel programs, the device class
fits well to EasyWave. Previous work has shown that this
kind of application can benefit from those devices [7], [2],
and even from multiple GPUs [8] or clusters [9].

To program the GPU CUDA-C is employed: the CUDA
toolkit version 5.5.22 and GCC version 4.8.2 were used.
The code of the implemented kernels is a straight forward
CUDA port of the according C++ methods from the

sequential application with typical optimization consider-
ations like ensured memory alignment.

III. EASYWAVE APPLICATION DETAILS

The EasyWave tsunami simulation [1], [10] uses bathy-
metric data as input model for the ocean region to be
simulated. The data is given as 2-dimensional regular grid.
The computation carried out on the grid is repeated in
a time-loop and divided into two parts: update of wave
heights and update of reverse fluxes. Due to the employed
numerical scheme the wave and flux updates require a
three-point stencil, i. e. the update of a grid cell in a time
step requires the current data of the grid cell and other
data of two of its eight neighbors (Moore neighborhood).
Additionally, the stencils differ in which cells are included
in the computation. For wave update, the upper and left
neighbors are used, whereas the flux update includes the
lower and right neighbor cells. Note that the computation
happens in place. No additional fields are allocated to store
the new values, and no copying or flipping is done at the
end of a single time-step.

The data required for the simulation are stored in sep-
arate arrays of single-precision floating points (structure
of arrays). The input data is loaded at application startup
from the file system.

For the wave height update step, nine memory accesses
and seven floating point operations are necessary. For the
flux update also nine memory accesses but six floating
point operations are carried out. The index for the memory
accesses is computed beforehand from the variables of the
two loops iterating over the grid. Thus we assume that
it is held in a register or at least in the cache hierarchy
where the current stack frame including the local variables
is very likely to be stored. As all data involve single
precision floats of size 4 bytes, the operational intensity
in FLOPs per loaded byte is 7FLOPs

9·4 bytes = 0.194 for wave
height resp. 0.167 FLOPs/byte which is quite low. Thus,
the application is clearly memory bound.

Although, the program allows storing the computed data
in files for visualization and further processing purposes,
this feature is ignored within this paper. Moreover, the
sequential application uses a dynamic extension of the
computed area, because of the limited area that needs
to be updated/computed when the wave starts with its
propagation. This feature is not supported in the paral-

lelized versions. The lack of this optimization simplifies
the parallelization.

IV. APPLICATION PARALLELIZATION

The parallelization approach of EasyWave for the dif-
ferent target platforms is discussed in the following sub-
sections. For all described parallel implementations, we
ensured that the computational results are still valid in
comparison with the sequential version, i. e. only small
deviations of the resulting wave height are allowed. The
code was generally compiled with -O3 as compiler option.

A. Basic OpenMP parallelization

As described in Section III, the application repeatedly
iterates over a regular 2D grid for several time steps.
Further, the computations of each grid point inside the
two update procedures for wave height and fluxes are
independent of each other. Using domain decomposition
is therefore suitable to develop a parallel version of each
of the two procedures. Thus, the compute domain is
partitioned into one-dimensional chunks.

The partitions are created by annotating the vertical loop
with a parallel for OpenMP pragma. This was done
for both update procedures. This basic OpenMP variant of
EasyWave was evaluated on the Xeon Phi as well as on
the Xeon server processor.

B. Offloading

The Xeon Phi’s offloading execution mode was used in
the offload version of the application. The wave and flux
update functions were annotated to be offloaded and com-
piled for Xeon Phi, while the remainder of the software is
executed by the host processor. Further, memory transfers
to and from the accelerator were instructed to the compiler
by adding according pragmas to the source code: Before
the wave update and only in the first time-step, data is
offloaded to the Xeon Phi and is finally copied back to
the host system when the final time-step is completed.
This minimizes the need for memory transfers over the
(comparable slow) PCI-Express connection and only the
invocation of the two update functions is issued from the
host processor.

