
Answer Set Solving in Practice

Martin Gebser and Torsten Schaub
University of Potsdam

torsten@cs.uni-potsdam.de

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 1 / 426



Rough Roadmap

1 Introduction

2 Language

3 Modeling

4 Grounding

5 Foundations

6 Solving

7 Systems

8 Applications

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 2 / 426



Resources

Course material

http://www.cs.uni-potsdam.de/wv/lehre

http://moodle.cs.uni-potsdam.de

http://potassco.sourceforge.net/teaching.html

Systems

clasp http://potassco.sourceforge.net

dlv http://www.dlvsystem.com

smodels http://www.tcs.hut.fi/Software/smodels

gringo http://potassco.sourceforge.net

lparse http://www.tcs.hut.fi/Software/smodels

clingo http://potassco.sourceforge.net

iclingo http://potassco.sourceforge.net

oclingo http://potassco.sourceforge.net

asparagus http://asparagus.cs.uni-potsdam.de
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Literature

Books [4], [29], [53]

Surveys [50], [2], [39], [21], [11]

Articles [41], [42], [6], [61], [54], [49], [40], etc.
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Motivation

Informatics

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?
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6
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Motivation

Traditional programming

“What is the problem?” versus “How to solve the problem?”
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Motivation

Traditional programming

“What is the problem?” versus “How to solve the problem?”
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Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem
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Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”
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Nutshell
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Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas
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Nutshell

Answer Set Programming
in a Hazelnutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

tailored to Knowledge Representation and Reasoning
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Nutshell

Answer Set Programming
in a Hazelnutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

ASP = DB+LP+KR+SAT
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Shifting paradigms
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Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions
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Shifting paradigms

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models

SAT

propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...
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Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).

true.

?- above(c,a).

no.
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Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries (testing entailment)

?- above(a,c).

true.

?- above(c,a).

no.
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Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries

?- above(a,c).

Fatal Error: local stack overflow.
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Shuffled Prolog program

on(a,b).

on(b,c).
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Shifting paradigms

KR’s shift of paradigm
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1 Provide a representation of the problem
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Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y )→ above(X ,Y ))
∧ (on(X ,Z ) ∧ above(Z ,Y )→ above(X ,Y ))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}
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Rooting ASP

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation
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Rooting ASP

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

å Answer Set Programming (ASP)
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Rooting ASP

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...
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Rooting ASP

Answer Set Programming at large

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
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Rooting ASP

Answer Set Programming commonly
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Rooting ASP

Answer Set Programming in practice

Representation Solution
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Rooting ASP

Answer Set Programming in practice

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
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propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

first-order programs stable Herbrand models
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Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 426



Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 426



Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model (and no others)

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 426



Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- above(Z,Y), on(X,Z).

above(X,Y) :- on(X,Y).

Stable Herbrand model (and no others)

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }
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Rooting ASP

ASP versus LP

ASP Prolog

Model generation Query orientation

Bottom-up Top-down

Modeling language Programming language

Rule-based format

Instantiation Unification
Flat terms Nested terms

(Turing +) NP(NP) Turing
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Rooting ASP

ASP versus SAT

ASP SAT

Model generation

Bottom-up

Constructive Logic Classical Logic

Closed (and open) Open world reasoning
world reasoning

Modeling language —

Complex reasoning modes Satisfiability testing

Satisfiability Satisfiability
Enumeration/Projection —
Intersection/Union —
Optimization —

(Turing +) NP(NP) NP
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ASP solving

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP
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ASP solving

ASP solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving
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ASP solving

SAT solving

Problem

Formula
(CNF) Solver Classical

Models

Solution

- -

?

6

Programming Interpreting

Solving
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ASP solving

Rooting ASP solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting
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ASP solving

Rooting ASP solving

Problem

Logic
Program

LP

Grounder

DB

Solver

SAT

Stable
Models

DB+KR+LP

Solution

- - -

?

6

Modeling KR Interpreting

Solving
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Using ASP

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP
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Using ASP

Two sides of a coin

ASP as High-level Language

Express problem instance(s) as sets of facts
Encode problem (class) as a set of rules
Read off solutions from stable models of facts and rules

ASP as Low-level Language

Compile a problem into a logic program
Solve the original problem by solving its compilation
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Using ASP

What is ASP good for?

Combinatorial search problems in the realm of P, NP, and NPNP

(some with substantial amount of data), like

Automated Planning
Code Optimization
Composition of Renaissance Music
Database Integration
Decision Support for NASA shuttle controllers
Model Checking
Product Configuration
Robotics
Systems Biology
System Synthesis
(industrial) Team-building
and many many more
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Using ASP

What does ASP offer?

Integration of DB, KR, and SAT techniques

Succinct, elaboration-tolerant problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications

including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SAT
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Introduction: Overview

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes
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Syntax

Outline

7 Syntax

8 Semantics
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Syntax

Problem solving in ASP: Syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

head(r) = a0

body(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}
atom(P) =

⋃
r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program P is positive if body(r)− = ∅ for all r ∈ P
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Syntax

Rough notational convention

We sometimes use the following notation interchangeably
in order to stress the respective view:

default classical
true, false if and or iff negation negation

source code :- , | not -

logic program ← , ; ∼ ¬
formula ⊥,> → ∧ ∨ ↔ ∼ ¬
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Semantics

Outline

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes
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Semantics

Problem solving in ASP: Semantics

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P
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Semantics

Some “logical” remarks

Positive rules are also referred to as definite clauses

Definite clauses are disjunctions with exactly one positive atom:

a0 ∨ ¬a1 ∨ · · · ∨ ¬am

A set of definite clauses has a (unique) smallest model

Horn clauses are clauses with at most one positive atom

Every definite clause is a Horn clause but not vice versa
Non-definite Horn clauses can be regarded as integrity constraints

A set of Horn clauses has a smallest model or none

This smallest model is the intended semantics of such sets of clauses

Given a positive program P, Cn(P) corresponds to the smallest model
of the set of definite clauses corresponding to P
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Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))
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Semantics

Formal Definition
Stable model of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX ) = X

Note Cn(PX ) is the ⊆–smallest (classical) model of PX

Note Every atom in X is justified by an “applying rule from P”
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Semantics

A closer look at PX

In other words, given a set X of atoms from P,

PX is obtained from P by deleting

1 each rule having ∼a in its body with a ∈ X
and then

2 all negative atoms of the form ∼a
in the bodies of the remaining rules

Note Only negative body literals are evaluated wrt X
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Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8
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Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅
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Examples

Some properties

A logic program may have zero, one, or multiple stable models!

If X is a stable model of a logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a normal program P,
then X 6⊂ Y
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Variables

Programs with Variables

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)
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Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y )← r(X ,Y ) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Intelligent Grounding aims at reducing the ground instantiation
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Variables

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X ) = X
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Language constructs

Problem solving in ASP: Extended Syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Language constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd
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Reasoning modes

Problem solving in ASP: Reasoning Modes

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Reasoning modes

Reasoning Modes

Satisfiability

Enumeration†

Projection†

Intersection‡

Union‡

Optimization

and combinations of them

† without solution recording
‡ without solution enumeration
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Basic Modeling: Overview

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning
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Modeling and Interpreting

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Modeling

For solving a problem class C for a problem instance I,
encode

1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

PI is (still) called problem instance

PC is often called the problem encoding

An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts
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ASP solving process

Outline
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ASP solving process

ASP solving process
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ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving6

Elaborating

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 65 / 426



ASP solving process

A case-study: Graph coloring

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving
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ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2
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ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges
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ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate col/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color
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ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate col/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color

In other words,

1 Each node has a unique color
2 Two connected nodes must not have the same color
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ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding
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ASP solving process
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ASP solving process

Graph coloring: Grounding

$ gringo --text color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(1,g)} 1.

1 {color(2,r), color(2,b), color(2,g)} 1.

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1.

1 {color(5,r), color(5,b), color(5,g)} 1.

1 {color(6,r), color(6,b), color(6,g)} 1.

:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).

:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).

:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).

:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).

:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).

:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).

:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).

:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).

:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).

:- color(2,r), color(4,r). :- color(3,g), color(4,g).

:- color(2,b), color(4,b). :- color(3,r), color(5,r).

:- color(2,g), color(4,g). :- color(3,b), color(5,b).

:- color(2,r), color(5,r). :- color(3,g), color(5,g).

:- color(2,b), color(5,b). :- color(4,r), color(1,r).
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ASP solving process

Graph coloring: Solving

$ gringo color.lp | clasp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,g) color(4,b) color(3,r) color(2,r) color(1,g)

Answer: 2

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,g) color(4,r) color(3,b) color(2,b) color(1,g)

Answer: 3

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,b) color(4,g) color(3,r) color(2,r) color(1,b)

Answer: 4

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,b) color(4,r) color(3,g) color(2,g) color(1,b)

Answer: 5

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,r) color(4,g) color(3,b) color(2,b) color(1,r)

Answer: 6

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s
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ASP solving process

A coloring

Answer: 6

edge(1,2) ... col(r) ... node(1) ... \

color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

1 2

3

4

5

6
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ASP solving process

A coloring

Answer: 6

edge(1,2) ... col(r) ... node(1) ... \

color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

1 2

3

4

5

6
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Methodology

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester ( + Optimizer)
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Methodology Satisfiability

Satisfiability testing

Problem Instance: A propositional formula φ in CNF

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program:

Generator Tester Stable models
{ a, b } ← ← ∼a, b

← a,∼b
X1 = {a, b}
X2 = {}
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(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program:

Generator Tester Stable models
{ a, b } ← ← ∼a, b

← a,∼b
X1 = {a, b}
X2 = {}
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Methodology Queens

The n-Queens Problem

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

Place n queens on an n × n
chess board

Queens must not attack one
another

Q Q Q

Q Q
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Methodology Queens

Defining the Field

queens.lp

row(1..n).

col(1..n).

Create file queens.lp

Define the field

n rows
n columns
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Methodology Queens

Defining the Field

Running . . .

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

SATISFIABLE

Models : 1

Time : 0.000

Prepare : 0.000

Prepro. : 0.000

Solving : 0.000
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Methodology Queens

Placing some Queens

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I) : col(J) }.

Guess a solution candidate

by placing some queens on the board
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Methodology Queens

Placing some Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 3

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(1,1)

Answer: 3

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(2,1)

SATISFIABLE

Models : 3+

...
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Methodology Queens

Placing some Queens: Answer 1

Answer 1

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5
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Methodology Queens

Placing some Queens: Answer 2

Answer 2

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 L0Z0Z

1 2 3 4 5
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Methodology Queens

Placing some Queens: Answer 3

Answer 3

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 QZ0Z0
1 Z0Z0Z

1 2 3 4 5
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Methodology Queens

Placing n Queens

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I) : col(J) }.

:- not n { queen(I,J) } n.

Place exactly n queens on the board
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Methodology Queens

Placing n Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 2

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,1) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(1,2) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

...
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Methodology Queens

Placing n Queens: Answer 1

Answer 1

5 L0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 L0Z0Z

1 2 3 4 5
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Methodology Queens

Placing n Queens: Answer 2

Answer 2

5 Z0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 LQZ0Z

1 2 3 4 5
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Methodology Queens

Horizontal and Vertical Attack

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I) : col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,JJ), J != JJ.

:- queen(I,J), queen(II,J), I != II.

Forbid horizontal attacks

Forbid vertical attacks
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Methodology Queens

Horizontal and Vertical Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,5) queen(4,4) queen(3,3) \

queen(2,2) queen(1,1)

...
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Methodology Queens

Horizontal and Vertical Attack: Answer 1

Answer 1

5 Z0Z0L
4 0Z0L0
3 Z0L0Z
2 0L0Z0
1 L0Z0Z

1 2 3 4 5
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Methodology Queens

Diagonal Attack

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I) : col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,JJ), J != JJ.

