
FACULT Y OF

COMPUTER SCIENCE

Theoretical Computer Science

Master’s Thesis

Induction Provers in Hets: Leveraging the Tons of
Inductive Problems language and tools to talk to

more Automated Theorem Provers

Tom Kranz

Supervisor: Prof. Dr.-Ing. Till Mossakowski
Assisting Supervisor: Dipl.-Inf. Mario Frank

Institute for Intelligent Cooperating Systems, Otto von Guericke University Magdeburg

2022-10-16

To Vera, whom I hope to be able to call a friend for years to come.
You carried me through the hardest parts of this ordeal,

and were the reason I finished a Bachelor’s degree in the first place.
Thank you.

Abstract

Abstract

This thesis documents the process of integrating the Tons of Inductive Problems (TIP)
format with the Heterogeneous Tool Set (Hets) to simplify communication with automated
theorem provers (ATPs) capable of proving inductively. This integration is evaluated by first
connecting the inductive ATP Zipperposition to Hets and then comparing the newly gained
automatic induction capabilities with the pre-existing capabilities provided by SPASS and
E.

Contents
List of Tables ix

Listings xi

Acronyms xiii

1 Introduction 1

2 Background 3
2.1 The Heterogeneous Tool Set . 3

2.1.1 Institutions and specifications . 3
2.1.2 Institution comorphisms (plain maps) 5

2.2 The Common Algebraic Specification Language 6
2.2.1 Structuring constructs . 9
2.2.2 𝑃𝐶𝐹𝑂𝐿= and subsorting encoding 10
2.2.3 𝐶𝐹𝑂𝐿= and partiality encoding . 10
2.2.4 HasCASL . 11

2.3 Tons of Inductive Problems . 16
2.4 Zipperposition . 17

3 Related Work 19
3.1 Tools for Inductive Provers . 19
3.2 Why3 . 20
3.3 Sledgehammer . 20

4 Thesis Contribution 23
4.1 Strengthening partiality encoding . 23
4.2 Prerequisites . 25

4.2.1 Literal translations . 26
4.2.2 Semantic compatibility . 28

4.3 Implementation . 29
4.3.1 More specific partiality encoding . 29
4.3.2 Representing CASL specifications in TIP format 30
4.3.3 Integrating Zipperposition . 32

4.4 Experiments . 32

5 Thesis Outcome 35
5.1 TIP for inductive CASL problems . 35

viii Contents

5.2 Zipperposition for inductive CASL problems 36

6 Conclusion 39
6.1 Summary . 39
6.2 Future Work . 40

Bibliography 41

Appendix 49
A.1 CASL specifications for evaluation . 49
A.2 TIP translations for evaluation . 54

List of Tables
5.1 Zipperposition FOL-with-induction mode performance (– for timeout after

60 s) . 36
5.2 Zipperposition HOL mode (non-persistently-liberal partiality encoding) per-

formance (– for timeout after 60 s) . 37

Listings
2.1 CASL basic specification for ℕ+ ⩽ ℕ ⩽ ℤ and some operations, demonstrat-

ing 𝑆𝑢𝑏𝑃𝐶𝐹𝑂𝐿= features . 8
2.2 HasCASL basic specification for map-related operators on lists, demonstrat-

ing polymorphism, type constructors, and higher-order functions 13

4.1 Two equivalent TIP translations of free type Nat ::= Zero | Suc(Pred:?
Nat) . 27

A.1 CASL specifications for ℕ, lists and binary trees, restricted to 𝐶𝐹𝑂𝐿= fea-
tures (courtesy of Till Mossakowski) . 50

A.2 CASL specifications from Listing A.1, extended with partial functions . . . 51
A.3 CASL specifications from Listing A.1, extended with subsorting features . . 52
A.4 CASL specifications from Listing A.1, extended with partial functions and

subsorting features . 53
A.5 TIP translation of spec Nat from Listing A.1 with features not supported

by Zipperposition kept for readability . 54
A.6 TIP translation of spec Nat from Listing A.2 using a persistently liberal

comorphism with features not supported by Zipperposition kept for readability 55
A.7 TIP translation of spec Nat from Listing A.2 using a non-persistently liberal

comorphism with features not supported by Zipperposition kept for readability 56
A.8 TIP translation of spec Nat from Listing A.3 using a persistently liberal

comorphism with features not supported by Zipperposition kept for readability 58
A.9 TIP translation of spec Nat from Listing A.3 using a non-persistently liberal

comorphism with features not supported by Zipperposition kept for readability 60
A.10 TIP translation of spec Nat from Listing A.4 using a persistently liberal

comorphism with features not supported by Zipperposition kept for readability 62
A.11 TIP translation of spec Nat from Listing A.4 using a non-persistently liberal

comorphism with features not supported by Zipperposition kept for readability 64

Abbreviations
ATP automated theorem prover. v, 1, 2, 17, 19–21, 23, 29, 32, 39, 40

CASL the Common Algebraic Specification Language. 6, 7, 9–12, 23, 25–27, 29–32, 35, 36,
39, 40

𝐶𝐹𝑂𝐿= first-order logic with sort generation constraints and equality – the subinstitution
of 𝑃𝐶𝐹𝑂𝐿= without partial functions. 10, 24–28, 31, 39, 40

CL Common Logic – a knowledge-representation logic based on untyped first-order logic.
2, 40

FOF first-order form – a format of the TPTP for expressing problems in untyped first-order
logic. 21

FOL first-order logic. 2, 17, 26, 27, 32, 33, 35, 37

Hets the Heterogeneous Tool Set. v, 3, 5, 19–21, 23, 26–33, 35–37, 39, 40
HOL higher-order logic. 15, 17, 33, 37, 40

𝑃𝐶𝐹𝑂𝐿= first-order logic with partial functions, sort generation constraints, and equality
– the subinstitution of 𝑆𝑢𝑏𝑃𝐶𝐹𝑂𝐿= without subsorting. 10, 11, 23, 24, 26

𝑃𝑜𝑙𝑦𝑇 𝑦𝐶𝑜𝑛𝑠𝐻𝑂𝐿= polymorphic higher-order logic with type constructor definitions and
equality – the subinstitution of 𝑆𝑢𝑏𝑃𝐶𝑜𝐶𝑙𝑇 𝑦𝐶𝑜𝑛𝑠𝑃𝑟𝑜𝑑𝑠𝐻𝑂𝐿= without subsorting,
partial functions, type constructor class definitions, and interpreted product type
constructor. 27

𝑆𝑢𝑏𝑃𝐶𝐹𝑂𝐿= subsorted first-order logic with partial functions, sort generation constraints,
and equality – the institution encompassing the full expressive power of CASL. 6, 7,
10, 26–28, 31

𝑆𝑢𝑏𝑃𝐶𝑜𝐶𝑙𝑇 𝑦𝐶𝑜𝑛𝑠𝑃𝑟𝑜𝑑𝑠𝐻𝑂𝐿= subsorted higher-order logic with partial functions, type
constructor classes, type constructor definitions, interpreted product type construc-
tors, and equality – the institution encompassing the full expressive power of Has-
CASL. 11, 14, 15, 27, 29

TFF typed first-order form – a format of the TPTP for expressing problems in typed first-
order logic. 19, 21

THF typed higher-order form – a format of the TPTP for expressing problems in typed
higher-order logic. 32

xiv Acronyms

TIP Tons of Inductive Problems – a library of test problems for ATPs, specifically problems
requiring induction proofs to solve. v, 16, 17, 19, 20, 23, 26, 27, 29–32, 35, 36, 39, 40

TPTP Thousands of Problems for Theorem Provers – a library of test problems for ATPs
covering various problem classes. 19, 32, 40

CHAPTER 1

Introduction

Using a mathematically formal approach to software development was proposed
at an early stage in the development of computer science. […] It quickly be-
came clear that manual proofs could only be developed for very small systems.
Program proving is now supported by large-scale automated theorem proving
software, which has meant that larger systems can be proved. However, de-
veloping the proof obligations for theorem provers is a difficult and specialized
task, so formal verification is not widely used. [75, p. 300]

This excerpt from arguably one of the classic introductory textbooks on software engineering
illustrates two of the hurdles formal methods have to take on their way from the ivory
towers of theoretical computer science departments into “real-world” software development:
Finding proofs that software does what it is supposed to do and specifying the desired
behaviour of software in a way that permits such reasoning in the first place. Sommerville
goes on to elaborate on reasons for the difficulty of the latter hurdle: “Problem owners
and domain experts cannot understand a formal specification, so they cannot check that it
accurately represents their requirements.” [75, p. 302] One means of narrowing this semantic
gap are formalisms that incorporate domain-specific concepts in their design, thus enabling
domain experts to contribute to formal specifications from a perspective they are already
familiar with.
When such a formalism is first introduced, it may raise the first hurdle mentioned above
because existing automated theorem provers (ATPs) will likely not know how to handle it.
One needs to establish new automation tools or find ways to translate new specifications
into existing formalisms with the desired automation support or just limit the new for-
malism’s applications to small use-cases that can reasonably be proven manually. In large
software systems, certain parts may be specified with their own formalisms, but still need
to interact with each other. This need for interoperability between specifications suggests
that translations between the involved formalisms or into a common denominator between
them may even be required.
The conditions for, methods to realize, and consequences of such interoperation are the
subject of the study of structured and heterogeneous specification. One way to make spec-
ifications sufficiently abstract for general study is to model them algebraically: If software
systems are considered descriptions of algebras, i.e. structures consisting of a set of data and
a set of functions on the data, specifications can be considered definitions of entire classes of

2 Chapter 1 Introduction

algebras. Such a definition in turn extends to the software systems realizing a specification
via membership of their algebra in the specified class. [69, pp. 3, 5] Structured specification,
then, studies operations for combining specifications and the effects of these operations on
the defined classes of algebras, while heterogeneous specification studies operations arising
between algebras of differing internal structure.
An example of a formalism that was created specifically to relieve its intended users from the
idiosyncracies and limitations of a prevalent standard is the Common Logic (CL) framework
[81]. CL is a logic based on first-order logic (FOL) but extended to make knowledge repre-
sentation in the context of the Semantic Web more natural than in FOL. [46] In an effort
to retain existing tool support, it was designed to permit different levels of expressiveness
through syntactic restrictions that should suffice, as Menzel puts it, “for the vast majority
of practical purposes”. For example, CL provides sequence variables to express lists as ar-
guments for functions and predicates. As lists are inductively defined data structures, they
require an induction scheme to fully specify in FOL, making CL non-compact and therefore
impossible to develop a complete ATP for. [34, 66] Allowing sequence variables to only be
introduced at the outermost universal-quantification level of an axiom, though, alleviates
this problem by enabling a reduction of the axiom to an infinite set of sequence-variable-free
sentences for which compactness still holds. If maximum ATP support is desired, it makes
sense to consider CL specifications that violate this restriction separately from those that
satisfy it, using incomplete provers only for the former and complete FOL provers for the
latter. Proving soundness for the combination of realizations of these specifications may
then degenerate into a heterogeneous task, since they may come from differently-expressive
programming languages, each with its own notion of algebraic models.
As foreshadowed above, a non-compact logic of particular practical interest is the extension
of FOL by an induction scheme, since many “everyday” structures in computer science
are defined inductively: natural numbers1, lists, trees, to name just a few prominent ones.
Of course, specifications defining and using such completeness-breaking structures should
nonetheless be treated with the best automation support possible. It is therefore hardly
surprising that, despite their predetermined incompleteness, ATPs for non-compact logics
still emerge, especially those “just” adding induction capabilities to existing FOL proof
calculi. [83, 24]
The remainder of this work will detail the steps I have taken to augment a tool for heteroge-
neous proof management by an interface for communication with induction-capable ATPs.
Chapter 2 introduces the tool, its theoretical foundation and the facilities used to establish
this interface. Chapter 3 collects existing uses of ATPs in interactive tools to establish
a context for this work’s contribution. Chapter 4 details this contribution by describing
the changes to the tool’s code and explaining the experiments by which the usefulness of
these changes has been measured. Chapter 5 presents the results of these experiments and
evaluates whether these can be deemed a success and which factors played a role in that
outcome. Chapter 6 summarizes the knowledge gained through this work and gives pointers
towards an expansion of that knowledge.

1Usually demoted to finite subsets whose members are more easily digestible for real processors – but
results for the entirety of ℕ obviously ease reasoning within these subsets.

CHAPTER 2

Background
This chapter will give the required theoretical background for the work that I will do.
I will try to include everything that is needed to comprehend the decisions I will make.
What will not be introduced here is some basic category theoretical vocabulary, which the
reader should have heard before but need not be intimately familiar with. Recommending
a textbook would greatly overstate the extent to which category theoretical insights will
be required, so I will simply refer the reader to their favourite encyclopedia for any such
vocabulary that does not immediately ring a bell.

2.1 The Heterogeneous Tool Set

The Heterogeneous Tool Set (Hets) is a proof management and formal methods inte-
gration software. It implements the heterogeneous specification framework described by
Mossakowski. [51, 52] This includes a parser, static analysis and a proof engine for hetero-
geneous multi-logic specifications as well as connections to provers and model finders for
the individual logics involved in these specifications. The semantics of these heterogeneous
specifications are defined by the theory of institutions [35].

2.1.1 Institutions and specifications

An institution 𝐼 = (Sign, Sen, Mod, ⊧) formalizes a logic by defining:
• a category Sign with signatures as objects and signature translations as morphisms,
• a covariant functor Sen ∶ Sign → Set assigning each signature Σ ∈ |Sign| the language

of logic sentences using non-logic symbols from Σ and each signature translation
𝜎 ∈ hom(Sign𝐼) a corresponding sentence translation along 𝜎,

• a contravariant functor Mod ∶ Signop → Cat assigning each signature Σ a category
of models whose objects interpret the objects of Σ and may be connected through
morphisms among each other, and each 𝜎∶ Σ → Σ′ a reduct functor against 𝜎, i.e.
Mod(𝜎) ∶ Mod(Σ′) → Mod(Σ), and

• a family of satisfaction relations ⊧, that, for each signature Σ, relates Σ-models with
the Σ-sentences they satisfy, i.e. ⊧Σ⊆ |Mod(Σ)| × Sen(Σ),

4 Chapter 2 Background

such that for each signature translation 𝜎∶ Σ → Σ′ of Sign the satisfaction condition holds:

∀𝑀 ′ ∈ |Mod(Σ′)|.∀𝜑 ∈ Sen(Σ).𝑀 ′ ⊧Σ′ 𝜎(𝜑) ⟺ 𝑀 ′|𝜎 ⊧Σ 𝜑,

where 𝑀 ′|𝜎 ≔ Mod(𝜎)(𝑀 ′) and 𝜎(𝜑) ≔ Sen(𝜎)(𝜑). Application of the reduct functor to
model morphisms may also be abbreviated: ℎ|𝜎 ≔ Mod(𝜎)(ℎ). The satisfaction relation
can be extended to sets of sentences Γ ⊆ Sen(Σ), i.e. 𝑀 ⊧Σ Γ ⟺ ∀𝜑 ∈ Γ.𝑀 ⊧Σ 𝜑. It
can also be used to relate sets of sentences with single sentences, which is referred to as
semantic entailment: Γ ⊧Σ 𝜑 ⟺ ∀𝑀 ∈ |Mod(Σ)|.𝑀 ⊧Σ Γ ⟹ 𝑀 ⊧Σ 𝜑.
A theory over 𝐼 is a tuple 𝑇 = (Σ, Γ) with Σ again a signature and Γ ⊆ Sen(Σ) its set of
axioms. A theory by itself already determines a class – and by extension a full subcategory
– of models that satisfy its axioms: |Mod(𝑇)| = {𝑀 ∈ |Mod(Σ)| ∣ 𝑀 ⊧Σ Γ}. It can thus be
considered a specification and indeed, so called flat specifications are just theories with finite
sets of axioms. Structured specifications, on the other hand, combine existing specifications
using specification-building operations such as:
union: For a signature Σ and Σ-specifications 𝑆𝑃1, 𝑆𝑃2,

|Mod(𝑆𝑃1 ∪ 𝑆𝑃2)| = |Mod(𝑆𝑃1)| ∩ |Mod(𝑆𝑃2)|.
translation: For a signature morphism 𝜎∶ Σ → Σ′ and a Σ-specification 𝑆𝑃,

|Mod(translate 𝑆𝑃 by 𝜎)| = {𝑀 ′ ∈ |Mod(Σ′)| ∣ 𝑀 ′|𝜎 ∈ |Mod(𝑆𝑃)|}
hiding: For a signature morphism 𝜎∶ Σ → Σ′ and a Σ′-specification 𝑆𝑃 ′,

|Mod(derive from 𝑆𝑃 ′ by 𝜎)| = {𝑀 ′|𝜎 ∣ 𝑀 ′ ∈ |Mod(𝑆𝑃 ′)|}
free extension: For a signature morphism 𝜎∶ Σ → Σ′ and a Σ′-specification 𝑆𝑃 ′,

|Mod(free 𝑆𝑃 ′ along 𝜎)| = {𝑀 ′ ∈ |Mod(𝑆𝑃 ′)| ∣
𝑀 ′ is strongly persistently (Mod(𝜎) ∶ Mod(𝑆𝑃 ′) → Mod(Σ))-free},

i.e. for any model 𝑁 ′ ∈ |Mod(𝑆𝑃 ′)| and any model morphism ℎ∶ 𝑀 ′|𝜎 → 𝑁 ′|𝜎, there
is a unique morphism ℎ# ∶ 𝑀 ′ → 𝑁 ′ such that ℎ#∣

𝜎
= ℎ. [50, Sec. 2.3] In an algebraic

context and with 𝜎 an embedding, such a model 𝑀 ′ is an absolutely free Σ-structure
with generators in 𝑀 ′|𝜎 [3, Def. 7]. Roughly speaking, all the objects of 𝑀 ′ have
to be reachable by applying functions of 𝑀 ′ to already reachable objects, with the
objects in 𝑀 ′|𝜎 being considered reachable to begin with.

Structured specifications containing only unions, translations, and flat specifications are
flattenable into a normal form, i.e. a flat specification with the same model class. In an
institution with the so-called weak amalgability property, hiding specifications can also be
brought into normal form. Free extensions cannot generally be brought into normal form,
since they allow the specification of inductive types and relations and can therefore not be
expressed in flat specifications of a compact institution. A specification 𝑆𝑃1 is said to refine
another one 𝑆𝑃2 if |Mod(𝑆𝑃1)| ⊆ |Mod(𝑆𝑃2)|.
An institution only captures the model-theoretic view on a logic. To capture proof the-
ory, an institution might be extended by an entailment system to form a logic 𝐿 =
(Sign, Sen, Mod, ⊧, ⊢). For any signature Σ, the relation ⊢Σ in the entailment system has
to be Tarskian, that means for any Σ-sentence 𝜑 and sets of Σ-sentences Γ, Γ′ it has to be
reflexive: {𝜑} ⊢Σ 𝜑
monotonic: Γ ⊢Σ 𝜑 ∧ Γ′ ⊇ Γ ⟹ Γ′ ⊢Σ 𝜑
transitive: Γ ∪ Γ′ ⊢Σ 𝜑 ∧ (∀𝜑′ ∈ Γ′.Γ ⊢Σ 𝜑′) ⟹ Γ ⊢Σ 𝜑

2.1 The Heterogeneous Tool Set 5

Furthermore, the relations must be compatible with signature translations 𝜎∶ Σ → Σ′:
Γ ⊢Σ 𝜑 ⟹ 𝜎(Γ) ⊢Σ 𝜎(𝜑). Most importantly, they have to be sound: Γ ⊢Σ 𝜑 ⟹ Γ ⊧Σ 𝜑.
A logic where the soundness condition is an equivalence is called complete. Although any
institution can easily be extended to a complete logic by defining semantic entailment as
the entailment system, this would be missing the point. Rather, an entailment system
should be defined via a system of finitary derivation rules, or calculus, which can be used
to construct a proof.
For example, Hets implements a logic-independent proof calculus for structured specifica-
tions based on development graphs. Logic-specific proof calculi, or external tools imple-
menting them, are only needed upon reaching flat specifications. Heterogeneity is then
introduced by viewing institutions as objects of a category with morphisms defined to suit
a particular notion of “logic translation”[49].

2.1.2 Institution comorphisms (plain maps)

Goguen and Burstall defined their classical institution morphisms from the point of view
of translations as projections from one institution onto another. That is, the source can be
considered as being “built on” the target. Such morphisms would allow re-use of proof tools
built for the more expressive institution, the source, for specifications of the less expressive
one, the target and for target sentences to appear in source specifications. This was achieved
by reducing source signatures and models to the target institution and injecting target
sentences into the source institution.
A somewhat dual notion to projections are encodings, which are thus formalized under
the name of institution comorphisms. These were described by Meseguer as plain maps of
institutions in order to formalize the notion of a subinstitution in terms of special plain
maps. [47] The idea was to translate signatures, signature translations and sentences of
a subinstitution 𝐼 one-to-one to those of the target institution 𝐼′ and being able to trans-
late models of translated sentences back isomorphically. In the general case though, these
maps embody the notion of encoding or representing logical frameworks into another. An
institution comorphism 𝜌 = (Φ, 𝛼, 𝛽) ∶ 𝐼 → 𝐼 ′ thus consists of:

• a functor Φ∶ Sign → Sign′,
• a natural transformation 𝛼∶ Sen ⇒ Sen′ ∘ Φ, and
• a natural transformation 𝛽∶ Mod′ ∘ Φop ⇒ Mod,

such that for each Σ ∈ |Sign| the satisfaction condition holds:

∀𝑀 ′ ∈ |Mod′(Φ(Σ))|.∀𝜑 ∈ Sen(Σ).𝑀 ′ ⊧′
Φ(Σ) 𝛼Σ(𝜑′) ⟺ 𝛽Σ(𝑀 ′) ⊧Σ 𝜑.

Certain properties of comorphisms allow the borrowing of proof calculi of logics belong-
ing to the target institution, even if the source institution does not have a native logic.
Subinstitution comorphisms allow borrowing for structured specifications containing all of
the specification-building operations mentioned above. Strongly persistently liberal comor-
phisms allow borrowing for structured specifications involving specification-building opera-
tions using certain signature translations. Such comorphisms can produce a covariant model
translation 𝛾Σ for every (contravariant) 𝛽Σ such that 𝛽Σ ∘ 𝛾Σ = 𝑖𝑑. The transformation 𝛾
need not be natural but for a signature translation 𝜎∶ Σ1 → Σ2 in a specification-building

6 Chapter 2 Background

operation to not disturb borrowing, 𝛾 has to be 𝜎-natural: 𝛾Σ1
∘Mod(𝜎) = Mod′(Φ(𝜎))∘𝛾Σ2

.
Model-expansive comorphisms allow borrowing only for flat specifications.
Theoroidal comorphisms generalize comorphisms by allowing Φ to map signatures in 𝐼 to
theories in 𝐼′ and signature translations to theory translations.

2.2 The Common Algebraic Specification Language

The Common Algebraic Specification Language (CASL) is a language for the formal spec-
ification of functional requirements and modular design of software. [2] Its featureset can
be divided into the following layers: [53]
basic specifications for writing (flat) specifications in a particular institution, which de-

faults to CASL’s underlying institution,
structured specifications for building complex specifications from simpler ones,
architectural specifications to prescribe the modular structure of an implementation and

enforce the separate development of implementation units, and
libraries of specifications to store and retrieve named specifications.
The CASL institution can be described as subsorted first-order logic with partial functions,
sort generation constraints, and equality (𝑆𝑢𝑏𝑃𝐶𝐹𝑂𝐿=). A sort generation constraint is
equivalent to an induction axiom (schema) and so their inclusion in the language makes
CASL as a whole non-compact. Basic specifications are built from the following language
constructs:

• sort, sorts for the declaration of one or more sorts or the declaration or definition
of one or more subsorts or any combination of these,

• op(s) for the declaration or definition of one or more constants, total functions and
partial functions, optionally with attributes declaring them to be associative, commu-
tative or to have a unit,

• pred(s) for the declaration or definition of one or more predicates,
• type(s) to declare one or more sorts with associated constructors and optional selec-

tors without imposing any further restrictions, apart from the expected relationship
between selectors and constructors,

• generated type(s) to declare datatypes as before but with an additional sort gen-
eration (no-junk) constraint which ensures that every inhabitant of the declared sort
can be generated from the constructors,

• generated {…} to subject a group of (sub)sort and operation declarations to a sort
generation constraint, i.e. designate the operations in the constraint whose result sorts
are also in the constraint as their respective result sort’s constructors,

• free type(s) to declare generated datatypes as before1 but with an additional no-
confusion constraint which ensures that every inhabitant of the declared sort can be
uniquely generated from the constructors,

1However, the free {…} construct is defined in terms of free extensions, which makes it a specification-
building operation!

2.2 The Common Algebraic Specification Language 7

• var(s), forall (synonymous) to declare universally quantified global variables of a
certain (sub)sort for use in stand-alone axioms or a subsequent .-(full-stop-)bulleted
list of axioms2, and

• axiom(s) to introduce such axioms using first-order sentences.

A basic specification determines a signature and a set of sentences, i.e. a flat specification
over 𝑆𝑢𝑏𝑃𝐶𝐹𝑂𝐿=. In this institution, signatures are 5-tuples Σ = (𝑆, 𝑇 𝐹 , 𝑃𝐹 , 𝑃 , ⩽)
consisting of the following components:

• 𝑆 is a set of sort symbols,
• 𝑇 𝐹 and 𝑃𝐹 are disjoint sets of total and partial function symbols, respectively, asso-

ciated with a profile, i.e. a non-empty string of sort symbols, the last of which being
the result sort and the rest the argument sorts,

• 𝑃 is a set of predicate symbols associated with a, possibly empty, profile of argument
sorts, and

• ⩽ ⊆ 𝑆 × 𝑆 is the subsort relation, a pre-order.

For an example of a CASL basic specification, see an adapted version of the Hets-lib3

specification of the naturals (Nat), positive naturals (Pos), and integers (Int) and some
related operations in Listing 2.1. Lines 1 to 18 induce the below components of the signature
Σ𝑁𝑢𝑚.