C. Cache-aware OpenMP approach

Typical data simulated by EasyWave has a size of some
hundred MB. Thus, none of the target platforms is capable
of holding the data in one of its caches. Even in the basic
OpenMP version, each of the threads computes a sub-array
that is larger than the caches. In addition, none of the
computed or accessed elements is reused within one time
step. Therefore, the utilization of the caches is quite bad.
Further, the low operational intensity of the two update
functions implies a high demand on memory bandwidth.

This motivated a parallel cache-aware variant of the
basic OpenMP program. Within this approach, the com-
pute domain is divided into smaller blocks that fit into the
last level cache. These blocks are processed in sequence
from left to right and from top to bottom. Each block is
computed for multiple time-steps in parallel, using all the

Wave array W Flux array Flon Flux array Flat

2 2
2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1
2 1 0 0 0 0 0 2 1 0 0 0 0 0 2 1 0 0 0 0 0
2 1 0 0 0 0 0 2 1 0 0 0 0 0 2 1 0 0 0 0 0
2 1 0 0 0 0 0 2 1 0 0 0 0 0 2 1 0 0 0 0 0
1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0
0 0

(a) 1. Iteration: Update of wave array.

2 2
2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1
2 1 1 1 1 1 0 2 1 0 0 0 0 0 2 1 0 0 0 0 0
2 1 1 1 1 1 0 2 1 0 0 0 0 0 2 1 0 0 0 0 0
2 1 1 1 1 1 0 2 1 0 0 0 0 0 2 1 0 0 0 0 0
1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0
0 0

(b) 1. Iteration: Update of flux arrays.

2 2
2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1
2 1 1 1 1 1 0 2 1 1 1 1 1 0 2 1 1 1 1 1 0
2 1 1 1 1 1 0 2 1 1 1 1 1 0 2 1 1 1 1 1 0
2 1 1 1 1 1 0 2 1 1 1 1 1 0 2 1 1 1 1 1 0
1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0
0 0

(c) Need of moving the block after the first iteration.

2 2
2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1
2 1 1 1 1 1 0 2 1 1 1 1 1 0 2 1 1 1 1 1 0
2 1 1 1 1 1 0 2 1 1 1 1 1 0 2 1 1 1 1 1 0
2 1 1 1 1 1 0 2 1 1 1 1 1 0 2 1 1 1 1 1 0
1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0
0 0

(d) 2. Iteration: Update of wave array.

2 2
2 2 2 2 2 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1
2 2 2 2 2 1 0 2 1 1 1 1 1 0 2 1 1 1 1 1 0
2 2 2 2 2 1 0 2 1 1 1 1 1 0 2 1 1 1 1 1 0
2 2 2 2 2 1 0 2 1 1 1 1 1 0 2 1 1 1 1 1 0
1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0
0 0

(e) 2. Iteration: Update of flux arrays.

2 2
2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1
2 2 2 2 2 1 0 2 2 2 2 2 1 0 2 2 2 2 2 1 0
2 2 2 2 2 1 0 2 2 2 2 2 1 0 2 2 2 2 2 1 0
2 2 2 2 2 1 0 2 2 2 2 2 1 0 2 2 2 2 2 1 0
1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0
0 0

(f) Processing of the block completed.

2 2
2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1
2 2 2 2 2 1 0 2 2 2 2 2 1 0 2 2 2 2 2 1 0
2 2 2 2 2 1 0 2 2 2 2 2 1 0 2 2 2 2 2 1 0
2 2 2 2 2 1 0 2 2 2 2 2 1 0 2 2 2 2 2 1 0
1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0
0 0

(g) Continue with the next block in sequence.

Figure 1: Moving of the block area in the cache-aware
OpenMP version.

available threads. This improves the cache usage, because
the elements of a block are reused for multiple iterations.

Figure 1 demonstrates the processing of one such block
in the middle of the two dimensional domain (highlighted
with a bold border) and for two consecutive time-steps,
although the algorithm applies for more timesteps as well.
Three different arrays (W , Flat, Flon) are shown as they are
part of the stencil. In the Figure, the arrays are represented
as cells. The number inside a cell indicates the time step
up to which its data has been computed so far. Because
of the sequence in which the blocks are computed, it
is guaranteed that all blocks to the left and to the top
were already updated. They have a level greater than 0.
Whereas, the outstanding blocks to the right and to the
bottom are not computed yet.