:- queen(I,J), queen(II,J), I != II.

:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ), I-J == II-JJ.

:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ), I+J == II+JJ.

Forbid diagonal attacks
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Methodology Queens

Diagonal Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(4,5) queen(1,4) queen(3,3) queen(5,2) queen(2,1)

SATISFIABLE

Models : 1+

Time : 0.000

Prepare : 0.000

Prepro. : 0.000

Solving : 0.000
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Methodology Queens

Diagonal Attack: Answer 1

Answer 1

5 ZQZ0Z
4 0Z0ZQ
3 Z0L0Z
2 QZ0Z0
1 Z0ZQZ

1 2 3 4 5
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Methodology Queens

Optimizing

queens-opt.lp

1 { queen(I,1..n) } 1 :- I = 1..n.

1 { queen(1..n,J) } 1 :- J = 1..n.

:- 2 { queen(D-J,J) }, D = 2..2*n.

:- 2 { queen(D+J,J) }, D = 1-n..n-1.

Encoding can be optimized

Much faster to solve
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Methodology Queens

And sometimes it rocks
$ clingo -c n=5000 queens-opt-diag.lp --config=jumpy -q --stats=3

clingo version 4.1.0

Solving...

SATISFIABLE

Models : 1+

Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)

CPU Time : 3758.320s

Choices : 288594554

Conflicts : 3442 (Analyzed: 3442)

Restarts : 17 (Average: 202.47 Last: 3442)

Model-Level : 7594728.0

Problems : 1 (Average Length: 0.00 Splits: 0)

Lemmas : 3442 (Deleted: 0)

Binary : 0 (Ratio: 0.00%)

Ternary : 0 (Ratio: 0.00%)

Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)

Loop : 0 (Average Length: 0.0 Ratio: 0.00%)

Other : 0 (Average Length: 0.0 Ratio: 0.00%)

Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)

Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)

Bodies : 25090103

Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: 0 Other: 75020000)

Tight : Yes

Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)

Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)

Executed : 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)

Bounded : 0 (Average: 0.00 Max: 0 Sum: 0 Ratio: 0.00%)
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Methodology Traveling Salesperson

Traveling Salesperson

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).

edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

cost(1,2,2). cost(1,3,3). cost(1,4,1).

cost(2,4,2). cost(2,5,2). cost(2,6,4).

cost(3,1,3). cost(3,4,2). cost(3,5,2).

cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).

cost(6,2,4). cost(6,3,3). cost(6,5,1).
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Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize [ cycle(X,Y) = C : cost(X,Y,C) ].
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Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.
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Methodology Planning

Simplistic STRIPS Planning

time(1..k). lasttime(T) :- time(T), not time(T+1).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occ(A,T), add(A,F).

nolds(F,T) :- occ(A,T), del(A,F).

:- query(F), not holds(F,T), lasttime(T).
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Language: Overview
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18 smodels format

19 ASP language standard
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Motivation
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Motivation

Basic language extensions

The expressiveness of a language can be enhanced by introducing
new constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension
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Core language Integrity constraint

Integrity constraint

Idea Eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

Example :- edge(3,7), color(3,red), color(7,red).

Embedding The above integrity constraint can be turned into the
normal rule

x ← a1, . . . , am,∼am+1, . . . ,∼an,∼x

where x is a new symbol, that is, x 6∈ A.

Another example P = {a← ∼b, b ← ∼a}
versus P ′ = P ∪ {← a} and P ′′ = P ∪ {← ∼a}
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Core language Choice rule

Choice rule

Idea Choices over subsets

Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

Example { buy(pizza), buy(wine), buy(corn) } :- at(grocery).

Another Example P = {{a} ← b, b ←} has two stable models:
{b} and {a, b}
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Core language Choice rule

Embedding in normal rules

A choice rule of form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

can be translated into 2m + 1 normal rules

a′ ← am+1, . . . , an,∼an+1, . . . ,∼ao

a1 ← a′,∼a1 . . . am ← a′,∼am

a1 ← ∼a1 . . . am ← ∼am

by introducing new atoms a′, a1, . . . , am.
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Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets

Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

Note l acts as a lower bound on the body

Example pass(c42) :- 2 { pass(a1), pass(a2), pass(a3) }.
Another Example P = {a← 1{b, c}, b ←} has stable model {a, b}
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Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai

ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj

ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←
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Core language Cardinality rule

An example

Program {a←, c ← 1 {a, b}} has the stable model {a, c}
Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}
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Core language Cardinality rule

. . . and vice versa

A normal rule

a0 ← a1, . . . , am,∼am+1, . . . ,∼an,

can be represented by the cardinality rule

a0 ← n {a1, . . . , am,∼am+1, . . . ,∼an}
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Core language Cardinality rule

Cardinality rules with upper bounds

A rule of the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b,∼c
b ← l { a1, . . . , am,∼am+1, . . . ,∼an }
c ← u+1 { a1, . . . , am,∼am+1, . . . ,∼an }

where b and c are new symbols

The single constraint in the body of the above cardinality rule is
referred to as a cardinality constraint
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Core language Cardinality rule

Cardinality constraints

Syntax A cardinality constraint is of the form

l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

Informal meaning A cardinality constraint is satisfied by a stable
model X , if the number of its contained literals satisfied by X is
between l and u (inclusive)

In other words, if

l ≤ | ({a1, . . . , am} ∩ X ) ∪ ({am+1, . . . , an} \ X ) | ≤ u
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Core language Cardinality rule

Cardinality constraints as heads

A rule of the form

l {a1, . . . , am,∼am+1, . . . ,∼an} u ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

{a1, . . . , am} ← b
c ← l {a1, . . . , am, ,∼am+1, . . . ,∼an} u
← b,∼c

where b and c are new symbols

Example 1 { color(v42,red),color(v42,green),color(v42,blue) } 1.
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Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where for 0 ≤ i ≤ n each li Si ui

stands for 0 ≤ i ≤ n

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si

← a, c0 ci ← ui +1 Si

where a, bi , ci are new symbols
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Core language Weight rule

Weight rule

Syntax A weight rule is the form

a0 ← l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

A weighted literal, `i = wi , associates each literal `i with a weight wi

Note A cardinality rule is a weight rule where wi = 1 for 0 ≤ i ≤ n
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Core language Weight rule

Weight constraints

Syntax A weight constraint is of the form

l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn } u

where 0 ≤ m ≤ n and each ai is an atom;
l , u and wi are integers for 1 ≤ i ≤ n

Meaning A weight constraint is satisfied by a stable model X , if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

Example 10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20
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Extended language Conditional literal

Outline

15 Motivation

16 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

17 Extended language
Conditional literal
Optimization statement

18 smodels format

19 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 130 / 426



Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.
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Extended language Optimization statement

Optimization statement

Idea Express cost functions subject to minimization and/or
maximization

Syntax A minimize statement is of the form

minimize{ `1 = w1@p1, . . . , `n = wn@pn }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi , allow for representing lexicographically ordered
minimization objectives

Meaning A minimize statement is a directive that instructs the ASP
solver to compute optimal stable models by minimizing a weighted
sum of elements
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Extended language Optimization statement

Optimization statement

A maximize statement of the form

maximize{ `1 = w1@p1, . . . , `n = wn@pn }

stands for minimize{ `1 = −w1@p1, . . . , `n = −wn@pn }

Example When configuring a computer, we may want to maximize
hard disk capacity, while minimizing price

#maximize[ hd(1)=250@1, hd(2)=500@1, hd(3)=750@1, hd(4)=1000@1 ].

#minimize[ hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2 ].

The priority levels indicate that (minimizing) price is more important
than (maximizing) capacity
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smodels format

smodels format

Logic programs in smodels format consist of

normal rules
choice rules
cardinality rules
weight rules
optimization statements

Such a format is obtained by grounders lparse and gringo
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ASP language standard

ASP-Core-2

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

smodels formatASP-Core-2

smodels format is a machine-oriented standard for ground programs

ASP-Core-2 is a user-oriented standard for (non-ground) programs,
extending the input languages of dlv and gringo series 3
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ASP language standard

Aggregates

Syntax ASP-Core-2 aggregates are of the form

t1 ≺1 #A{t11 , . . . , tm1 : `11 , . . . , `n1} ≺2 t2

where
#A ∈ {#count,#sum,#max,#min}
≺1,≺2 ∈ {<,≤,=, 6=, >,≥}
t11 , . . . , tm1 and t1, t2 are terms
`11 , . . . , `n1 are literals

Example Weight constraint

10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

is written as an ASP-Core-2 aggregate as

10 ≤ #sum{6,db:course(db); 6,ai:course(ai);

8,project:course(project); 3,xml:course(xml)} ≤ 20
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ASP language standard

Weak constraints

Syntax A weak constraint is of the form

� a1, . . . , am,∼am+1, . . . ,∼an. [w@p, t1, . . . , tm]

where
a1, . . . , an are atoms
t1, . . . , tm, w , and p are terms

a1, . . . , an may contain ASP-Core-2 aggregates

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example Minimize statement

#minimize[ hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2 ].

can be written in terms of weak constraints as

� hd(1). [30@2,1] � hd(3). [60@2,3]

� hd(2). [40@2,2] � hd(4). [80@2,4]
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ASP language standard

gringo 4

The input language of gringo series 4 comprises

ASP-Core-2
concepts from gringo 3 (conditional literals, #show directives, . . . )

Example The gringo 3 rule

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X),not q(X) :- r(X):p(X),not q(X);

1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
#show. #show hello. #show X : p(X). 1 {p(earth);p(mars);p(venus)} 1.

Attention The languages of gringo 3 and 4 are not fully compatible

Many example programs given in this tutorial are written for gringo 3
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Language Extensions: Overview

20 Two kinds of negation

21 Disjunctive logic programs

22 Propositional theories
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Two kinds of negation

Motivation

Classical versus default negation

Symbol ¬ and ∼
Idea

¬a ≈ ¬a ∈ X
∼a ≈ a /∈ X

Example

cross ← ¬train
cross ← ∼train
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Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬
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Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c

c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c


The stable models of P are given by the ones of P ∪ P¬, viz {a}
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Two kinds of negation

Properties

The only inconsistent stable “model” is X = A ∪A
Note Strictly speaking, an inconsistemt set like A ∪A is not a model

For a logic program P over A ∪A, exactly one of the following two
cases applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P
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Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model
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Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= ∼a}
∪ {← body(r) ∪ {∼ã} | r ∈ P and head(r) = ∼a}
∪ {ã← ∼a | r ∈ P and head(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã
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negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã
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A ∩ Ã = ∅
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Disjunctive logic programs

Disjunctive logic programs

A disjunctive rule, r , is of the form

a1 ; . . . ; am ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

A disjunctive logic program is a finite set of disjunctive rules

Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an,∼an+1, . . . ,∼ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}
atom(P) =

⋃
r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program is called positive if body(r)− = ∅ for all its rules
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Disjunctive logic programs

Stable models

Positive programs

A set X of atoms is closed under a positive program P iff
for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The set of all ⊆-minimal sets of atoms being closed under a positive
program P is denoted by min⊆(P)

min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

Disjunctive programs

The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX )
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Disjunctive logic programs

A “positive” example

P =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under P

We have min⊆(P) = {{a, b}, {a, c}}
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Disjunctive logic programs

Graph coloring (reloaded)

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).

edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

color(X,r) | color(X,b) | color(X,g) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).
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col(r). col(b). col(g).
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Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}
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Disjunctive logic programs

Some properties

A disjunctive logic program may have zero, one, or multiple stable
models

If X is a stable model of a disjunctive logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a disjunctive logic program P,
then X 6⊂ Y