𝑆𝑁𝑢𝑚 = {Nat, Int, Pos},
𝑇 𝐹𝑁𝑢𝑚 = {0:Nat, suc:NatNat, __-__:NatNatInt,

1:Nat, __+__:NatNatNat, __-!__:NatNatNat,
suc:NatPos, 1:Pos, __+__:PosNatPos, __+__:NatPosPos,
__+__:IntIntInt, min:IntIntInt, max:IntIntInt,
__-__:IntIntInt, -__:IntInt, sign:IntInt, abs:IntNat},

𝑃𝐹𝑁𝑢𝑚 = {pre:NatNat, __-?__:NatNatNat},
𝑃𝑁𝑢𝑚 = {__<=__:NatNat, __>=__:NatNat, even:Nat, odd:Nat,

__<=__:IntInt, __>=__:IntInt, even:Int, odd:Int},
⩽𝑁𝑢𝑚 = {(Nat, Nat), (Pos, Pos), (Int, Int),

(Pos, Nat), (Nat, Int), (Pos, Int)}

Lines 1 to 2 additionally produce sort generation constraints for the Nat and Int and
no-confusion axioms for 0:Nat and suc:Nat->Nat. Lines 20 to 53 define the operations
and predicates via axioms describing their behaviour. Note that lines 19 to 21 contain at-
tributes for already-declared operations that are expanded to corresponding axioms. These
constraints and axioms form the specification’s set of sentences Γ𝑁𝑢𝑚. The %(…)% anno-
tations assign names to sentences that can be used by tools to improve their presentation.
The %implied annotations in lines 19 to 21 and 50 to 52 establish a claim about the spec-
ification that the annotated sentences could be removed from Γ𝑁𝑢𝑚 without changing the

2In any case, each variable is quantified independently for every axiom.
3https://github.com/spechub/Hets-lib, specifically the file Basic/Numbers.casl

https://github.com/spechub/Hets-lib

8 Chapter 2 Background

1 free type Nat ::= 0 | suc(pre:? Nat)
2 generated type Int ::= __ - __(Nat;Nat)
3 sort Nat < Int
4 preds __ <= __, __ >= __: Nat * Nat;
5 even, odd: Nat;
6 __ <= __, __ >= __: Int * Int;
7 even, odd: Int
8 op 1: Nat = suc (0) %(1_def_Nat)%
9 sort Pos = { p: Nat . p >= 1 } %(Pos_def)%

10 ops __ + __, __ -!__ : Nat * Nat -> Nat;
11 __ -?__ : Nat * Nat ->? Nat;
12 suc: Nat -> Pos;
13 1: Pos = suc(0); %(1_as_Pos_def)%
14 __ + __: Pos * Nat -> Pos;
15 __ + __: Nat * Pos -> Pos;
16 __ + __, min, max, __ - __ : Int * Int -> Int;
17 - __, sign: Int -> Int;
18 abs: Int -> Nat;
19 __+__: Int * Int -> Int, comm, assoc, unit 0; %implied
20 min: Int * Int -> Int, comm, assoc; %implied
21 max: Int * Int -> Int, comm, assoc, unit 0 %implied
22 forall m,n,r,s : Nat, i,j : Int
23 . i <= j <=> i - j in Nat %(leq_def_Int)%
24 . i >= j <=> i <= j %(geq_def_Int)%
25 . 0 <= n %(leq_def1_Nat)%
26 . not suc(n) <= 0 %(leq_def2_Nat)%
27 . suc(m) <= suc(n) <=> m <= n %(leq_def3_Nat)%
28 . even(0) %(even_0_Nat)%
29 . even(suc(m)) <=> odd(m) %(even_suc_Nat)%
30 . odd(m) <=> not even(m) %(odd_def_Nat)%
31 . even(i) <=> even(abs(i)) %(even_def_Int)%
32 . odd(i) <=> not even(i) %(odd_def_Int)%
33 . odd(i) <=> odd(abs(i)) %(odd_alt_Int)%
34 . 0 + m = m %(add_0_Nat)%
35 . suc(n) + m = suc(n + m) %(add_suc_Nat)%
36 . (m - n) + (r - s) =(m + r) - (n + s) %(add_def_Int)%
37 . min(i,j) = i when i <= j else j %(min_def_Int)%
38 . max(i,j) = j when i <= j else i %(max_def_Int)%
39 . n -! m = 0 if m >= suc(n) %(subTotal_def1_Nat)%
40 . n -! m = n -? m if m <= n %(subTotal_def2_Nat)%
41 . m -? n = r <=> m = r + n %(sub_def_Nat)%
42 . i - j = i + (- j) %(sub_def_Int)%
43 . - (m - n) = n - m %(neg_def_Int)%
44 . sign(i) = 0 when i = 0
45 else (1 when i >= 1 else -1) %(sign_def_Int)%
46 . abs(i) = i when i >= 0
47 else -i %(abs_def_Int)%
48 . m - n = r - s <=> m + s = r + n %(equality_Int)%
49 . m = m - 0 %(Nat2Int_embedding)%
50 . m >= n <=> m <= n %(geq_def_Nat)% %implied
51 . min(m,0)=0 %(min_0)% %implied
52 . def(m-?n) <=> m >= n %(sub_dom_Nat)% %implied

Listing 2.1: CASL basic specification for ℕ+ ⩽ ℕ ⩽ ℤ and some operations, demonstrating
𝑆𝑢𝑏𝑃𝐶𝐹𝑂𝐿= features

2.2 The Common Algebraic Specification Language 9

overall specification’s model class, i.e. that they are implied by the rest of the theory. Struc-
tured specifications permit even more semantic annotations that establish claims about the
relationship between specifications. Tools can extract such claims as proof obligations. [55,
Sec. 5.2.5]
In general, a sentence over a signature Σ is either a closed first-order formula or a sort
generation constraint (̃𝑆, ̃𝐹 , 𝜃). Here, 𝜃∶ Σ̄ → Σ is a signature translation originating in
some CASL signature Σ̄ = (̄𝑆, ̄𝑇 𝐹, ̄𝑃𝐹, ̄𝑃 , ⩽̄) with ̃𝑆 ⊆ ̄𝑆 and ̃𝐹 ⊆ ̄𝑇 𝐹∪ ̄𝑃𝐹. This is satisfied
by Σ-models whose 𝜃-reducts interpret the sorts in ̃𝑆 with sets generated by interpretations
of operations in ̃𝐹. In other words, 𝑀 ⊧Σ (̃𝑆, ̃𝐹 , 𝜃) iff, in 𝑀|𝜃, every member of a carrier of
a sort in ̃𝑆 is the denotation of a Σ̄-term constructed only from operation symbols in ̃𝐹 and
variables of sorts in ̄𝑆\ ̃𝑆 under some valuation of these variables. First-order formulas can
contain definedness, existential equality and strong equality as interpreted predicates.
Finally, CASL models for a signature (𝑆, 𝑇 𝐹 , 𝑃𝐹 , 𝑃 , ⩽) are standard many-sorted models
with non-empty carriers for each sort in 𝑆 and total functions, partial functions and pred-
icates for the symbols of 𝑇 𝐹, 𝑃𝐹, and 𝑃 with domains and, where applicable, codomains
corresponding to the symbols’ profiles. Each subsort relation 𝑠 ⩽ 𝑠′ further restricts the
admissible models to those providing:

• an injective embedding of the carrier of 𝑠 into that of 𝑠′ that is compatible with the
behaviour of overloaded functions and predicates, and which must be the identity in
case 𝑠 = 𝑠′,

• a projection that is injective where defined and left-inverse4 to the embedding, and
• an 𝑠-membership predicate that holds only where the projection is defined.

2.2.1 Structuring constructs

For this work, only three of the many CASL structuring constructs are noteworthy:

Extensions

𝑆𝑃1 then 𝑆𝑃2

Extensions in CASL are based on the union operation. The difference is that the signatures
of 𝑆𝑃1 and 𝑆𝑃2 need not be the same. In fact, 𝑆𝑃2 need not even determine a full signature
by itself because it inherits all the symbols from 𝑆𝑃1 before it adds its own. The union
then treats 𝑆𝑃1 also as a specification with the extended signature. The then operator is
read left-associatively if chained.

Specification definitions

spec 𝑆𝑁 [𝑆𝑃1] … [𝑆𝑃𝑛] given 𝑆𝑃 ″
1 , …, 𝑆𝑃 ″

𝑚 =
𝑆𝑃

end

4W.r.t. function composition ∘ read as “after”.

10 Chapter 2 Background

A specification definition assigns the name 𝑆𝑁 to the extension of the union of the imports
𝑆𝑃 ″

𝑖 by the union of the parameters 𝑆𝑃𝑗 by the definition body 𝑆𝑃:

{ 𝑆𝑃 ″
1 and … and 𝑆𝑃 ″

𝑚 } then { 𝑆𝑃1 and … and 𝑆𝑃𝑛 } then 𝑆𝑃

Examples of specification definitions, including ones without parameters or imports, can be
found in Appendix A.1.

Free specifications

free { 𝑆𝑃 }

If a free specification extends a surrounding specification 𝑆𝑃0 with signature Σ0 and the
extended signature is Σ′, the result of the extension is an application of the free extension
operation: free (𝑆𝑃0 then 𝑆𝑃) along 𝜎, where 𝜎∶ Σ0 → Σ′ is the embedding of the unex-
tended into the extended signature. Otherwise, the free specification restricts the class of
models of 𝑆𝑃 to initial ones, i.e. absolutely free structures without generators.
A basic specification containing just a free datatype declaration free types 𝐷𝐷1;…;𝐷𝐷𝑛;
usually determines the same model class as the free specification containing just the datatype
declaration: free { types 𝐷𝐷1;…;𝐷𝐷𝑛; }. In the absence of subsorting, the only condi-
tions for this equivalence are that the free datatype declaration does not, through extension,
declare an existing sort as freely generated and that any total selector occuring in one of
the 𝐷𝐷𝑖 has to be used in every constructor of 𝐷𝐷𝑖.

2.2.2 𝑃𝐶𝐹𝑂𝐿= and subsorting encoding

First-order logic with partial functions, sort generation constraints, and equality (𝑃𝐶𝐹𝑂𝐿=)
is the subinstitution of 𝑆𝑢𝑏𝑃𝐶𝐹𝑂𝐿= without support for subsorts. That is, any 𝑃𝐶𝐹𝑂𝐿=

specification can be trivially mapped to a 𝑆𝑢𝑏𝑃𝐶𝐹𝑂𝐿= specification by taking the equality
on 𝑆 as ⩽. CASL basic specifications can be restricted to be 𝑃𝐶𝐹𝑂𝐿= by disallowing con-
structs such as lines 3 and 9 in Listing 2.1. 𝑆𝑢𝑏𝑃𝐶𝐹𝑂𝐿= can be encoded in 𝑃𝐶𝐹𝑂𝐿= by
means of a theoroidal subinstitution comorphism that axiomatizes the subsorting require-
ments mentioned above in the theory when translating a signature with subsorts. Sentences
are translated by making the involved injections, projections, and membership predicates
explicit. This comorphism is called (3′) by Mossakowski. [50]

2.2.3 𝐶𝐹𝑂𝐿= and partiality encoding

First-order logic with sort generation constraints and equality (𝐶𝐹𝑂𝐿=) is the subinsti-
tution of 𝑃𝐶𝐹𝑂𝐿= without support for partial functions, definedness, and the distinction
between existential and strong equality. That is, any 𝐶𝐹𝑂𝐿= specification can be trivially
mapped to a 𝑃𝐶𝐹𝑂𝐿= specification by taking ∅ as 𝑃𝐹. There are multiple encodings for
partiality features into 𝐶𝐹𝑂𝐿=, but the one that works without restricting the allowed sort
generation constraints is not a subinstitution comorphism, but merely model-expansive5, It
is called (4𝑎′) by Mossakowski. [50] Signature translation works by adding a constant ⊥𝑠
and an explicit definedness predicate 𝐷𝑠 for each sort 𝑠, and axiomatizing that

5Actually, model-bijective, but that is not needed for my purposes.

2.2 The Common Algebraic Specification Language 11

• ∀𝑥 ∈ 𝑠.𝐷𝑠(𝑥) ⟺ 𝑥 ≠ ⊥𝑠 for each sort 𝑠,
• ∃𝑥 ∈ 𝑠.𝐷𝑠(𝑥) for each sort 𝑠,
• functions reflect definedness,
• total functions additionally preserve definedness, and
• satisfaction of a predicate implies definedness of its arguments.

The second set of axioms is necessary because the carriers for sorts of the 𝑃𝐶𝐹𝑂𝐿= spec-
ification cannot be empty and that requirement is already met with the constants ⊥𝑠.
Sentences are translated by

• replacing the interpreted definedness predicates with the explicit new ones,
• replacing strong equations with implications of the equation by definedness of at least

one of the comparands,
• replacing existential equations by conjunctions of the equation with definedness of one

of the comparands,
• relativizing universally quantified sentences by adding definedness of the quantified

variable as a premise to the matrix,
• relativizing existentially quantified sentences by adding definedness of the quantified

variable as a conjunct to the matrix, and
• adding the ⊥’s to the sets of constructors in sort generation constraints.

If a specification only contains sort generation constraints with total functions as construc-
tors, this encoding can be made strongly persistently liberal by weakening the first axiom
above to a statement of definedness not holding on ⊥. This removes the restriction that ⊥
has to be the only undefined element in each sort. For example, this would allow distinct
successors of undefined natural numbers, and thus preserve disjointness of the successor
function’s range with that of ⊥, which was made a constructor by the sentence translation.
The strongly persistently liberal version is called (4′). The covariant model translation
𝛾(4′) adds to each sort’s carrier the term ⊥, and distinct terms for each value of a function
application on a tuple outside the function’s domain. It adds an interpretation for the
definedness predicate as the existing carrier of the corresponding sort. Each function is
re-interpreted to yield the corresponding undefined term when applied to a tuple outside
its original domain, and its original value else. Predicates are interpreted with their original
sets, i.e. they never hold on the new individuals added by 𝛾(4′).

2.2.4 HasCASL

HasCASL is an extension of CASL with (partial) function types, polymorphism and type
constructors. [71] The name derives from its ability to express an executable sublanguage
similar to Haskell [41], enabling implementation and rapid prototyping within a specifi-
cation. This addresses the need for a close tie between specification and implementation
language identified for example in Swierstra’s experience report [80]. Its expressive power
allows it to be used as an intermediary language to support even such informal design
processes as CAD/CAM workflows. [42]
The HasCASL institution can be described as a subsorted higher-order logic with partial

12 Chapter 2 Background

functions, type constructor classes, type constructor definitions, interpreted product type
constructors, and equality (𝑆𝑢𝑏𝑃𝐶𝑜𝐶𝑙𝑇 𝑦𝐶𝑜𝑛𝑠𝑃𝑟𝑜𝑑𝑠𝐻𝑂𝐿=). The syntax of HasCASL
builds on that of CASL by adding language constructs to express the additional features of
its institution: [72]

• class(es) to declare type classes, possibly as subclasses of one or more kinds. Classes
are regarded as subsets of the set of all types, which is itself represented by the built-
in type class Type. A kind is either a class or a constructor kind 𝐾𝑑1->𝐾𝑑2 where
𝐾𝑑1 is a kind, possibly prepended with + or -, and 𝐾𝑑2 is a kind. Sentences may be
universally quantified over type classes at the outermost quantification level.

• class … {…} to declare a type class together with axioms that instance types of the
class must satisfy, for example the existence of certain operations on the type and
associated properties.

• var and forall quantify over sort terms and classes in HasCASL. Sort terms extend
the sorts of CASL by allowing type constructors and quantification over classes.

• type declares type constructors in HasCASL by using previously declared type vari-
ables as arguments for both type and instance constructors. Type constructor declara-
tions without instance constructors may be abbreviated by omitting type arguments
and assigning it a kind. Type constructors of constructor kind can be be covari-
ant, which means that their application preserves the subtype relation, contravariant,
which means that their application reverses the subtype relation, or non-variant. Co-
or contravariance are indicated by prepending + or -, respectively, to the argument
kind in a type constructor’s kind. The nullary type constructor Unit and binary type
constructors *, ->, and ->? are built-in6 and can be thought of as declared like this,
using underscores to indicate infix use:
unit type (constructor) type Unit : Type or simply type Unit

product type constructor type __*__ : +Type -> +Type -> Type

function type constructors types __->__, __->?__ : -Type -> +Type -> Type

This means that given a declaration sorts a < b; c < d, the type a * c is a sub-
type of b * d and the type b -> c is a subtype of a -> d.

• type instance to declare a type constructor that uses some type classes and postulate
that instantiations of the axioms attached to the result class with the result type follow
from instantiations of the axioms for the input classes with the input types.

• class instance to declare a subclass and postulate the above type instance property
for all its instances.

HasCASL signatures are 6-tuples Σ = (𝐶, ≤𝐶, 𝑇 , 𝐴, 𝑂, ≤) consisting of the following com-
ponents:

• 𝐶 is a set of classes, each associated with a raw kind, i.e. the shape of the class’s con-
stituent type constructors’ kinds in terms of Type, arrows and variance annotations.

• ≤𝐶 ⊆ 𝐶 × 𝐾, where 𝐾 is the set of kinds over 𝐶, is the (explicit) subclass relation.

6Nullary type constructors correspond to the regular CASL types, while the built-in binary type construc-
tors generalize CASL’s operator signatures.

2.2 The Common Algebraic Specification Language 13

1 var a, b, c: Type
2 free type List a ::= nil | cons a (List a)
3 ops map: (a ->? b) -> List a ->? List b;
4 all: Pred a -> List a -> Logical;
5 filter: List a -> Pred a -> List a
6 var x: a; l: List a; f: a ->? b; g: b ->? c; P: Pred a; Q: Pred b
7 . map f nil = nil
8 . map f (cons x l) = cons (f x) (map f l)
9 . all P nil

10 . all P (cons x l) <=> P x /\ all P l
11 . filter nil P = nil
12 . filter (cons x l) P = cons x (filter l P) when P x else filter l P
13 . map (\x:a. g (f x)) l = map g (map f l) %(map_compose)% %implied
14 . def map f l <=> all (\x:a. def f x) l %(map_all_def)% %implied
15 . def map f l => def (map f (filter l P)) %(mapdef)% %implied
16 . def map f l =>
17 filter (map f l) Q = map f (filter l (\x:a. Q (f x))) %(mapfilter)% %implied

Listing 2.2: HasCASL basic specification for map-related operators on lists, demonstrating
polymorphism, type constructors, and higher-order functions

• 𝑇 is a set of type constructors, each associated with the set of the kinds it belongs to.
• 𝐴 is a set of type synonyms, each associated with an expansion, i.e. a pseudotype

formed like a 𝜆-term with constants from 𝑇.
• 𝑂 is a set of constants, each associated with a sort term.
• ≤ ⊆ 𝑇 ×𝑃, where 𝑃 is the set of pseudotypes over 𝑇, is the (explicit) subtype relation.

For an example of a HasCASL basic specification, see an adapted version of the Hets-lib7

specification of some higher-order, polymorphic, map-related functions on lists in List-
ing 2.2. Lines 1 to 5 induce the below components of the signature Σ𝑀𝑎𝑝. Note that
𝐶𝑀𝑎𝑝, ≤𝐶𝑀𝑎𝑝

, 𝐴𝑀𝑎𝑝, and 𝑂𝑀𝑎𝑝 contain built-ins induced by every HasCASL specification.
The latter even contains infinitely many interpreted implicit function application opera-
tors (__ __, basically the spaces between operation symbols) and partial upcast operators
(__ as [Supertype]). Σ𝑀𝑎𝑝 should also make clear that the explicit subtype and subclass
relations are only generators for the actual subkind and subpseudotype relations ≤𝐾 and
≤𝑃 respectively. These are each computed using a set of subkinding and subtyping rules
and determine which classes or types may be used in places where other classes or types

7https://github.com/spechub/Hets-lib, specifically the file HasCASL/Map.dol

https://github.com/spechub/Hets-lib

14 Chapter 2 Background

are expected.

𝐶𝑀𝑎𝑝 = {Type: Type}
≤𝐶𝑀𝑎𝑝

= {(Type, Type)},

𝑇𝑀𝑎𝑝 = {Unit: Type,
__*__: +Type -> +Type -> Type,
__->__: -Type -> +Type -> Type,
__->?__: -Type -> +Type -> Type,
List: Type -> Type},

𝐴𝑀𝑎𝑝 = {Pred:=(𝜆a. a ->? Unit),
Logical:=Pred Unit},

𝑂𝑀𝑎𝑝 = {__␣__: ((a -> b) * a) -> b | a, b ∈ Type}
∪ {__␣__: ((a ->? b) * a) ->? b | a, b ∈ Type}
∪ {__ as a: b ->? a | a, b ∈ Type ∧ a ≤𝑃 b}
∪ {(): Unit,

__,__: (∀a, b: Type. a -> b -> a * b),
nil: (∀a: Type. List a),
cons: (∀a: Type. a -> List a -> List a),
map: (∀a, b: Type. (a ->? b) -> List a ->? List b),
all: (∀a: Type. Pred a -> List a -> Logical),
filter: (∀a: Type. List a -> Pred a -> List a)}

≤𝑀𝑎𝑝= {}

Lines 6 to 12 (with variables from line 2) of Listing 2.2 further provide a set of axioms
Γ𝑀𝑎𝑝 defining the operations’ behaviour using recursion. Finally, lines 13 to 18 (still bor-
rowing variables form line 2) postulate some properties that are supposedly implied by
the definitions of Γ𝑀𝑎𝑝. These illustrate some of the ways for constructing sentences with
HasCASL. In general, a 𝑆𝑢𝑏𝑃𝐶𝑜𝐶𝑙𝑇 𝑦𝐶𝑜𝑛𝑠𝑃𝑟𝑜𝑑𝑠𝐻𝑂𝐿= sentence is a definedness assertion
of or an existential or strong equation between fully-qualified terms of the same sort, as
in 𝜆𝑃-calculus [48]. 𝜆𝑃 is a generalization of simply-typed 𝜆-calculus, where 𝜆-abstraction
may denote partial functions and definedness def8, existential equality __=e=__ and strong
equality __=__ of terms are interdefinable [74] atomic predicates:

• def t ≡ t =e= t

• t =e= s ≡ t = s ∧ def t ∧ def s

• t = s ≡ (def t ⇒ t =e= s) ∧ (def s ⇒ t =e= s)
Predicates on a type a are regarded as partial functions into Unit, i.e. values of type
Pred a (cf. 𝐴𝑀𝑎𝑝 above). Predicates on Unit encode truth values and have their own type
synonym, Logical. Definedness on a value signifies a satisfied predicate or, in the case of
Logical, logical truth. HasCASL allows coating 𝑆𝑢𝑏𝑃𝐶𝑜𝐶𝑙𝑇 𝑦𝐶𝑜𝑛𝑠𝑃𝑟𝑜𝑑𝑠𝐻𝑂𝐿= sentences

8called “existence” E by Moggi and Scott

2.2 The Common Algebraic Specification Language 15

in various layers of syntactic sugar to make them look more like typical higher-order logic
(HOL) formulas:
elementhood operators x in S ↦ def x as S,
total 𝜆-abstractions \x:X.! t ↦ (\x:X. t) as X -> T

iterated abstractions \x1:X1 x2:X2 … xn:Xn. t ↦ \x1:X1.! \x2:X2.! … \xn:Xn. t
and \. t ↦ \x:Unit. t, where x is not free in t,

procedural lifting ?T ↦ Unit ->? T, with the replacements t: T ↦ \. t: ?T and t: ?T ↦
t(): T implicitly being performed whenever a value of the respective type is expected
but one of the other type was given9,

let-terms let x = s in t ↦ (\x. t)s ↤ t where x = s,
patterns in let-terms allow projecting the components out of values of a product type and

deconstructing members of datatypes, e.g. let (x,y) = s in t where s: X * Y,
restriction operators s res t ↦ let (x,y) = (s,t) in x, which is defined iff both s

and t are defined or, in the case of t: Logical, iff both s and t() are defined
From this, the usual logical operations are constructed:
logical truth tt ↦ ()

conjunction /\ ↦ res

implication s => t ↦ ((\. s) =e= \. (s /\ t))

biconditional s <=> t ↦ (s => t) /\ (t => s)

universal quantification forall x: X. t ↦ ((\x:X. t) =e= \x:X. tt)

logical falsehood ff ↦ forall z: Logical. z()

negation not t ↦ t => ff

disjunction s \/ t ↦ forall z: Logical. ((s => z()) /\ (t => z())) => z()

existential quantification
exists x: X. t ↦ forall z: Logical. (forall x: X. t => z()) => z()

A 𝑆𝑢𝑏𝑃𝐶𝑜𝐶𝑙𝑇 𝑦𝐶𝑜𝑛𝑠𝑃𝑟𝑜𝑑𝑠𝐻𝑂𝐿= model for a signature Σ is a derived signature morphism
𝜎∶ Σ → Σ′ paired with a 𝜆𝑝-algebra that is admissible for Σ′. An admissible algebra for
a signature Σ′ satisfies a 𝜆𝑝-theory 𝑇 ℎ(Σ′) induced by that signature. The details of
this construction have been described by Schröder and Mossakowski [72, 52], but are not
relevant for this work. One important consequence of this construction is that it permits
an equivalent logical interpretation of HasCASL due to the equivalence of 𝜆𝑝-algebras to
intensional Henkin models [37, 32]. [70] This interpretation gives HasCASL an intensional
intuitionistic logic without choice operators, although classicality, extensionality, unique
choice, and Hilbert choice can be specified if desired. With this in mind, HasCASL formulas
can be handled directly as the expected logical formulas without the need for a translation
into 𝑆𝑢𝑏𝑃𝐶𝑜𝐶𝑙𝑇 𝑦𝐶𝑜𝑛𝑠𝑃𝑟𝑜𝑑𝑠𝐻𝑂𝐿= sentences.

9This applies (to) values of type Logical as well, since it is just ?Unit.

16 Chapter 2 Background

2.3 Tons of Inductive Problems

The Tons of Inductive Problems (TIP) format in its current form is an extension of a subset
of the SMT-LIB script language, version 2.6. [40] SMT-LIB is used to describe satisfiability
modulo theories (SMT) problems, by defining: [3]
terms and formulas of many-sorted first-order logic with equality, with formulas being

terms of the distinguished sort Bool,
theories that fix a vocabulary of sorts, functions, and predicates, like a Bool sort and some

of the logical connective symbols that are part of the Core theory which is implicitly
used by every SMT-LIB theory,

logics that fix one or more theories, may restrict the language of formulas in instances of
the, possibly combined, theory, and may define syntactic sugar as extensions to that
language, and

commands to communicate to an SMT solver what it should work on, including what logic
to use and the formulas to check for satisfiability.

SMT-LIB scripts are sequences of commands. Commands are written in a LISP-like syntax,
meaning that every command is a parenthesized list of command name and the correspond-
ing number of arguments. The SMT-LIB script commands allowed in the TIP format are:

• assert to add a new formula that may restrict satisfiability,
• declare-sort for adding a new sort symbol of given arity,
• declare-const, declare-fun to add function symbols with given rank, i.e. combi-

nation of domain sorts and codomain sort,
• define-fun as a shorthand for declare-funing a function symbol and asserting its

values on all instances of its domain sorts, without using the newly-declared function
symbol on the right-hand side of the definition,

• define-fun-rec, define-funs-rec to do the same for one or more (possibly mutu-
ally) recursive function definitions, and

• declare-datatype, declare-datatypes to introduce one or more (possibly paramet-
ric and possibly mutually recursive) algebraic datatypes by declare-sorting their
names and respective numbers of parameters, declare-funing their respective con-
structors and define-funing selectors, or at least planning these for instantiation in
the parametric case.