At the beginning of the first iteration, the wave array
W (x, y) within the block is completely updated to the next
level (i.e. to level 1) according to the formula1

W t+1(x, y) =W t(x, y)⊗
F t

lon(x, y)⊗ F t
lon(x+ 1, y)⊗

F t
lat(x, y)⊗ F t

lat(x, y + 1).

(1)

This is possible because the elements needed from both
flux arrays are available at the current level 0, as can be
seen in Figure 1a. The required flux values are highlighted
for two border elements of the wave array, showing the
first stencil.

Afterwards all flux values are updated based on the
newly computed wave elements of level 1 according to
the simplified formulas

F t+1
lon (x, y) =F t

lon(x, y)⊗
W t+1(x, y)⊗W t+1

lon (x− 1, y)

F t+1
lat (x, y) =F t

lat(x, y)⊗
W t+1(x, y)⊗W t+1

lat (x, y − 1)

(2)

As marked in Figure 1b, each flux element depends on
two wave values according to the second stencil, which is
reverse to the first one. The update of the longitudinal
fluxes in the leftmost column is possible, because the
elements outside the block were already calculated to level
1 in a previous block. The same applies to the latitudinal
fluxes in the uppermost row.

The block has to be moved one column to the left
and one row to the top, before the next iteration starts.
The move is necessary because updating the rightmost
column and the bottommost row of the wave array would
otherwise result in inconsistent data. The reason is that
some fields from the flux arrays, that are used within
the computation, are now from an outdated level, as
highlighted in red in Figure 1c. A positive effect of moving
the block is that fields from neighbor blocks, which could
previously not be updated to the latest level, because of
the move mechanism itself, are now processed further.

After moving the block, the second iteration can be
accomplished analogously to the first one as illustrated

1⊗ is a placeholder for a floating point operation

in Figure 1d and 1e. As a result, the wave and flux values
of the current block location have been updated to level 2
(see Figure 1f). Hence, the local update within the block
is completed and the next block from the sequence can be
processed according to the same pattern (Figure 1g). If all
blocks are updated, the entire algorithm is repeated until
the desired number of iterations is reached.

The advantage of this cache-aware algorithm is that no
redundant computations are necessary. Each array element
is processed exactly as often as required to update to a
desired iteration. This is mainly achieved by the block
moving scheme which exploits the structure of the under-
lying stencils. In general, the algorithm cannot easily be
applied without adaptations. Other stencils may require
redundant calculations and additional memory buffers.
However, even a higher computational effort can pay off,
if the architectural limitations can thus be bypassed.

Although this optimization is cache-aware it implies
higher coding efforts and complicates the source code of
the application. Additional execution overhead is produced
as more loops and computations for loop ranges and block
boundaries are required to enable the cache-aware block
computation.

D. Vectorization

Since EasyWave computes on adjacent elements of its
data grid, the application may benefit from vector instruc-
tions. Therefore, a compiler-based vectorization was used
on the two target platforms which offer vector instructions.
Hand-written vectorized codes using intrinsics were also
evaluated but were not faster than compiler generated ones.

The compiler-based vectorization was finally used on
the two target platforms which offer vector instructions,
i.e. the Xeon and the Xeon Phi. The vectorization was
applied both to the basic and the cache-aware OpenMP
version of EasyWave. Although supported by the compiler,
the OpenMP SIMD pragma was not used, as preceding
work indicates slower performance as native compiler-
based vectorization [11]. For application versions with-
out vectorization presented in this paper, the compiler’s
-novec option was used to explicitely disable vectoriza-
tion in the -O3 optimization level.

E. Message Passing

In the message passing implementation of EasyWave,
we used MPI to parallelize the program. The used ap-
proach is well-known: First, the boundaries of a process’
subdomain are computed. Next, the updated boundary val-
ues are transferred to the neighboring processes. To have a
potential for overlapping communication and computation,
non-blocking routines (MPI_Isend/Irecv) are utilized
to perform the data exchange: The transfer is initialized
and might be completed by the MPI implementation while
the application is computing the inner parts of the accord-
ing subdomain. After the calculation, the application waits
for the data transfer to be completed using MPI_Wait.