If A ∈ X for some stable model X of a disjunctive logic program P,
then there is a rule r ∈ P such that
body(r)+ ⊆ X , body(r)− ∩ X = ∅, and head(r) ∩ X = {A}
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Disjunctive logic programs

An example with variables

P =

{
a(1, 2) ←
b(X ) ; c(Y ) ← a(X ,Y ),∼c(Y )

}

ground(P) =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


For every stable model X of P, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅
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Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X ) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X )
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Disjunctive logic programs

Default negation in rule heads

Consider disjunctive rules of the form

a1 ; . . . ; am ;∼am+1 ; . . . ;∼an ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {∼ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← ∼a | r ∈ P and a ∈ head(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã
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Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P
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This induces the stable models {a} and ∅ of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 161 / 426



Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}
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Propositional theories

Outline
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21 Disjunctive logic programs

22 Propositional theories
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Propositional theories

Propositional theories

Formulas are formed from

atoms in A
⊥

using

conjunction (∧)
disjunction (∨)
implication (→)

Notation

> = (⊥ → ⊥)

∼φ = (φ→ ⊥)

A propositional theory is a finite set of formulas
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Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX ) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}
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Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX )

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX ) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!
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Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1 ) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2 ) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2 ) = {{q, r}} 4
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2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2 ) = {{q, r}} 4
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Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r ] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]
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Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}
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Grounding: Overview
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Grounding by example

d(a)
d(c)
d(d)

p(a, b)
p(b, c)
p(c , d)
p(X ,Z )← p(X ,Y ), p(Y ,Z )

q(a)
q(b)
q(X )← ∼r(X ), d(X )

r(X )← ∼q(X ), d(X )
s(X )← ∼r(X ), p(X ,Y ), q(Y )
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Match

A substitution is a mapping from variables to terms

Given sets B and D of atoms, a substitution θ is a match of B in D,
if Bθ ⊆ D

Given a set B of atoms and a set D of ground atoms, define

Θ(B,D) = { θ | θ is a ⊆-minimal match of B in D }

Example {X 7→ 1} and {X 7→ 2} are ⊆-minimal matches of {p(X )}
in {p(1), p(2), p(3)}, while match {X 7→ 1,Y 7→ 2} is not
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Naive instantiation

Algorithm 1: NaiveInstantiation

Input : A safe (first-order) logic program P
Output : A ground logic program P ′

D := ∅
P ′ := ∅
repeat

D ′ := D
foreach r ∈ P do

B := body(r)+

foreach θ ∈ Θ(B,D) do
D := D ∪ {head(r)θ}
P ′ := P ′ ∪ {rθ}

until D = D ′
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Predicate-rule dependency graph

d(a) d(c) q(a) q(b)

d(d) d/1 q(X )← ∼r(X ), d(X ) q/1

p(a, b) p(b, c) r(X )← ∼q(X ), d(X )

p(c, d) p/2 r/1

p(X ,Z)← p(X ,Y ), p(Y ,Z) s(X )← ∼r(X ), p(X ,Y ), q(Y ) s/1

1 2

3
4

5 6

7

8 9

10

11 12 13
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Instantiation

SCC Θ(B,D) D P ′

1 {∅} d(a) d(a)←
2 {∅} d(c) d(c)←
3 {∅} d(d) d(d)←
5 {∅} q(a) q(a)←
6 {∅} q(b) q(b)←
7 {{X 7→ a}, q(a)← ∼r(a), d(a)

{X 7→ c}, q(c) q(c)← ∼r(c), d(c)
{X 7→ d}, q(d) q(d)← ∼r(d), d(d)
{X 7→ a}, r(a)← ∼q(a), d(a)
{X 7→ c}, r(c) r(c)← ∼q(c), d(c)
{X 7→ d}} r(d) r(d)← ∼q(d), d(d)
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Instantiation

SCC Θ(B,D) D P ′

8 {∅} p(a, b) p(a, b)←
9 {∅} p(b, c) p(b, c)←

10 {∅} p(c , d) p(c , d)←
11 {{X 7→ a,Y 7→ b,Z 7→ c}, p(a, c) p(a, c)← p(a, b), p(b, c)

{X 7→ b,Y 7→ c ,Z 7→ d}} p(b, d) p(b, d)← p(b, c), p(c , d)
{{X 7→ a,Y 7→ c ,Z 7→ d}, p(a, d) p(a, d)← p(a, c), p(c , d)
{X 7→ a,Y 7→ b,Z 7→ d}} p(a, d)← p(a, b), p(b, d)

12 {{X 7→ a,Y 7→ b}, s(a) s(a)← ∼r(a), p(a, b), q(b)
{X 7→ a,Y 7→ c}, s(a)← ∼r(a), p(a, c), q(c)
{X 7→ a,Y 7→ d}, s(a)← ∼r(a), p(a, d), q(d)
{X 7→ b,Y 7→ c}, s(b) s(b)← ∼r(b), p(b, c), q(c)
{X 7→ b,Y 7→ d}, s(b)← ∼r(b), p(b, d), q(d)
{X 7→ c ,Y 7→ d}} s(c) s(c)← ∼r(c), p(c , d), q(d)
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Computational Aspects: Overview

23 Consequence operator

24 Computation from first principles

25 Complexity
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Consequence operator

Consequence operator

Let P be a positive program and X a set of atoms

The consequence operator TP is defined as follows:

TP X = {head(r) | r ∈ P and body(r) ⊆ X}

Iterated applications of TP are written as T j
P for j ≥ 0,

where

T 0
P X = X and

T i
P X = TP T i−1

P X for i ≥ 1

For any positive program P, we have

Cn(P) =
⋃

i≥0 T i
P∅

X ⊆ Y implies TP X ⊆ TP Y

Cn(P) is the smallest fixpoint of TP
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Consequence operator

An example

Consider the program

P = {p ←, q ←, r ← p, s ← q, t, t ← r , u ← v}

We get

T 0
P∅ = ∅

T 1
P∅ = {p, q} = TPT 0

P∅ = TP∅
T 2

P∅ = {p, q, r} = TPT 1
P∅ = TP{p, q}

T 3
P∅ = {p, q, r , t} = TPT 2

P∅ = TP{p, q, r}
T 4

P∅ = {p, q, r , t, s} = TPT 3
P∅ = TP{p, q, r , t}

T 5
P∅ = {p, q, r , t, s} = TPT 4

P∅ = TP{p, q, r , t, s}
T 6

P∅ = {p, q, r , t, s} = TPT 5
P∅ = TP{p, q, r , t, s}

Cn(P) = {p, q, r , t, s} is the smallest fixpoint of TP because
TP{p, q, r , t, s} = {p, q, r , t, s} and
TP X 6= X for each X ⊂ {p, q, r , t, s}
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T 0
P∅ = ∅

T 1
P∅ = {p, q} = TPT 0

P∅ = TP∅
T 2

P∅ = {p, q, r} = TPT 1
P∅ = TP{p, q}

T 3
P∅ = {p, q, r , t} = TPT 2

P∅ = TP{p, q, r}
T 4

P∅ = {p, q, r , t, s} = TPT 3
P∅ = TP{p, q, r , t}

T 5
P∅ = {p, q, r , t, s} = TPT 4

P∅ = TP{p, q, r , t, s}
T 6

P∅ = {p, q, r , t, s} = TPT 5
P∅ = TP{p, q, r , t, s}

Cn(P) = {p, q, r , t, s} is the smallest fixpoint of TP because
TP{p, q, r , t, s} = {p, q, r , t, s} and
TP X 6= X for each X ⊂ {p, q, r , t, s}
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Computation from first principles

Outline

23 Consequence operator

24 Computation from first principles

25 Complexity
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Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY ) ⊆ Cn(PX )

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU ) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU ) ⊆ X ⊆ U ∩ Cn(PL)
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Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU )
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P
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Computation from first principles

The simplistic expand algorithm

expandP(L,U)
repeat

L′ ← L
U ′ ← U

L← L′ ∪ Cn(PU′)
U ← U ′ ∩ Cn(PL′)

if L 6⊆ U then return

until L = L′ and U = U ′
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Computation from first principles

An example

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a} {a} {a, b, c , d , e} {a, b, d , e} {a, b, d , e}
2 {a} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}
3 {a, b} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}

Note We have {a, b} ⊆ X and (A \ {a, b, d , e}) ∩ X = ({c} ∩ X ) = ∅
for every stable model X of P
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Computation from first principles

The simplistic expand algorithm

expandP

tightens the approximation on stable models
is stable model preserving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 185 / 426



Computation from first principles

Let’s expand with d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 {d} {a} {a, d} {a, b, c , d , e} {a, b, d} {a, b, d}
2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}
3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

Note {a, b, d} is a stable model of P
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Computation from first principles

A simplistic solving algorithm

solveP(L,U)

(L,U)← expandP(L,U) // propagation

if L 6⊆ U then failure // failure

if L = U then output L // success

else choose a ∈ U \ L // choice

solveP(L ∪ {a},U)

solveP(L,U \ {a})
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Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms
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Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete
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Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is
co-NPNP -complete
Deciding whether a is in an optimal stable model of P is ∆p

3-complete

For a propositional theory Φ:

Deciding whether X is a stable model of Φ is co-NP-complete
Deciding whether a is in a stable model of Φ is NPNP -complete
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Axiomatic Characterization: Overview

26 Completion

27 Tightness

28 Loops and Loop Formulas
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Completion

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Although each atom is defined through a set of rules,
each such rule provides only a sufficient condition for its head atom

Idea The idea of program completion is to turn such implications into
a definition by adding the corresponding necessary counterpart
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Completion

Program completion

Let P be a normal logic program

The completion CF (P) of P is defined as follows

CF (P) =
{

a↔
∨

r∈P,head(r)=aBF (body(r)) | a ∈ atom(P)
}

where

BF (body(r)) =
∧

a∈body(r)+a ∧
∧

a∈body(r)−¬a
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Completion

An example

P =



a←
b ← ∼a
c ← a,∼d
d ← ∼c,∼e
e ← b,∼f
e ← e


CF (P) =



a↔ >
b ↔ ¬a
c ↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e ↔ (b ∧ ¬f ) ∨ e
f ↔ ⊥


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Completion

A closer look

CF (P) is logically equivalent to
←−
CF (P) ∪

−→
CF (P), where

←−
CF (P) =

{
a←

∨
B∈bodyP (a)BF (B) | a ∈ atom(P)

}
−→
CF (P) =

{
a→

∨
B∈bodyP (a)BF (B) | a ∈ atom(P)

}
body P(a) = {body(r) | r ∈ P and head(r) = a}

←−
CF (P) characterizes the classical models of P
−→
CF (P) completes P by adding necessary conditions for all atoms
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Completion

Supported models

Every stable model of P is a model of CF (P), but not vice versa

Models of CF (P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P
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Completion

An example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has 21 models, including {a, c}, {a, d}, but also {a, b, c , d , e, f }
P has 3 supported models, namely {a, c}, {a, d}, and {a, c , e}
P has 2 stable models, namely {a, c} and {a, d}
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Tightness

Outline

26 Completion

27 Tightness

28 Loops and Loop Formulas
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Tightness

The mismatch

Question What causes the mismatch between supported models and
stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer Cyclic derivations are causing the mismatch between
supported and stable models

Atoms in a stable model can be “derived” from a program in a finite
number of steps
Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model
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Tightness

Non-cyclic derivations

Let X be a stable model of normal logic program P

For every atom A ∈ X , there is a finite sequence of positive rules

〈r1, . . . , rn〉

such that

1 head(r1) = A
2 body(ri )

+ ⊆ {head(rj ) | i < j ≤ n} for 1 ≤ i ≤ n
3 ri ∈ PX for 1 ≤ i ≤ n

That is, each atom of X has a non-cyclic derivation from PX

Example There is no finite sequence of rules providing a derivation
for e from P{a,c,e}
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Tightness