Note that SMT-LIB only allows the declaration of parametric datatypes, but not their
uninstantiated use. Since function declarations cannot make use of sort parameters with
which to instantiate a parametric datatype, parametrically polymorphic functions cannot
be expressed. It is, however, possible to declare-fun the same function symbol multiple
times with differing ranks, unless it was already part of the underlying theory, thus enabling
ad-hoc polymorphism.
Since many of the inductive problems in the TIP library also involve parametrically poly-
morphic functions and higher-order functions, Claessen et al. saw reason to include these
as features in their format. [21] This was implemented by

2.4 Zipperposition 17

• fixing the sort symbol => for arbitrary arities to represent sorts of functions,
• fixing the function symbol @ to apply members of function sorts to their arguments10,
• adding an abstraction binder lambda to construct members of function sorts in a

similar way to the definition part of define-fun,
• allowing sort parameters into assertions and function declarations, and
• making polymorphic function symbols indexable to explicitly instantiate them at given

sorts11.
Because theorem proving was not the main scope of SMT-LIB, Claessen et al. also added
the prove command to explicitly mark proof (sub)goals. Theorem proving could be emu-
lated in SMT-LIB scripts through use of the assertion stack and asserting each potential
theorem’s negation on a new level of the stack. This would coerce the solver into finding
counterexamples for the theorems’ negations, thus producing witnesses for refutation proofs
of the original theorems.
While the semantics of SMT-LIB scripts have been thoroughly defined by Barrett, Fontaine,
and Tinelli, TIP format extensions lack such a definition. Higher-order functions are com-
patible with the SMT-LIB semantics, as => and @ can be fixed in an SMT-LIB theory
and lambda can be seen as syntactic sugar12 introduced in an SMT-LIB logic. Parametric
polymorphism, however, does not fit into this framework and the transformation of a poly-
morphic first-order formula into a finite and equisatisfiable set of monomorphic first-order
formulas is undecidable. [11]

2.4 Zipperposition

Zipperposition is an ATP built around Logtk, a toolkit for rapid prototyping of new ideas
for proof calculi. Logtk itself offers a calculus based on superposition for polymorphic FOL.
[23, 24] The first iteration of Zipperposition was an implementation of Cruanes’s extensions
of superposition for handling arithmetic and induction. [24, 25] It was later extended by
calculi for 𝜆-free clausal HOL [7], clausal HOL [8], FOL with first-class Booleans [58], and
full HOL with first-class Booleans [9]. More precisely, the latter extension operates in a
“[HOL] (simple type theory) with rank-1 polymorphism, Hilbert choice, and functional and
Boolean extensionality”, while the simple induction extension adds induction schemas for
inductive types to Logtk’s FOL.

10It follows that the application symbol must permit all ranks that start with a function sort and end with
that function sort’s rank.

11Type inference only considers the function symbol’s associated ranks and the function application’s input
sorts. Explicit instantiation is therefore necessary where this yields multiple possible output sorts.

12Anonymous functions can be extracted into named function definitions.

CHAPTER 3

Related Work

In this chapter I will give a brief overview over existing work related to logic translations
and interoperability between theorem provers.

3.1 Tools for Inductive Provers

The TIP library was not created with the expectation that its problem format (cf. Sec-
tion 2.3) would be supported by every inductive prover in existence. Due to differences in
the supported featuresets of different provers, this would have been impractical, too. The
format was therefore explicitly designed as a union of the featuresets of inductive provers
with translatability in mind. For this purpose, the Tools for Inductive Provers (TIP tools1)
have been provided alongside the TIP library. [64] The TIP tools can translate2 prob-
lems expressed in the TIP format to the Why3 [13] specification language, to SMT-LIB [3]
scripts (cf. Section 2.3), to Isabelle [60] theories, to the Thousands of Problems for The-
orem Provers (TPTP) [78] format in typed first-order form (TFF) [79], to Waldmeister’s
[18] input format, and to Haskell testing specifications for use with QuickCheck [20], Feat
[29], LazySmallCheck [68], and Smten [82]. To accomodate the target formats that lack
support for some TIP format features, encodings are used. Each of these encodings, as
well as further transformations, can be applied independently of target format. Due to the
undecidability of monomorphisation mentioned in Section 2.3, the polymorphism encoding
step is limited by a configurable number of rounds and may fail.
Adding a TIP format backend to Hets will open up the possibility of using the TIP tools for
further translations. This will hopefully lower the burden of connecting ATPs and model
finders that Hets currently cannot talk to. In this work, I will not incorporate the TIP
tools, instead testing just the TIP format backend using an ATP that understands the TIP
format natively.

1Rosén and Smallbone used TIP as an abbreviation for both the library, the format, and the tools, which
I will try to avoid by only abbreviating Tons of Inductive Problems.

2This was taken from the listing of available output formats of version 0.2.2 of the TIP tool tip.

20 Chapter 3 Related Work

3.2 Why3

The Why3 environment consists of a specification language, the programming language
WhyML, and tools for extracting and managing proof obligations from specifications and
programs. [14] The Why3 specification language is based on many-sorted first-order logic
with parametric polymorphism, recursive function definitions, algebraic datatypes, and in-
ductive predicates. Why3 specifications are grouped into theories which can be imported by
other specifications and WhyML specification annotations. As a peculiarity3, the built-in
theory HighOrd introduces a function type constructor and a function application opera-
tor, thus smuggling higher-order features into the first-order syntax. WhyML incorporates
specifications to annotate, for example, function implementations with pre- and postcon-
ditions, loops with invariants and recursive functions and while-loops with termination
measures. The Why3 tools offer both a command-line and a graphical interface for batch
and interactive processing of proofs, respectively. These tools can dispatch proof obliga-
tions to the ATPs Alt-Ergo [12], Beagle [6], CVC3 [4], CVC4 [5], E [73], Gappa [26], Metis
[39], MetiTarski [1], Princess [67], Psyche [36], Simplify [27], SPASS [84], Vampire [63],
veriT [16], Yices 1 [31] and 2 [30], and Z3 [56] and to the interactive provers Coq [22],
PVS [59], and Isabelle/HOL [57]. Verified WhyML programs can also be transalated to
correct-by-construction OCaml [62] programs.
As with the TIP tools, adding a Why3 backend to Hets would ease the integration of many
as-yet unconnected theorem provers. Theorem provers are also already integrated into the
Why3 environment, whereas the TIP tools only offer raw translation and no connection to
provers of their own. It is, however, possible to translate specifications from TIP format to
Why3 format, so that the implementation of a TIP backend seems like a logical first step
toward harnessing the brokering abilities of Why3.

3.3 Sledgehammer

Sledgehammer is a component of the interactive theorem prover Isabelle/HOL [57] that uses
an ensemble of ATPs as a relevance filter for facts to pass to its internal Metis implementa-
tion [61] for proof finding. [15] It heuristically pre-selects hundreds of facts, then tasks its
connected provers with proving the current goal given these facts and finally extracts the
facts that were actually used by successful proof attempts from these attempts’ outputs.
Version 2021-1 of Sledgehammer makes use of agsyHOL [45], Alt-Ergo [12], CVC4 [5], E
[73], iProver [43], LEO-II [10], Leo-III [76], Satallax [17], SPASS [84], Vampire [63], veriT
[16], Waldmeister [18], Z3 [56], and Zipperposition [23].
Unlike Hets and Why3, which use their connected provers to discharge proof obligations
directly, a successful proof attempt by a Sledgehammer-connected prover is not sufficient for
discharging a goal in Isabelle. A goal is only proven if Metis, given Sledgehammer’s output,
finds a proof that can be translated into a sound Isabelle proof. This affords Sledgehammer
the freedom to use unsound translations, which may result in a lower workload for connected
provers, but makes their provability judgments untrustworthy on their own.
Hets is already connected to Isabelle 2014 and can therefore make use of that version’s

3This is not mentioned in the cited sources and had to be inferred from examples and source code.

3.3 Sledgehammer 21

Sledgehammer-supported proof search. Version 2014 of Sledgehammer lacks connections to
Leo-III, veriT and Zipperposition. It has additional connections to E-SInE [38], E-ToFoF4,
iProver-Eq [44], SNARK [77], and CVC3 [4]. While the latter two seem to have been cut
without replacement, iProver has since gained native equality handling [28] and E has since
gained its own implementation of SInE axiom selection and native TFF support [73], making
iProver-Eq, E-SInE, and E-ToFoF obsolete, respectively. Updating the Isabelle interface to
support version 2021-1 would therefore improve Hets’ ability to discharge higher-order proof
obligations via the new ATPs within Sledgehammer, but only in cases where the incomplete
higher-order calculus within Metis happens to find a proof as well. A direct connection of a
higher-order ATP to Hets is therefore complementary to any improvements brought about
by Sledgehammer updates.

4A script for converting TFF problems to first-order form (FOF) ones and running E on the result, according
to the archived version of http://www.cs.miami.edu/~tptp/ATPSystems/ToFoF/.

http://www.cs.miami.edu/~tptp/ATPSystems/ToFoF/

CHAPTER 4

Thesis Contribution

The ubiquity of inductive datatypes in real-world applications has been established in Chap-
ter 1 and emphasized by their inclusion in otherwise first-order specification languages like
CASL and SMT-LIB. In the following, I will address the question whether Hets benefits
from incorporating Zipperposition as an ATP for handling proof obligations involving such
datatypes. To that end, I will develop TIP printers for CASL and HasCASL, which is a
potential benefit in itself, as explained in Section 3.1. After connecting Zipperposition with
such a printer, I will determine proof obligations can be discharged automatically which
could not be before. But first, a small result has to be noted that is crucial when trying to
find algebraic datatypes to represent in TIP specifications.

4.1 Strengthening partiality encoding

Both (4′) and (4𝑎′) from Section 2.2.3 add nullary constructors ⊥ to sort generation con-
straints, which they assert to be undefined. They do not assert that their images are disjoint
from the existing constructors’, and in the case of (4𝑎′), this would even introduce a con-
tradiction for any constructor with an argument of the result sort. But even (4′) does not
preserve the axioms asserting injectivity and disjointness of images of constructurs that are
introduced by free type declarations. Because they are universally quantified sentences,
they are relativized to only hold on defined terms. If free types in a specification with
partial functions should keep their interpretation as free types despite partiality encoding,
injectivity and disjointness of constructors have to be preserved, even for ⊥. The following
takes place completely within 𝑃𝐶𝐹𝑂𝐿=, so the last component of a signature is always the
equality on the set of sorts, and will therefore be omitted for brevity.
For a flat 𝑃𝐶𝐹𝑂𝐿= specification (Σ, Γ) defining only freely and loosely interpreted sorts,
this can be achieved by the following process: Let (𝑆𝑙 ⊕ 𝑆𝑓, 𝑇 𝐹𝑐 ⊕ 𝑇 𝐹𝑟, 𝑃𝐹 , 𝑃) = Σ be the
components of the signature, where

• 𝑆𝑙 is the set of loosely interpreted sorts,
• 𝑆𝑓 is the set of freely interpreted sorts,
• 𝑇 𝐹𝑐 is the set of constructors for the freely interpreted sorts, and
• 𝑇 𝐹𝑟 is the set of remaining total operations.

24 Chapter 4 Thesis Contribution

Let furthermore Γ𝑐 ⊕Γ𝑖 ⊕Γ𝑑 ⊕Γ𝑟 = Γ be the sort generation constraints, injectivity axioms,
disjointness axioms, and remaining sentences, respectively, of the theory. Now let

• 𝑆𝑃𝑙 be the basic specification consisting only of declarations for the sorts in 𝑆𝑙,
• 𝑆𝑃𝑓 be the basic specification consisting only of free datatype declarations for the

sorts of 𝑆𝑓 with constructors from 𝑇 𝐹𝑐, but without any selectors,
• 𝑆𝑃𝐹 be the basic specification consisting only of loose datatype declarations for the

sorts of 𝑆𝑓 with the constructors from 𝑇 𝐹𝑐, but without any selectors, and
• 𝑆𝑃𝑟 be the basic specification consisting only of declarations for the elements of 𝑇 𝐹𝑟,

𝑃𝐹, 𝑃 and assertions of the sentences in Γ𝑟.
Then both the structured specifications

𝑆𝑃𝑙 then 𝑆𝑃𝑓 then 𝑆𝑃𝑟 (4.1)
𝑆𝑃𝑙 then free { 𝑆𝑃𝐹 } then 𝑆𝑃𝑟 (4.2)

determine the same model class as (Σ, Γ). For spec. 4.1 this is obvious, because it is just
a modularized version of (Σ, Γ), where the sentences in Γ𝑐, Γ𝑖, and Γ𝑑 have been made
obsolete by the free datatype declarations in 𝑆𝑃𝑓. The equivalence of specs. 4.1 and 4.2 is
a result from Section 2.2.1. The first extension in specification spec. 4.2 is a free extension
free (𝑆𝑃𝑙 then 𝑆𝑃𝐹) along 𝜎, where

𝜎∶ (𝑆𝑙, ∅, ∅, ∅) → (𝑆𝑙 ∪ 𝑆𝑓, 𝑇 𝐹𝑐, ∅, ∅)

is the embedding of loose sorts into the extension by the free sorts and their constructors.
Now, 𝛾(4′) can be checked for 𝜎-normality by considering Mod(𝜎) and Mod(Φ(4′)(𝜎)). Note
that, technically, 𝐶𝐹𝑂𝐿= is defined as the intersection of 𝑆𝑢𝑏𝐶𝐹𝑂𝐿= and 𝑃𝐶𝐹𝑂𝐿=,
where the latter is defined via a reduction to the former. This is why the model functor is
the same after partiality encoding. Models for 𝐶𝐹𝑂𝐿= can still contain partial functions,
but they are superfluous and such models are isomorphic to the ones leaving just them
out. Firstly, Mod(𝜎) simply forgets the carriers of the sorts in 𝑆𝑓 and erases all functions.
𝛾(4′)

(𝑆𝑙,∅,∅,∅) adds just the undefined value ⊥ to each carrier, adds an interpretation for the ⊥𝑠
constants as that sort’s ⊥, and interprets the definedness predicate by the original carriers.
The composition 𝛾(4′)

(𝑆𝑙,∅,∅,∅) ∘ Mod(𝜎) therefore needs no explanation. Furthermore,

Φ(4′)(𝜎) ∶ (𝑆𝑙, {⊥𝑠 ∶ 𝑠 ∣ 𝑠 ∈ 𝑆𝑙}, ∅, {𝐷𝑠 ∶ 𝑠 ∣ 𝑠 ∈ 𝑆𝑙})
→ (𝑆𝑙 ∪ 𝑆𝑓, 𝑇 𝐹𝑐 ∪ {⊥𝑠 ∶ 𝑠 ∣ 𝑠 ∈ 𝑆𝑙 ∪ 𝑆𝑓}, ∅, {𝐷𝑠 ∶ 𝑠 ∣ 𝑠 ∈ 𝑆𝑙 ∪ 𝑆𝑓})

is the analogous embedding of loose sorts, their ⊥𝑠 and definedness predicates into the ex-
tension by the free sorts. Mod(Φ(4′)(𝜎)) therefore forgets the carriers of the sorts in 𝑆𝑓, their
subsets corresponding to defined individuals, and all the functions with result sorts in 𝑆𝑓.
𝛾(4′)

(𝑆𝑙∪𝑆𝑓,𝑇 𝐹𝑐,∅,∅) adds the undefined value ⊥ to each carrier and adds constructor applications
involving any ⊥𝑠 to carriers for sorts in 𝑆𝑓, while again interpreting the definedness pred-
icate with original carriers. Finally, Mod(Φ(4′)(𝜎)) ∘ 𝛾(4′)

(𝑆𝑙∪𝑆𝑓,𝑇 𝐹𝑐,∅,∅) leaves only the carriers
of sorts in 𝑆𝑙, augmented by the ⊥, the interpretations of the ⊥𝑠 as the only functions, and
the original carriers for sorts in 𝑆𝑙 as interpretations for the definedness predicates. This is
the same as 𝛾(4′)

(𝑆𝑙,∅,∅,∅) ∘ Mod(𝜎).

4.2 Prerequisites 25

It is now possible to apply (4′) to spec. 4.2, which leads to

𝑆𝑃 ′
𝑙 then free { 𝑆𝑃 ′

𝐹 } then 𝑆𝑃 ′
𝑟 , where (4.3)

• 𝑆𝑃 ′
𝑙 is 𝑆𝑃𝑙 augmented by the constants ⊥𝑠, the predicates 𝐷𝑠, and the axioms ∀𝑥 ∈

𝑠.𝐷𝑠(𝑥) ⟹ 𝑥 ≠ ⊥𝑠 and ∃𝑥 ∈ 𝑠.𝐷𝑠(𝑥) for each 𝑠 ∈ 𝑆𝑙,
• 𝑆𝑃 ′

𝐹 is 𝑆𝑃𝐹 augmented by the constants ⊥𝑠, the predicates 𝐷𝑠, and the axioms
∀𝑥 ∈ 𝑠.𝐷𝑠(𝑥) ⟹ 𝑥 ≠ ⊥𝑠 and ∃𝑥 ∈ 𝑠.𝐷𝑠(𝑥) for each 𝑠 ∈ 𝑆𝑓, as well as axioms
for reflection and preservation of definedness for constructor applications, which may
involve applications of the definedness predicates for sorts in 𝑆𝑙,

• 𝑆𝑃 ′
𝑟 is a full application of (4′), including sentence translations like relativized quan-

tifiers.
The definedness predicates and the axioms about it in 𝑆𝑃 ′

𝐹 can be moved to a subsequent ex-
tension 𝑆𝑃 2

𝐹 without changing their interpretation, because they do not restrict the carriers
for the free types. This leaves the remaining specification 𝑆𝑃 1

𝐹 with datatype declarations
including the ⊥𝑠 constructors:

𝑆𝑃 ′
𝑙 then free { 𝑆𝑃 1

𝐹 } then 𝑆𝑃 2
𝐹 then 𝑆𝑃 ′

𝑟 (4.4)

Because 𝑆𝑃 1
𝐹 does not declare sorts from 𝑆𝑙 or involve total selectors, the free specification

over it can be replaced with 𝑆𝑃 1
𝑓 where all datatype declarations have been replaced with

free datatype declarations:

𝑆𝑃 ′
𝑙 then 𝑆𝑃 1

𝑓 then 𝑆𝑃 2
𝐹 then 𝑆𝑃 ′

𝑟 (4.5)

Now, specs. 4.3 to 4.5 describe the same model class and spec. 4.5 is again just a modularized
version of a flat specification (Σ′, Γ′) with the following properties:

• It is 𝐶𝐹𝑂𝐿=, since the steps since spec. 4.3 have not introduced any partial functions.
• The sorts in 𝑆𝑓 are interpreted as free types; injectivity and disjointness for construc-

tors holds even on undefined values, since these have been unpacked from the free
datatype declarations after applying (4′).

• There are no proper selectors for the free types in 𝑆𝑓, since their axiomatization was
relativized in 𝑆𝑃 ′

𝑟 . Putting them into the datatype declarations in 𝑆𝑃𝑓 or 𝑆𝑃𝐹 would
not have changed that since their axiomatization would need to be unpacked before
applying (4′).

4.2 Prerequisites

Chapter 2 has shown that specification languages can be equipped with vastly different
semantics and that provers implement calculi whose soundness depends on the properties of
a certain semantics. For the sake of efficiency or interoperability, even pre-defined semantics
may be adapted while retaining the syntactical features of a specification language, e.g. the
variants of the HasCASL institution used by Schröder and Mossakowski to establish a
context of compatibility with CASL. One can therefore not simply unleash any prover on
every proof, even if it is formulated in a language that the prover “understands”, and expect

26 Chapter 4 Thesis Contribution

a proof that reflects the author’s intent. I will therefore first examine how the TIP format
could express sentences of the CASL and HasCASL institutions and then check under which
circumstances Zipperposition can produce sound proofs for the original problems.

4.2.1 Literal translations

Since specifications in Hets are represented in terms of their institutions, it is sufficient to
consider ways of expressing the syntactic components of institutions, namely their signatures
and sentences.

CASL

The TIP format cannot express subsorting, so it can at most express specifications of
𝑃𝐶𝐹𝑂𝐿=. Because the subinstitution comorphism (3′) from Section 2.2.2 is already imple-
mented in Hets, borrowing of provers is not restricted to specifications without subsorting.
Another complication is the fact that the TIP format is supposed to treat all functions
as partial, but does neither offer a definedness predicate nor strong or existential equality.
Since Zipperposition’s interpretation of the format treats functions as total1 and the TIP
tools’ translation to SMT-LIB simply completes inexhaustive match constructs to make
functions total, it is safest to avoid that “feature” and assume all functions to be total.
The TIP format can thus only be used as an expression of the 𝐶𝐹𝑂𝐿= subinstitution. The
comorphisms (4′) and (4𝑎′) from Section 2.2.3 are in a way already implemented in Hets.
Indiscriminately applying (4𝑎′) to every 𝑃𝐶𝐹𝑂𝐿= specification would demote free types
to generated ones. As explained in the translation of sort generation constraints below,
this would make them intractable for Zipperposition’s first-order mode with induction.
Fortunately, the restriction of (4′) that all constructors in sort generation constraints have
to be total is weaker than the one FOL mode imposes on specifications, since free types
cannot have partial constructors to begin with. Unfortunaly, the decision whether (4′) was
applicable when it was requested as an encoding in Hets was not specific enough. It was not
possible to apply (4′) to specifications that contained any sort generation constraints at all,
not just ones that had partial constructors. I call the subinstitution of 𝑆𝑢𝑏𝑃𝐶𝐹𝑂𝐿= that
does not permit partial constructs in sort generation constraints 𝑆𝑢𝑏𝑃𝑡𝐶𝐹𝑂𝐿=. Here the
𝑡𝐶 stands for a restriction of the sort generation constraint feature to total constructors.
Introduction of this subinstitution to Hets is detailed in Section 4.3.1. For specifications
that fit in 𝑆𝑢𝑏𝑃𝑡𝐶𝐹𝑂𝐿=, the user can thus choose between comorphism paths that apply
either (4′) or (4𝑎′) to get rid of partiality and end up with a specification in 𝐶𝐹𝑂𝐿=.
The components of a 𝐶𝐹𝑂𝐿= signature (𝑆, 𝑇 𝐹 , ∅, 𝑃) can be matched to TIP constructs as
follows:

𝑆: Sorts are introduced by the declare-sort and the declare-datatype commands. The
former introduces them as loose types, which, in the absence of sort generation con-
straints, is the correct interpretation for elements of 𝑆. The latter can only be con-
sidered in connection with sentences, as discussed below.

1∀𝑥∶ 𝑆.∃𝑦∶ 𝑇.𝑓(𝑥) = 𝑦 is a theorem in a specification with sorts 𝑆, 𝑇, function symbol 𝑓∶ 𝑆 → 𝑇 and no
sentences.

4.2 Prerequisites 27

1 (declare-datatype Nat1 ((Zero1) (Suc1 (Pred1 Nat1))))
2 (declare-sort Nat2 0)
3 (declare-fun Zero2 () Nat2)
4 (declare-fun Suc2 (Nat2) Nat2)
5 (declare-fun Pred2 (Nat2) Nat2)
6 (assert
7 (forall ((P (=> Nat2 Bool)))
8 (=>
9 (and (@ P Zero2) (forall ((n Nat2)) (=> (@ P n) (@ P (Suc2 n)))))

10 (forall ((n Nat2)) (@ P n)))))
11 (assert
12 (forall ((a Nat2) (b Nat2))
13 (=> (= (Suc2 a) (Suc2 b)) (= a b))))
14 (assert
15 (forall ((a Nat2))
16 (not (= Zero2 (Suc2 a)))))
17 (assert
18 (forall ((a Nat2))
19 (= a (Pred2 (Suc2 a)))))

Listing 4.1: Two equivalent TIP translations of free type Nat ::= Zero | Suc(Pred:? Nat)

𝑇 𝐹: Function symbols are introduced by the declare-{const,fun}, define-fun{,-rec},
and declare-datatype commands. The two definition commands will not be used,
since 𝑆𝑢𝑏𝑃𝐶𝐹𝑂𝐿= handles function definitions as separate sentences. The last com-
mand will be used if an operation is found to be a constructor of a free type, but this
can only be determined in connection with sentences, as discussed below.

𝑃: Predicates are just functions with result type Bool and can thus be treated analogously.

𝑆𝑢𝑏𝑃𝐶𝐹𝑂𝐿=, and therefore also 𝐶𝐹𝑂𝐿=, sentences are represented in Hets by data struc-
tures modelling the abstract syntax of CASL formulas [55, Sec. 2.2.1]. Unlike in the abstract
syntax, sort generation constraints are treated as formulas as well and have a flag indicating
if they come from a free type declaration. Most translations are straightforward and need
not be elaborated here, except for two cases. Unique existential quantification has no direct
counterpart in the TIP format and has to be circumscribed every time it is encountered.
Sort generation constraints are translated as second-order induction axioms2 and used to
identify free datatypes, as illustrated separately in Listing 4.1. For a non-freely generated
type, Nat1 would be too strong of a statement and Nat2 would be missing the assertions in
lines 11 to 19.

HasCASL

Once again, the TIP format cannot express subsorting and does not guarantee that par-
tial functions are interpreted as such. Furthermore, there is no support for type constructor
classes or interpreted product type constructors. Of the subinstitutions of 𝑆𝑢𝑏𝑃𝐶𝑜𝐶𝑙𝑇 𝑦𝐶𝑜𝑛𝑠𝑃𝑟𝑜𝑑𝑠𝐻𝑂𝐿=

known to Hets, this leaves polymorphic higher-order logic with type constructor definitions
and equality (𝑃𝑜𝑙𝑦𝑇 𝑦𝐶𝑜𝑛𝑠𝐻𝑂𝐿=) as the most powerful that the TIP format can fully
express. Presumably because of its integral role in the HasCASL type system, the subinsti-

2Which makes them invisible to the FOL-with-induction mode of Zipperposition. For example, ∀𝑎∶ ℕ.𝑎 =
0 ∨ ∃𝑏∶ ℕ.𝑎 = 𝑠𝑢𝑐(𝑏) can be refuted for Nat2 but not (in reasonable time) for Nat1 in Listing 4.1.

28 Chapter 4 Thesis Contribution

tution implementation in Hets does not allow classifying a specification into a subinstitution
without the product type constructor if it defines any type constructors at all. This could
be fixed with a theoroidal comorphism that encodes each 𝑛-product type constructor as
an explicit 𝑛-ary type constructor with corresponding formation and projection operators,
i.e. a free polymorphic type with 𝑛 type variables, an 𝑛-ary instance constructor as tuple
formation and each instance selector as one of the 𝑛 projections.

4.2.2 Semantic compatibility

After smoothing out syntactical differences between specification and input format for a
prover, it is still not clear whether the prover argues according to the specifier’s intention.
A typical example of an unintended inference would be the baseless introduction of tertium
non datur into a proof about a specification that was written with an intuitionistic logic in
mind. In the following, I will argue about the compatibility of Zipperposition’s reasoning
with the two specification languages’ semantics.

CASL

Mossakowski established that 𝑆𝑢𝑏𝑃𝑡𝐶𝐹𝑂𝐿= can be encoded in 𝐶𝐹𝑂𝐿= in such a way that
it is possible to reuse first-order theorem provers with induction (or second- or higher-order)
for entailments concerning structured specifications including certain free {…} constructs.
[50, Theorem 4.13] As explained in Sections 2.2.2 and 2.2.3, (4′) ∘ (3′) ∶ 𝑆𝑢𝑏𝑃 𝑡𝐶𝐹𝑂𝐿= →
𝑡𝐶𝐹𝑂𝐿= is strongly persistently liberal, thus achieving such an encoding. Another result
is that 𝑆𝑢𝑏𝑃𝐶𝐹𝑂𝐿= can be encoded in 𝐶𝐹𝑂𝐿= to allow reuse of first-order theorem
provers with induction (or second- or higher-order provers) for basic specifications. [50,
Theorem 4.8] The comorphism for this encoding only needs to be model-expansive, thus
(4𝑎′) ∘ (3′) ∶ 𝑆𝑢𝑏𝑃𝐶𝐹𝑂𝐿= → 𝐶𝐹𝑂𝐿= is sufficient. For specifications consisting of the
constructs introduced in Section 2.2, reuse of Zipperposition’s higher-order mode is therefore
always possible. The only limitation lies in its first-order mode’s disregard for second-order
sentences and the lack of another way to express induction axioms for non-freely generated
datatypes.