V. EXPERIMENTAL RESULTS

The absolute runtimes as well as the speedup will be
discussed in the following. The runtimes are important for
the use case scenario in an early warning center where
the result has to be calculated as fast as possible. To
investigate the scaling of the application on the different
platforms, we analyze the speedup which is each time
calculated regarding the sequential run of the correspond-
ing parallel program (i.e. regarding the sequential basic
version or the sequential cache-aware version).

For all runtime values, the minimal value of five re-
peated measurements is reported. They do not include the
time required to load the data from disk into memory. The
data set used for the multi-core CPU and the Xeon Phi are
equal.

If not stated otherwise, a grid of size 2701 × 2446
represents a region of the Indian Ocean with nearly no
mainland. This prevents computational imbalance between
the processes introduced by the data, as no computation
is done on land areas by EasyWave.

A. Multi-Core CPU

The runtimes on the Ivy Bridge processor are shown
in Figure 2 for the basic OpenMP version and its cache-
optimized counterpart, each with and without vectorization
used. For every version, scaling up to about six cores
can be observed, but the versions differ significantly in
runtime.

The runtime of the basic version decreases until seven
cores are used. Afterwards, the speed of the application
remains constant. The same applies to the vectorized
version, but this one shows better runtimes for lower
processor counts. This indicates that the memory intensive
characteristics of EasyWave impose too much load on the
memory controllers. This was verified by using the Intel
Performance Counter Monitor. We observed a total mem-
ory bandwidth of 47 GB/s used by both the vectorized and
the unoptimized basic OpenMP version. This measured
limit is 78 % of the theoretical maximum bandwidth. For
the vectorized version, this limit is already reached for five
cores. From this, we can conclude that vectorization can
increase the performance, but only as long as the memory
controller is no bottleneck. In summary, vectorization
shows no benefit using the full system (10 cores).

In case of the cache-aware version, the runtime de-
creases significantly using vectorization. Figure 2 shows
that only by exploiting the two technologies, the appli-
cation performance can be tuned significantly. It can be
seen that the cache-aware version without vectorization is
slower even than the basic version for 1 up to 4 cores.
This is due to additional overhead/statements introduced
by the cache-awareness algorithm. But for the interesting
case, the full system, the benefit of parallelization by vec-
torization is significant, since due to the code optimization
the memory controller can keep up.

The effects described above have influence on the
scaling of the application as shown in Figure 3. The
speedup values are reported in relation to the single-thread

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10

ru
n

ti
m

e
 [

s
]

threads

basic OpenMP
basic OpenMP + vect.
cache-aware OpenMP
cache-aware OpenMP + vect.

Figure 2: EasyWave runtimes on the multi-core Xeon
CPU for the basic and the cache-aware versions including
vectorization.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

s
p

e
e

d
u

p

threads

basic OpenMP
basic OpenMP + vect.
cache-aware OpenMP
cache-aware OpenMP + vect.

Figure 3: Speedup of EasyWave on the multi-core Xeon
CPU.

runtime of the according program version. For the non-
cache-aware variants, the memory bandwidth limitation
clearly limits further scaling, whereas the cache-optimized
versions show a much better scaling behaviour which is
nearly linear. Thus, with appropriate coding effort, the
application can scale with core count, but the architectural
limits have to be taken into account.

B. Intel Xeon Phi Co-processor

For the Intel Xeon Phi, the different execution modes
were analyzed first. We compared the performance of the
basic OpenMP version against the offload variant, where
only the two update functions are executed on the accelera-
tor (cf. Section IV-B). In the direct comparison, the offload
version always runs slower than its native counterpart.
While the basic version took 323.4 s with one thread, the
offload variant used 331.1 s, which equals an overhead of
2.4 %. When the maximum number of 240 threads is used,
the basic version runs 6.98 s, where the offload version
needs 8.17 s (+17 %). The overhead can be attributed to the
frequent startups of the offloaded functions and the implied
thread start, which should be avoided. In consequence, the

offload mode is not considered in the remaining parts of
this work.