Positive atom dependency graph

The origin of (potential) circular derivations can be read off the
positive atom dependency graph G (P) of a logic program P given by

(atom(P), {(a, b) | r ∈ P, a ∈ body(r)+, head(r) = b})

A logic program P is called tight, if G (P) is acyclic
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Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e}, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 206 / 426



Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e}, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 206 / 426



Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e}, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 206 / 426



Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e}, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 206 / 426



Tightness

Tight programs

A logic program P is called tight, if G (P) is acyclic

For tight programs, stable and supported models coincide:

Fages’ Theorem

Let P be a tight normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P)
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Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}
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Loops and Loop Formulas

Outline

26 Completion

27 Tightness

28 Loops and Loop Formulas
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Loops and Loop Formulas

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Idea Add formulas prohibiting circular support of sets of atoms

Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph
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Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (atom(P),E ) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅
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Loops and Loop Formulas

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}
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Loops and Loop Formulas

Another example
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Loops and Loop Formulas

Yet another example
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Loops and Loop Formulas

Loop formulas

Let P be a normal logic program

For L ⊆ atom(P), define the external supports of L for P as

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

Define the external bodies of L in P as EBP(L) = body(ESP(L))

The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP (L)BF (B)
)

≡
(∧

B∈EBP (L)¬BF (B)
)
→
(∧

a∈L¬a
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Define LF (P) = {LFP(L) | L ∈ loop(P)}
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Loops and Loop Formulas

Example

P =
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Loops and Loop Formulas

Another example

P =
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b ← ∼a c ← d d ← b, c

}

d a c e

b

loop(P) = {{c , d}}
LF (P) = {c ∨ d → (a ∧ b) ∨ a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 217 / 426



Loops and Loop Formulas

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}

d a c e

b

loop(P) = {{c , d}}
LF (P) = {c ∨ d → (a ∧ b) ∨ a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 217 / 426



Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =


c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)
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Loops and Loop Formulas

Lin-Zhao Theorem

Theorem

Let P be a normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P) ∪ LF (P)
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Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

Then, X is a stable model of P iff

X |= {LFP (U) | U ⊆ atom(P)};
X |= {LFP (U) | U ⊆ X};
X |= {LFP (L) | L ∈ loop(P)}, that is, X |= LF (P);
X |= {LFP (L) | L ∈ loop(P) and L ⊆ X}

Note If X is not a stable model of P,
then there is a loop L ⊆ X \ Cn(PX ) such that X 6|= LFP(L)
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Loops and Loop Formulas

Loops and loop formulas: Properties (ctd)

If P 6⊆ NC1/poly ,1 then there is no translation T from logic programs to
propositional formulas such that, for each normal logic program P, both of
the following conditions hold:

1 The propositional variables in T [P] are a subset of atom(P)

2 The size of T [P] is polynomial in the size of P

Note Every vocabulary-preserving translation from normal logic
programs to propositional formulas must be exponential
(in the worst case).

Observations

Translation CF (P) ∪ LF (P) preserves the vocabulary of
P
The number of loops in loop(P) may be exponential in
|atom(P)|

1A conjecture from the theory of complexity that is widely believed to be
true.
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Operational Characterization: Overview

29 Partial Interpretations

30 Fitting Operator

31 Unfounded Sets

32 Well-Founded Operator
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Partial Interpretations

Outline
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Partial Interpretations

Interlude: Partial interpretations
or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false,
and unknown

Representation 〈T ,F 〉, where

T is the set of all true atoms and
F is the set of all false atoms
Truth of atoms in A \ (T ∪ F ) is unknown

Properties

〈T ,F 〉 is conflicting if T ∩ F 6= ∅
〈T ,F 〉 is total if T ∪ F = A and T ∩ F = ∅

Definition For 〈T1,F1〉 and 〈T2,F2〉, define

〈T1,F1〉 v 〈T2,F2〉 iff T1 ⊆ T2 and F1 ⊆ F2

〈T1,F1〉 t 〈T2,F2〉 = 〈T1 ∪ T2,F1 ∪ F2〉
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T is the set of all true atoms and
F is the set of all false atoms
Truth of atoms in A \ (T ∪ F ) is unknown

Properties

〈T ,F 〉 is conflicting if T ∩ F 6= ∅
〈T ,F 〉 is total if T ∪ F = A and T ∩ F = ∅

Definition For 〈T1,F1〉 and 〈T2,F2〉, define

〈T1,F1〉 v 〈T2,F2〉 iff T1 ⊆ T2 and F1 ⊆ F2

〈T1,F1〉 t 〈T2,F2〉 = 〈T1 ∪ T2,F1 ∪ F2〉
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Fitting Operator

Outline

29 Partial Interpretations

30 Fitting Operator

31 Unfounded Sets

32 Well-Founded Operator
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Fitting Operator

Basic idea

Idea Extend TP to normal logic programs

Logical background The idea is to turn a program’s completion
into an operator such that

the head atom of a rule must be true
if the rule’s body is true
an atom must be false
if the body of each rule having it as head is false
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Fitting Operator

Definition

Let P be a normal logic program

Define

ΦP〈T ,F 〉 = 〈TP〈T ,F 〉,FP〈T ,F 〉〉

where

TP〈T ,F 〉 = {head(r) | r ∈ P, body(r)+ ⊆ T , body(r)− ⊆ F}
FP〈T ,F 〉 = {a ∈ atom(P) |

body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅
for each r ∈ P such that head(r) = a }
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Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Let’s iterate ΦP on 〈{a}, {d}〉:

ΦP〈{a}, {d}〉 = 〈{a, c}, {b, f }〉
ΦP〈{a, c}, {b, f }〉 = 〈{a}, {b, d , f }〉
ΦP〈{a}, {b, d , f }〉 = 〈{a, c}, {b, f }〉

...
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Fitting Operator

Fitting semantics

Define the iterative variant of ΦP analogously to TP :

Φ0
P〈T ,F 〉 = 〈T ,F 〉 Φi+1

P 〈T ,F 〉 = ΦPΦi
P〈T ,F 〉

Define the Fitting semantics of a normal logic program P
as the partial interpretation:⊔

i≥0Φi
P〈∅, ∅〉
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Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Φ0〈∅, ∅〉 = 〈∅, ∅〉
Φ1〈∅, ∅〉 = Φ〈∅, ∅〉 = 〈{a}, {f }〉
Φ2〈∅, ∅〉 = Φ〈{a}, {f }〉 = 〈{a}, {b, f }〉
Φ3〈∅, ∅〉 = Φ〈{a}, {b, f }〉 = 〈{a}, {b, f }〉⊔

i≥0 Φi 〈∅, ∅〉 = 〈{a}, {b, f }〉
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Fitting Operator

Properties

Let P be a normal logic program

ΦP〈∅, ∅〉 is monotonic
That is, Φi

P〈∅, ∅〉 v Φi+1
P 〈∅, ∅〉

The Fitting semantics of P is

not conflicting,
and generally not total
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Fitting Operator

Fitting fixpoints

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Define 〈T ,F 〉 as a Fitting fixpoint of P if ΦP〈T ,F 〉 = 〈T ,F 〉

The Fitting semantics is the v-least Fitting fixpoint of P
Any other Fitting fixpoint extends the Fitting semantics
Total Fitting fixpoints correspond to supported models
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Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has three total Fitting fixpoints:

1 〈{a, c}, {b, d , e}〉
2 〈{a, d}, {b, c , e}〉
3 〈{a, c , e}, {b, d}〉

P has three supported models, two of them are stable models
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Fitting Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΦP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΦP is stable model preserving

Hence, ΦP can be used for approximating stable models and so for
propagation in ASP-solvers

However, ΦP is still insufficient, because total fixpoints correspond to
supported models, not necessarily stable models

Note The problem is the same as with program completion

The missing piece is non-circularity of derivations !
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Fitting Operator

Example

P =

{
a ← b
b ← a

}

Φ0
P〈∅, ∅〉 = 〈∅, ∅〉

Φ1
P〈∅, ∅〉 = 〈∅, ∅〉

That is, Fitting semantics cannot assign false to a and b,
although they can never become true !
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Unfounded Sets

Outline

29 Partial Interpretations

30 Fitting Operator

31 Unfounded Sets

32 Well-Founded Operator
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Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ atom(P) is an unfounded set of P wrt 〈T ,F 〉,
if we have for each rule r ∈ P such that head(r) ∈ U either

1 body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅ or
2 body(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true
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Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation
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Unfounded Sets

Greatest unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation The union of two unfounded sets is an unfounded set

The greatest unfounded set of P wrt 〈T ,F 〉 is the union of all
unfounded sets of P wrt 〈T ,F 〉
It is denoted by UP〈T ,F 〉
Alternatively, we may define

UP〈T ,F 〉 = atom(P) \ Cn({r ∈ P | body(r)+ ∩ F = ∅}T )

Note Cn({r ∈ P | body(r)+ ∩ F = ∅}T ) contains all non-circularly
derivable atoms from P wrt 〈T ,F 〉
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29 Partial Interpretations
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Well-Founded Operator

Well-founded operator

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation Condition 1 (in the definition of an unfounded set)
corresponds to FP〈T ,F 〉 of Fitting’s ΦP〈T ,F 〉
Idea Extend (negative part of) Fitting’s operator ΦP

That is,

keep definition of TP〈T ,F 〉 from ΦP〈T ,F 〉 and
replace FP〈T ,F 〉 from ΦP〈T ,F 〉 by UP〈T ,F 〉

In words, an atom must be false
if it belongs to the greatest unfounded set

Definition ΩP〈T ,F 〉 = 〈TP〈T ,F 〉,UP〈T ,F 〉〉
Property ΦP〈T ,F 〉 v ΩP〈T ,F 〉
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Well-Founded Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Let’s iterate ΩP1 on 〈{c}, ∅〉:

ΩP〈{c}, ∅〉 = 〈{a}, {d , f }〉
ΩP〈{a}, {d , f }〉 = 〈{a, c}, {b, e, f }〉

ΩP〈{a, c}, {b, e, f }〉 = 〈{a}, {b, d , e, f }〉
ΩP〈{a}, {b, d , e, f }〉 = 〈{a, c}, {b, e, f }〉

...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 242 / 426



Well-Founded Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Let’s iterate ΩP1 on 〈{c}, ∅〉:

ΩP〈{c}, ∅〉 = 〈{a}, {d , f }〉
ΩP〈{a}, {d , f }〉 = 〈{a, c}, {b, e, f }〉

ΩP〈{a, c}, {b, e, f }〉 = 〈{a}, {b, d , e, f }〉
ΩP〈{a}, {b, d , e, f }〉 = 〈{a, c}, {b, e, f }〉

...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 242 / 426



Well-Founded Operator

Well-founded semantics

Define the iterative variant of ΩP analogously to ΦP :

Ω0
P〈T ,F 〉 = 〈T ,F 〉 Ωi+1

P 〈T ,F 〉 = ΩPΩi
P〈T ,F 〉

Define the well-founded semantics of a normal logic program P
as the partial interpretation:⊔

i≥0Ωi
P〈∅, ∅〉
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Well-Founded Operator

Properties

Let P be a normal logic program

ΩP〈∅, ∅〉 is monotonic
That is, Ωi

P〈∅, ∅〉 v Ωi+1
P 〈∅, ∅〉

The well-founded semantics of P is

not conflicting,
and generally not total

We have
⊔

i≥0 Φi
P〈∅, ∅〉 v

⊔
i≥0 Ωi

P〈∅, ∅〉
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Well-Founded Operator

Well-founded fixpoints

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Define 〈T ,F 〉 as a well-founded fixpoint of P if ΩP〈T ,F 〉 = 〈T ,F 〉

The well-founded semantics is the v-least well-founded fixpoint of P
Any other well-founded fixpoint extends the well-founded semantics
Total well-founded fixpoints correspond to stable models
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Well-Founded Operator