HasCASL

As explained in Section 2.2.4, models for the logical interpretation of HasCASL are not
required to be extensional, classical or to satisfy any choice principle. Bentkamp et al.
explicitly mention the reliance of Zipperposition’s higher-order calculus on extensionality
and Hilbert choice. They also mention that they consider an equation like 𝑡 ≉ ⊥, i.e. for-
mula 𝑡 is not violated, equivalent to 𝑡 ≈ ⊤, i.e. formula 𝑡 is satisfied, and 𝑡 ≉ ⊤ equivalent
to 𝑡 ≈ ⊥, thus implying an assumption of classicality. It is sound for Henkin semantics.
[9] The higher-order mode of Zipperposition can therefore only be used to reason about
specifications that refine the specifications of functional extensionality and Hilbert choice3

mentioned by Schröder and Mossakowski [72], either explicitly through structured speci-
fication constructs or implicitly through their own theories. The explicit case relies on a

3Hilbert choice and extensionality each imply classicality.

4.3 Implementation 29

standard repository of specifications that can be used to build structured specifications and
which includes extensionality and Hilbert choice. Hets-lib has no specifications for either
functional extensionality, classicality or Hilbert choice and so none of the included speci-
fications can make use this explicit method for refining them. Since there is currently no
ATP for 𝑆𝑢𝑏𝑃𝐶𝑜𝐶𝑙𝑇 𝑦𝐶𝑜𝑛𝑠𝑃𝑟𝑜𝑑𝑠𝐻𝑂𝐿=, the implicit case cannot be checked as part of a
test for a particular specification’s compatibility with Zipperposition. As a last resort, the
specification’s theory could be searched for sentences that match the patterns of the spe-
cific sentences used by Schröder and Mossakowski. Together with the TIP format’s limited
expressiveness, this reduces the usefulness of Zipperposition as an ATP for HasCASL con-
siderably. The main advantage over a connection to CASL would be higher-order functions
and polymorphism. Due to the lack of a body of viable specifications for evaluation, the
connection to HasCASL will not be part of this work.

4.3 Implementation

Due to the extensive framework provided by Hets, the implementation of the necessary
changes to the partiality encoding and the integration of Zipperposition proved very easy.
Only the translation of CASL specifications into the TIP format required some work, which
is detailed in the following.

4.3.1 More specific partiality encoding

The stronger version of (4′) described in Section 4.1 has not yet been implemented. It would
require a flag like the one for sort generation constraints that indicates that they come from
a free datatype declaration for generic sentences. The result is, however, applied when
forming datatype declarations for TIP specifications. This would otherwise be impossible
after partiality encoding, even the strongly persistently liberal one, since the relativized
injectivity and disjointness axioms would be too weak to enforce an interpretation as a free
type. A small tweak to the implementation of (4′) that keeps the free-origin flag on sort
generation constraints was necessary to allow this behaviour.
The problem with the existing implementation of partiality encoding was that it assumed
that sort generation constraints always require uniqueness of the undefined element. As
established in Section 2.2.3, this is only true if a constraint defines partial constructors.
I therefore introduced another subinstitution flag to the static analysis for CASL speci-
fications. This flag signifies whether a specification uses only free datatypes (“𝑓” before
“𝐶”), generated datatypes with total constructors (“𝑡” before “𝐶”), or generated datatypes
including partial constructors (the general case, just “𝐶”).
The introduction of 𝑓𝐶 was needed to define an appropriate subinstitution for the first-
order mode of Zipperposition. Since free types can only have total constructors, this further
distinction does not harm the rejection decision of the partiality encoding. It was however
necessary to define existing comorphisms’ interaction with the new flag. The comorphism
(4𝑎′), for example, cannot preserve free types, but always codes out partial constructors.
It is therefore clear that this variant always produces 𝑡𝐶 specifications if sort generation
constraints were present in the input specifications. The comorphism (4′), on the other
hand, preserves free types, as explained above, and will thus preserve the classification of

30 Chapter 4 Thesis Contribution

sort generation constraints of its input specifications, since it is not applicable to those
with partial constraints and does not introduce constraints to those without any. Other
comorphisms that had to be updated were encodings of CSMOF and QVT [19] into CASL,
since they produce sort generation constraints. The fact that they only ever introduce free
types emphasizes the relevance of the 𝑓𝐶 distinction for real-world use-cases.

4.3.2 Representing CASL specifications in TIP format

Hets represents CASL specifications as tuples containing a signature representation next to
a list of named formula representations. Signatures contain maps of operation and pred-
icate names to sets of their associated profiles and flags indicating their totality where
applicable (i.e. representations of 𝑇 𝐹, 𝑃𝐹 and 𝑃), as well as a map of sorts to their sets of
supersorts (i.e. a representation of both 𝑆 and ⩽). As mentioned in Section 4.2.1, formulas
are representations of abstract syntax trees for formulas and sort generation constraints as
defined in The Complete Documentation of the Common Algebraic Specification Language.
Additionally, there are structures for second-order universally quantified formulas to facil-
itate the expression of sort generation constraints as induction axioms. Lastly, there are
provisions for temporary forms of sentences as encountered during parsing, which need not
be considered when working with fully parsed specifications.
The maintainers of TIP provide a grammar in labelled Backus-Naur form. This can be used
to generate various implementations of an abstract syntax, a parser, and a pretty printer
for the format using BNFC [33]. For this work the generated abstract syntax and pretty
printer implementation for Haskell were essential for constructing syntax trees for TIP
specifications and making them readable for Zipperposition. Section 4.3.3 provides further
detail on the compromises that had to be implemented to accomodate Zipperposition.
The translation of a signature consists mainly of the declaration of sort and function sym-
bols. To avoid name clashes, every sort, operation, and predicate symbol gets a new prefix
that distinguishes it from pre-defined types of the TIP format and from other operations
and predicates with the same name but differing profile. Sorts get the prefix s_, operations
get f<profile>_, and predicates get p<profile>_. Here, <profile> is the list of argument
sorts delimited by asterisks (*) which, in the case of operations, is followed by an arrow
(->) and the result sort. Empty argument sort lists result in an empty <profile> in the
case of predicates and an ommission of the arrow for operations.
Because Zipperposition warned about shadowing of identifiers, it seemed necessary to avoid
repeating the declaration of a sort as a datatype, and so at first only loose and non-freely
generated sorts are declared. To make this distinction, the information provided by the
signature is not sufficient and the free datatypes have to be filtered from the sentences
declaring them as such. This is done by examining the sort generation constraints, which
carry with them a flag indicating if they come from a free datatype declaration. Because the
results from Section 4.1 have not been completely implemented, this is the only realiable
way to identify free types, as existing injectivity and disjointness sentences may be too weak.
At the same time, constructors are extracted4 to complete the datatype declarations and to
avoid re-declaring them together with the other operations. Extracting selectors, however,

4Remember from Section 2.2 that sort generation constraints always have to carry their generating opera-
tions.

4.3 Implementation 31

turned out to be harder than expected, since there is no implementation of a comparison
of formulas modulo variable names implemented. For the time being, selectors are always
freshly generated by prepending to the generated constructor name an i (inverse), followed
by the index of the constructor argument it is projecting and an underscore. The original
selectors are preserved with the rest of the non-constructor operations and their relationship
to their constructors is still specified in the theory. Because datatypes are specified with
sentences using already declared sorts in 𝑆𝑢𝑏𝑃𝐶𝐹𝑂𝐿=, mutual recursion does not pose
any problem on the institution level. When using language constructs to declare datatypes,
however, it has to be taken into account, which is why both CASL and the TIP format
allow non-linear visibility of sort declarations within the same declaration construct. For
the translation, this becomes important when the free types and their constructors and
selectors have to be written down. All free type declarations are thus always put in a
single declare-datatypes command. Finally, the remaining operations and predicates are
declared with names generated as explained above.
Translation of formulas consists mainly of walking down the abstract syntax tree and switch-
ing CASL constructs for those generated from the TIP grammar. Variables introduced by
quantification are treated like nullary operators above, only with a prefix beginning with a
capital F. Since there are apparently a few logic languages without unique existential quan-
tification, a transformation function was already implemented that applied the following
definition:

∃!𝑥∶ 𝑋, … , 𝑧 ∶ 𝑍.𝑃(𝑥, … , 𝑧)
≡ ∃𝑥∶ 𝑋, … , 𝑧∶ 𝑍.𝑃(𝑥, … , 𝑧) ∧ (∀𝑥′ ∶ 𝑋, … , 𝑧′ ∶ 𝑍.𝑃(𝑥′, … 𝑧′) ⇒ 𝑥′ = 𝑥 ∧ … ∧ 𝑧′ = 𝑧)

Sort generation constraints are first translated into second-order sentences by re-using an
existing implementation for generating first-order instances of induction axiom schemata.
Because the predicate in these instances could not be reliably extracted to universally quan-
tify after the fact, the implementation was changed to use the exact generated predicate
symbol for a surrounding second-order quantification. This leaves the original functional-
ity as a special case that unwraps the second-order quantification again. The translation
of second-order sentences introduces the need to keep track of quantified predicates be-
cause their application differs from the usual first-order predicates. For this purpose, the
walk down the tree carries a set of quantified variables that grows with every second-order
quantification and is queried every time a formula consists of a predicate application. If
the corresponding predicate symbol is in the set, the special @ operator is used for the
application, otherwise the predicate is applied as usual.
Features beyond such second-order formulas and 𝐶𝐹𝑂𝐿= throw an error during the trans-
lation. These include existential equations and the interpreted definedness predicates. Im-
plicit injections of elements of subsorts in places where the supersort would be expected are
not detected but should be rejected by the prover’s typechecker.
Since Hets is able to extract the axioms that were actually used in a proof from a prover’s
output, they are annotated either with auto-generated identifiers or names given in the
specification (cf. Listing 2.1). The TIP format allows keyword annotations with an optional
value and the authors used the axiom keyword for naming axioms. The original names are
thus stored as values to axiom annotations. The format allows for the use of otherwise
interpreted characters through escaping, which was not part of the code generated by BNFC

32 Chapter 4 Thesis Contribution

and had to be implemented, as well as the decoding of such escape sequences.

4.3.3 Integrating Zipperposition

Zipperposition was chosen for this work because of its induction capabilities and its native
support for the TIP format. However, the parser implementation was based on an older
version of the format and a quick fix was provided by the maintainers of the GitHub
repository.5 Some format changes were overlooked, though, and so the integration in Hets
has to accomodate missing features through prover-specific workarounds. Due to a modular
approach, these workarounds do not affect other potential consumers of the TIP format
backend and can even be reused and extended for provers that have quirks of their own.
The following workarounds have been implemented for Zipperposition:

Removal of annotations Because the parser does not expect any tokens between a com-
mand and its arguments, annotations like axiom names cause a parse failure. These
are therefore removed when preparing the problem file passed to Zipperposition. Zip-
perposition numbers the commands in a problem file, starting with 0, and identifies
each axiom by the index of the command which introduced it. This is exploited to
reconstruct the original names of axioms from proofs.

Splitting of simultaneous datatype declarations Parsing for the declare-datatypes com-
mand was not adapted during the fix mentioned above and so, at the time of writing,
only the singular command can be used. Datatypes are therefore declared singularly
in the order in which their sort generation constraints appeared. This makes it impos-
sible to use mutually recursive datatypes and breaks datatypes whose sort generation
constraints did not occur dependency-ordered in the original specification. The lat-
ter problem could be remedied with a dependency analysis during application of the
workaround. Since that would only be a partial fix and would be made redundant
by a proper overhaul of Zipperposition’s TIP parser anyway, no such workaround has
been implemented.

Zipperposition’s ability to output its proofs in TPTP typed higher-order form (THF) is
leveraged to extract proof graphs and the list of used axioms from a proof. TPTP parsing
was already implemented in Hets and needed only a little extension to deal with Zipper-
position’s way of expressing an axiom’s origin. However, predicate symbols containing
non-alphanumeric symbols are not properly quoted in the THF output.6 This breaks pars-
ing for proofs that use predicate symbols originally containing non-alphanumeric characters
and, due to the asterisk used as a delimiter for argument sorts, predicates with arity greater
than 1. This can only be fixed on Zipperposition’s side and currently leads to no proof graph
being built and all axioms being considered vital for such proofs.

4.4 Experiments

To test the efficacy of Zipperposition as an ATP for discharging inductive proof obligations,
CASL specifications were needed that contained proof obligations which FOL provers like E

5https://github.com/sneeuwballen/zipperposition/issues/88
6https://github.com/sneeuwballen/zipperposition/issues/93

https://github.com/sneeuwballen/zipperposition/issues/88
https://github.com/sneeuwballen/zipperposition/issues/93

4.4 Experiments 33

[73] and SPASS [84] were not already able to handle. For this purpose, the specification seen
in Listing A.1 was created with the goal of providing proof obligations that could not be
solved by simply applying definitions and being naturally 𝑓𝐶𝐹𝑂𝐿=. It was then extended
to 𝑃𝑓𝐶𝐹𝑂𝐿=, 𝑆𝑢𝑏𝑓𝐶𝐹𝑂𝐿=, and 𝑆𝑢𝑏𝑃𝑓𝐶𝐹𝑂𝐿= to evaluate the effect of partiality encod-
ing, subsorting encoding, and both at once on the same goals’ provability. The resulting
specifications can be seen in Listings A.2 to A.4, respectively. The proof obligations were
tried to be discharged using E, SPASS, and Zipperposition in FOL mode with induction,
Zipperposition in HOL mode with (4𝑎′) for partiality encoding, and Zipperposition in HOL
mode with (4′) for partiality encoding, each given a 60 s timeout. The Hets feature for pass-
ing on proven theorems as axioms in subsequent proof attempts was turned off to prevent
escalating advantages in case one prover was able to prove one theorem that another could
not. No repetitions are made because the resulting times are only informative and do not
require statistical significance.

CHAPTER 5

Thesis Outcome

These are the conclusions that I have drawn from my work on integrating Zipperposition
into Hets using TIP as an interchange format. I will first detail my experience with using
TIP to express inductive CASL problems. Then I will present the results of my experiments
with the specifications in Listings A.1 to A.4 and try to interpret them.

5.1 TIP for inductive CASL problems

Any application of an induction principle in a proof requires a justification in the underlying
logical system’s model theory. The TIP format, presumably inheriting parts of its model
theory from SMT-LIB, provides this justification in the form of algebraic datatypes. These
are any sorts with a non-empty set of constructors and each constructor is required to have a
number of distinct selectors attached to it that is equal to its arity. The interpretation of an
algebraic datatype and its constructors is that of an absolutely free structure generated by its
surrounding non-algebraic sorts, for which every selector is an inverse of the constructor it is
attached to, in its assigned input argument. [3] The requirement of invertible, i.e. injective,
constructors is integral to the SMT-LIB interpretation of algebraic datatypes. The TIP
format additionally allows the explicit formulation of second-order induction axioms.
CASL, on the other hand, can justify induction with its sort generation constraints. These
restrict interpretations of included sorts and constructors similarly to SMT-LIB’s absolutely
free structures, but do not require every constructor to be invertible in every argument, or
even be total. This allows the succinct specification of set-like datatypes whose instances
can be equal even if constructed in distinct ways.
A prover that merely extends FOL by some form of induction principle is not necessarily
equipped to interpret higher-order axioms and recognize them as justifications for the ap-
plication of such a principle. It would therefore be a specification language’s responsibility
to facilitate making this information explicit, especially if its raison d’être is the expression
of inductive problems. In the tradition of deviating from SMT-LIB, a little format change
could enable the explicit declaration of generated types: Allowing constructors without se-
lectors in datatype declarations would allow an interpretation where such constructors are
not required to be injective and their images not disjoint from those of other constructors.
Another difficulty in using the TIP format is the lack of a semantics that could disambiguate

36 Chapter 5 Thesis Outcome

the meaning of language constructs. As it stands, a prover’s interpretation of the format
has to first be reverse-engineered before it can be used with TIP specifications. This is
especially problematic when what little information there is about the interpretation is still
ambiguous. A statement such as “TIP allows partial functions. SMT-LIB does not.” [40]
can mean that functions cannot in general be relied upon to have a value for every input
or, as was probably the intention of the authors, that functions can be defined with non-
exhaustive match constructs while still being total and simply underspecified. That only
becomes apparent in the TIP tools’ implementation of the translation to SMT-LIB, which
does not fundamentally change functions or the way in which they are used. By default, no
partiality encoding is done at all and there are two additional SMT-LIB translation modes
that replace match constructs with their definitions [3, Expr. 3.5] or translate define-fun
statements into declarations and axioms. The former leads to nested conditional expres-
sions for which the last else-branch contains possibly undefined applications of selectors
and the latter just moves match constructs around. Only with a separate translation flag
are incomplete match constructs completed with a default case that yields some fresh, and
therefore underspecified, constant of the result sort. Therefore, the default SMT-LIB trans-
lation can produce invalid scripts and both ways of treating incomplete match constructs
lead to the interpretation as underspecified total functions. Contrary to the aforementioned
statement, this is exactly the interpretation that SMT-LIB assigns selectors, which are in-
herently partial. Having such information available in a reference document could have
saved some effort trying to devise a comorphism that would encode the distinction between
total and partial functions into a setting with only partial functions.

5.2 Zipperposition for inductive CASL problems

Neither E nor SPASS were able to discharge any of the goals from Listings A.1 to A.4. That
means that Tables 5.1 and 5.2 represent a definitive improvement over the status quo insofar
as Hets can find theorems automatically now that could not have been found before. This
has to be qualified, though, by the fact that the specifications with the highest success rates
were tailored to the prover’s featureset. Any kind of encoding of CASL features not natively
supported by Zipperposition or the TIP format leads to a sharp decline in successful proof

Goal \ feature level 𝑓𝐶𝐹𝑂𝐿= 𝑃𝑓𝐶𝐹𝑂𝐿= 𝑆𝑢𝑏𝑓𝐶𝐹𝑂𝐿= 𝑆𝑢𝑏𝑃𝑓𝐶𝐹𝑂𝐿=

add_0_right 5 ms 103 ms 643 ms 567 ms
add_assoc 82 ms – – –
add_suc_right 1072 ms – – –
add_comm 3128 ms – – –
flip_flip – – – –
balanced_existence – – – –
concat_assoc 188 ms – – –
concat_nil_right 44 ms 151 ms – –
reverse_concat – – – –
length_concat 121 ms – – –

Table 5.1: Zipperposition FOL-with-induction mode performance (– for timeout after 60 s)

5.2 Zipperposition for inductive CASL problems 37

Goal \ feature level 𝑓𝐶𝐹𝑂𝐿= 𝑃𝑓𝐶𝐹𝑂𝐿= 𝑆𝑢𝑏𝑓𝐶𝐹𝑂𝐿= 𝑆𝑢𝑏𝑃𝑓𝐶𝐹𝑂𝐿=

add_0_right 266 ms 501 ms 1577 ms 1943 ms
add_assoc 1756 ms – – –
add_suc_right 251 ms – – –
add_comm – – – –
flip_flip – – – –
balanced_existence – – – –
concat_assoc 3563 ms – – –
concat_nil_right 197 ms – 35 466 ms –
reverse_concat – – – –
length_concat – – – –

Table 5.2: Zipperposition HOL mode (non-persistently-liberal partiality encoding) performance (–
for timeout after 60 s)

attempts. Partiality encoding by itself made any goal infeasible that involved more than
one universally quantified variable. This may have to do with the addition of a conjunction
as a premise when there is more than one variable for which definedness can be asserted
(cf. lines 29 to 32 in Listing A.6). The conjuncts in the premise may be harder to delineate
when generating induction lemmas than a single predicate.
Since the encoding of subsorting introduces partial projection functions (cf. lines 12 and 25
in Listing A.9) which have to be encoded as well, HOL mode’s timeout for concat_nil_right
in the merely partial setting stood out and the goal was retried with a more generous time
limit. After 264 s, HOL mode was able to find the proof for that goal, showing that it
may be worth waiting beyond my one-minute timelimit.1 As expected, the combination of
subsorting and explicit partial functions does not have a great impact on performance for
the one goal that was solvable in every setting. Because of this, another attempt to have
HOL mode find a proof for concat_nil_right in the subsorted, partial setting was started.
It timed out after 10 min and having already taken up about two thirds of the 16 GB of
available main memory. This may be due to the additional selector functions increasing
the number of potential induction lemmas to instantiate the induction axiom with. Hets
does not allow the removal of signature components so that an attempt without the likewise
unnecessary comparison predicates and operations was not undertaken.
The fact that there is only one undefined element per sort to consider also works in HOL
mode’s favour. With the persistently liberal partiality encoding, it was unable to solve any
of the proof goals in time. I speculate that HOL mode does not consider all the information
from datatype declarations like injectivity and disjointness of constructors and thus has a
much harder time arguing about “successors” of undefined elements. It is, for example,
“trivial” for FOL-with-induction mode to declare injectivity for Suc1 from Listing 4.1, but
HOL mode cannot seem to find a justification.

1The time has not been recorded in the table since it was achieved outside the set experiment parameters.

CHAPTER 6

Conclusion
This part compresses the knowledge gained over the course of this thesis. I will summarize
my contributions and point out potential for further research that was outside the scope of
this work. Progress on mainlining my implementation can be tracked on GitHub.1

6.1 Summary

For this thesis, I have integrated an ATP capable of inductive reasoning into the proof
management software Hets. I have evaluated the TIP format as an interchange format
to talk to more than just the one prover chosen for this work, which was Zipperposition.
The TIP format is capable of expressing the entirety of 𝐶𝐹𝑂𝐿= due to its higher-order
features. It did, however, prove to be unable to express the fact that an induction schema
can be applied to a datatype without resorting to second-order sentences, i.e. induction
axioms. The availability of an induction schema for a datatype can be expressed succinctly
if that datatype is supposed to be interpreted freely, i.e. as an absolutely free structure
containing invertible constructors. Another problem is the lack of a well-defined semantics,
thus leaving each prover room for interpretation of the language constructs, which have to
be considered when connecting a prover.
While researching comorphisms that would encode subsorting and partiality features of
CASL to fit into 𝐶𝐹𝑂𝐿=, I discovered that Mossakowski’s persistently liberal comorphism
for encoding partiality can be strengthened under certain circumstances: First-order sen-
tences that distinguish a freely generated from a non-freely generated datatype do not need
to be relativized to apply only to defined values. This improvement has not yet been imple-
mented in the partiality encoding within Hets, but is already exploited when constructing
datatype declarations during preparation of TIP input for Zipperposition.
Zipperposition was tested on problems that ATPs with existing Hets integrations were
not able to solve. Besides an extension of a first-order calculus with inductive reasoning,
Zipperposition also features a higher-order mode. This allowed testing of non-persistently-
liberal encodings, which would produce the aforementioned non-freely generated datatypes.
Both modes were quite successful in finding new theorems when no encoding was necessary.
However, they struggled with partiality encoding, which complicates proof goals and bloats

1https://github.com/spechub/Hets/issues/1502

https://github.com/spechub/Hets/issues/1502

40 Chapter 6 Conclusion

up theories, solving only the easiest of goals. Zipperposition’s HOL mode was not even
able to find these with the persistently liberal partiality encoding. Each of the modes was
able to find proofs that the other one could not, which shows that it was useful to include
both modes as options for the user to choose from. I expect them to be of help with the
verification of specifications written in languages with direct comorphisms to 𝐶𝐹𝑂𝐿=, like
CL. Unfortunately, the examples of CL specifications in Hets-lib either contained no proof
goals involving sequence markers or could not be opened using Hets, so this was not tested.
Specifications involving subsorting or partiality features will likely not benefit much. At
least now, users have the option of trying to have an ATP discharge their inductive proof
obligations.
Use of Zipperposition is hampered, though, by its patchwork TIP parser and incomplete
TPTP proof output. It is not possible to assign names to axioms, which Zipperposi-
tion should use when outputting proofs. It is not possible to declare mutually-recursive
datatypes. Datatypes which depend on other datatypes are also broken in cases where
their sort generation constraints do not perchance appear in dependency order within the
original CASL specification. Predicates with names containing non-alphanumeric symbols
are not quoted, and thus prevent any attempt at parsing the proofs.

6.2 Future Work

Due to time constraints, this work does not include a case study for the effectiveness of
the Zipperposition integration within a real-life scenario. Such a case study could explore
whether any useful proofs can now be found automatically. A first candidate would be
the COLORE graph theories, for which Mossakowski et al. needed to use Isabelle when
evaluating their CL integration [54]. Another candidate would be the ATM example used
recently by Rosenberger, Knapp, and Roggenbach, who had actually hoped for automation
support when doing their UML integration [65]. In a cursory test with their specifications,
I encountered problems with interdependent datatype declarations did not look into it
further. This has to be fixed within Zipperposition itself, and the workaround within Hets
disabled.
Furthermore, more inductive provers can be connected via the TIP format backend and even
more via translations offered by the TIP tools, which are also available for intergration in
Hets as a Haskell library. One of these translations can provide a connection to the Why3
environment, thus gaining the support of many provers – automatic and interactive – at
once. All of these connections have to be carefully checked for faithfulness to the original
intention, though, since the TIP format’s semantics are not well-defined.
Lastly, the stronger partiality encoding introduced in Section 4.1 needs to be implemented
in Hets. This was also not done due to time constraints.

Bibliography
[1] Behzad Akbarpour and Lawrence C. Paulson. “MetiTarski: An Automatic Prover

for the Elementary Functions”. In: Intelligent Computer Mathematics. Ed. by Serge
Autexier et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 217–231. doi:
10.1007/978-3-540-85110-3_18.

[2] Egidio Astesiano et al. “CASL: the Common Algebraic Specification Language”. In:
Theoretical Computer Science 286.2 (2002). Current trends in Algebraic Development
Techniques, pp. 153–196. doi: 10.1016/S0304-3975(01)00368-1.

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard. Tech.
rep. Version 2.6. Department of Computer Science, The University of Iowa, 2017.
url: https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-
05-12.pdf.

[4] Clark Barrett and Cesare Tinelli. “CVC3”. In: Computer Aided Verification. Ed. by
Werner Damm and Holger Hermanns. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 298–302. doi: 10.1007/978-3-540-73368-3_34.

[5] Clark Barrett et al. “CVC4”. In: Computer Aided Verification. Ed. by Ganesh Gopalakr-
ishnan and Shaz Qadeer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 171–
177. doi: 10.1007/978-3-642-22110-1_14.

[6] Peter Baumgartner, Joshua Bax, and Uwe Waldmann. “Beagle – A Hierarchic Super-
position Theorem Prover”. In: Automated Deduction - CADE-25. Ed. by Amy P. Felty
and Aart Middeldorp. Cham: Springer International Publishing, 2015, pp. 367–377.
doi: 10.1007/978-3-319-21401-6_25.

[7] Alexander Bentkamp et al. “Superposition for Lambda-Free Higher-Order Logic”. In:
Automated Reasoning. Ed. by Didier Galmiche, Stephan Schulz, and Roberto Sebas-
tiani. Cham: Springer International Publishing, 2018, pp. 28–46. doi: 10.1007/978-
3-319-94205-6_3.

[8] Alexander Bentkamp et al. “Superposition with Lambdas”. In: Automated Deduction
– CADE 27. Ed. by Pascal Fontaine. Cham: Springer International Publishing, 2019,
pp. 55–73. doi: 10.1007/978-3-030-29436-6_4.