Although the offload mode seems to be disadvantageous
for EasyWave, it might be beneficial for applications that
can overlap certain tasks with the computation on the Xeon
Phi. For example, simulations which require intermediate
results to be recorded (e. g. for visualization purposes)
could run the computation on the Phi for some iterations,
then copy the memory back to the host. While the Phi
continues to compute in an asynchronous function call,
the host CPU can save the results on local disk which is
likely to be much faster than using NFS from the Xeon
Phi.

In Figure 4, the absolute runtimes on the Intel Xeon
Phi are presented on an logarithmic axis for an increasing
number of threads. For up to 60 threads, no SMT is in use
as we take care that threads are distributed among cores.

Comparing the base OpenMP version with and without
vectorization, Figure 4 shows that vectorization has a very
positive effect on the runtime: 17.45s versus 8.55s for
60 threads, and 8.72s versus 6.98s for 240 threads. This
is different from the situation on the multi-core CPU.
Although, the theoretical 16× performance improvement
(sixteen 32-bit floats can be held by one vector register)
is not achieved, due to the low operational density of the
application.

Also different to the Ivy Bridge Xeon CPU, the cache-
aware, non-vectorized OpenMP version is always slower
than the basic OpenMP one. There is no inflection point
where the overhead of being cache-aware finally pays off
as it did after four cores on the Ivy Bridge. This can
be attributed to the less sophisticated design of the Phi’s
cores, which execute instructions in order, do not possess
a branch predictor nor do they run at high frequencies.

A real performance boost brings the cache-aware
OpenMP version with vectorization. This version outper-
forms all other program variants on the Xeon Phi at all
core counts.

Looking at thread counts larger than 60, the runtime
for all versions only decreases slightly. In case of the base
version with vectorization, the runtime is 8.55s on 60 cores
versus 6.72s on 180 cores and increases again to 6.98s for
240 cores. The corresponding figures for the cache-aware
OpenMP version with vectorization are 4.19s (60), 4.25s
(180), and 3.61s (240). Thus, SMT is not much beneficial
for this application, i. e. only small speedup improvements
are achieved as soon as the vector unit is used.

This is also visible in Figure 5 where the speedups
relative to their single thread runs are shown. Looking
on the scaling of these versions, only for the two non-
vectorized variants the speedups still increase. This is
consistent with the observations in [11] where the memory
controller delivers more performance when SMT is used.
In case of the memory-bound application EasyWave, we
can therefore observe an slightly increasing speedup. Con-
trary, the speedup of all other versions is saturated after 60
cores. Further, SMT does not bring as much performance
improvements for the observed application use-case as

 1

 10

 100

 1000

 0 60 120 180 240

ru
n

ti
m

e
 [

s
]

threads

basic OpenMP
basic OpenMP + vect.
cache-aware OpenMP
cache-aware OpenMP + vect.
MPI + vect.
MPI + vect w/o comm.

Figure 4: EasyWave runtimes on the Intel Xeon Phi.

 0

 20

 40

 60

 80

 100

 120

 0 60 120 180 240

s
p

e
e

d
u

p

threads

basic OpenMP
basic OpenMP + vect.
cache-aware OpenMP
cache-aware OpenMP + vect.
MPI + vect.

Figure 5: Speedup of EasyWave version on the Intel Xeon
Phi.

vectorization did.
For MPI, the absolute runtimes are also shown in Figure

4. We report the timings for an MPI version that was com-
piled to use the vector units but without cache-awareness
or other OpenMP parallelization. Up to 120 cores, its
performance is nearly identical to the vectorized OpenMP
version. After that, the runtime increases significantly and
is finally even slower than the basic OpenMP implemen-
tation. This can be attributed to the communication, as
the same MPI program without communication (shown in
the green/triangle curve) does not show such an increase in
runtime. Note that this version produces wrong results, but
it was used to analyze the influence of the communication
overhead.

In addition to the vectorized MPI version, a hybrid
version was analyzed that uses one MPI process per core
and two respectively four OpenMP threads to calculate the
process’ subdomain. In the experiments, no performance
gain was achieved.