Well-founded fixpoints: Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has two total well-founded fixpoints:

1 〈{a, c}, {b, d , e}〉
2 〈{a, d}, {b, c , e}〉

Both of them represent stable models
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Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 248 / 426



Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 248 / 426



Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 248 / 426



Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 248 / 426



Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 248 / 426



Proof-theoretic Characterization:
Overview

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 249 / 426



Motivation

Goal Analyze computations in ASP solvers

Wanted A declarative and fine-grained instrument for
characterizing operations as well as strategies of ASP solvers

Idea View stable model computations as derivations in
an inference system

Consider Tableau-based proof systems for analyzing ASP solving
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Tableau calculi

Traditionally, tableau calculi are used for

automated theorem proving and
proof theoretical analysis

in classical as well as non-classical logics

General idea Given an input, prove some property by decomposition
Decomposition is done by applying deduction rules

For details, see Handbook of Tableau Methods, Kluwer, 1999
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General definitions

A tableau is a (mostly binary) tree

A branch in a tableau is a path from the root to a leaf

A branch containing γ1, . . . , γm can be extended by applying
tableau rules of form

γ1, . . . , γm

α1
...
αn

γ1, . . . , γm

β1 | . . . | βn

Rules of the former format append entries α1, . . . , αn to the branch

Rules of the latter format create multiple sub-branches for β1, . . . , βn
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Example

A simple tableau calculus for proving unsatisfiability of propositional
formulas, composed from ¬, ∧, and ∨, consists of rules

¬¬α
α

α1 ∧ α2

α1
α2

β1 ∨ β2

β1 | β2

All rules are semantically valid, when interpreting entries in a branch
conjunctively and distinct (sub-)branches as connected disjunctively

A propositional formula ϕ is unsatisfiable iff there is a tableau with
ϕ as the root node such that

1 all other entries can be produced by tableau rules and
2 every branch contains some formulas α and ¬α
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Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable
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Tableaux and ASP

A tableau rule captures an elementary inference scheme in an
ASP solver

A branch in a tableau corresponds to a successful or unsuccessful
computation of a stable model

An entire tableau represents a traversal of the search space
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ASP-specific definitions

A (signed) tableau for a logic program P is a binary tree such that

the root node of the tree consists of the rules in P;
the other nodes in the tree are entries of the form Tv or Fv , called
signed literals, where v is a variable,
generated by extending a tableau using deduction rules (given below)

An entry Tv (Fv) reflects that variable v is true (false) in a
corresponding variable assignment

A set of signed literals constitutes a partial assignment

For a normal logic program P,

atoms of P in atom(P) and
bodies of P in body(P)

can occur as variables in signed literals
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Tableau rules for ASP at a glance

(FTB)
p ← l1, . . . , ln

tl1, . . . , tln
T{l1, . . . , ln}

(BFB)
F{l1, . . . , li , . . . , ln}

tl1, . . . , tli−1, tli+1, . . . , tln
f li

(FTA)
p ← l1, . . . , ln
T{l1, . . . , ln}

Tp
(BFA)

p ← l1, . . . , ln
Fp

F{l1, . . . , ln}

(FFB)
p ← l1, . . . , li , . . . , ln

f li
F{l1, . . . , li , . . . , ln}

(BTB)
T{l1, . . . , li , . . . , ln}

tli

(FFA)
FB1, . . . ,FBm

Fp (§)
(BTA)

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

TBi
(§)

(WFN)
FB1, . . . ,FBm

Fp (†)
(WFJ)

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

TBi
(†)

(FL)
FB1, . . . ,FBm

Fp (‡)
(BL)

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

TBi
(‡)

(Cut[X ])
Tv | Fv (][X ])
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More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ atom(P) ∪ body(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting
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Example

Consider the program

P =


a←
c ← ∼b,∼d
d ← a,∼c


having stable models {a, c} and {a, d}
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(Previewed) Example

a←
c ← ∼b,∼d
d ← a,∼c

(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[atom(P)]) Tc Fc
(BTA) T{∼b,∼d} (BFA) F{∼b,∼d}
(BTB) Fd (BFB) Td
(FFB) F{a,∼c} (FTB) T{a,∼c}
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Auxiliary definitions

For a literal l , define conjugation functions t and f as follows

tl =

{
Tl if l is an atom
Fa if l = ∼a for an atom a

f l =

{
Fl if l is an atom
Ta if l = ∼a for an atom a

Examples ta = Ta, fa = Fa, t∼a = Fa, and f∼a = Ta
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Auxiliary definitions

Some tableau rules require conditions for their application

Such conditions are specified as provisos

prerequisites
(proviso)

consequence
proviso: some condition(s)

Note All tableau rules given in the sequel are stable model preserving
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Forward True Body (FTB)

Prerequisites All of a body’s literals are true

Consequence The body is true

Tableau Rule FTB

p ← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}

Example

a← b,∼c
Tb
Fc

T{b,∼c}
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T{l1, . . . , ln}

Example

a← b,∼c
Tb
Fc

T{b,∼c}
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Backward False Body (BFB)

Prerequisites A body is false, and all its literals except for one are true

Consequence The residual body literal is false

Tableau Rule BFB

F{l1, . . . , li , . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

Examples

F{b,∼c}
Tb

Tc

F{b,∼c}
Fc

Fb
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Forward False Body (FFB)

Prerequisites Some literal of a body is false

Consequence The body is false

Tableau Rule FFB

p ← l1, . . . , li , . . . , ln
f li

F{l1, . . . , li , . . . , ln}

Examples

a← b,∼c
Fb

F{b,∼c}

a← b,∼c
Tc

F{b,∼c}
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Backward True Body (BTB)

Prerequisites A body is true

Consequence The body’s literals are true

Tableau Rule BTB

T{l1, . . . , li , . . . , ln}
tli

Examples

T{b,∼c}
Tb

T{b,∼c}
Fc
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Backward True Body (BTB)

Prerequisites A body is true

Consequence The body’s literals are true

Tableau Rule BTB

T{l1, . . . , li , . . . , ln}
tli

Examples

T{b,∼c}
Tb

T{b,∼c}
Fc
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Tableau rules for bodies

Consider rule body B = {l1, . . . , ln}

Rules FTB and BFB amount to implication

l1 ∧ · · · ∧ ln → B

Rules FFB and BTB amount to implication

B → l1 ∧ · · · ∧ ln

Together they yield

B ≡ l1 ∧ · · · ∧ ln
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Forward True Atom (FTA)

Prerequisites Some of an atom’s bodies is true

Consequence The atom is true

Tableau Rule FTA

p ← l1, . . . , ln
T{l1, . . . , ln}

Tp

Examples

a← b,∼c
T{b,∼c}

Ta

a← d ,∼e
T{d ,∼e}

Ta
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Backward False Atom (BFA)

Prerequisites An atom is false

Consequence The bodies of all rules with the atom as head are false

Tableau Rule BFA

p ← l1, . . . , ln
Fp

F{l1, . . . , ln}

Examples

a← b,∼c
Fa

F{b,∼c}

a← d ,∼e
Fa

F{d ,∼e}
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Backward False Atom (BFA)

Prerequisites An atom is false

Consequence The bodies of all rules with the atom as head are false

Tableau Rule BFA

p ← l1, . . . , ln
Fp

F{l1, . . . , ln}

Examples

a← b,∼c
Fa

F{b,∼c}

a← d ,∼e
Fa

F{d ,∼e}
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Forward False Atom (FFA)

Prerequisites For some atom, the bodies of all rules with the atom as
head are false

Consequence The atom is false

Tableau Rule FFA

FB1, . . . ,FBm
(body P(p) = {B1, . . . ,Bm})Fp

Example

F{b,∼c}
F{d ,∼e}

(body P(a) = {{b,∼c}, {d ,∼e}})Fa
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Forward False Atom (FFA)
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Backward True Atom (BTA)

Prerequisites An atom is true, and the bodies of all rules with the
atom as head except for one are false

Consequence The residual body is true

Tableau Rule BTA

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(body P(p) = {B1, . . . ,Bm})TBi

Examples

Ta
F{b,∼c}

(∗)T{d ,∼e}

Ta
F{d ,∼e}

(∗)T{b,∼c}

(∗) body P(a) = {{b,∼c}, {d ,∼e}}
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Tableau rules for atoms

Consider an atom p such that body P(p) = {B1, . . . ,Bm}

Rules FTA and BFA amount to implication

B1 ∨ · · · ∨ Bm → p

Rules FFA and BTA amount to implication

p → B1 ∨ · · · ∨ Bm

Together they yield

p ≡ B1 ∨ · · · ∨ Bm
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Relationship with program completion

Let P be a normal logic program

The eight tableau rules introduced so far essentially provide
(straightforward) inferences from CF (P)
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Preliminaries for unfounded sets

Let P be a normal logic program

For P ′ ⊆ P, define the greatest unfounded set of P wrt P ′ as

UP(P ′) = atom(P) \ Cn((P ′)∅)

For a loop L ∈ loop(P), define the external bodies of L as

EBP(L) = {body(r) | r ∈ P, head(r) ∈ L, body(r)+ ∩ L = ∅}
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Well-Founded Negation (WFN)

Prerequisites An atom is in the greatest unfounded set wrt rules
whose bodies are false

Consequence The atom is false

Tableau Rule WFN

FB1, . . . ,FBm
(p ∈ UP({r ∈ P | body(r) 6∈ {B1, . . . ,Bm}}))Fp

Examples

a← ∼b
F{∼b}

(∗)Fa

a← a
a← ∼b
F{∼b}

(∗)Fa

(∗) a ∈ UP(P \ {a← ∼b})
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Well-Founded Justification (WFJ)

Prerequisites A true atom is in the greatest unfounded set wrt rules
whose bodies are false, if a particular body is made false

Consequence The respective body is true

Tableau Rule WFJ

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ UP ({r ∈ P | body(r) 6∈ {B1, . . . ,Bm}}))TBi

Examples

a← ∼b
Ta

(∗)T{∼b}

a← a
a← ∼b

Ta
(∗)T{∼b}

(∗) a ∈ UP(P \ {a← ∼b})
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Well-founded tableau rules

Tableau rules WFN and WFJ ensure non-circular support for true
atoms

Note

1 WFN subsumes falsifying atoms via FFA,
2 WFJ can be viewed as “backward propagation” for unfounded sets,
3 WFJ subsumes backward propagation of true atoms via BTA
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Relationship with well-founded operator

Let P be a normal logic program, 〈T ,F 〉 a partial interpretation, and
P ′ = {r ∈ P | body(r)+ ∩ F = ∅ and body(r)− ∩ T = ∅}.