[9] Alexander Bentkamp et al. “Superposition for Full Higher-order Logic”. In: Automated
Deduction – CADE 28. Ed. by André Platzer and Geoff Sutcliffe. Cham: Springer
International Publishing, 2021, pp. 396–412. doi: 10.1007/978-3-030-79876-5_23.

https://doi.org/10.1007/978-3-540-85110-3_18
https://doi.org/10.1016/S0304-3975(01)00368-1
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
https://doi.org/10.1007/978-3-540-73368-3_34
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-319-21401-6_25
https://doi.org/10.1007/978-3-319-94205-6_3
https://doi.org/10.1007/978-3-319-94205-6_3
https://doi.org/10.1007/978-3-030-29436-6_4
https://doi.org/10.1007/978-3-030-79876-5_23

42 Bibliography

[10] Christoph Benzmüller et al. “LEO-II - A Cooperative Automatic Theorem Prover for
Classical Higher-Order Logic (System Description)”. In: Automated Reasoning. Ed.
by Alessandro Armando, Peter Baumgartner, and Gilles Dowek. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 162–170. doi: 10.1007/978-3-540-71070-
7_14.

[11] François Bobot and Andrei Paskevich. “Expressing Polymorphic Types in a Many-
Sorted Language”. In: Frontiers of Combining Systems. Ed. by Cesare Tinelli and
Viorica Sofronie-Stokkermans. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 87–102. doi: 10.1007/978-3-642-24364-6_7.

[12] François Bobot et al. “Implementing Polymorphism in SMT Solvers”. In: Proceedings
of the Joint Workshops of the 6th International Workshop on Satisfiability Modulo
Theories and 1st International Workshop on Bit-Precise Reasoning. SMT ’08/BPR
’08. Princeton, New Jersey, USA: Association for Computing Machinery, 2008, pp. 1–
5. doi: 10.1145/1512464.1512466.

[13] François Bobot et al. “Why3: Shepherd Your Herd of Provers”. In: Boogie 2011: First
International Workshop on Intermediate Verification Languages. Wrocław, Poland,
2011, pp. 53–64. url: https://hal.inria.fr/hal-00790310.

[14] François Bobot et al. “Let’s verify this with Why3”. In: Int. J. Softw. Tools Technol.
Transf. 17.6 (2015), pp. 709–727. doi: 10.1007/s10009-014-0314-5.

[15] Sascha Böhme and Tobias Nipkow. “Sledgehammer: Judgement Day”. In: Automated
Reasoning. Ed. by Jürgen Giesl and Reiner Hähnle. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 107–121. doi: 10.1007/978-3-642-14203-1_9.

[16] Thomas Bouton et al. “veriT: An Open, Trustable and Efficient SMT-Solver”. In:
Automated Deduction – CADE-22. Ed. by Renate A. Schmidt. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 151–156. doi: 10.1007/978-3-642-02959-
2_12.

[17] Chad E. Brown. “Reducing Higher-Order Theorem Proving to a Sequence of SAT
Problems”. In: Automated Deduction – CADE-23. Ed. by Nikolaj Bjørner and Viorica
Sofronie-Stokkermans. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 147–
161. doi: 10.1007/978-3-642-22438-6_13.

[18] Arnim Buch, Thomas Hillenbrand, and Roland Fettig. “WALDMEISTER: High per-
formance equation theorem proving”. In: Design and Implementation of Symbolic
Computation Systems. Ed. by Jacques Calmet and Carla Limongelli. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1996, pp. 63–64. doi: 10.1007/3-540-61697-7_6.

[19] Daniel Calegari, Till Mossakowski, and Nora Szasz. “Heterogeneous verification in
the context of model driven engineering”. In: Science of Computer Programming
126 (2016). Selected Papers from the 17th Brazilian Symposium on Formal Meth-
ods (SBMF 2014), pp. 3–30. doi: 10.1016/j.scico.2016.02.003.

[20] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for Random Test-
ing of Haskell Programs”. In: Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming. ICFP ’00. New York, NY, USA: Association
for Computing Machinery, 2000, pp. 268–279. doi: 10.1145/351240.351266.

https://doi.org/10.1007/978-3-540-71070-7_14
https://doi.org/10.1007/978-3-540-71070-7_14
https://doi.org/10.1007/978-3-642-24364-6_7
https://doi.org/10.1145/1512464.1512466
https://hal.inria.fr/hal-00790310
https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-22438-6_13
https://doi.org/10.1007/3-540-61697-7_6
https://doi.org/10.1016/j.scico.2016.02.003
https://doi.org/10.1145/351240.351266

Bibliography 43

[21] Koen Claessen et al. “TIP: Tons of Inductive Problems”. In: Intelligent Computer
Mathematics. Ed. by Manfred Kerber et al. Cham: Springer International Publishing,
2015, pp. 333–337. doi: 10.1007/978-3-319-20615-8_23.

[22] Thierry Coquand and Gérard Huet. “The calculus of constructions”. In: Information
and Computation 76.2 (1988), pp. 95–120. doi: 10.1016/0890-5401(88)90005-3.

[23] Simon Cruanes. “Logtk: A Logic ToolKit for Automated Reasoning and its Implemen-
tation”. In: 4th Workshop on Practical Aspects of Automated Reasoning, PAAR@IJ-
CAR 2014, Vienna, Austria, 2014. Ed. by Stephan Schulz, Leonardo de Moura, and
Boris Konev. Vol. 31. EPiC Series in Computing. EasyChair, 2014, pp. 39–49. doi:
10.29007/4z1m.

[24] Simon Cruanes. “Extending Superposition with Integer Arithmetic, Structural In-
duction, and Beyond”. PhD thesis. École polytechnique, Sept. 2015. url: https:
//hal.archives-ouvertes.fr/tel-01223502.

[25] Simon Cruanes. “Superposition with Structural Induction”. In: Frontiers of Combin-
ing Systems. Ed. by Clare Dixon and Marcelo Finger. Cham: Springer International
Publishing, 2017, pp. 172–188. doi: 10.1007/978-3-319-66167-4_10.

[26] Marc Daumas and Guillaume Melquiond. “Generating formally certified bounds on
values and round-off errors”. In: Proceedings of the 6th Conference on Real Num-
bers and Computers. Ed. by Vasco Brattka, Christiane Frougny, and Norbert Müller.
Schloß Dagstuhl, Germany, pp. 55–70. url: https : / / hal . inria . fr / inria -
00070739.

[27] David Detlefs, Greg Nelson, and James B. Saxe. “Simplify: A Theorem Prover for Pro-
gram Checking”. In: J. ACM 52.3 (May 2005), pp. 365–473. doi: 10.1145/1066100.
1066102.

[28] André Duarte and Konstantin Korovin. “Implementing Superposition in iProver (Sys-
tem Description)”. In: Automated Reasoning. Ed. by Nicolas Peltier and Viorica
Sofronie-Stokkermans. Cham: Springer International Publishing, 2020, pp. 388–397.
doi: 10.1007/978-3-030-51054-1_24.

[29] Jonas Duregård, Patrik Jansson, and Meng Wang. “Feat: Functional Enumeration
of Algebraic Types”. In: Proceedings of the 2012 Haskell Symposium. New York, NY,
USA: Association for Computing Machinery, 2012, pp. 61–72. doi: 10.1145/2364506.
2364515.

[30] Bruno Dutertre. “Yices 2.2”. In: Computer Aided Verification. Ed. by Armin Biere
and Roderick Bloem. Cham: Springer International Publishing, 2014, pp. 737–744.
doi: 10.1007/978-3-319-08867-9_49.

[31] Bruno Dutertre and Leonardo de Moura. “A Fast Linear-Arithmetic Solver for DPLL(T)”.
In: Computer Aided Verification. Ed. by Thomas Ball and Robert B. Jones. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 81–94. doi: 10.1007/11817963_11.

[32] Melvin Fitting. “Classical Logic—Semantics”. In: Types, Tableaus, and Gödel’s God.
Dordrecht: Springer Netherlands, 2002, pp. 11–32. doi: 10.1007/978-94-010-0411-
4_2.

https://doi.org/10.1007/978-3-319-20615-8_23
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.29007/4z1m
https://hal.archives-ouvertes.fr/tel-01223502
https://hal.archives-ouvertes.fr/tel-01223502
https://doi.org/10.1007/978-3-319-66167-4_10
https://hal.inria.fr/inria-00070739
https://hal.inria.fr/inria-00070739
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1145/2364506.2364515
https://doi.org/10.1145/2364506.2364515
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/11817963_11
https://doi.org/10.1007/978-94-010-0411-4_2
https://doi.org/10.1007/978-94-010-0411-4_2

44 Bibliography

[33] Markus Forsberg and Aarne Ranta. “BNF Converter”. In: Proceedings of the 2004
ACM SIGPLAN Workshop on Haskell. Haskell ’04. Snowbird, Utah, USA: Association
for Computing Machinery, 2004, pp. 94–95. doi: 10.1145/1017472.1017475.

[34] Kurt Gödel. „Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I“. In: Monatshefte für Mathematik und Physik 38.1 (Dez. 1931),
S. 173–198. doi: 10.1007/BF01700692.

[35] Joseph A. Goguen and Rod M. Burstall. “Introducing Institutions”. In: Logics of
Programs, Workshop, Carnegie Mellon University, Pittsburgh, PA, USA, June 6-8,
1983, Proceedings. Ed. by Edmund M. Clarke and Dexter Kozen. Vol. 164. Lecture
Notes in Computer Science. Springer, 1983, pp. 221–256. doi: 10.1007/3-540-
12896-4_366.

[36] Stéphane Graham-Lengrand. “Psyche: A Proof-Search Engine Based on Sequent Cal-
culus with an LCF-Style Architecture”. In: Automated Reasoning with Analytic Tableaux
and Related Methods. Ed. by Didier Galmiche and Dominique Larchey-Wendling.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 149–156. doi: 10.1007/978-
3-642-40537-2_14.

[37] Leon Henkin. “Completeness in the Theory of Types”. In: The Journal of Symbolic
Logic 15.2 (1950), pp. 81–91. doi: 10.2307/2266967. (Visited on 09/07/2022).

[38] Kryštof Hoder and Andrei Voronkov. “Sine Qua Non for Large Theory Reasoning”.
In: Automated Deduction – CADE-23. Ed. by Nikolaj Bjørner and Viorica Sofronie-
Stokkermans. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 299–314. doi:
10.1007/978-3-642-22438-6_23.

[39] Joe Hurd. “First-Order Proof Tactics in Higher-Order Logic Theorem Provers”. In:
Design and Application of Strategies/Tactics in Higher Order Logics (STRATA 2003).
Ed. by Myla Archer, Ben Di Vito, and César Muñoz. NASA Technical Reports
NASA/CP-2003-212448. Sept. 2003, pp. 56–68. url: http://www.gilith.com/
papers/metis.pdf.

[40] Moa Johansson, Dan Rosén, and Nicholas Smallbone. TIP Format. Aug. 16, 2019.
url: https://tip-org.github.io/format.html (visited on 06/24/2022).

[41] Simon L. Peyton Jones. “Haskell 98: Introduction”. In: J. Funct. Program. 13.1 (2003),
pp. i–6. doi: 10.1017/S0956796803000315.

[42] Michael Kohlhase et al. “Formal Management of CAD/CAM Processes”. In: FM 2009:
Formal Methods. Ed. by Ana Cavalcanti and Dennis R. Dams. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 223–238. doi: 10.1007/978-3-642-05089-
3_15.

[43] Konstantin Korovin. “Instantiation-Based Automated Reasoning: From Theory to
Practice”. In: Automated Deduction – CADE-22. Ed. by Renate A. Schmidt. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 163–166. doi: 10.1007/978-3-
642-02959-2_14.

[44] Konstantin Korovin and Christoph Sticksel. “iProver-Eq: An Instantiation-Based The-
orem Prover with Equality”. In: Automated Reasoning. Ed. by Jürgen Giesl and
Reiner Hähnle. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 196–202.
doi: 10.1007/978-3-642-14203-1_17.

https://doi.org/10.1145/1017472.1017475
https://doi.org/10.1007/BF01700692
https://doi.org/10.1007/3-540-12896-4_366
https://doi.org/10.1007/3-540-12896-4_366
https://doi.org/10.1007/978-3-642-40537-2_14
https://doi.org/10.1007/978-3-642-40537-2_14
https://doi.org/10.2307/2266967
https://doi.org/10.1007/978-3-642-22438-6_23
http://www.gilith.com/papers/metis.pdf
http://www.gilith.com/papers/metis.pdf
https://tip-org.github.io/format.html
https://doi.org/10.1017/S0956796803000315
https://doi.org/10.1007/978-3-642-05089-3_15
https://doi.org/10.1007/978-3-642-05089-3_15
https://doi.org/10.1007/978-3-642-02959-2_14
https://doi.org/10.1007/978-3-642-02959-2_14
https://doi.org/10.1007/978-3-642-14203-1_17

Bibliography 45

[45] Fredrik Lindblad. “A Focused Sequent Calculus for Higher-Order Logic”. In: Auto-
mated Reasoning. Ed. by Stéphane Demri, Deepak Kapur, and Christoph Weiden-
bach. Cham: Springer International Publishing, 2014, pp. 61–75. doi: 10.1007/978-
3-319-08587-6_5.

[46] Christopher Menzel. “Knowledge representation, the World Wide Web, and the evo-
lution of logic”. In: Synthese 182.2 (Sept. 2011), pp. 269–295. doi: 10.1007/s11229-
009-9661-2.

[47] José Meseguer. “General Logics”. In: Logic Colloquium’87. Ed. by H.-D. Ebbinghaus
et al. Vol. 129. Studies in Logic and the Foundations of Mathematics. Elsevier, 1989,
pp. 275–329. doi: 10.1016/S0049-237X(08)70132-0.

[48] Eugenio Moggi. “Categories of partial morphisms and the 𝜆P-calculus”. In: Category
Theory and Computer Programming: Tutorial and Workshop, Guildford, U.K. Septem-
ber 16–20, 1985 Proceedings. Ed. by David Pitt et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1986, pp. 242–251. doi: 10.1007/3-540-17162-2_126.

[49] Till Mossakowski. “Different types of arrow between logical frameworks”. In: Au-
tomata, Languages and Programming. Ed. by Friedhelm Meyer and Burkhard Monien.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 158–169. doi: 10.1007/3-
540-61440-0_125.

[50] Till Mossakowski. “Relating CASL with other specification languages: the institution
level”. In: Theoretical Computer Science 286.2 (2002). Current trends in Algebraic
Development Techniques, pp. 367–475. doi: 10.1016/S0304-3975(01)00369-3.

[51] Till Mossakowski. “Foundations of Heterogeneous Specification”. In: Recent Trends in
Algebraic Development Techniques. Ed. by Martin Wirsing, Dirk Pattinson, and Rolf
Hennicker. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 359–375. doi:
10.1007/978-3-540-40020-2_21.

[52] Till Mossakowski. “Heterogeneous specification and the heterogeneous tool set”. Ha-
bilitation thesis. University of Bremen, 2005. url: https://iks.cs.ovgu.de/~till/
papers/habil.pdf.

[53] Till Mossakowski et al. “Casl — the Common Algebraic Specification Language”. In:
Logics of Specification Languages. Ed. by Dines Bjørner and Martin C. Henson. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 241–298. doi: 10.1007/978-3-540-
74107-7_5.

[54] Till Mossakowski et al. “Proof Support for Common Logic”. In: Automated Reasoning
in Quantified Non-Classical Logics, ARQNL@IJCAR 2014, Vienna, Austria, July
23, 2014. Ed. by Christoph Benzmüller and Jens Otten. Vol. 33. EPiC Series in
Computing. EasyChair, 2014, pp. 42–58. doi: 10.29007/2ksh.

[55] Peter D. Mosses. “Casl Syntax”. In: Casl Reference Manual. The Complete Docu-
mentation of the Common Algebraic Specification Language. Ed. by Peter D. Mosses.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 73–112. doi: 10.1007/978-
3-540-24648-0_2.

[56] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by C. R. Ramakrishnan
and Jakob Rehof. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337–340.
doi: 10.1007/978-3-540-78800-3_24.

https://doi.org/10.1007/978-3-319-08587-6_5
https://doi.org/10.1007/978-3-319-08587-6_5
https://doi.org/10.1007/s11229-009-9661-2
https://doi.org/10.1007/s11229-009-9661-2
https://doi.org/10.1016/S0049-237X(08)70132-0
https://doi.org/10.1007/3-540-17162-2_126
https://doi.org/10.1007/3-540-61440-0_125
https://doi.org/10.1007/3-540-61440-0_125
https://doi.org/10.1016/S0304-3975(01)00369-3
https://doi.org/10.1007/978-3-540-40020-2_21
https://iks.cs.ovgu.de/~till/papers/habil.pdf
https://iks.cs.ovgu.de/~till/papers/habil.pdf
https://doi.org/10.1007/978-3-540-74107-7_5
https://doi.org/10.1007/978-3-540-74107-7_5
https://doi.org/10.29007/2ksh
https://doi.org/10.1007/978-3-540-24648-0_2
https://doi.org/10.1007/978-3-540-24648-0_2
https://doi.org/10.1007/978-3-540-78800-3_24

46 Bibliography

[57] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic. Vol. 2283. Lecture Notes in Computer Science.
Springer, 2002. doi: 10.1007/3-540-45949-9.

[58] Visa Nummelin et al. “Superposition with First-class Booleans and Inprocessing
Clausification”. In: Automated Deduction – CADE 28. Ed. by André Platzer and
Geoff Sutcliffe. Cham: Springer International Publishing, 2021, pp. 378–395. doi:
10.1007/978-3-030-79876-5_22.

[59] S. Owre et al. “PVS: Combining specification, proof checking, and model checking”. In:
Computer Aided Verification. Ed. by Rajeev Alur and Thomas A. Henzinger. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1996, pp. 411–414. doi: 10.1007/3-540-
61474-5_91.

[60] Lawrence C. Paulson. “Natural deduction as higher-order resolution”. In: The Journal
of Logic Programming 3.3 (1986), pp. 237–258. doi: 10.1016/0743-1066(86)90015-
4.

[61] Lawrence C. Paulson and Kong Woei Susanto. “Source-Level Proof Reconstruction
for Interactive Theorem Proving”. In: Theorem Proving in Higher Order Logics. Ed.
by Klaus Schneider and Jens Brandt. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 232–245. doi: 10.1007/978-3-540-74591-4_18.

[62] Didier Rémy. “Using, Understanding, and Unraveling the OCaml Language From
Practice to Theory and Vice Versa”. In: Applied Semantics. Ed. by Gilles Barthe et al.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 413–536. doi: 10.1007/3-
540-45699-6_9.

[63] Alexandre Riazanov and Andrei Voronkov. “The design and implementation of VAM-
PIRE”. In: AI Commun. 15.2-3 (2002), pp. 91–110. url: http://content.iospress.
com/articles/ai-communications/aic259.

[64] Dan Rosén and Nicholas Smallbone. “TIP: Tools for Inductive Provers”. In: Logic for
Programming, Artificial Intelligence, and Reasoning - 20th International Conference,
LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings. Ed. by Martin Davis
et al. Vol. 9450. Lecture Notes in Computer Science. Springer, 2015, pp. 219–232. doi:
10.1007/978-3-662-48899-7_16.

[65] Tobias Rosenberger, Alexander Knapp, and Markus Roggenbach. “An Institutional
Approach to Communicating UML State Machines”. In: Fundamental Approaches to
Software Engineering. Ed. by Einar Broch Johnsen and Manuel Wimmer. Cham:
Springer International Publishing, 2022, pp. 205–224.

[66] Barkley Rosser. “Extensions of Some Theorems of Gödel and Church”. In: The Journal
of Symbolic Logic 1.3 (Sept. 1936), pp. 87–91. doi: 10.2307/2269028.

[67] Philipp Rümmer. “A Constraint Sequent Calculus for First-Order Logic with Linear
Integer Arithmetic”. In: Logic for Programming, Artificial Intelligence, and Reasoning.
Ed. by Iliano Cervesato, Helmut Veith, and Andrei Voronkov. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 274–289. doi: 10.1007/978-3-540-89439-
1_20.

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-030-79876-5_22
https://doi.org/10.1007/3-540-61474-5_91
https://doi.org/10.1007/3-540-61474-5_91
https://doi.org/10.1016/0743-1066(86)90015-4
https://doi.org/10.1016/0743-1066(86)90015-4
https://doi.org/10.1007/978-3-540-74591-4_18
https://doi.org/10.1007/3-540-45699-6_9
https://doi.org/10.1007/3-540-45699-6_9
http://content.iospress.com/articles/ai-communications/aic259
http://content.iospress.com/articles/ai-communications/aic259
https://doi.org/10.1007/978-3-662-48899-7_16
https://doi.org/10.2307/2269028
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-540-89439-1_20

Bibliography 47

[68] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. “Smallcheck and Lazy Small-
check: Automatic Exhaustive Testing for Small Values”. In: Proceedings of the First
ACM SIGPLAN Symposium on Haskell. Haskell ’08. Victoria, BC, Canada: Associa-
tion for Computing Machinery, 2008, pp. 37–48. doi: 10.1145/1411286.1411292.

[69] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specification and
Formal Software Development. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
doi: 10.1007/978-3-642-17336-3_1.

[70] Lutz Schröder. “The HASCASL prologue: Categorical syntax and semantics of the
partial �-calculus”. In: Theoretical Computer Science 353.1 (2006), pp. 1–25. doi:
10.1016/j.tcs.2005.06.037.

[71] Lutz Schröder and Till Mossakowski. “HasCasl: Towards Integrated Specification
and Development of Functional Programs”. In: Algebraic Methodology and Software
Technology. Ed. by Hélène Kirchner and Christophe Ringeissen. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 99–116. doi: 10.1007/3-540-45719-4_8.

[72] Lutz Schröder and Till Mossakowski. “HasCasl: Integrated higher-order specification
and program development”. In: Theoretical Computer Science 410.12 (2009), pp. 1217–
1260. doi: 10.1016/j.tcs.2008.11.020.

[73] Stephan Schulz, Simon Cruanes, and Petar Vukmirović. “Faster, Higher, Stronger: E
2.3”. In: Automated Deduction – CADE 27. Ed. by Pascal Fontaine. Cham: Springer
International Publishing, 2019, pp. 495–507. doi: 10.1007/978-3-030-29436-6_29.

[74] Dana Scott. “Identity and existence in intuitionistic logic”. In: Applications of Sheaves:
Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic,
Algebra, and Analysis, Durham, July 9–21, 1977. Ed. by Michael Fourman, Christo-
pher Mulvey, and Dana Scott. Berlin, Heidelberg: Springer Berlin Heidelberg, 1979,
pp. 660–696. doi: 10.1007/BFb0061839.

[75] Ian Sommerville. Software Engineering. 10th ed. Global Edition. Pearson Deutsch-
land, 2016. 810 pp. url: https : / / elibrary . pearson . de / book / 99 . 150005 /
9781292096148.

[76] Alexander Steen, Max Wisniewski, and Christoph Benzmüller. “Agent-Based HOL
Reasoning”. In: Mathematical Software – ICMS 2016. Ed. by Gert-Martin Greuel et
al. Cham: Springer International Publishing, 2016, pp. 75–81. doi: 10.1007/978-3-
319-42432-3_10.

[77] Mark Stickel et al. “Deductive composition of astronomical software from subroutine
libraries”. In: Automated Deduction — CADE-12. Ed. by Alan Bundy. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1994, pp. 341–355. doi: 10.1007/3-540-58156-
1_24.

[78] Geoff Sutcliffe, Christian B. Suttner, and Theodor Yemenis. “The TPTP Problem
Library”. In: Automated Deduction - CADE-12, 12th International Conference on
Automated Deduction, Nancy, France, June 26 - July 1, 1994, Proceedings. Ed. by
Alan Bundy. Vol. 814. Lecture Notes in Computer Science. Springer, 1994, pp. 252–
266. doi: 10.1007/3-540-58156-1_18.

https://doi.org/10.1145/1411286.1411292
https://doi.org/10.1007/978-3-642-17336-3_1
https://doi.org/10.1016/j.tcs.2005.06.037
https://doi.org/10.1007/3-540-45719-4_8
https://doi.org/10.1016/j.tcs.2008.11.020
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/BFb0061839
https://elibrary.pearson.de/book/99.150005/9781292096148
https://elibrary.pearson.de/book/99.150005/9781292096148
https://doi.org/10.1007/978-3-319-42432-3_10
https://doi.org/10.1007/978-3-319-42432-3_10
https://doi.org/10.1007/3-540-58156-1_24
https://doi.org/10.1007/3-540-58156-1_24
https://doi.org/10.1007/3-540-58156-1_18

48 Bibliography

[79] Geoff Sutcliffe et al. “The TPTP Typed First-Order Form with Arithmetic”. In: Logic
for Programming, Artificial Intelligence, and Reasoning. Ed. by Nikolaj Bjørner and
Andrei Voronkov. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 406–419.
doi: 10.1007/978-3-642-28717-6_32.

[80] Wouter Swierstra. “xmonad in Coq (experience report): programming a window man-
ager in a proof assistant”. In: Proceedings of the 5th ACM SIGPLAN Symposium
on Haskell, Haskell 2012, Copenhagen, Denmark, 13 September 2012. Ed. by Janis
Voigtländer. ACM, 2012, pp. 131–136. doi: 10.1145/2364506.2364523.

[81] Technical Committee ISO/IEC JTC 1. Information technology – Common Logic (CL)
– A framework for a family of logic-based languages. International Standard ISO/IEC
24707. 2nd edition. July 2018. url: https://standards.iso.org/ittf/Publicly
AvailableStandards/c066249_ISO_IEC_24707_2018.zip.

[82] Richard Uhler and Nirav Dave. “Smten: Automatic Translation of High-Level Sym-
bolic Computations into SMT Queries”. In: Computer Aided Verification. Ed. by
Natasha Sharygina and Helmut Veith. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 678–683. doi: 10.1007/978-3-642-39799-8_45.

[83] Daniel Wand. “Superposition: Types and Induction”. PhD thesis. Saarland University,
Aug. 2017. url: https://hal.inria.fr/tel-01592497.