C. Final Comparison and Discussion

The most minimum runtime on the Xeon Phi (3.61 s)
is still higher than for the Ivy Bridge Xeon (3.5 s) for the
same input data. Thus, purchasing and porting the accel-

erator has no benefit for EasyWave and other applications
of its class with respect to runtime. Moreover, the parallel
efficiency (speedup/thread count) is quite worse on the
Xeon Phi compared to the Ivy Bridge Xeon. Here, the
fastest version (cache-aware and vectorized OpenMP) has
an efficiency of 87 % while the same (and also fastest)
version on the Phi only has a efficiency of 16 % when
using 240 cores (32 % efficiency for 120 cores with
approx. equal runtime).

Finally, we compare the absolute runtimes of EasyWave
on the multi-core Xeon processor, the Xeon Phi, and on
a single GPU. To measure the benefit for the operation
in an Early Warning Center, the speedup related to the
original sequential CPU application is reported. For all
systems, the experiment is conducted using the same input
data set which is larger than the one used in the previous
chapters. The grid is extended to a size of 18001× 16301
cells but represents the same area of the Indian Ocean
with higher resolution as in the previous experiments. The
reported numbers are the minimal runtimes of the parallel
application version on the according platform.

In all presented cases a significant improvement, i. e.
speedup, over the sequential version can be observed as
shown in Table II. The positive effect of vectorization
can be seen on both architectures, the Xeon server CPU
(speedup of 3.6) and the Xeon Phi (speedup of 11.9).

Again, cache-awareness pays out a lot for both architec-
tures. The hand-coded cache-optimized version on the Ivy
Bridge Xeon performs best and its runtime is 20 % lower
than the next best variant, the cache-aware and vectorized
version on the Xeon Phi.

While the GPU can compete with the vectorized Phi
version, it is clearly outperformed by the cache-aware and
vectorized version on the Xeon Phi with the runtime being
150 s lower. So, the additional effort for the CUDA port
(i.e. recode the application to that programming model)
does not pay off for EasyWave.

These results might question the need for an accelerator
like the Xeon Phi or a GPU as the commodity (yet
expensive) server processor shows the best performance.
However, it should be noted that the results might only
be valid for the presented application, although it is a
typical representative of its application class. Further, the
best performance was achieved by according programming
skills. In contrast, the vectorized version for the Xeon Phi
was created only with the compiler’s help and it is already
3.3 times faster than the according server CPU version.
With that in mind, the Xeon Phi can massively improve an
application’s performance without further coding efforts
and/or the required time and skills of a programmer. Yet,
optimizing to the according hardware platform is still the
key to achieve the maximum of performance.

VI. RELATED WORK

In this section, we summarize related work which
presents experiences with porting different types of ap-
plications to the Intel Xeon Phi.

system program version runtime speedup
Ivy Bridge Xeon sequential 5593 s -
Ivy Bridge Xeon vectorized 1577 s 3.6
Ivy Bridge Xeon cache-aware + vect. 268 s 20.9
Xeon Phi vectorized 471 s 11.9
Xeon Phi cache-aware + vect. 331 s 16.9
single K40m CUDA port 482 s 11.6

Table II: Overall comparison of parallel EasyWave ver-
sions among the different systems.

The work presented in [12], [13] shows the importance
to interpret measurement results always within the in-
vestigated application class. Cramer et al. compare the
performance of a Xeon Phi prototype card possessing
60 cores/240 hardware threads with a massive 128-cores
SMP computer [12]. The performance and scalability of a
cache-friendly version of a conjugate gradient (CG) solver
is discussed in detail. Their experiments show that the con-
sidered CG application shows a better scaling behaviour
on the Xeon Phi co-processor than EasyWave. Without
SMT (i.e. 60 cores), a speedup of over 53 is observed and
with all 244 hardware threads in use the speedup increases
up to over 74. Different to our experiments, they observed
that the gain from vectorization within the CG method is
quite small on the Xeon Phi.

In the successor paper, Schmidl et al. [13] extend
their work and analyze the performance of several other
scientific applications ranging from the NPB package
to applications of their university coming from different
science domains. Further, their performance is compared
with a commodity two-socket Intel Ivy Bridge E5 Xeon
processor system, a predecessor of the multi-core CPU
used in our experiments. It is shown that the speedup on
the Xeon Phi is good, but compared to the Ivy Bridge
system, the absolute performance is lower even if the
full accelerator core capabilities are used. This is again
different from our experience where the basic OpenMP
version was outperformed by the Xeon Phi. The authors
assume that the benchmarks suffer from the slow sequen-
tial performance of the Phi’s in-order cores and higher
memory latency.