The following conditions are equivalent

1 p ∈ UP〈T ,F 〉
2 p ∈ UP (P ′)

Hence, the well-founded operator Ω and WFN coincide

Note In contrast to Ω, WFN does not necessarily require a rule body
to contain a false literal for the rule being inapplicable
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Forward Loop (FL)

Prerequisites The external bodies of a loop are false

Consequence The atoms in the loop are false

Tableau Rule FL

FB1, . . . ,FBm
(p ∈ L, L ∈ loop(P),EBP(L) = {B1, . . . ,Bm})Fp

Example

a← a
a← ∼b
F{∼b}

(EBP({a}) = {{∼b}})Fa
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Backward Loop (BL)

Prerequisites An atom of a loop is true, and all external bodies except
for one are false

Consequence The residual external body is true

Tableau Rule BL

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ L, L ∈ loop(P),EBP (L) = {B1, . . . ,Bm})TBi

Example

a← a
a← ∼b

Ta
(EBP({a}) = {{∼b}})T{∼b}
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Backward Loop (BL)

Prerequisites An atom of a loop is true, and all external bodies except
for one are false

Consequence The residual external body is true

Tableau Rule BL

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ L, L ∈ loop(P),EBP (L) = {B1, . . . ,Bm})TBi

Example

a← a
a← ∼b

Ta
(EBP({a}) = {{∼b}})T{∼b}
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Tableau rules for loops

Tableau rules FL and BL ensure non-circular support for true atoms

For a loop L such that EBP(L) = {B1, . . . ,Bm},
they amount to implications of form∨

p∈L p → B1 ∨ · · · ∨ Bm

Comparison to well-founded tableau rules yields

FL (plus FFA and FFB) is equivalent to WFN (plus FFB),
BL cannot simulate inferences via WFJ
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Relationship with loop formulas

Tableau rules FL and BL essentially provide (straightforward)
inferences from loop formulas

Impractical to precompute exponentially many loop formulas

In practice, ASP solvers such as smodels and clasp

exploit strongly connected components of positive atom
dependency graphs

can be viewed as an interpolation of FL

do not directly implement BL (and neither WFJ)

probably difficult to do efficiently

could simulate BL via FL/WFN by means of failed-literal detection
(lookahead)
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Case analysis by Cut

Up to now, all tableau rules are deterministic

That is, rules extend a single branch but cannot create sub-branches

In general, closing a branch leads to a partial assignment

Case analysis is done by Cut[C] where C ⊆ atom(P) ∪ body(P)
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Case analysis by Cut

Prerequisites None

Consequence Two alternative (complementary) entries

Tableau Rule Cut[C]

(v ∈ C)Tv | Fv

Examples

a← ∼b
b ← ∼a

(C = atom(P))Ta | Fa

a← ∼b
b ← ∼a

(C = body(P))T{∼b} | F{∼b}
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Well-known tableau calculi

Fitting’s operator Φ applies forward propagation without
sophisticated unfounded set checks

TΦ = {FTB,FTA,FFB,FFA}

Well-founded operator Ω replaces negation of single atoms with
negation of unfounded sets

TΩ = {FTB,FTA,FFB,WFN}

“Local” propagation via a program’s completion can be determined
by elementary inferences on atoms and rule bodies

Tcompletion = {FTB,FTA,FFB,FFA,BTB,BTA,BFB,BFA}
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Tableau calculi characterizing ASP solvers

ASP solvers combine propagation with case analysis

We obtain the following tableau calculi characterizing

Tcmodels-1 = Tcompletion ∪ {Cut[atom(P) ∪ body(P)]}
Tassat = Tcompletion ∪ {FL} ∪ {Cut[atom(P) ∪ body(P)]}
Tsmodels = Tcompletion ∪ {WFN} ∪ {Cut[atom(P)]}
TnoMoRe = Tcompletion ∪ {WFN} ∪ {Cut[body(P)]}
Tnomore++ = Tcompletion ∪ {WFN} ∪ {Cut[atom(P) ∪ body(P)]}

SAT-based ASP solvers, assat and cmodels,
incrementally add loop formulas to a program’s completion

Native ASP solvers, smodels, dlv, noMoRe, and nomore++,
essentially differ only in their Cut rules
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Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations

It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 287 / 426



Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations

It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 287 / 426



Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations

It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 287 / 426



Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations

It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 287 / 426



Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations

It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 287 / 426



Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations

It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 287 / 426



Tsmodels versus TnoMoRe

Tsmodels restricts Cut to atom(P) and TnoMoRe to body(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =


x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =


x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =


a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn

bn ← ∼an


In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[body(Pn
a ∪ Pn

c )] with TnoMoRe is linear in n, whereas Tsmodels

requires exponentially many applications of Cut[atom(Pn
a ∪ Pn

c )]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[atom(Pn

b ∪ Pn
c )] with Tsmodels and exponentially

many applications of Cut[body(Pn
b ∪ Pn

c )] with TnoMoRe
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Relative efficiency

As witnessed by {Pn
a ∪ Pn

c } and {Pn
b ∪ Pn

c }, respectively,
Tsmodels and TnoMoRe do not polynomially simulate one another

Any refutation of Tsmodels or TnoMoRe is a refutation of Tnomore++

(but not vice versa)

Hence

both Tsmodels and TnoMoRe are polynomially simulated by Tnomore++ and
Tnomore++ is polynomially simulated by neither Tsmodels nor TnoMoRe

More generally, the proof system obtained with
Cut[atom(P) ∪ body(P)] is exponentially stronger than
the ones with either Cut[atom(P)] or Cut[body(P)]

Case analyses (at least) on atoms and bodies are mandatory in
powerful ASP solvers
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Tsmodels: Example tableau

(r1) a← ∼b (r2) b ← d ,∼a (r3) c ← b, d
(r4) c ← g (r5) d ← c (r6) d ← g
(r7) e ← f ,∼c (r8) f ← ∼g (r9) g ← ∼a,∼f

(1) Ta [Cut]
(2) T{∼b} [BTA: r1, 1]
(3) Fb [BTB: 2]
(4) F{d,∼a} [BFA: r2, 3]
(5) F{∼a,∼f } [FFB: r9, 1]
(6) Fg [FFA: r9, 5]
(7) T{∼g} [FTB: r8, 6]
(8) Tf [FTA: r8, 7]
(9) F{b, d} [FFB: r3, 3]
(10) F{g} [FFB: r4, r6, 6]
(11) Fc [FFA: r3, r4, 9, 10]
(12) F{c} [FFB: r5, 11]
(13) Fd [FFA: r5, r6, 10, 12]
(14) T{f ,∼c} [FTB: r7, 8, 11]
(15) Te [FTA: r7, 14]

(16) Fa [Cut]
(17) F{∼b} [BFA: r1, 16]
(18) Tb [BFB: 17]
(19) T{d,∼a} [BTA: r2, 18]
(20) Td [BTB: 19]
(21) T{b, d} [FTB: r3, 18, 20]
(22) Tc [FTA: r3, 21]
(23) F{f ,∼c} [FFB: r7, 22]
(24) Fe [FFA: r7, 23]
(25) T{c} [FTB: r5, 22]

(26) Tf [Cut]
(27) F{∼a,∼f } [FFB: r9, 26]
(28) Fc [WFN: 27]

(29) Ff [Cut]
(30) T{∼a,∼f } [FTB: r9, 16, 29]
(31) Tg [FTA: r9, 30]
(32) T{g} [FTB: r4, r6, 31]
(33) F{∼g} [FFB: r8, 31]
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TnoMoRe: Example tableau

(r1) a← ∼b (r2) b ← d ,∼a (r3) c ← b, d
(r4) c ← g (r5) d ← c (r6) d ← g
(r7) e ← f ,∼c (r8) f ← ∼g (r9) g ← ∼a,∼f

(1) T{∼b} [Cut]
(2) Ta [FTA: r1, 1]
(3) Fb [BTB: 1]
(4) F{d,∼a} [BFA: r2, 3]
(5) F{∼a,∼f } [FFB: r9, 2]
(6) Fg [FFA: r9, 5]
(7) T{∼g} [FTB: r8, 6]
(8) Tf [FTA: r8, 7]
(9) F{b, d} [FFB: r3, 3]
(10) F{g} [FFB: r4, r6, 6]
(11) Fc [FFA: r3, r4, 9, 10]
(12) F{c} [FFB: r5, 11]
(13) Fd [FFA: r5, r6, 10, 12]
(14) T{f ,∼c} [FTB: r7, 8, 11]
(15) Te [FTA: r7, 14]

(16) F{∼b} [Cut]
(17) Fa [FFA: r1, 16]
(18) Tb [BFB: 16]
(19) T{d,∼a} [BTA: r2, 18]
(20) Td [BTB: 19]
(21) T{b, d} [FTB: r3, 18, 20]
(22) Tc [FTA: r3, 21]
(23) F{f ,∼c} [FFB: r7, 22]
(24) Fe [FFA: r7, 23]
(25) T{c} [FTB: r5, 22]

(26) T{∼g} [Cut]
(27) Fg [BTB: 26]
(28) F{g} [FFB: r4, r6, 27]
(29) Fc [WFN: 28]

(30) F{∼g} [Cut]
(31) Tg [BFB: 30]
(32) T{g} [FTB: r4, r6, 31]
(33) Ff [FFA: r8, 30]
(34) T{∼a,∼f } [FTB: r9, 17, 33]
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(33) Ff [FFA: r8, 30]
(34) T{∼a,∼f } [FTB: r9, 16, 33]
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Conflict-driven ASP Solving: Overview

33 Motivation

34 Boolean constraints

35 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

36 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis
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Motivation

Motivation

Goal Approach to computing stable models of logic programs,
based on concepts from

Constraint Processing (CP) and
Satisfiability Testing (SAT)

Idea View inferences in ASP as unit propagation on nogoods

Benefits

A uniform constraint-based framework for different
kinds of inferences in ASP
Advanced techniques from the areas of CP and SAT
Highly competitive implementation
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Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk ] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 297 / 426



Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk ] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 297 / 426



Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk ] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 297 / 426



Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk ] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 297 / 426



Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk ] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 297 / 426



Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk ] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 297 / 426



Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk ] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 297 / 426



Boolean constraints

Nogoods, solutions, and unit propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆
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Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The completion of a logic program P can be defined as follows:

{vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an |
B ∈ body(P) and B = {a1, . . . , am,∼am+1, . . . ,∼an}}

∪ {a↔ vB1 ∨ · · · ∨ vBk
|

a ∈ atom(P) and body P(a) = {B1, . . . ,Bk}} ,

where body P(a) = {body(r) | r ∈ P and head(r) = a}
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Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:
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via program completion

The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

1 vB → a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

is equivalent to the conjunction of

¬vB ∨ a1, . . . , ¬vB ∨ am, ¬vB ∨ ¬am+1, . . . , ¬vB ∨ ¬an

and induces the set of nogoods

∆(B) = { {TB,Fa1}, . . . , {TB,Fam}, {TB,Tam+1}, . . . , {TB,Tan} }
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Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

2 a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an → vB

gives rise to the nogood

δ(B) = {FB,Ta1, . . . ,Tam,Fam+1, . . . ,Fan}
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Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

Analogously, the (atom-oriented) equivalence

a↔ vB1 ∨ · · · ∨ vBk

yields the nogoods

1 ∆(a) = { {Fa,TB1}, . . . , {Fa,TBk} } and

2 δ(a) = {Ta,FB1, . . . ,FBk}
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Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where body P(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})
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Nogoods from logic programs
body-oriented nogoods

For a body B = {a1, . . . , am,∼am+1, . . . ,∼an}, we get

{FB,Ta1, . . . ,Tam,Fam+1, . . . ,Fan}
{ {TB,Fa1}, . . . , {TB,Fam}, {TB,Tam+1}, . . . , {TB,Tan} }

Example Given Body {x ,∼y}, we obtain

. . .← x ,∼y...