[84] Christoph Weidenbach et al. “SPASS Version 3.5”. In: Automated Deduction – CADE-
22. Ed. by Renate A. Schmidt. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 140–145. doi: 10.1007/978-3-642-02959-2_10.

https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1145/2364506.2364523
https://standards.iso.org/ittf/PubliclyAvailableStandards/c066249_ISO_IEC_24707_2018.zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/c066249_ISO_IEC_24707_2018.zip
https://doi.org/10.1007/978-3-642-39799-8_45
https://hal.inria.fr/tel-01592497
https://doi.org/10.1007/978-3-642-02959-2_10

Appendix

A.1 CASL specifications for evaluation

50 Appendix

1 library Datatypes
2 spec Nat =
3 free type Nat ::= 0 | suc(Nat)
4 ops __ + __ : Nat * Nat -> Nat;
5 forall m,n,k : Nat
6 . 0 + m = m %(add_0)% %simp
7 . suc(n) + m = suc(n + m) %(add_suc)% %simp
8 . m + 0 = m %(add_0_right)% %implied %simp
9 . m+(n+k) = (m+n)+k %(add_assoc)% %implied %simp

10 . m+suc(n) = suc(m+n) %(add_suc_right)% %implied %simp
11 . m+n = n+m %(add_comm)% %implied
12 pred __<=__ : Nat*Nat
13 forall m,n : Nat
14 . 0 <= n %(leq_def1)% %simp
15 . not suc(n) <= 0 %(leq_def2)% %simp
16 . suc(m) <= suc(n) <=> m <= n %(leq_def3)% %simp
17 ops min,max: Nat * Nat -> Nat
18 forall m,n,k : Nat
19 . min(m,n) = m when m <= n else n %(min_def)% %simp
20 . max(m,n) = n when m <= n else m %(max_def)% %simp
21 end
22 spec List [sort Elem] given Nat =
23 free type List ::= nil | __::__(Elem; List)
24 ops __++__ : List * List -> List;
25 reverse : List -> List;
26 length : List -> Nat
27 vars x:Elem; K, L, M:List
28 . nil ++ K = K %(concat_nil)% %simp
29 . (x :: K) ++ L = x :: (K ++ L) %(concat_NeList)% %simp
30 . reverse(nil) = nil %(reverse_nil)% %simp
31 . reverse(x :: L) = reverse(L) ++ (x :: nil) %(reverse_NeList)% %simp
32 . length(nil) = 0 %(length_nil)% %simp
33 . length(x :: L) = suc(length(L)) %(length_NeList)% %simp
34 . K++(L++M) = (K++L)++M %(concat_assoc)% %implied %simp
35 . K ++nil = K %(concat_nil_right)% %implied %simp
36 . reverse(K ++ L) = reverse(L) ++ reverse(K) %(reverse_concat)% %implied %simp
37 . length(K ++ L) = length(K) + length(L) %(length_concat)% %implied %simp
38 end
39 spec BinTree[sort Elem] given Nat, List[sort Elem] =
40 free type Tree ::= Nil | Bin(Tree;Elem;Tree)
41 op flip : Tree -> Tree
42 forall x:Elem; t,u:Tree
43 . flip(Nil) = Nil %(flip_Nil)% %simp
44 . flip(Bin(t,x,u)) = Bin(flip(u),x,flip(t)) %(flip_Bin)% %simp
45 . flip(flip(t)) = t %(flip_flip)% %implied
46 op height : Tree -> Nat
47 forall x:Elem; t,u:Tree
48 . height(Nil) = 0 %(height_Nil)% %simp
49 . height(Bin(t,x,u)) = suc(max(height(t),height(u))) %(height_Bin)% %simp
50 pred balanced : Tree
51 forall x:Elem; t,u:Tree
52 . balanced(Nil) %(balanced_Nil)% %simp
53 . balanced(Bin(t,x,u)) <=>
54 balanced(t) /\ balanced(u) /\ height(t)=height(u) %(balanced_Bin)% %simp
55 op fringe : Tree -> List
56 forall x:Elem; t,u:Tree
57 . fringe(Nil) = nil %(fringe_Nil)% %simp
58 . fringe(Bin(t,x,u)) = (fringe(t)++(x::nil))++fringe(u) %(fringe_Bin)% %simp
59 . forall l:List . exists t:Tree . fringe(t)=l %(balanced_existence)% %implied
60 end

Listing A.1: CASL specifications for ℕ, lists and binary trees, restricted to 𝐶𝐹𝑂𝐿= features
(courtesy of Till Mossakowski)

A.1 CASL specifications for evaluation 51

1 library Datatypes
2 spec Nat =
3 free type Nat ::= 0 | suc(pre:? Nat)
4 ops __ + __ : Nat * Nat -> Nat;
5 forall m,n,k : Nat
6 . 0 + m = m %(add_0)% %simp
7 . suc(n) + m = suc(n + m) %(add_suc)% %simp
8 . m + 0 = m %(add_0_right)% %implied %simp
9 . m+(n+k) = (m+n)+k %(add_assoc)% %implied %simp

10 . m+suc(n) = suc(m+n) %(add_suc_right)% %implied %simp
11 . m+n = n+m %(add_comm)% %implied
12 pred __<=__ : Nat*Nat
13 forall m,n : Nat
14 . 0 <= n %(leq_def1)% %simp
15 . not suc(n) <= 0 %(leq_def2)% %simp
16 . suc(m) <= suc(n) <=> m <= n %(leq_def3)% %simp
17 ops min,max: Nat * Nat -> Nat
18 forall m,n,k : Nat
19 . min(m,n) = m when m <= n else n %(min_def)% %simp
20 . max(m,n) = n when m <= n else m %(max_def)% %simp
21 end
22 spec List [sort Elem] given Nat =
23 free type List ::= nil | __::__(head:? Elem; tail:? List)
24 ops __++__ : List * List -> List;
25 reverse : List -> List;
26 length : List -> Nat
27 vars x:Elem; K, L, M:List
28 . nil ++ K = K %(concat_nil)% %simp
29 . (x :: K) ++ L = x :: (K ++ L) %(concat_NeList)% %simp
30 . reverse(nil) = nil %(reverse_nil)% %simp
31 . reverse(x :: L) = reverse(L) ++ (x :: nil) %(reverse_NeList)% %simp
32 . length(nil) = 0 %(length_nil)% %simp
33 . length(x :: L) = suc(length(L)) %(length_NeList)% %simp
34 . K++(L++M) = (K++L)++M %(concat_assoc)% %implied %simp
35 . K ++nil = K %(concat_nil_right)% %implied %simp
36 . reverse(K ++ L) = reverse(L) ++ reverse(K) %(reverse_concat)% %implied %simp
37 . length(K ++ L) = length(K) + length(L) %(length_concat)% %implied %simp
38 end
39 spec BinTree[sort Elem] given Nat, List[sort Elem] =
40 free type Tree ::= Nil | Bin(left:? Tree;label:? Elem;right:? Tree)
41 op flip : Tree -> Tree
42 forall x:Elem; t,u:Tree
43 . flip(Nil) = Nil %(flip_Nil)% %simp
44 . flip(Bin(t,x,u)) = Bin(flip(u),x,flip(t)) %(flip_Bin)% %simp
45 . flip(flip(t)) = t %(flip_flip)% %implied
46 op height : Tree -> Nat
47 forall x:Elem; t,u:Tree
48 . height(Nil) = 0 %(height_Nil)% %simp
49 . height(Bin(t,x,u)) = suc(max(height(t),height(u))) %(height_Bin)% %simp
50 pred balanced : Tree
51 forall x:Elem; t,u:Tree
52 . balanced(Nil) %(balanced_Nil)% %simp
53 . balanced(Bin(t,x,u)) <=>
54 balanced(t) /\ balanced(u) /\ height(t)=height(u) %(balanced_Bin)% %simp
55 op fringe : Tree -> List
56 forall x:Elem; t,u:Tree
57 . fringe(Nil) = nil %(fringe_Nil)% %simp
58 . fringe(Bin(t,x,u)) = (fringe(t)++(x::nil))++fringe(u) %(fringe_Bin)% %simp
59 . forall l:List . exists t:Tree . fringe(t)=l %(balanced_existence)% %implied
60 end

Listing A.2: CASL specifications from Listing A.1, extended with partial functions

52 Appendix

1 library Datatypes
2 spec Nat =
3 sort Pos < Nat
4 free type Pos ::= 1 | suc(Pos)
5 free type Nat ::= 0 | suc(Nat)
6 ops __ + __ : Nat * Nat -> Nat;
7 forall m,n,k : Nat; p,q,r : Pos
8 . suc(0) = 1 %(Pos_def)% %simp
9 . 0 + m = m %(add_0)% %simp

10 . suc(n) + m = suc(n + m) %(add_suc)% %simp
11 . p + 0 = p %(add_0_right)% %implied %simp
12 . p+(q+r) = (p+q)+r %(add_assoc)% %implied %simp
13 . p+suc(q) = suc(p+q) %(add_suc_right)% %implied %simp
14 . p+q = q+p %(add_comm)% %implied
15 pred __<=__ : Nat*Nat
16 forall m,n : Nat
17 . 0 <= n %(leq_def1)% %simp
18 . not suc(n) <= 0 %(leq_def2)% %simp
19 . suc(m) <= suc(n) <=> m <= n %(leq_def3)% %simp
20 ops min,max: Nat * Nat -> Nat
21 forall m,n,k : Nat
22 . min(m,n) = m when m <= n else n %(min_def)% %simp
23 . max(m,n) = n when m <= n else m %(max_def)% %simp
24 end
25 spec List [sort Elem] given Nat =
26 sort NEList < List
27 free type NEList ::= [__](Elem) | __::__(Elem; NEList)
28 free type List ::= nil | __::__(Elem; List)
29 ops __++__ : List * List -> List;
30 reverse : List -> List;
31 length : List -> Nat
32 vars x:Elem; K, L, M:List; P, Q, R:NEList
33 . x :: nil = [x] %(NEList_def)% %simp
34 . nil ++ K = K %(concat_nil)% %simp
35 . (x :: K) ++ L = x :: (K ++ L) %(concat_NeList)% %simp
36 . reverse(nil) = nil %(reverse_nil)% %simp
37 . reverse(x :: L) = reverse(L) ++ (x :: nil) %(reverse_NeList)% %simp
38 . length(nil) = 0 %(length_nil)% %simp
39 . length(x :: L) = suc(length(L)) %(length_NeList)% %simp
40 . P++(Q++R) = (P++Q)++R %(concat_assoc)% %implied %simp
41 . P ++nil = P %(concat_nil_right)% %implied %simp
42 . reverse(P ++ Q) = reverse(Q) ++ reverse(P) %(reverse_concat)% %implied %simp
43 . length(P ++ Q) = length(P) + length(Q) %(length_concat)% %implied %simp
44 end
45 spec BinTree[sort Elem] given Nat, List[sort Elem] =
46 sort NETree < Tree
47 free type NETree ::= Leaf(Elem) | Left(NETree;Elem) | Right(Elem;NETree)| Bin(NETree

;Elem;NETree)
48 free type Tree ::= Nil | Bin(Tree;Elem;Tree)
49 op flip : Tree -> Tree
50 forall x:Elem; t,u:Tree; v:NETree
51 . Bin(Nil,x,Nil) = Leaf(x) %(NETree_def1)%
52 . Bin(Nil,x,v) = Right(x,v) %(NETree_def2)%
53 . Bin(v,x,Nil) = Left(v,x) %(NETree_def3)%
54 . flip(Nil) = Nil %(flip_Nil)% %simp
55 . flip(Bin(t,x,u)) = Bin(flip(u),x,flip(t)) %(flip_Bin)% %simp
56 . flip(flip(v)) = v %(flip_flip)% %implied
57 op height : Tree -> Nat
58 forall x:Elem; t,u:Tree
59 . height(Nil) = 0 %(height_Nil)% %simp
60 . height(Bin(t,x,u)) = suc(max(height(t),height(u))) %(height_Bin)% %simp
61 pred balanced : Tree
62 forall x:Elem; t,u:Tree
63 . balanced(Nil) %(balanced_Nil)% %simp
64 . balanced(Bin(t,x,u)) <=>
65 balanced(t) /\ balanced(u) /\ height(t)=height(u) %(balanced_Bin)% %simp
66 op fringe : Tree -> List
67 forall x:Elem; t,u:Tree
68 . fringe(Nil) = nil %(fringe_Nil)% %simp
69 . fringe(Bin(t,x,u)) = (fringe(t)++(x::nil))++fringe(u) %(fringe_Bin)% %simp
70 . forall l:NEList . exists t:NETree . fringe(t)=l %(balanced_existence)% %implied
71 end

Listing A.3: CASL specifications from Listing A.1, extended with subsorting features

A.1 CASL specifications for evaluation 53

1 library Datatypes
2 spec Nat =
3 sort Pos < Nat
4 free type Pos ::= 1 | suc(Pos)
5 free type Nat ::= 0 | suc(Nat)
6 ops __ + __ : Nat * Nat -> Nat;
7 forall m,n,k : Nat; p,q,r : Pos
8 . suc(0) = 1 %(Pos_def)% %simp
9 . 0 + m = m %(add_0_Nat)% %simp

10 . suc(n) + m = suc(n + m) %(add_suc_Nat)% %simp
11 . p + 0 = p %(add_0_Pos_right)% %implied %simp
12 . p+(q+r) = (p+q)+r %(add_assoc_Pos)% %implied %simp
13 . p+suc(q) = suc(p+q) %(add_suc_Pos_right)% %implied %simp
14 . p+q = q+p %(add_comm_Pos)% %implied
15 pred __<=__ : Nat*Nat
16 forall m,n : Nat
17 . 0 <= n %(leq_def1_Nat)% %simp
18 . not suc(n) <= 0 %(leq_def2_Nat)% %simp
19 . suc(m) <= suc(n) <=> m <= n %(leq_def3_Nat)% %simp
20 ops min,max: Nat * Nat -> Nat
21 forall m,n,k : Nat
22 . min(m,n) = m when m <= n else n %(min_def_Nat)% %simp
23 . max(m,n) = n when m <= n else m %(max_def_Nat)% %simp
24 end
25 spec List [sort Elem] given Nat =
26 sort NEList < List
27 free type NEList ::= [__](Elem) | __::__(Elem; NEList)
28 free type List ::= nil | __::__(Elem; List)
29 ops __++__ : List * List -> List;
30 reverse : List -> List;
31 length : List -> Nat
32 vars x:Elem; K, L, M:List; P, Q, R:NEList
33 . x :: nil = [x] %(NEList_def)% %simp
34 . nil ++ K = K %(concat_nil)% %simp
35 . (x :: K) ++ L = x :: (K ++ L) %(concat_NeList)% %simp
36 . reverse(nil) = nil %(reverse_nil)% %simp
37 . reverse(x :: L) = reverse(L) ++ (x :: nil) %(reverse_NeList)% %simp
38 . length(nil) = 0 %(length_nil)% %simp
39 . length(x :: L) = suc(length(L)) %(length_NeList)% %simp
40 . P++(Q++R) = (P++Q)++R %(concat_assoc)% %implied %simp
41 . P ++nil = P %(concat_nil_right)% %implied %simp
42 . reverse(P ++ Q) = reverse(Q) ++ reverse(P) %(reverse_concat)% %implied %simp
43 . length(P ++ Q) = length(P) + length(Q) %(length_concat)% %implied %simp
44 end
45 spec BinTree[sort Elem] given Nat, List[sort Elem] =
46 sort NETree < Tree
47 free type NETree ::= Leaf(Elem) | Left(NETree;Elem) | Right(Elem;NETree)| Bin(NETree

;Elem;NETree)
48 free type Tree ::= Nil | Bin(Tree;Elem;Tree)
49 op flip : Tree -> Tree
50 forall x:Elem; t,u:Tree; v:NETree
51 . Bin(Nil,x,Nil) = Leaf(x) %(NETree_def1)%
52 . Bin(Nil,x,v) = Right(x,v) %(NETree_def2)%
53 . Bin(v,x,Nil) = Left(v,x) %(NETree_def3)%
54 . flip(Nil) = Nil %(flip_Nil)% %simp
55 . flip(Bin(t,x,u)) = Bin(flip(u),x,flip(t)) %(flip_Bin)% %simp
56 . flip(flip(v)) = v %(flip_flip)% %implied
57 op height : Tree -> Nat
58 forall x:Elem; t,u:Tree
59 . height(Nil) = 0 %(height_Nil)% %simp
60 . height(Bin(t,x,u)) = suc(max(height(t),height(u))) %(height_Bin)% %simp
61 pred balanced : Tree
62 forall x:Elem; t,u:Tree
63 . balanced(Nil) %(balanced_Nil)% %simp
64 . balanced(Bin(t,x,u)) <=>
65 balanced(t) /\ balanced(u) /\ height(t)=height(u) %(balanced_Bin)% %simp
66 op fringe : Tree -> List
67 forall x:Elem; t,u:Tree
68 . fringe(Nil) = nil %(fringe_Nil)% %simp
69 . fringe(Bin(t,x,u)) = (fringe(t)++(x::nil))++fringe(u) %(fringe_Bin)% %simp
70 . forall l:NEList . exists t:NETree . fringe(t)=l %(balanced_existence)% %implied
71 end

Listing A.4: CASL specifications from Listing A.1, extended with partial functions and subsorting
features

54 Appendix

A.2 TIP translations for evaluation

1 (declare-datatype s_Nat ((fNat_0) (fNat->Nat_suc (i1_fNat->Nat_suc s_Nat))))
2 (declare-fun pNat*Nat___<=__ (s_Nat s_Nat) Bool)
3 (declare-fun fNat*Nat->Nat___+__ (s_Nat s_Nat) s_Nat)
4 (declare-fun fNat*Nat->Nat_max (s_Nat s_Nat) s_Nat)
5 (declare-fun fNat*Nat->Nat_min (s_Nat s_Nat) s_Nat)
6 (assert :axiom ga_injective_suc (forall ((FNat_X1 s_Nat) (FNat_Y1 s_Nat)) (= (= (fNat

->Nat_suc FNat_X1) (fNat->Nat_suc FNat_Y1)) (= FNat_X1 FNat_Y1))))
7 (assert :axiom ga_disjoint_0_suc (forall ((FNat_Y1 s_Nat)) (not (= (fNat_0) (fNat->

Nat_suc FNat_Y1)))))
8 (assert :axiom ga_generated_Nat (forall ((PNat_gn_P_Nat (=> s_Nat Bool))) (=> (and (@

PNat_gn_P_Nat (fNat_0)) (forall ((FNat_y_1 s_Nat)) (=> (@ PNat_gn_P_Nat FNat_y_1)
(@ PNat_gn_P_Nat (fNat->Nat_suc FNat_y_1))))) (forall ((FNat_x_1 s_Nat)) (@
PNat_gn_P_Nat FNat_x_1)))))

9 (assert :axiom add_0 (forall ((FNat_m s_Nat)) (= (fNat*Nat->Nat___+__ (fNat_0) FNat_m)
FNat_m)))

10 (assert :axiom add_suc (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (= (fNat*Nat->Nat___+__
(fNat->Nat_suc FNat_n) FNat_m) (fNat->Nat_suc (fNat*Nat->Nat___+__ FNat_n FNat_m)

))))
11 (assert :axiom leq_def1 (forall ((FNat_n s_Nat)) (pNat*Nat___<=__ (fNat_0) FNat_n)))
12 (assert :axiom leq_def2 (forall ((FNat_n s_Nat)) (not (pNat*Nat___<=__ (fNat->Nat_suc

FNat_n) (fNat_0)))))
13 (assert :axiom leq_def3 (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (= (pNat*Nat___<=__ (

fNat->Nat_suc FNat_m) (fNat->Nat_suc FNat_n)) (pNat*Nat___<=__ FNat_m FNat_n))))
14 (assert :axiom min_def (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (= (fNat*Nat->Nat_min

FNat_m FNat_n) (ite (pNat*Nat___<=__ FNat_m FNat_n) FNat_m FNat_n))))
15 (assert :axiom max_def (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (= (fNat*Nat->Nat_max

FNat_m FNat_n) (ite (pNat*Nat___<=__ FNat_m FNat_n) FNat_n FNat_m))))
16 (prove :axiom add_0_right (forall ((FNat_m s_Nat)) (= (fNat*Nat->Nat___+__ FNat_m (

fNat_0)) FNat_m)))
17 (prove :axiom add_assoc (forall ((FNat_m s_Nat) (FNat_n s_Nat) (FNat_k s_Nat)) (= (

fNat*Nat->Nat___+__ FNat_m (fNat*Nat->Nat___+__ FNat_n FNat_k)) (fNat*Nat->Nat___+
__ (fNat*Nat->Nat___+__ FNat_m FNat_n) FNat_k))))

18 (prove :axiom add_comm (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (= (fNat*Nat->Nat___+__
FNat_m FNat_n) (fNat*Nat->Nat___+__ FNat_n FNat_m))))

19 (prove :axiom add_suc_right (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (= (fNat*Nat->
Nat___+__ FNat_m (fNat->Nat_suc FNat_n)) (fNat->Nat_suc (fNat*Nat->Nat___+__
FNat_m FNat_n)))))

Listing A.5: TIP translation of spec Nat from Listing A.1 with features not supported by
Zipperposition kept for readability

A.2 TIP translations for evaluation 55

1 (declare-datatype s_Nat ((fNat_0) (fNat_gn_bottom_Nat) (fNat->Nat_suc (i1_fNat->
Nat_suc s_Nat))))

2 (declare-fun pNat*Nat___<=__ (s_Nat s_Nat) Bool)
3 (declare-fun pNat_gn_defined (s_Nat) Bool)
4 (declare-fun fNat*Nat->Nat___+__ (s_Nat s_Nat) s_Nat)
5 (declare-fun fNat*Nat->Nat_max (s_Nat s_Nat) s_Nat)
6 (declare-fun fNat*Nat->Nat_min (s_Nat s_Nat) s_Nat)
7 (declare-fun fNat->Nat_pre (s_Nat) s_Nat)
8 (assert :axiom ga_nonEmpty_Nat (exists ((FNat_x s_Nat)) (pNat_gn_defined FNat_x)))
9 (assert :axiom ga_notDefBottom_Nat (not (pNat_gn_defined (fNat_gn_bottom_Nat))))

10 (assert :axiom ga_strictness_0 (pNat_gn_defined (fNat_0)))
11 (assert :axiom ga_strictness___+__ (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (

pNat_gn_defined (fNat*Nat->Nat___+__ FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

12 (assert :axiom ga_strictness_max (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (
pNat_gn_defined (fNat*Nat->Nat_max FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

13 (assert :axiom ga_strictness_min (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (
pNat_gn_defined (fNat*Nat->Nat_min FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

14 (assert :axiom ga_strictness_pre (forall ((FNat_x_1 s_Nat)) (=> (pNat_gn_defined (fNat
->Nat_pre FNat_x_1)) (pNat_gn_defined FNat_x_1))))

15 (assert :axiom ga_strictness_suc (forall ((FNat_x_1 s_Nat)) (= (pNat_gn_defined (fNat
->Nat_suc FNat_x_1)) (pNat_gn_defined FNat_x_1))))

16 (assert :axiom ga_predicate_strictness___ <=__ (forall ((FNat_x_1 s_Nat) (FNat_x_2
s_Nat)) (=> (pNat*Nat___<=__ FNat_x_1 FNat_x_2) (and (pNat_gn_defined FNat_x_1) (
pNat_gn_defined FNat_x_2)))))

17 (assert :axiom ga_selector_pre (forall ((FNat_X1 s_Nat)) (=> (pNat_gn_defined FNat_X1)
(= (fNat->Nat_pre (fNat->Nat_suc FNat_X1)) FNat_X1))))

18 (assert :axiom ga_injective_suc (forall ((FNat_X1 s_Nat) (FNat_Y1 s_Nat)) (=> (and (
pNat_gn_defined FNat_X1) (pNat_gn_defined FNat_Y1)) (= (= (fNat->Nat_suc FNat_X1)
(fNat->Nat_suc FNat_Y1)) (= FNat_X1 FNat_Y1)))))

19 (assert :axiom ga_disjoint_0_suc (forall ((FNat_Y1 s_Nat)) (=> (pNat_gn_defined
FNat_Y1) (not (= (fNat_0) (fNat->Nat_suc FNat_Y1))))))

20 (assert :axiom ga_selector_undef_pre_0 (not (pNat_gn_defined (fNat->Nat_pre (fNat_0)))
))

21 (assert :axiom ga_generated_Nat (forall ((PNat_gn_P_Nat (=> s_Nat Bool))) (=> (and (@
PNat_gn_P_Nat (fNat_0)) (@ PNat_gn_P_Nat (fNat_gn_bottom_Nat)) (forall ((FNat_y_1
s_Nat)) (=> (@ PNat_gn_P_Nat FNat_y_1) (@ PNat_gn_P_Nat (fNat->Nat_suc FNat_y_1)))
)) (forall ((FNat_x_1 s_Nat)) (@ PNat_gn_P_Nat FNat_x_1)))))

22 (assert :axiom add_0 (forall ((FNat_m s_Nat)) (=> (pNat_gn_defined FNat_m) (= (fNat*
Nat->Nat___+__ (fNat_0) FNat_m) FNat_m))))

23 (assert :axiom add_suc (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat___+__ (fNat->
Nat_suc FNat_n) FNat_m) (fNat->Nat_suc (fNat*Nat->Nat___+__ FNat_n FNat_m))))))

24 (assert :axiom leq_def1 (forall ((FNat_n s_Nat)) (=> (pNat_gn_defined FNat_n) (pNat*
Nat___<=__ (fNat_0) FNat_n))))

25 (assert :axiom leq_def2 (forall ((FNat_n s_Nat)) (=> (pNat_gn_defined FNat_n) (not (
pNat*Nat___<=__ (fNat->Nat_suc FNat_n) (fNat_0))))))

26 (assert :axiom leq_def3 (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (pNat*Nat___<=__ (fNat->
Nat_suc FNat_m) (fNat->Nat_suc FNat_n)) (pNat*Nat___<=__ FNat_m FNat_n)))))

27 (assert :axiom min_def (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat_min FNat_m
FNat_n) (ite (pNat*Nat___<=__ FNat_m FNat_n) FNat_m FNat_n)))))

28 (assert :axiom max_def (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat_max FNat_m
FNat_n) (ite (pNat*Nat___<=__ FNat_m FNat_n) FNat_n FNat_m)))))

29 (prove :axiom add_0_right (forall ((FNat_m s_Nat)) (=> (pNat_gn_defined FNat_m) (= (
fNat*Nat->Nat___+__ FNat_m (fNat_0)) FNat_m))))

30 (prove :axiom add_assoc (forall ((FNat_m s_Nat) (FNat_n s_Nat) (FNat_k s_Nat)) (=> (
and (pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n) (pNat_gn_defined FNat_k)) (=
(fNat*Nat->Nat___+__ FNat_m (fNat*Nat->Nat___+__ FNat_n FNat_k)) (fNat*Nat->

Nat___+__ (fNat*Nat->Nat___+__ FNat_m FNat_n) FNat_k)))))
31 (prove :axiom add_comm (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (

pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat___+__ FNat_m
FNat_n) (fNat*Nat->Nat___+__ FNat_n FNat_m)))))

32 (prove :axiom add_suc_right (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat___+__ FNat_m (
fNat->Nat_suc FNat_n)) (fNat->Nat_suc (fNat*Nat->Nat___+__ FNat_m FNat_n))))))

Listing A.6: TIP translation of spec Nat from Listing A.2 using a persistently liberal comorphism
with features not supported by Zipperposition kept for readability

56 Appendix

1 (declare-sort s_Nat 0)
2 (declare-fun pNat*Nat___<=__ (s_Nat s_Nat) Bool)
3 (declare-fun pNat_gn_defined (s_Nat) Bool)
4 (declare-const fNat_0 s_Nat)
5 (declare-fun fNat*Nat->Nat___+__ (s_Nat s_Nat) s_Nat)
6 (declare-const fNat_gn_bottom_Nat s_Nat)
7 (declare-fun fNat*Nat->Nat_max (s_Nat s_Nat) s_Nat)
8 (declare-fun fNat*Nat->Nat_min (s_Nat s_Nat) s_Nat)
9 (declare-fun fNat->Nat_pre (s_Nat) s_Nat)

10 (declare-fun fNat->Nat_suc (s_Nat) s_Nat)
11 (assert :axiom ga_nonEmpty_Nat (exists ((FNat_x s_Nat)) (pNat_gn_defined FNat_x)))
12 (assert :axiom ga_notDefBottom_Nat (forall ((FNat_x s_Nat)) (= (not (pNat_gn_defined

FNat_x)) (= FNat_x (fNat_gn_bottom_Nat)))))
13 (assert :axiom ga_strictness_0 (pNat_gn_defined (fNat_0)))
14 (assert :axiom ga_strictness___+__ (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (

pNat_gn_defined (fNat*Nat->Nat___+__ FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

15 (assert :axiom ga_strictness_max (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (
pNat_gn_defined (fNat*Nat->Nat_max FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

16 (assert :axiom ga_strictness_min (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (
pNat_gn_defined (fNat*Nat->Nat_min FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