The authors of [14] explore how popular programming
models behave on a modern processor like the Xeon Phi
when multi-programming is used. To answer this ques-
tion, three benchmarks (Fibonacci computation, mergesort,
dense matrix multiplication) from different application
categories are executed first exclusively and then together
on a Xeon Phi 5110P. As programming models, OpenMP,
Cilk and Thread Building Blocks (TBB) are used. From
the exclusive runs, the scalability of the three benchmarks
can be observed. In all three cases a saturation in the
measured speedup can be observed for every programming
model.

Pennycook et al. [15] optimize the miniMD benchmark,
a molecular dynamics application, for better use of SIMD.
They focus on the SIMD instruction allowing scatter
and gather operations as well as masking operations.
They compare the performance of their new optimized

implementation on an 8-core Intel Xeon E5 and on a Xeon
Phi co-processor. In the outcome, the Xeon Phi is up to
42 % faster than its counterpart. The authors highlight the
need to optimize the code and ensure that SIMD is used
effectively.

In [11], a further application class, a medical CT image
reconstruction is discussed and the performance on a two-
socket Xeon E5-2660, a Tesla K20 (Kepler architecture)
and a Xeon Phi 5110P is compared. As in [15], the
authors exploit gather and SIMD operations to tune their
application for the Xeon Phi. The experiences for this
application show that only hand-tuned and well-designed
assembly code for the Xeon Phi can produce performance
that is superior to the Xeon E5-2660. They demonstrate
the limits of the memory controller, since only 50 % of
the theoretical peak memory bandwidth could be obtained
for an updating kernel used by their application. They
also point out that this is only possible when using the
Phi’s SMT capabilities to a maximum. Not surprisingly,
the GPUs deliver best performance for the examined
application as its bi-linear interpolation part can benefit
from the hardware support provided by the texture buffers.

VII. CONCLUSION

In the presented work, the absolute performance and
the scalability of the simulation application EasyWave
was evaluated on different multi-core processor systems.
It was shown that for this memory-bound application,
tuning towards this is a critical aspect on a standard Xeon
processor as well as on the Xeon Phi.

Influence of vectorization: For the Ivy Bridge Xeon
processor, comparing the base OpenMP version with and
without vectorization vectorization shows no benefit for
the interesting case of the maximum number of ten cores
since the memory controllers cannot keep up.

The situation is different on the Xeon Phi. Comparing
the base OpenMP version with and without vectorization,
has shown that vectorization has a very positive effect on
the runtime of EasyWave on the Xeon Phi.

Influence of SMT: In case of EasyWave, SMT is
not much beneficial for this application, i. e. only small
speedup improvements are achieved as soon as the vector
unit is used.

Comparing programming models: We were interested
to compare the different available programming models on
the Xeon Phi. But the investigated programming models
OpenMP, MPI, and the hybrid approach combining MPI
and OpenMP show very similar runtimes. For the MPI ver-
sion it is recommended to use not more than 120 threads,
since otherwise the communication overhead engulfs any
benefit due to SMT.

Human versus hardware effort: Using a cache-aware
algorithm, the application performs best on the standard
Xeon and beats the Xeon Phi accelerator card as well as
a single GPU thanks to its faster cores.

But without any manual tuning effort, the basic
OpenMP version of EasyWave gets a performance im-
provement on the Intel Xeon Phi: The fastest runtime on

the multi-core CPU is 15.1 s which is reduced to 6.98 s
using the Xeon Phi.

REFERENCES

[1] A. Babeyko, “EasyWave: Fast Tsunami Simulation Tool for
Early Warning,” February 2012, ftp://ftp.gfz-potsdam.de/
pub/home/mod/babeyko/easyWave/easyWave About.pdf.