17 (assert :axiom ga_strictness_pre (forall ((FNat_x_1 s_Nat)) (=> (pNat_gn_defined (fNat
->Nat_pre FNat_x_1)) (pNat_gn_defined FNat_x_1))))

18 (assert :axiom ga_strictness_suc (forall ((FNat_x_1 s_Nat)) (= (pNat_gn_defined (fNat
->Nat_suc FNat_x_1)) (pNat_gn_defined FNat_x_1))))

19 (assert :axiom ga_predicate_strictness___ <=__ (forall ((FNat_x_1 s_Nat) (FNat_x_2
s_Nat)) (=> (pNat*Nat___<=__ FNat_x_1 FNat_x_2) (and (pNat_gn_defined FNat_x_1) (
pNat_gn_defined FNat_x_2)))))

20 (assert :axiom ga_selector_pre (forall ((FNat_X1 s_Nat)) (=> (pNat_gn_defined FNat_X1)
(= (fNat->Nat_pre (fNat->Nat_suc FNat_X1)) FNat_X1))))

21 (assert :axiom ga_injective_suc (forall ((FNat_X1 s_Nat) (FNat_Y1 s_Nat)) (=> (and (
pNat_gn_defined FNat_X1) (pNat_gn_defined FNat_Y1)) (= (= (fNat->Nat_suc FNat_X1)
(fNat->Nat_suc FNat_Y1)) (= FNat_X1 FNat_Y1)))))

22 (assert :axiom ga_disjoint_0_suc (forall ((FNat_Y1 s_Nat)) (=> (pNat_gn_defined
FNat_Y1) (not (= (fNat_0) (fNat->Nat_suc FNat_Y1))))))

23 (assert :axiom ga_selector_undef_pre_0 (not (pNat_gn_defined (fNat->Nat_pre (fNat_0)))
))

24 (assert :axiom ga_generated_Nat (forall ((PNat_gn_P_Nat (=> s_Nat Bool))) (=> (and (@
PNat_gn_P_Nat (fNat_0)) (@ PNat_gn_P_Nat (fNat_gn_bottom_Nat)) (forall ((FNat_y_1
s_Nat)) (=> (@ PNat_gn_P_Nat FNat_y_1) (@ PNat_gn_P_Nat (fNat->Nat_suc FNat_y_1)))
)) (forall ((FNat_x_1 s_Nat)) (@ PNat_gn_P_Nat FNat_x_1)))))

25 (assert :axiom add_0 (forall ((FNat_m s_Nat)) (=> (pNat_gn_defined FNat_m) (= (fNat*
Nat->Nat___+__ (fNat_0) FNat_m) FNat_m))))

26 (assert :axiom add_suc (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat___+__ (fNat->
Nat_suc FNat_n) FNat_m) (fNat->Nat_suc (fNat*Nat->Nat___+__ FNat_n FNat_m))))))

27 (assert :axiom leq_def1 (forall ((FNat_n s_Nat)) (=> (pNat_gn_defined FNat_n) (pNat*
Nat___<=__ (fNat_0) FNat_n))))

28 (assert :axiom leq_def2 (forall ((FNat_n s_Nat)) (=> (pNat_gn_defined FNat_n) (not (
pNat*Nat___<=__ (fNat->Nat_suc FNat_n) (fNat_0))))))

29 (assert :axiom leq_def3 (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (pNat*Nat___<=__ (fNat->
Nat_suc FNat_m) (fNat->Nat_suc FNat_n)) (pNat*Nat___<=__ FNat_m FNat_n)))))

30 (assert :axiom min_def (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat_min FNat_m
FNat_n) (ite (pNat*Nat___<=__ FNat_m FNat_n) FNat_m FNat_n)))))

31 (assert :axiom max_def (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat_max FNat_m
FNat_n) (ite (pNat*Nat___<=__ FNat_m FNat_n) FNat_n FNat_m)))))

32 (prove :axiom add_0_right (forall ((FNat_m s_Nat)) (=> (pNat_gn_defined FNat_m) (= (
fNat*Nat->Nat___+__ FNat_m (fNat_0)) FNat_m))))

33 (prove :axiom add_assoc (forall ((FNat_m s_Nat) (FNat_n s_Nat) (FNat_k s_Nat)) (=> (
and (pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n) (pNat_gn_defined FNat_k)) (=
(fNat*Nat->Nat___+__ FNat_m (fNat*Nat->Nat___+__ FNat_n FNat_k)) (fNat*Nat->

Nat___+__ (fNat*Nat->Nat___+__ FNat_m FNat_n) FNat_k)))))
34 (prove :axiom add_comm (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (

pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat___+__ FNat_m
FNat_n) (fNat*Nat->Nat___+__ FNat_n FNat_m)))))

35 (prove :axiom add_suc_right (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat___+__ FNat_m (
fNat->Nat_suc FNat_n)) (fNat->Nat_suc (fNat*Nat->Nat___+__ FNat_m FNat_n))))))

Listing A.7: TIP translation of spec Nat from Listing A.2 using a non-persistently liberal
comorphism with features not supported by Zipperposition kept for readability

A.2 TIP translations for evaluation 57

1 (declare-datatypes ((s_Pos 0) (s_Nat 0)) (((fPos_1) (fPos_gn_bottom_Pos) (fPos->
Pos_suc (i1_fPos->Pos_suc s_Pos))) ((fNat_0) (fNat_gn_bottom_Nat) (fNat->Nat_suc (
i1_fNat->Nat_suc s_Nat)))))

2 (declare-fun pNat*Nat___<=__ (s_Nat s_Nat) Bool)
3 (declare-fun pNat_gn_defined (s_Nat) Bool)
4 (declare-fun pPos_gn_defined (s_Pos) Bool)
5 (declare-fun fNat*Nat->Nat___+__ (s_Nat s_Nat) s_Nat)
6 (declare-fun fPos->Nat_gn_inj_Pos_Nat (s_Pos) s_Nat)
7 (declare-fun fNat->Pos_gn_proj_Nat_Pos (s_Nat) s_Pos)
8 (declare-fun fNat*Nat->Nat_max (s_Nat s_Nat) s_Nat)
9 (declare-fun fNat*Nat->Nat_min (s_Nat s_Nat) s_Nat)

10 (assert :axiom ga_nonEmpty_Nat (exists ((FNat_x s_Nat)) (pNat_gn_defined FNat_x)))
11 (assert :axiom ga_notDefBottom_Nat (not (pNat_gn_defined (fNat_gn_bottom_Nat))))
12 (assert :axiom ga_nonEmpty_Pos (exists ((FPos_x s_Pos)) (pPos_gn_defined FPos_x)))
13 (assert :axiom ga_notDefBottom_Pos (not (pPos_gn_defined (fPos_gn_bottom_Pos))))
14 (assert :axiom ga_strictness_0 (pNat_gn_defined (fNat_0)))
15 (assert :axiom ga_strictness_1 (pPos_gn_defined (fPos_1)))
16 (assert :axiom ga_strictness___+__ (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (

pNat_gn_defined (fNat*Nat->Nat___+__ FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

17 (assert :axiom ga_strictness_gn_inj_Pos_Nat (forall ((FPos_x_1 s_Pos)) (= (
pNat_gn_defined (fPos->Nat_gn_inj_Pos_Nat FPos_x_1)) (pPos_gn_defined FPos_x_1))))

18 (assert :axiom ga_strictness_gn_proj_Nat_Pos (forall ((FNat_x_1 s_Nat)) (=> (
pPos_gn_defined (fNat->Pos_gn_proj_Nat_Pos FNat_x_1)) (pNat_gn_defined FNat_x_1)))
)

19 (assert :axiom ga_strictness_max (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (
pNat_gn_defined (fNat*Nat->Nat_max FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

20 (assert :axiom ga_strictness_min (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (
pNat_gn_defined (fNat*Nat->Nat_min FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

21 (assert :axiom ga_strictness_suc (forall ((FNat_x_1 s_Nat)) (= (pNat_gn_defined (fNat
->Nat_suc FNat_x_1)) (pNat_gn_defined FNat_x_1))))

22 (assert :axiom ga_strictness_suc_1 (forall ((FPos_x_1 s_Pos)) (= (pPos_gn_defined (
fPos->Pos_suc FPos_x_1)) (pPos_gn_defined FPos_x_1))))

23 (assert :axiom ga_predicate_strictness___ <=__ (forall ((FNat_x_1 s_Nat) (FNat_x_2
s_Nat)) (=> (pNat*Nat___<=__ FNat_x_1 FNat_x_2) (and (pNat_gn_defined FNat_x_1) (
pNat_gn_defined FNat_x_2)))))

24 (assert :axiom ga_function_monotonicity (forall ((FPos_x1 s_Pos)) (=> (pPos_gn_defined
FPos_x1) (= (fNat->Nat_suc (fPos->Nat_gn_inj_Pos_Nat FPos_x1)) (fPos->

Nat_gn_inj_Pos_Nat (fPos->Pos_suc FPos_x1))))))
25 (assert :axiom ga_embedding_injectivity_Pos_to_Nat (forall ((FPos_x s_Pos) (FPos_y

s_Pos)) (=> (and (pPos_gn_defined FPos_x) (pPos_gn_defined FPos_y)) (=> (and (= (
fPos->Nat_gn_inj_Pos_Nat FPos_x) (fPos->Nat_gn_inj_Pos_Nat FPos_y)) (
pNat_gn_defined (fPos->Nat_gn_inj_Pos_Nat FPos_x))) (and (= FPos_x FPos_y) (
pPos_gn_defined FPos_x))))))

26 (assert :axiom ga_projection_injectivity_Nat_to_Pos (forall ((FNat_x s_Nat) (FNat_y
s_Nat)) (=> (and (pNat_gn_defined FNat_x) (pNat_gn_defined FNat_y)) (=> (and (= (
fNat->Pos_gn_proj_Nat_Pos FNat_x) (fNat->Pos_gn_proj_Nat_Pos FNat_y)) (
pPos_gn_defined (fNat->Pos_gn_proj_Nat_Pos FNat_x))) (and (= FNat_x FNat_y) (
pNat_gn_defined FNat_x))))))

27 (assert :axiom ga_projection_Nat_to_Pos (forall ((FPos_x s_Pos)) (=> (pPos_gn_defined
FPos_x) (and (= (fNat->Pos_gn_proj_Nat_Pos (fPos->Nat_gn_inj_Pos_Nat FPos_x))
FPos_x) (pPos_gn_defined (fNat->Pos_gn_proj_Nat_Pos (fPos->Nat_gn_inj_Pos_Nat
FPos_x)))))))

28 (assert :axiom ga_injective_suc (forall ((FPos_X1 s_Pos) (FPos_Y1 s_Pos)) (=> (and (
pPos_gn_defined FPos_X1) (pPos_gn_defined FPos_Y1)) (= (= (fPos->Pos_suc FPos_X1)
(fPos->Pos_suc FPos_Y1)) (= FPos_X1 FPos_Y1)))))

29 (assert :axiom ga_disjoint_1_suc (forall ((FPos_Y1 s_Pos)) (=> (pPos_gn_defined
FPos_Y1) (not (= (fPos_1) (fPos->Pos_suc FPos_Y1))))))

30 (assert :axiom ga_generated_Pos (forall ((PPos_gn_P_Pos (=> s_Pos Bool))) (=> (and (@
PPos_gn_P_Pos (fPos_1)) (@ PPos_gn_P_Pos (fPos_gn_bottom_Pos)) (forall ((FPos_y_1
s_Pos)) (=> (@ PPos_gn_P_Pos FPos_y_1) (@ PPos_gn_P_Pos (fPos->Pos_suc FPos_y_1)))
)) (forall ((FPos_x_1 s_Pos)) (@ PPos_gn_P_Pos FPos_x_1)))))

31 (assert :axiom ga_injective_suc_1 (forall ((FNat_X1 s_Nat) (FNat_Y1 s_Nat)) (=> (and (
pNat_gn_defined FNat_X1) (pNat_gn_defined FNat_Y1)) (= (= (fNat->Nat_suc FNat_X1)
(fNat->Nat_suc FNat_Y1)) (= FNat_X1 FNat_Y1)))))

32 (assert :axiom ga_disjoint_0_suc (forall ((FNat_Y1 s_Nat)) (=> (pNat_gn_defined
FNat_Y1) (not (= (fNat_0) (fNat->Nat_suc FNat_Y1))))))

33 (assert :axiom ga_generated_Nat (forall ((PNat_gn_P_Nat (=> s_Nat Bool))) (=> (and (@
PNat_gn_P_Nat (fNat_0)) (@ PNat_gn_P_Nat (fNat_gn_bottom_Nat)) (forall ((FNat_y_1
s_Nat)) (=> (@ PNat_gn_P_Nat FNat_y_1) (@ PNat_gn_P_Nat (fNat->Nat_suc FNat_y_1)))
)) (forall ((FNat_x_1 s_Nat)) (@ PNat_gn_P_Nat FNat_x_1)))))

58 Appendix

34 (assert :axiom Pos_def (= (fNat->Nat_suc (fNat_0)) (fPos->Nat_gn_inj_Pos_Nat (fPos_1))
))

35 (assert :axiom add_0 (forall ((FNat_m s_Nat)) (=> (pNat_gn_defined FNat_m) (= (fNat*
Nat->Nat___+__ (fNat_0) FNat_m) FNat_m))))

36 (assert :axiom add_suc (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat___+__ (fNat->
Nat_suc FNat_n) FNat_m) (fNat->Nat_suc (fNat*Nat->Nat___+__ FNat_n FNat_m))))))

37 (assert :axiom leq_def1 (forall ((FNat_n s_Nat)) (=> (pNat_gn_defined FNat_n) (pNat*
Nat___<=__ (fNat_0) FNat_n))))

38 (assert :axiom leq_def2 (forall ((FNat_n s_Nat)) (=> (pNat_gn_defined FNat_n) (not (
pNat*Nat___<=__ (fNat->Nat_suc FNat_n) (fNat_0))))))

39 (assert :axiom leq_def3 (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (pNat*Nat___<=__ (fNat->
Nat_suc FNat_m) (fNat->Nat_suc FNat_n)) (pNat*Nat___<=__ FNat_m FNat_n)))))

40 (assert :axiom min_def (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat_min FNat_m
FNat_n) (ite (pNat*Nat___<=__ FNat_m FNat_n) FNat_m FNat_n)))))

41 (assert :axiom max_def (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat_max FNat_m
FNat_n) (ite (pNat*Nat___<=__ FNat_m FNat_n) FNat_n FNat_m)))))

42 (prove :axiom add_0_right (forall ((FPos_p s_Pos)) (=> (pPos_gn_defined FPos_p) (= (
fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fNat_0)) (fPos->
Nat_gn_inj_Pos_Nat FPos_p)))))

43 (prove :axiom add_assoc (forall ((FPos_p s_Pos) (FPos_q s_Pos) (FPos_r s_Pos)) (=> (
and (pPos_gn_defined FPos_p) (pPos_gn_defined FPos_q) (pPos_gn_defined FPos_r)) (=
(fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fNat*Nat->Nat___+__ (fPos

->Nat_gn_inj_Pos_Nat FPos_q) (fPos->Nat_gn_inj_Pos_Nat FPos_r))) (fNat*Nat->Nat___
+__ (fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fPos->
Nat_gn_inj_Pos_Nat FPos_q)) (fPos->Nat_gn_inj_Pos_Nat FPos_r))))))

44 (prove :axiom add_comm (forall ((FPos_p s_Pos) (FPos_q s_Pos)) (=> (and (
pPos_gn_defined FPos_p) (pPos_gn_defined FPos_q)) (= (fNat*Nat->Nat___+__ (fPos->
Nat_gn_inj_Pos_Nat FPos_p) (fPos->Nat_gn_inj_Pos_Nat FPos_q)) (fNat*Nat->Nat___+__
(fPos->Nat_gn_inj_Pos_Nat FPos_q) (fPos->Nat_gn_inj_Pos_Nat FPos_p))))))

45 (prove :axiom add_suc_right (forall ((FPos_p s_Pos) (FPos_q s_Pos)) (=> (and (
pPos_gn_defined FPos_p) (pPos_gn_defined FPos_q)) (= (fNat*Nat->Nat___+__ (fPos->
Nat_gn_inj_Pos_Nat FPos_p) (fPos->Nat_gn_inj_Pos_Nat (fPos->Pos_suc FPos_q))) (
fNat->Nat_suc (fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fPos->
Nat_gn_inj_Pos_Nat FPos_q)))))))

Listing A.8: TIP translation of spec Nat from Listing A.3 using a persistently liberal comorphism
with features not supported by Zipperposition kept for readability

A.2 TIP translations for evaluation 59

1 (declare-sort s_Nat 0)
2 (declare-sort s_Pos 0)
3 (declare-fun pNat*Nat___<=__ (s_Nat s_Nat) Bool)
4 (declare-fun pNat_gn_defined (s_Nat) Bool)
5 (declare-fun pPos_gn_defined (s_Pos) Bool)
6 (declare-const fNat_0 s_Nat)
7 (declare-const fPos_1 s_Pos)
8 (declare-fun fNat*Nat->Nat___+__ (s_Nat s_Nat) s_Nat)
9 (declare-const fNat_gn_bottom_Nat s_Nat)

10 (declare-const fPos_gn_bottom_Pos s_Pos)
11 (declare-fun fPos->Nat_gn_inj_Pos_Nat (s_Pos) s_Nat)
12 (declare-fun fNat->Pos_gn_proj_Nat_Pos (s_Nat) s_Pos)
13 (declare-fun fNat*Nat->Nat_max (s_Nat s_Nat) s_Nat)
14 (declare-fun fNat*Nat->Nat_min (s_Nat s_Nat) s_Nat)
15 (declare-fun fNat->Nat_suc (s_Nat) s_Nat)
16 (declare-fun fPos->Pos_suc (s_Pos) s_Pos)
17 (assert :axiom ga_nonEmpty_Nat (exists ((FNat_x s_Nat)) (pNat_gn_defined FNat_x)))
18 (assert :axiom ga_notDefBottom_Nat (forall ((FNat_x s_Nat)) (= (not (pNat_gn_defined

FNat_x)) (= FNat_x (fNat_gn_bottom_Nat)))))
19 (assert :axiom ga_nonEmpty_Pos (exists ((FPos_x s_Pos)) (pPos_gn_defined FPos_x)))
20 (assert :axiom ga_notDefBottom_Pos (forall ((FPos_x s_Pos)) (= (not (pPos_gn_defined

FPos_x)) (= FPos_x (fPos_gn_bottom_Pos)))))
21 (assert :axiom ga_strictness_0 (pNat_gn_defined (fNat_0)))
22 (assert :axiom ga_strictness_1 (pPos_gn_defined (fPos_1)))
23 (assert :axiom ga_strictness___+__ (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (

pNat_gn_defined (fNat*Nat->Nat___+__ FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

24 (assert :axiom ga_strictness_gn_inj_Pos_Nat (forall ((FPos_x_1 s_Pos)) (= (
pNat_gn_defined (fPos->Nat_gn_inj_Pos_Nat FPos_x_1)) (pPos_gn_defined FPos_x_1))))

25 (assert :axiom ga_strictness_gn_proj_Nat_Pos (forall ((FNat_x_1 s_Nat)) (=> (
pPos_gn_defined (fNat->Pos_gn_proj_Nat_Pos FNat_x_1)) (pNat_gn_defined FNat_x_1)))
)

26 (assert :axiom ga_strictness_max (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (
pNat_gn_defined (fNat*Nat->Nat_max FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

27 (assert :axiom ga_strictness_min (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (
pNat_gn_defined (fNat*Nat->Nat_min FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

28 (assert :axiom ga_strictness_suc (forall ((FNat_x_1 s_Nat)) (= (pNat_gn_defined (fNat
->Nat_suc FNat_x_1)) (pNat_gn_defined FNat_x_1))))

29 (assert :axiom ga_strictness_suc_1 (forall ((FPos_x_1 s_Pos)) (= (pPos_gn_defined (
fPos->Pos_suc FPos_x_1)) (pPos_gn_defined FPos_x_1))))

30 (assert :axiom ga_predicate_strictness___ <=__ (forall ((FNat_x_1 s_Nat) (FNat_x_2
s_Nat)) (=> (pNat*Nat___<=__ FNat_x_1 FNat_x_2) (and (pNat_gn_defined FNat_x_1) (
pNat_gn_defined FNat_x_2)))))

31 (assert :axiom ga_function_monotonicity (forall ((FPos_x1 s_Pos)) (=> (pPos_gn_defined
FPos_x1) (= (fNat->Nat_suc (fPos->Nat_gn_inj_Pos_Nat FPos_x1)) (fPos->

Nat_gn_inj_Pos_Nat (fPos->Pos_suc FPos_x1))))))
32 (assert :axiom ga_embedding_injectivity_Pos_to_Nat (forall ((FPos_x s_Pos) (FPos_y

s_Pos)) (=> (and (pPos_gn_defined FPos_x) (pPos_gn_defined FPos_y)) (=> (and (= (
fPos->Nat_gn_inj_Pos_Nat FPos_x) (fPos->Nat_gn_inj_Pos_Nat FPos_y)) (
pNat_gn_defined (fPos->Nat_gn_inj_Pos_Nat FPos_x))) (and (= FPos_x FPos_y) (
pPos_gn_defined FPos_x))))))

33 (assert :axiom ga_projection_injectivity_Nat_to_Pos (forall ((FNat_x s_Nat) (FNat_y
s_Nat)) (=> (and (pNat_gn_defined FNat_x) (pNat_gn_defined FNat_y)) (=> (and (= (
fNat->Pos_gn_proj_Nat_Pos FNat_x) (fNat->Pos_gn_proj_Nat_Pos FNat_y)) (
pPos_gn_defined (fNat->Pos_gn_proj_Nat_Pos FNat_x))) (and (= FNat_x FNat_y) (
pNat_gn_defined FNat_x))))))

34 (assert :axiom ga_projection_Nat_to_Pos (forall ((FPos_x s_Pos)) (=> (pPos_gn_defined
FPos_x) (and (= (fNat->Pos_gn_proj_Nat_Pos (fPos->Nat_gn_inj_Pos_Nat FPos_x))
FPos_x) (pPos_gn_defined (fNat->Pos_gn_proj_Nat_Pos (fPos->Nat_gn_inj_Pos_Nat
FPos_x)))))))

35 (assert :axiom ga_injective_suc (forall ((FPos_X1 s_Pos) (FPos_Y1 s_Pos)) (=> (and (
pPos_gn_defined FPos_X1) (pPos_gn_defined FPos_Y1)) (= (= (fPos->Pos_suc FPos_X1)
(fPos->Pos_suc FPos_Y1)) (= FPos_X1 FPos_Y1)))))

36 (assert :axiom ga_disjoint_1_suc (forall ((FPos_Y1 s_Pos)) (=> (pPos_gn_defined
FPos_Y1) (not (= (fPos_1) (fPos->Pos_suc FPos_Y1))))))

37 (assert :axiom ga_generated_Pos (forall ((PPos_gn_P_Pos (=> s_Pos Bool))) (=> (and (@
PPos_gn_P_Pos (fPos_1)) (@ PPos_gn_P_Pos (fPos_gn_bottom_Pos)) (forall ((FPos_y_1
s_Pos)) (=> (@ PPos_gn_P_Pos FPos_y_1) (@ PPos_gn_P_Pos (fPos->Pos_suc FPos_y_1)))
)) (forall ((FPos_x_1 s_Pos)) (@ PPos_gn_P_Pos FPos_x_1)))))

38 (assert :axiom ga_injective_suc_1 (forall ((FNat_X1 s_Nat) (FNat_Y1 s_Nat)) (=> (and (
pNat_gn_defined FNat_X1) (pNat_gn_defined FNat_Y1)) (= (= (fNat->Nat_suc FNat_X1)
(fNat->Nat_suc FNat_Y1)) (= FNat_X1 FNat_Y1)))))

60 Appendix

39 (assert :axiom ga_disjoint_0_suc (forall ((FNat_Y1 s_Nat)) (=> (pNat_gn_defined
FNat_Y1) (not (= (fNat_0) (fNat->Nat_suc FNat_Y1))))))

40 (assert :axiom ga_generated_Nat (forall ((PNat_gn_P_Nat (=> s_Nat Bool))) (=> (and (@
PNat_gn_P_Nat (fNat_0)) (@ PNat_gn_P_Nat (fNat_gn_bottom_Nat)) (forall ((FNat_y_1
s_Nat)) (=> (@ PNat_gn_P_Nat FNat_y_1) (@ PNat_gn_P_Nat (fNat->Nat_suc FNat_y_1)))
)) (forall ((FNat_x_1 s_Nat)) (@ PNat_gn_P_Nat FNat_x_1)))))

41 (assert :axiom Pos_def (= (fNat->Nat_suc (fNat_0)) (fPos->Nat_gn_inj_Pos_Nat (fPos_1))
))

42 (assert :axiom add_0 (forall ((FNat_m s_Nat)) (=> (pNat_gn_defined FNat_m) (= (fNat*
Nat->Nat___+__ (fNat_0) FNat_m) FNat_m))))

43 (assert :axiom add_suc (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat___+__ (fNat->
Nat_suc FNat_n) FNat_m) (fNat->Nat_suc (fNat*Nat->Nat___+__ FNat_n FNat_m))))))

44 (assert :axiom leq_def1 (forall ((FNat_n s_Nat)) (=> (pNat_gn_defined FNat_n) (pNat*
Nat___<=__ (fNat_0) FNat_n))))

45 (assert :axiom leq_def2 (forall ((FNat_n s_Nat)) (=> (pNat_gn_defined FNat_n) (not (
pNat*Nat___<=__ (fNat->Nat_suc FNat_n) (fNat_0))))))

46 (assert :axiom leq_def3 (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (pNat*Nat___<=__ (fNat->
Nat_suc FNat_m) (fNat->Nat_suc FNat_n)) (pNat*Nat___<=__ FNat_m FNat_n)))))

47 (assert :axiom min_def (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat_min FNat_m
FNat_n) (ite (pNat*Nat___<=__ FNat_m FNat_n) FNat_m FNat_n)))))

48 (assert :axiom max_def (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat_max FNat_m
FNat_n) (ite (pNat*Nat___<=__ FNat_m FNat_n) FNat_n FNat_m)))))

49 (prove :axiom add_0_right (forall ((FPos_p s_Pos)) (=> (pPos_gn_defined FPos_p) (= (
fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fNat_0)) (fPos->
Nat_gn_inj_Pos_Nat FPos_p)))))

50 (prove :axiom add_assoc (forall ((FPos_p s_Pos) (FPos_q s_Pos) (FPos_r s_Pos)) (=> (
and (pPos_gn_defined FPos_p) (pPos_gn_defined FPos_q) (pPos_gn_defined FPos_r)) (=
(fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fNat*Nat->Nat___+__ (fPos

->Nat_gn_inj_Pos_Nat FPos_q) (fPos->Nat_gn_inj_Pos_Nat FPos_r))) (fNat*Nat->Nat___
+__ (fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fPos->
Nat_gn_inj_Pos_Nat FPos_q)) (fPos->Nat_gn_inj_Pos_Nat FPos_r))))))

51 (prove :axiom add_comm (forall ((FPos_p s_Pos) (FPos_q s_Pos)) (=> (and (
pPos_gn_defined FPos_p) (pPos_gn_defined FPos_q)) (= (fNat*Nat->Nat___+__ (fPos->
Nat_gn_inj_Pos_Nat FPos_p) (fPos->Nat_gn_inj_Pos_Nat FPos_q)) (fNat*Nat->Nat___+__
(fPos->Nat_gn_inj_Pos_Nat FPos_q) (fPos->Nat_gn_inj_Pos_Nat FPos_p))))))

52 (prove :axiom add_suc_right (forall ((FPos_p s_Pos) (FPos_q s_Pos)) (=> (and (
pPos_gn_defined FPos_p) (pPos_gn_defined FPos_q)) (= (fNat*Nat->Nat___+__ (fPos->
Nat_gn_inj_Pos_Nat FPos_p) (fPos->Nat_gn_inj_Pos_Nat (fPos->Pos_suc FPos_q))) (
fNat->Nat_suc (fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fPos->
Nat_gn_inj_Pos_Nat FPos_q)))))))

Listing A.9: TIP translation of spec Nat from Listing A.3 using a non-persistently liberal
comorphism with features not supported by Zipperposition kept for readability

A.2 TIP translations for evaluation 61

1 (declare-datatypes ((s_Pos 0) (s_Nat 0)) (((fPos_1) (fPos_gn_bottom_Pos) (fPos->
Pos_suc (i1_fPos->Pos_suc s_Pos))) ((fNat_0) (fNat_gn_bottom_Nat) (fNat->Nat_suc (
i1_fNat->Nat_suc s_Nat)))))

2 (declare-fun pNat*Nat___<=__ (s_Nat s_Nat) Bool)
3 (declare-fun pNat_gn_defined (s_Nat) Bool)
4 (declare-fun pPos_gn_defined (s_Pos) Bool)
5 (declare-fun fNat*Nat->Nat___+__ (s_Nat s_Nat) s_Nat)
6 (declare-fun fPos->Nat_gn_inj_Pos_Nat (s_Pos) s_Nat)
7 (declare-fun fNat->Pos_gn_proj_Nat_Pos (s_Nat) s_Pos)
8 (declare-fun fNat*Nat->Nat_max (s_Nat s_Nat) s_Nat)
9 (declare-fun fNat*Nat->Nat_min (s_Nat s_Nat) s_Nat)

10 (declare-fun fNat->Nat_pre (s_Nat) s_Nat)
11 (assert :axiom ga_nonEmpty_Nat (exists ((FNat_x s_Nat)) (pNat_gn_defined FNat_x)))
12 (assert :axiom ga_notDefBottom_Nat (not (pNat_gn_defined (fNat_gn_bottom_Nat))))
13 (assert :axiom ga_nonEmpty_Pos (exists ((FPos_x s_Pos)) (pPos_gn_defined FPos_x)))
14 (assert :axiom ga_notDefBottom_Pos (not (pPos_gn_defined (fPos_gn_bottom_Pos))))
15 (assert :axiom ga_strictness_0 (pNat_gn_defined (fNat_0)))
16 (assert :axiom ga_strictness_1 (pPos_gn_defined (fPos_1)))
17 (assert :axiom ga_strictness___+__ (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (

pNat_gn_defined (fNat*Nat->Nat___+__ FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

18 (assert :axiom ga_strictness_gn_inj_Pos_Nat (forall ((FPos_x_1 s_Pos)) (= (
pNat_gn_defined (fPos->Nat_gn_inj_Pos_Nat FPos_x_1)) (pPos_gn_defined FPos_x_1))))

19 (assert :axiom ga_strictness_gn_proj_Nat_Pos (forall ((FNat_x_1 s_Nat)) (=> (
pPos_gn_defined (fNat->Pos_gn_proj_Nat_Pos FNat_x_1)) (pNat_gn_defined FNat_x_1)))
)

20 (assert :axiom ga_strictness_max (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (
pNat_gn_defined (fNat*Nat->Nat_max FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

21 (assert :axiom ga_strictness_min (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (
pNat_gn_defined (fNat*Nat->Nat_min FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

22 (assert :axiom ga_strictness_pre (forall ((FNat_x_1 s_Nat)) (=> (pNat_gn_defined (fNat
->Nat_pre FNat_x_1)) (pNat_gn_defined FNat_x_1))))

23 (assert :axiom ga_strictness_suc (forall ((FNat_x_1 s_Nat)) (= (pNat_gn_defined (fNat
->Nat_suc FNat_x_1)) (pNat_gn_defined FNat_x_1))))

24 (assert :axiom ga_strictness_suc_1 (forall ((FPos_x_1 s_Pos)) (= (pPos_gn_defined (
fPos->Pos_suc FPos_x_1)) (pPos_gn_defined FPos_x_1))))

25 (assert :axiom ga_predicate_strictness___ <=__ (forall ((FNat_x_1 s_Nat) (FNat_x_2
s_Nat)) (=> (pNat*Nat___<=__ FNat_x_1 FNat_x_2) (and (pNat_gn_defined FNat_x_1) (
pNat_gn_defined FNat_x_2)))))

26 (assert :axiom ga_function_monotonicity (forall ((FPos_x1 s_Pos)) (=> (pPos_gn_defined
FPos_x1) (= (fNat->Nat_suc (fPos->Nat_gn_inj_Pos_Nat FPos_x1)) (fPos->

Nat_gn_inj_Pos_Nat (fPos->Pos_suc FPos_x1))))))
27 (assert :axiom ga_embedding_injectivity_Pos_to_Nat (forall ((FPos_x s_Pos) (FPos_y

s_Pos)) (=> (and (pPos_gn_defined FPos_x) (pPos_gn_defined FPos_y)) (=> (and (= (
fPos->Nat_gn_inj_Pos_Nat FPos_x) (fPos->Nat_gn_inj_Pos_Nat FPos_y)) (
pNat_gn_defined (fPos->Nat_gn_inj_Pos_Nat FPos_x))) (and (= FPos_x FPos_y) (
pPos_gn_defined FPos_x))))))

28 (assert :axiom ga_projection_injectivity_Nat_to_Pos (forall ((FNat_x s_Nat) (FNat_y
s_Nat)) (=> (and (pNat_gn_defined FNat_x) (pNat_gn_defined FNat_y)) (=> (and (= (
fNat->Pos_gn_proj_Nat_Pos FNat_x) (fNat->Pos_gn_proj_Nat_Pos FNat_y)) (
pPos_gn_defined (fNat->Pos_gn_proj_Nat_Pos FNat_x))) (and (= FNat_x FNat_y) (
pNat_gn_defined FNat_x))))))

29 (assert :axiom ga_projection_Nat_to_Pos (forall ((FPos_x s_Pos)) (=> (pPos_gn_defined
FPos_x) (and (= (fNat->Pos_gn_proj_Nat_Pos (fPos->Nat_gn_inj_Pos_Nat FPos_x))
FPos_x) (pPos_gn_defined (fNat->Pos_gn_proj_Nat_Pos (fPos->Nat_gn_inj_Pos_Nat
FPos_x)))))))

30 (assert :axiom ga_injective_suc (forall ((FPos_X1 s_Pos) (FPos_Y1 s_Pos)) (=> (and (
pPos_gn_defined FPos_X1) (pPos_gn_defined FPos_Y1)) (= (= (fPos->Pos_suc FPos_X1)
(fPos->Pos_suc FPos_Y1)) (= FPos_X1 FPos_Y1)))))

31 (assert :axiom ga_disjoint_1_suc (forall ((FPos_Y1 s_Pos)) (=> (pPos_gn_defined
FPos_Y1) (not (= (fPos_1) (fPos->Pos_suc FPos_Y1))))))

32 (assert :axiom ga_generated_Pos (forall ((PPos_gn_P_Pos (=> s_Pos Bool))) (=> (and (@
PPos_gn_P_Pos (fPos_1)) (@ PPos_gn_P_Pos (fPos_gn_bottom_Pos)) (forall ((FPos_y_1
s_Pos)) (=> (@ PPos_gn_P_Pos FPos_y_1) (@ PPos_gn_P_Pos (fPos->Pos_suc FPos_y_1)))
)) (forall ((FPos_x_1 s_Pos)) (@ PPos_gn_P_Pos FPos_x_1)))))

33 (assert :axiom ga_selector_pre (forall ((FNat_X1 s_Nat)) (=> (pNat_gn_defined FNat_X1)
(= (fNat->Nat_pre (fNat->Nat_suc FNat_X1)) FNat_X1))))

62 Appendix

34 (assert :axiom ga_injective_suc_1 (forall ((FNat_X1 s_Nat) (FNat_Y1 s_Nat)) (=> (and (
pNat_gn_defined FNat_X1) (pNat_gn_defined FNat_Y1)) (= (= (fNat->Nat_suc FNat_X1)
(fNat->Nat_suc FNat_Y1)) (= FNat_X1 FNat_Y1)))))

35 (assert :axiom ga_disjoint_0_suc (forall ((FNat_Y1 s_Nat)) (=> (pNat_gn_defined
FNat_Y1) (not (= (fNat_0) (fNat->Nat_suc FNat_Y1))))))

36 (assert :axiom ga_selector_undef_pre_0 (not (pNat_gn_defined (fNat->Nat_pre (fNat_0)))
))

37 (assert :axiom ga_generated_Nat (forall ((PNat_gn_P_Nat (=> s_Nat Bool))) (=> (and (@
PNat_gn_P_Nat (fNat_0)) (@ PNat_gn_P_Nat (fNat_gn_bottom_Nat)) (forall ((FNat_y_1
s_Nat)) (=> (@ PNat_gn_P_Nat FNat_y_1) (@ PNat_gn_P_Nat (fNat->Nat_suc FNat_y_1)))
)) (forall ((FNat_x_1 s_Nat)) (@ PNat_gn_P_Nat FNat_x_1)))))

38 (assert :axiom Pos_def (= (fNat->Nat_suc (fNat_0)) (fPos->Nat_gn_inj_Pos_Nat (fPos_1))
))

39 (assert :axiom add_0 (forall ((FNat_m s_Nat)) (=> (pNat_gn_defined FNat_m) (= (fNat*
Nat->Nat___+__ (fNat_0) FNat_m) FNat_m))))

40 (assert :axiom add_suc (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat___+__ (fNat->
Nat_suc FNat_n) FNat_m) (fNat->Nat_suc (fNat*Nat->Nat___+__ FNat_n FNat_m))))))

41 (assert :axiom leq_def1 (forall ((FNat_n s_Nat)) (=> (pNat_gn_defined FNat_n) (pNat*
Nat___<=__ (fNat_0) FNat_n))))

42 (assert :axiom leq_def2 (forall ((FNat_n s_Nat)) (=> (pNat_gn_defined FNat_n) (not (
pNat*Nat___<=__ (fNat->Nat_suc FNat_n) (fNat_0))))))

43 (assert :axiom leq_def3 (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (pNat*Nat___<=__ (fNat->
Nat_suc FNat_m) (fNat->Nat_suc FNat_n)) (pNat*Nat___<=__ FNat_m FNat_n)))))

44 (assert :axiom min_def (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat_min FNat_m
FNat_n) (ite (pNat*Nat___<=__ FNat_m FNat_n) FNat_m FNat_n)))))

45 (assert :axiom max_def (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat_max FNat_m
FNat_n) (ite (pNat*Nat___<=__ FNat_m FNat_n) FNat_n FNat_m)))))

46 (prove :axiom add_0_right (forall ((FPos_p s_Pos)) (=> (pPos_gn_defined FPos_p) (= (
fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fNat_0)) (fPos->
Nat_gn_inj_Pos_Nat FPos_p)))))

47 (prove :axiom add_assoc (forall ((FPos_p s_Pos) (FPos_q s_Pos) (FPos_r s_Pos)) (=> (
and (pPos_gn_defined FPos_p) (pPos_gn_defined FPos_q) (pPos_gn_defined FPos_r)) (=
(fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fNat*Nat->Nat___+__ (fPos

->Nat_gn_inj_Pos_Nat FPos_q) (fPos->Nat_gn_inj_Pos_Nat FPos_r))) (fNat*Nat->Nat___
+__ (fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fPos->
Nat_gn_inj_Pos_Nat FPos_q)) (fPos->Nat_gn_inj_Pos_Nat FPos_r))))))

48 (prove :axiom add_comm (forall ((FPos_p s_Pos) (FPos_q s_Pos)) (=> (and (
pPos_gn_defined FPos_p) (pPos_gn_defined FPos_q)) (= (fNat*Nat->Nat___+__ (fPos->
Nat_gn_inj_Pos_Nat FPos_p) (fPos->Nat_gn_inj_Pos_Nat FPos_q)) (fNat*Nat->Nat___+__
(fPos->Nat_gn_inj_Pos_Nat FPos_q) (fPos->Nat_gn_inj_Pos_Nat FPos_p))))))

49 (prove :axiom add_suc_right (forall ((FPos_p s_Pos) (FPos_q s_Pos)) (=> (and (
pPos_gn_defined FPos_p) (pPos_gn_defined FPos_q)) (= (fNat*Nat->Nat___+__ (fPos->
Nat_gn_inj_Pos_Nat FPos_p) (fPos->Nat_gn_inj_Pos_Nat (fPos->Pos_suc FPos_q))) (
fNat->Nat_suc (fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fPos->
Nat_gn_inj_Pos_Nat FPos_q)))))))

Listing A.10: TIP translation of spec Nat from Listing A.4 using a persistently liberal comorphism
with features not supported by Zipperposition kept for readability

A.2 TIP translations for evaluation 63

1 (declare-sort s_Nat 0)
2 (declare-sort s_Pos 0)
3 (declare-fun pNat*Nat___<=__ (s_Nat s_Nat) Bool)
4 (declare-fun pNat_gn_defined (s_Nat) Bool)
5 (declare-fun pPos_gn_defined (s_Pos) Bool)
6 (declare-const fNat_0 s_Nat)
7 (declare-const fPos_1 s_Pos)
8 (declare-fun fNat*Nat->Nat___+__ (s_Nat s_Nat) s_Nat)
9 (declare-const fNat_gn_bottom_Nat s_Nat)

10 (declare-const fPos_gn_bottom_Pos s_Pos)
11 (declare-fun fPos->Nat_gn_inj_Pos_Nat (s_Pos) s_Nat)
12 (declare-fun fNat->Pos_gn_proj_Nat_Pos (s_Nat) s_Pos)
13 (declare-fun fNat*Nat->Nat_max (s_Nat s_Nat) s_Nat)
14 (declare-fun fNat*Nat->Nat_min (s_Nat s_Nat) s_Nat)
15 (declare-fun fNat->Nat_pre (s_Nat) s_Nat)
16 (declare-fun fNat->Nat_suc (s_Nat) s_Nat)
17 (declare-fun fPos->Pos_suc (s_Pos) s_Pos)
18 (assert :axiom ga_nonEmpty_Nat (exists ((FNat_x s_Nat)) (pNat_gn_defined FNat_x)))
19 (assert :axiom ga_notDefBottom_Nat (forall ((FNat_x s_Nat)) (= (not (pNat_gn_defined

FNat_x)) (= FNat_x (fNat_gn_bottom_Nat)))))
20 (assert :axiom ga_nonEmpty_Pos (exists ((FPos_x s_Pos)) (pPos_gn_defined FPos_x)))
21 (assert :axiom ga_notDefBottom_Pos (forall ((FPos_x s_Pos)) (= (not (pPos_gn_defined

FPos_x)) (= FPos_x (fPos_gn_bottom_Pos)))))
22 (assert :axiom ga_strictness_0 (pNat_gn_defined (fNat_0)))
23 (assert :axiom ga_strictness_1 (pPos_gn_defined (fPos_1)))
24 (assert :axiom ga_strictness___+__ (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (

pNat_gn_defined (fNat*Nat->Nat___+__ FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

25 (assert :axiom ga_strictness_gn_inj_Pos_Nat (forall ((FPos_x_1 s_Pos)) (= (
pNat_gn_defined (fPos->Nat_gn_inj_Pos_Nat FPos_x_1)) (pPos_gn_defined FPos_x_1))))

26 (assert :axiom ga_strictness_gn_proj_Nat_Pos (forall ((FNat_x_1 s_Nat)) (=> (
pPos_gn_defined (fNat->Pos_gn_proj_Nat_Pos FNat_x_1)) (pNat_gn_defined FNat_x_1)))
)

27 (assert :axiom ga_strictness_max (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (
pNat_gn_defined (fNat*Nat->Nat_max FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

28 (assert :axiom ga_strictness_min (forall ((FNat_x_1 s_Nat) (FNat_x_2 s_Nat)) (= (
pNat_gn_defined (fNat*Nat->Nat_min FNat_x_1 FNat_x_2)) (and (pNat_gn_defined
FNat_x_1) (pNat_gn_defined FNat_x_2)))))

29 (assert :axiom ga_strictness_pre (forall ((FNat_x_1 s_Nat)) (=> (pNat_gn_defined (fNat
->Nat_pre FNat_x_1)) (pNat_gn_defined FNat_x_1))))

30 (assert :axiom ga_strictness_suc (forall ((FNat_x_1 s_Nat)) (= (pNat_gn_defined (fNat
->Nat_suc FNat_x_1)) (pNat_gn_defined FNat_x_1))))

31 (assert :axiom ga_strictness_suc_1 (forall ((FPos_x_1 s_Pos)) (= (pPos_gn_defined (
fPos->Pos_suc FPos_x_1)) (pPos_gn_defined FPos_x_1))))

32 (assert :axiom ga_predicate_strictness___ <=__ (forall ((FNat_x_1 s_Nat) (FNat_x_2
s_Nat)) (=> (pNat*Nat___<=__ FNat_x_1 FNat_x_2) (and (pNat_gn_defined FNat_x_1) (
pNat_gn_defined FNat_x_2)))))

33 (assert :axiom ga_function_monotonicity (forall ((FPos_x1 s_Pos)) (=> (pPos_gn_defined
FPos_x1) (= (fNat->Nat_suc (fPos->Nat_gn_inj_Pos_Nat FPos_x1)) (fPos->

Nat_gn_inj_Pos_Nat (fPos->Pos_suc FPos_x1))))))
34 (assert :axiom ga_embedding_injectivity_Pos_to_Nat (forall ((FPos_x s_Pos) (FPos_y

s_Pos)) (=> (and (pPos_gn_defined FPos_x) (pPos_gn_defined FPos_y)) (=> (and (= (
fPos->Nat_gn_inj_Pos_Nat FPos_x) (fPos->Nat_gn_inj_Pos_Nat FPos_y)) (
pNat_gn_defined (fPos->Nat_gn_inj_Pos_Nat FPos_x))) (and (= FPos_x FPos_y) (
pPos_gn_defined FPos_x))))))

35 (assert :axiom ga_projection_injectivity_Nat_to_Pos (forall ((FNat_x s_Nat) (FNat_y
s_Nat)) (=> (and (pNat_gn_defined FNat_x) (pNat_gn_defined FNat_y)) (=> (and (= (
fNat->Pos_gn_proj_Nat_Pos FNat_x) (fNat->Pos_gn_proj_Nat_Pos FNat_y)) (
pPos_gn_defined (fNat->Pos_gn_proj_Nat_Pos FNat_x))) (and (= FNat_x FNat_y) (
pNat_gn_defined FNat_x))))))

36 (assert :axiom ga_projection_Nat_to_Pos (forall ((FPos_x s_Pos)) (=> (pPos_gn_defined
FPos_x) (and (= (fNat->Pos_gn_proj_Nat_Pos (fPos->Nat_gn_inj_Pos_Nat FPos_x))
FPos_x) (pPos_gn_defined (fNat->Pos_gn_proj_Nat_Pos (fPos->Nat_gn_inj_Pos_Nat
FPos_x)))))))

37 (assert :axiom ga_injective_suc (forall ((FPos_X1 s_Pos) (FPos_Y1 s_Pos)) (=> (and (
pPos_gn_defined FPos_X1) (pPos_gn_defined FPos_Y1)) (= (= (fPos->Pos_suc FPos_X1)
(fPos->Pos_suc FPos_Y1)) (= FPos_X1 FPos_Y1)))))

38 (assert :axiom ga_disjoint_1_suc (forall ((FPos_Y1 s_Pos)) (=> (pPos_gn_defined
FPos_Y1) (not (= (fPos_1) (fPos->Pos_suc FPos_Y1))))))

64 Appendix

39 (assert :axiom ga_generated_Pos (forall ((PPos_gn_P_Pos (=> s_Pos Bool))) (=> (and (@
PPos_gn_P_Pos (fPos_1)) (@ PPos_gn_P_Pos (fPos_gn_bottom_Pos)) (forall ((FPos_y_1
s_Pos)) (=> (@ PPos_gn_P_Pos FPos_y_1) (@ PPos_gn_P_Pos (fPos->Pos_suc FPos_y_1)))
)) (forall ((FPos_x_1 s_Pos)) (@ PPos_gn_P_Pos FPos_x_1)))))

40 (assert :axiom ga_selector_pre (forall ((FNat_X1 s_Nat)) (=> (pNat_gn_defined FNat_X1)
(= (fNat->Nat_pre (fNat->Nat_suc FNat_X1)) FNat_X1))))

41 (assert :axiom ga_injective_suc_1 (forall ((FNat_X1 s_Nat) (FNat_Y1 s_Nat)) (=> (and (
pNat_gn_defined FNat_X1) (pNat_gn_defined FNat_Y1)) (= (= (fNat->Nat_suc FNat_X1)
(fNat->Nat_suc FNat_Y1)) (= FNat_X1 FNat_Y1)))))

42 (assert :axiom ga_disjoint_0_suc (forall ((FNat_Y1 s_Nat)) (=> (pNat_gn_defined
FNat_Y1) (not (= (fNat_0) (fNat->Nat_suc FNat_Y1))))))

43 (assert :axiom ga_selector_undef_pre_0 (not (pNat_gn_defined (fNat->Nat_pre (fNat_0)))
))

44 (assert :axiom ga_generated_Nat (forall ((PNat_gn_P_Nat (=> s_Nat Bool))) (=> (and (@
PNat_gn_P_Nat (fNat_0)) (@ PNat_gn_P_Nat (fNat_gn_bottom_Nat)) (forall ((FNat_y_1
s_Nat)) (=> (@ PNat_gn_P_Nat FNat_y_1) (@ PNat_gn_P_Nat (fNat->Nat_suc FNat_y_1)))
)) (forall ((FNat_x_1 s_Nat)) (@ PNat_gn_P_Nat FNat_x_1)))))

45 (assert :axiom Pos_def (= (fNat->Nat_suc (fNat_0)) (fPos->Nat_gn_inj_Pos_Nat (fPos_1))
))

46 (assert :axiom add_0 (forall ((FNat_m s_Nat)) (=> (pNat_gn_defined FNat_m) (= (fNat*
Nat->Nat___+__ (fNat_0) FNat_m) FNat_m))))

47 (assert :axiom add_suc (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat___+__ (fNat->
Nat_suc FNat_n) FNat_m) (fNat->Nat_suc (fNat*Nat->Nat___+__ FNat_n FNat_m))))))

48 (assert :axiom leq_def1 (forall ((FNat_n s_Nat)) (=> (pNat_gn_defined FNat_n) (pNat*
Nat___<=__ (fNat_0) FNat_n))))

49 (assert :axiom leq_def2 (forall ((FNat_n s_Nat)) (=> (pNat_gn_defined FNat_n) (not (
pNat*Nat___<=__ (fNat->Nat_suc FNat_n) (fNat_0))))))

50 (assert :axiom leq_def3 (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (pNat*Nat___<=__ (fNat->
Nat_suc FNat_m) (fNat->Nat_suc FNat_n)) (pNat*Nat___<=__ FNat_m FNat_n)))))

51 (assert :axiom min_def (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat_min FNat_m
FNat_n) (ite (pNat*Nat___<=__ FNat_m FNat_n) FNat_m FNat_n)))))

52 (assert :axiom max_def (forall ((FNat_m s_Nat) (FNat_n s_Nat)) (=> (and (
pNat_gn_defined FNat_m) (pNat_gn_defined FNat_n)) (= (fNat*Nat->Nat_max FNat_m
FNat_n) (ite (pNat*Nat___<=__ FNat_m FNat_n) FNat_n FNat_m)))))

53 (prove :axiom add_0_right (forall ((FPos_p s_Pos)) (=> (pPos_gn_defined FPos_p) (= (
fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fNat_0)) (fPos->
Nat_gn_inj_Pos_Nat FPos_p)))))

54 (prove :axiom add_assoc (forall ((FPos_p s_Pos) (FPos_q s_Pos) (FPos_r s_Pos)) (=> (
and (pPos_gn_defined FPos_p) (pPos_gn_defined FPos_q) (pPos_gn_defined FPos_r)) (=
(fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fNat*Nat->Nat___+__ (fPos

->Nat_gn_inj_Pos_Nat FPos_q) (fPos->Nat_gn_inj_Pos_Nat FPos_r))) (fNat*Nat->Nat___
+__ (fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fPos->
Nat_gn_inj_Pos_Nat FPos_q)) (fPos->Nat_gn_inj_Pos_Nat FPos_r))))))

55 (prove :axiom add_comm (forall ((FPos_p s_Pos) (FPos_q s_Pos)) (=> (and (
pPos_gn_defined FPos_p) (pPos_gn_defined FPos_q)) (= (fNat*Nat->Nat___+__ (fPos->
Nat_gn_inj_Pos_Nat FPos_p) (fPos->Nat_gn_inj_Pos_Nat FPos_q)) (fNat*Nat->Nat___+__
(fPos->Nat_gn_inj_Pos_Nat FPos_q) (fPos->Nat_gn_inj_Pos_Nat FPos_p))))))

56 (prove :axiom add_suc_right (forall ((FPos_p s_Pos) (FPos_q s_Pos)) (=> (and (
pPos_gn_defined FPos_p) (pPos_gn_defined FPos_q)) (= (fNat*Nat->Nat___+__ (fPos->
Nat_gn_inj_Pos_Nat FPos_p) (fPos->Nat_gn_inj_Pos_Nat (fPos->Pos_suc FPos_q))) (
fNat->Nat_suc (fNat*Nat->Nat___+__ (fPos->Nat_gn_inj_Pos_Nat FPos_p) (fPos->
Nat_gn_inj_Pos_Nat FPos_q)))))))

Listing A.11: TIP translation of spec Nat from Listing A.4 using a non-persistently liberal
comorphism with features not supported by Zipperposition kept for readability

I herewith assure that I wrote the present thesis titled Induction Provers in Hets: Leveraging
the Tons of Inductive Problems language and tools to talk to more Automated Theorem
Provers independently, that the thesis has not been partially or fully submitted as graded
academic work and that I have used no other means than the ones indicated. I have
indicated all parts of the work in which sources are used according to their wording or to
their meaning.
I am aware of the fact that violations of copyright can lead to injunctive relief and claims
for damages of the author as well as a penalty by the law enforcement agency.

Potsdam, November 25, 2022
(Tom Kranz)

	List of Tables
	Listings
	Acronyms
	Introduction
	Background
	hets
	Institutions and specifications
	Institution comorphisms (plain maps)

	casl
	Structuring constructs
	pcfol and subsorting encoding
	cfol and partiality encoding
	HasCASL

	tip
	Zipperposition

	Related Work
	Tools for Inductive Provers
	Why3
	Sledgehammer

	Thesis Contribution
	Strengthening partiality encoding
	Prerequisites
	Literal translations
	Semantic compatibility

	Implementation
	More specific partiality encoding
	Representing CASL specifications in TIP format
	Integrating Zipperposition

	Experiments

	Thesis Outcome
	tip for inductive CASL problems
	Zipperposition for inductive CASL problems

	Conclusion
	Summary
	Future Work

	Bibliography
	Appendix
	casl specifications for evaluation
	tip translations for evaluation