[2] S. Christgau, J. Spazier, B. Schnor, M. Hammitzsch,
A. Babeyko, and J. Waechter, “A comparison of CUDA
and OpenACC: Accelerating the tsunami simulation Easy-
Wave,” in ARCS 2014 - 27th International Conference on
Architecture of Computing Systems, Workshop Proceedings,
February 25-28, 2014, Luebeck, Germany. VDE Verlag /
IEEE Xplore, 2014.

[3] Intel ARK, “Intel Xeon Processor E5-
2690 v2 specification.” [Online]. Avail-
able: http://ark.intel.com/products/75279/Intel-Xeon-
Processor-E5-2690-v2-25M-Cache-3 00-GHz

[4] OpenMP Architecture Review Board, “OpenMP
application program interface version 4.0,” Jul.
2013. [Online]. Available: http://www.openmp.org/mp-
documents/OpenMP4.0.0.pdf

[5] J. Reinders, “An Overview of Programming
for Intel Xeon processors and Intel Xeon Phi
coprocessors,” Nov. 2012. [Online]. Available:
https://software.intel.com/sites/default/files/article/330164/
an-overview-of-programming-for-intel-xeon-processors-
and-intel-xeon-phi-coprocessors 1.pdf

[6] Message Passing Interface Forum, MPI: A Message-
Passing Interface Standard, Version 3.0. High Performance
Computing Center Stuttgart, Sep. 2012.

[7] M. T. Satria, B. Huang, T.-J. Hsieh, Y.-L. Chang, and
W.-Y. Liang, “GPU acceleration of tsunami propagation
model,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 5, no. 3, pp. 1014–
1023, June 2012.

[8] M. L. Sætra and A. R. Brodtkorb, “Shallow water
simulations on multiple GPUs,” in Proceedings of the
10th International Conference on Applied Parallel and
Scientific Computing - Volume 2, ser. PARA’10. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 56–66. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-28145-7 6

[9] D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michea,
“High-order finite-element seismic wave propagation mod-
eling with MPI on a large GPU cluster,” Journal of Com-
putational Physics, vol. 229, no. 20, pp. 7692–7714, 2010.

[10] German Research Centre for Geosciences, “EasyWave,”
online, 2014, http://trac.gfz-potsdam.de/easywave.

[11] J. Hofmann, J. Treibig, G. Hager, and G. Wellein, “Per-
formance engineering for a medical imaging application
on the Intel Xeon Phi accelerator,” in ARCS 2014 - 27th
International Conference on Architecture of Computing
Systems, Workshop Proceedings, February 25-28, 2014,
Luebeck, Germany, W. Stechele and T. Wild, Eds. VDE
Verlag / IEEE Xplore, 2014.

[12] T. Cramer, D. Schmidl, M. Klemm, and D. an Mey,
“OpenMP programming on Intel Xeon Phi coprocessors:
An early performance comparison,” in Proceedings of
the Many-core Applications Research Community (MARC)
Symposium at RWTH Aachen University, Nov. 2012, pp.
38–44.

[13] D. Schmidl, T. Cramer, S. Wienke, C. Terboven,
and M. S. Müller, “Assessing the performance of
OpenMP programs on the Intel Xeon Phi,” in Euro-
Par 2013 Parallel Processing - 19th International
Conference, Aachen, Germany, August 26-30, 2013.
Proceedings, F. Wolf, B. Mohr, and D. an Mey,
Eds. Springer, 2013, pp. 547–558. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-40047-6 56

[14] A. Tousimojarad and W. Vanderbauwhede, “Comparison of
Three Popular Parallel Programming Models on the Intel
Xeon Phi,” in Euro-Par 2014: Parallel Processing - 20th
International Conference, Porto, Portugal, August 24-28,
2013. Proceedings. Springer, 2014.

[15] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy,
and S. A. Jarvis, “Exploring SIMD for molecular
dynamics, using Intel Xeon processors and Intel Xeon
Phi coprocessors,” in Proceedings of the 2013 IEEE
27th International Symposium on Parallel and Distributed
Processing, ser. IPDPS ’13. Washington, DC, USA:
IEEE Computer Society, 2013, pp. 1085–1097. [Online].
Available: http://dx.doi.org/10.1109/IPDPS.2013.44