. . .← x ,∼y
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Nogoods from logic programs Nogoods from program completion

Characterization of stable models
for tight logic programs

Let P be a logic program and

∆P = {δ(a) | a ∈ atom(P)} ∪ {δ ∈ ∆(a) | a ∈ atom(P)}
∪ {δ(B) | B ∈ body(P)} ∪ {δ ∈ ∆(B) | B ∈ body(P)}

Theorem

Let P be a tight logic program. Then,
X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P
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Nogoods from logic programs Nogoods from program completion

Characterization of stable models
for tight logic programs, ie. free of positive recursion

Let P be a logic program and

∆P = {δ(a) | a ∈ atom(P)} ∪ {δ ∈ ∆(a) | a ∈ atom(P)}
∪ {δ(B) | B ∈ body(P)} ∪ {δ ∈ ∆(B) | B ∈ body(P)}
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Nogoods from logic programs Nogoods from loop formulas

Outline
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Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:

For L ⊆ atom(P), the external supports of L for P are

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}
The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

A∈LA
)
→
(∨

r∈ESP (L)body(r)
)

≡
(∧

r∈ESP (L)¬body(r)
)
→
(∧

A∈L¬A
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

The external bodies of L for P are

EBP(L) = {body(r) | r ∈ ESP(L)}
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Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
loop nogoods

For a logic program P and some ∅ ⊂ U ⊆ atom(P),
define the loop nogood of an atom a ∈ U as

λ(a,U) = {Ta,FB1, . . . ,FBk}
where EBP(U) = {B1, . . . ,Bk}

We get the following set of loop nogoods for P:

ΛP =
⋃
∅⊂U⊆atom(P){λ(a,U) | a ∈ U}

The set ΛP of loop nogoods denies cyclic support among true atoms
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Nogoods from logic programs Nogoods from loop formulas

Example

Consider the program x ← ∼y
y ← ∼x

u ← x
u ← v
v ← u, y


For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu,F{x}}
Similarly for v in {u, v}, we get:

λ(v , {u, v}) = {Tv ,F{x}}
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Nogoods from logic programs Nogoods from loop formulas

Characterization of stable models

Theorem

Let P be a logic program. Then,
X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P ∪ ΛP

Some remarks

Nogoods in ΛP augment ∆P with conditions checking
for unfounded sets, in particular, those being loops
While |∆P | is linear in the size of P, ΛP may contain
exponentially many (non-redundant) loop nogoods
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Conflict-driven nogood learning

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

Traditional DPLL-style approach
(DPLL stands for ‘Davis-Putnam-Logemann-Loveland’)

(Unit) propagation
(Chronological) backtracking

in ASP, eg smodels

Modern CDCL-style approach
(CDCL stands for ‘Conflict-Driven Constraint Learning’)

(Unit) propagation
Conflict analysis (via resolution)
Learning + Backjumping + Assertion

in ASP, eg clasp
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Conflict-driven nogood learning

DPLL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

backtrack // unassign literals propagated after last decision
flip // assign complement of last decision literal
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Conflict-driven nogood learning

CDCL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit
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Conflict-driven nogood learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

Keep track of deterministic consequences by unit propagation on:

Program completion [∆P ]
Loop nogoods, determined and recorded on demand [ΛP ]
Dynamic nogoods, derived from conflicts and unfounded sets [∇]

When a nogood in ∆P ∪∇ becomes violated:

Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
Learn the derived conflict nogood δ
Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for δ
Assert the complement of the UIP and proceed
(by unit propagation)

Terminate when either:

Finding a stable model (a solution for ∆P ∪ ΛP )
Deriving a conflict independently of (heuristic) choices
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Conflict-driven nogood learning CDNL-ASP Algorithm

Algorithm 2: CDNL-ASP

Input : A normal program P
Output : A stable model of P or “no stable model”

A := ∅ // assignment over atom(P) ∪ body(P)
∇ := ∅ // set of recorded nogoods
dl := 0 // decision level

loop
(A,∇) := NogoodPropagation(P,∇,A)

if ε ⊆ A for some ε ∈ ∆P ∪∇ then // conflict

if max({dlevel(σ) | σ ∈ ε} ∪ {0}) = 0 then return no stable model
(δ, dl) := ConflictAnalysis(ε,P,∇,A)
∇ := ∇∪ {δ} // (temporarily) record conflict nogood
A := A \ {σ ∈ A | dl < dlevel(σ)} // backjumping

else if AT ∪ AF = atom(P) ∪ body(P) then // stable model
return AT ∩ atom(P)

else
σd := Select(P,∇,A) // decision
dl := dl + 1
dlevel(σd ) := dl
A := A ◦ σd
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Conflict-driven nogood learning CDNL-ASP Algorithm

Observations

Decision level dl , initially set to 0, is used to count the number of
heuristically chosen literals in assignment A

For a heuristically chosen literal σd = Ta or σd = Fa, respectively, we
require a ∈ (atom(P) ∪ body(P)) \ (AT ∪ AF)

For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the
value dl had when σ was assigned

A conflict is detected from violation of a nogood ε ⊆ ∆P ∪∇
A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of stable models

A nogood δ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for δ at a decision level k < dl

After learning δ and backjumping to decision level k,
at least one literal is newly derivable by unit propagation
No explicit flipping of heuristically chosen literals !
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No explicit flipping of heuristically chosen literals !
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Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8
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Conflict-driven nogood learning Nogood Propagation

Outline

33 Motivation

34 Boolean constraints

35 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

36 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis
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Conflict-driven nogood learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:

Unit propagation on ∆P and ∇;
Unfounded sets U ⊆ atom(P)

Note that U is unfounded if EBP(U) ⊆ AF

Note For any a ∈ U, we have (λ(a,U) \ {Ta}) ⊆ A

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(P) \ AF)

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P

Note Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some a ∈ U, adding λ(a,U) to ∇
triggers a conflict or further derivations by unit propagation

Note Add loop nogoods atom by atom to eventually falsify all a ∈ U
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Conflict-driven nogood learning Nogood Propagation

Algorithm 3: NogoodPropagation

Input : A normal program P, a set ∇ of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

U := ∅ // unfounded set

loop
repeat

if δ ⊆ A for some δ ∈ ∆P ∪∇ then return (A,∇) // conflict
Σ := {δ ∈ ∆P ∪∇ | δ \ A = {σ}, σ /∈ A} // unit-resulting nogoods
if Σ 6= ∅ then let σ ∈ δ \ A for some δ ∈ Σ in

dlevel(σ) := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
A := A ◦ σ

until Σ = ∅
if loop(P) = ∅ then return (A,∇)

U := U \ AF

if U = ∅ then U := UnfoundedSet(P,A)

if U = ∅ then return (A,∇) // no unfounded set ∅ ⊂ U ⊆ atom(P) \ AF

let a ∈ U in
∇ := ∇∪ {{Ta} ∪ {FB | B ∈ EBP (U)}} // record loop nogood

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 324 / 426



Conflict-driven nogood learning Nogood Propagation

Requirements for UnfoundedSet

Implementations of UnfoundedSet must guarantee the following
for a result U

1 U ⊆ (atom(P) \ AF)
2 EBP (U) ⊆ AF

3 U = ∅ iff there is no nonempty unfounded subset of (atom(P) \ AF)

Beyond that, there are various alternatives, such as:

Calculating the greatest unfounded set
Calculating unfounded sets within strongly connected components of
the positive atom dependency graph of P

Usually, the latter option is implemented in ASP solvers
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Conflict-driven nogood learning Nogood Propagation

Example: NogoodPropagation

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8
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Conflict-driven nogood learning Conflict Analysis

Outline

33 Motivation

34 Boolean constraints

35 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

36 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis
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Conflict-driven nogood learning Conflict Analysis

Outline of ConflictAnalysis

Conflict analysis is triggered whenever some nogood δ ∈ ∆P ∪∇
becomes violated, viz. δ ⊆ A, at a decision level dl > 0

Note that all but the first literal assigned at dl have been unit-resulting
for nogoods ε ∈ ∆P ∪∇
If σ ∈ δ has been unit-resulting for ε, we obtain a new violated nogood
by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ})

Resolution is directed by resolving first over the literal σ ∈ δ derived
last, viz. (δ \ A[σ]) = {σ}

Iterated resolution progresses in inverse order of assignment

Iterated resolution stops as soon as it generates a nogood δ
containing exactly one literal σ assigned at decision level dl

This literal σ is called First Unique Implication Point (First-UIP)
All literals in (δ \ {σ}) are assigned at decision levels smaller than dl
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Conflict-driven nogood learning Conflict Analysis

Algorithm 4: ConflictAnalysis

Input : A non-empty violated nogood δ, a normal program P, a set ∇ of
nogoods, and an assignment A.

Output : A derived nogood and a decision level.

loop
let σ ∈ δ such that δ \ A[σ] = {σ} in

k := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
if k = dlevel(σ) then

let ε ∈ ∆P ∪∇ such that ε \ A[σ] = {σ} in
δ := (δ \ {σ}) ∪ (ε \ {σ}) // resolution

else return (δ, k)
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Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8
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Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8
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Conflict-driven nogood learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates

In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl

After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !
Such a nogood δ is called asserting

Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !
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Systems: Overview

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis
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Potassco

potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam,
for instance:

Grounder gringo, lingo, pyngo

Solver clasp, {a,h,un}clasp, claspD, claspfolio, claspar, aspeed

Grounder+Solver Clingo, iClingo, {ros}oClingo, Clingcon

Further Tools asp{un}cud, coala, fimo, metasp, plasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Teaching material potassco.sourceforge.net/teaching.html
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gringo

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
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gringo

gringo

Accepts safe programs with aggregates

Tolerates unrestricted use of function symbols
(as long as it yields a finite ground instantiation :)

Expressive power of a Turing machine

Basic architecture of gringo:

Parser Preprocessor Grounder Output

--lparse
--text
--reify

--ground
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clasp

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
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clasp

clasp

clasp is a native ASP solver combining conflict-driven search with
sophisticated reasoning techniques:

advanced preprocessing, including equivalence reasoning
lookback-based decision heuristics
restart policies
nogood deletion
progress saving
dedicated data structures for binary and ternary nogoods
lazy data structures (watched literals) for long nogoods
dedicated data structures for cardinality and weight constraints
lazy unfounded set checking based on “source pointers”
tight integration of unit propagation and unfounded set checking
various reasoning modes
parallel search
. . .
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clasp

Reasoning modes of clasp

Beyond deciding (stable) model existence, clasp allows for:

Optimization
Enumeration (without solution recording)
Projective enumeration (without solution recording)
Intersection and Union (linear solution computation)
and combinations thereof

clasp allows for

ASP solving (smodels format)
MaxSAT and SAT solving (extended dimacs format)
PB solving (opb and wbo format)
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clasp

Parallel search in clasp

clasp

pursues a coarse-grained, task-parallel approach to parallel search
via shared memory multi-threading

up to 64 configurable (non-hierarchic) threads

allows for parallel solving via search space splitting
and/or competing strategies

both supported by solver portfolios

features different nogood exchange policies
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clasp

Sequential CDCL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit
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clasp

Parallel CDCL-style solving in clasp

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)
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clasp

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic
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clasp

clasp in context

Compare clasp (2.0.5) to the multi-threaded SAT solvers

cryptominisat (2.9.2)
manysat (1.1)
miraxt (2009)
plingeling (587f)

all run with four and eight threads in their default settings

160/300 benchmarks from crafted category at SAT’11

all solvable by ppfolio in 1000 seconds
crafted SAT benchmarks are closest to ASP benchmarks
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clasp

clasp in context
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clasp

Using clasp

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

chatty: Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit
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jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

chatty: Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit
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Siblings hclasp

hclasp

hclasp allows for incorporating domain-specific heuristics
into ASP solving

input language for expressing domain-specific heuristics
solving capacities for integrating domain-specific heuristics

Example

_heuristics(occ(A,T),factor,T) :- action(A), time(T).
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Siblings hclasp

Basic CDCL decision algorithm

loop

propagate // compute deterministic consequences

if no conflict then
if all variables assigned then return variable assignment
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add a conflict constraint
backjump // undo assignments until conflict constraint is unit
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Siblings hclasp

Inside decide

Heuristic functions

h : A → [0,+∞) and s : A → {T,F}

Algorithmic scheme

1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := A \ (AT ∪ AF)
3 C := argmaxa∈U h(a)
4 a := τ(C )
5 A := A ∪ {a 7→ s(a)}
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Siblings hclasp

Heuristic language elements

Heuristic predicate heuristic

Heuristic modifiers (atom, a, and integer, v)

init for initializing the heuristic value of a with v
factor for amplifying the heuristic value of a by factor v
level for ranking all atoms; the rank of a is v
sign for attributing the sign of v as truth value to a

Heuristic atoms

_heuristic(occurs(A,T),factor,T) :- action(A), time(T).
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Siblings hclasp

Simple STRIPS planner

time(1..t).

holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).

:- occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occurs(A,T), add(A,F).

nolds(F,T) :- occurs(A,T), del(A,F).

:- query(F), not holds(F,t).
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Simple STRIPS planner

time(1..t).
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holds(F,T) :- occurs(A,T), add(A,F).

nolds(F,T) :- occurs(A,T), del(A,F).

:- query(F), not holds(F,t).

_heuristic(holds(F,T-1),true, t-T+1) :- holds(F,T).

_heuristic(holds(F,T-1),false,t-T+1) :-

fluent(F), time(T), not holds(F,T).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 353 / 426



Siblings hclasp

Heuristic modifications to functions h and s

ν(Va,m(A)) — “value for modifier m on atom a wrt assignment A”

init and factor

d0(a) = ν(Va,init(A0)) + h0(a)

di (a) =

{
ν(Va,factor(Ai ))× hi (a) if Va,factor(Ai ) 6= ∅

hi (a) otherwise

sign

ti (a) =


T if ν(Va,sign(Ai )) > 0
F if ν(Va,sign(Ai )) < 0

si (a) otherwise

level `Ai
(A′) = argmaxa∈A′ν(Va,level(Ai )) A′ ⊆ A
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Siblings hclasp

Inside decide, heuristically modified

0 h(a) := d(a) for each a ∈ A
1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := `A(A \ (AT ∪ AF))

3 C := argmaxa∈Ud(a)

4 a := τ(C )

5 A := A ∪ {a 7→ t(a)}
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Siblings hclasp

Selected high scores from
systematic experiments

Setting Labyrinth Sokoban Hanoi Tower

base configuration 9,108s (14) 2,844s (3) 9,137s (11)
24,545,667 19,371,267 41,016,235

a, init, 2 95% (12) 94% 91% (1) 84% 85% (9) 89%
a, factor, 4 78% (8) 30% 120% (1) 107% 109% (11) 110%

a, factor, 16 78% (10) 23% 120% (1) 107% 109% (11) 110%
a, level, 1 90% (12) 5% 119% (2) 91% 126% (15) 120%

f , init, 2 103% (14) 123% 74% (2) 71% 97% (10) 109%
f , factor, 2 98% (12) 49% 116% (3) 134% 55% (6) 70%

f , sign, -1 94% (13) 89% 105% (1) 100% 92% (12) 92%

base configuration versus 38 (static) heuristic modifications
(action, a, and fluent, f)
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Siblings hclasp

Abductive problems with optimization

Setting Diagnosis Expansion Repair (H) Repair (S)

base configuration 111.1s (115) 161.5s (100) 101.3s (113) 33.3s (27)

sign,-1 324.5s (407) 7.6s (3) 8.4s (5) 3.1s (0)
sign,-1 factor,2 310.1s (387) 7.4s (2) 3.5s (0) 3.2s (1)
sign,-1 factor,8 305.9s (376) 7.7s (2) 3.1s (0) 2.9s (0)
sign,-1 level,1 76.1s (83) 6.6s (2) 0.8s (0) 2.2s (1)

level,1 77.3s (86) 12.9s (5) 3.4s (0) 2.1s (0)

(abducibles subject to optimization)
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Siblings hclasp

Planning Competition Benchmarks

_heuristic(holds(F,T-1),true, t-T+1) :- holds(F,T).

_heuristic(holds(F,T-1),false,t-T+1) :-

fluent(F), time(T), not holds(F,T).

Problem base configuration heuristic base c. (SAT) heur. (SAT)
Blocks’00 134.4s (180/61) 9.2s (239/3) 163.2s (59) 2.6s (0)

Elevator’00 3.1s (279/0) 0.0s (279/0) 3.4s (0) 0.0s (0)
Freecell’00 288.7s (147/115) 184.2s (194/74) 226.4s (47) 52.0s (0)

Logistics’00 145.8s (148/61) 115.3s (168/52) 113.9s (23) 15.5s (3)
Depots’02 400.3s (51/184) 297.4s (115/135) 389.0s (64) 61.6s (0)

Driverlog’02 308.3s (108/143) 189.6s (169/92) 245.8s (61) 6.1s (0)
Rovers’02 245.8s (138/112) 165.7s (179/79) 162.9s (41) 5.7s (0)

Satellite’02 398.4s (73/186) 229.9s (155/106) 364.6s (82) 30.8s (0)
Zenotravel’02 350.7s (101/169) 239.0s (154/116) 224.5s (53) 6.3s (0)

Total 252.8s (1225/1031) 158.9s (1652/657) 187.2s (430) 17.1s (3)
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Siblings hclasp

Planning Competition Benchmarks
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Siblings claspfolio
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Siblings claspfolio

claspfolio

Automatic selection of some clasp configuration among
several predefined ones via (learned) classifiers

Basic architecture of claspfolio:

gringo clasp Prediction clasp

Models claspfolio
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Siblings claspfolio

Instance Feature Clusters (after PCA)
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Siblings claspfolio

Solving with clasp (as usual)

$ clasp queens500 --quiet

clasp version 2.0.2

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 11.445s (Solving: 10.58s 1st Model: 10.55s Unsat: 0.00s)

CPU Time : 11.410s
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Siblings claspfolio

Solving with claspfolio
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Siblings claspfolio

Feature-extraction with claspfolio

$ claspfolio --features queens500

PRESOLVING

Reading from queens500

Solving...

UNKNOWN

Features : 84998,3994,0,250000,1.020,62.594,63.844,21.281,84998, \

3994,100,250000,1.020,62.594,63.844,21.281,84998,3994,250,250000, \

1.020,62.594,63.844,21.281,84998,3994,475,250000,1.020,62.594, \

63.844,21.281,757989,757989,0,510983,506992,3990,1,0,127.066,9983, \

1023958,502993,1994,518971,1,0,0,254994,0,3990,0.100,0.000,99.900, \

0,270303,812,4,0,812,2223,2223,262,262,2.738,2.738,0.000,812,812, \

2270.982,0,0.000

$ claspfolio --list-features

maxLearnt,Constraints,LearntConstraints,FreeVars,Vars/FreeVars, ...
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Siblings claspfolio

Prediction with claspfolio

$ claspfolio queens500 --decisionvalues

PRESOLVING

Reading from queens500

Solving...

Portfolio Decision Values:

[1] : 3.437538 [10] : 3.639444 [19] : 3.726391

[2] : 3.501728 [11] : 3.483334 [20] : 3.020325

[3] : 3.784733 [12] : 3.271890 [21] : 3.220219

[4] : 3.672955 [13] : 3.344085 [22] : 3.998709

[5] : 3.557408 [14] : 3.315235 [23] : 3.961214

[6] : 3.942037 [15] : 3.620479 [24] : 3.512924

[7] : 3.335304 [16] : 3.396838 [25] : 3.078143

[8] : 3.375315 [17] : 3.238764

[9] : 3.432931 [18] : 3.403484

UNKNOWN
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Siblings claspfolio

Solving with claspfolio (slightly verbosely)

$ claspfolio queens500 --quiet --autoverbose=1

PRESOLVING

Reading from queens500

Solving...

Chosen configuration: [20]

clasp --configurations=./models/portfolio.txt \

--modelpath=./models/ \

queens500 --quiet --autoverbose=1 \

--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)

CPU Time : 4.760s
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Siblings claspD

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis
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Siblings claspD

claspD

claspD is a multi-threaded solver for disjunctive logic programs

aiming at an equitable interplay between “generating” and “testing”
solver units

allowing for a bidirectional dynamic information exchange between
solver units for orthogonal tasks
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Siblings claspD

claspD

claspD is a multi-threaded solver for disjunctive logic programs

aiming at an equitable interplay between “generating” and “testing”
solver units

allowing for a bidirectional dynamic information exchange between
solver units for orthogonal tasks

Preprocessing

Shared
Data

HCC1
Data

HCCk
Data

Solver1 Solver1 Solver1

Solvern Solvern Solvern
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Generator 
Configuration
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Siblings clingcon

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 369 / 426



Siblings clingcon

clingcon

Hybrid grounding and solving

Solving in hybrid domains, like Bio-Informatics

Basic architecture of clingcon:

Theory
Language

gringo clasp

Theory
Propagator

Theory
Solver

clingcon
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Siblings clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

1 $<= amount(B,T) :- pour(B,T), T < t.

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).
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:- pour(B,T), T < t, 1 $> amount(B,T).

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).
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Siblings clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

:- pour(B,T), T < t, 1 $> amount(B,T).

:- pour(B,T), T < t, amount(B,T) $> 30.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).
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Siblings clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

:- pour(B,T), T < t, 1 $> amount(B,T).

:- pour(B,T), T < t, amount(B,T) $> 30.

:- not pour(B,T), bucket(B), time(T), T < t, amount(B,T) $!= 0.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).
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Siblings clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

:- pour(B,T), T < t, 1 $> amount(B,T).

:- pour(B,T), T < t, amount(B,T) $> 30.

:- not pour(B,T), bucket(B), time(T), T < t, amount(B,T) $!= 0.

:- bucket(B), time(T), T < t, volume(B,T+1) $!= volume(B,T)$+amount(B,T).

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).
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Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --text

time(0). ... time(4). $domain(0..500).

bucket(a). :- volume(a,0) $!= 0.

bucket(b). :- volume(b,0) $!= 100.

1 { pour(b,0), pour(a,0) } 1. ... 1 { pour(b,3), pour(a,3) } 1.

:- pour(a,0), 1 $> amount(a,0). ... :- pour(a,3), 1 $> amount(a,3).

:- pour(b,0), 1 $> amount(b,0). ... :- pour(b,3), 1 $> amount(b,3).

:- pour(a,0), amount(a,0) $> 30. ... :- pour(a,3), amount(a,3) $> 30.

:- pour(b,0), amount(b,0) $> 30. ... :- pour(b,3), amount(b,3) $> 30.

:- not pour(a,0), amount(a,0) $!= 0. ... :- not pour(a,3), amount(a,3) $!= 0.

:- not pour(b,0), amount(b,0) $!= 0. ... :- not pour(b,3), amount(b,3) $!= 0.

:- volume(a,1) $!= (volume(a,0) $+ amount(a,0)). ... :- volume(a,4) $!= (volume(a,3) $+ amount(a,3)).

:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)). ... :- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).

down(a,0) :- volume(a,0) $< volume(a,0). ... down(a,4) :- volume(a,4) $< volume(a,4).

down(a,0) :- volume(b,0) $< volume(a,0). ... down(a,4) :- volume(b,4) $< volume(a,4).

down(b,0) :- volume(a,0) $< volume(b,0). ... down(b,4) :- volume(a,4) $< volume(b,4).

down(b,0) :- volume(b,0) $< volume(b,0). ... down(b,4) :- volume(b,4) $< volume(b,4).

up(a,0) :- not down(a,0). ... up(a,4) :- not down(a,4).

up(b,0) :- not down(b,0). ... up(b,4) :- not down(b,4).

:- up(a,4).
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Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --text

time(0). ... time(4). $domain(0..500).

bucket(a). :- volume(a,0) $!= 0.

bucket(b). :- volume(b,0) $!= 100.

1 { pour(b,0), pour(a,0) } 1. ... 1 { pour(b,3), pour(a,3) } 1.

:- pour(a,0), 1 $> amount(a,0). ... :- pour(a,3), 1 $> amount(a,3).

:- pour(b,0), 1 $> amount(b,0). ... :- pour(b,3), 1 $> amount(b,3).

:- pour(a,0), amount(a,0) $> 30. ... :- pour(a,3), amount(a,3) $> 30.

:- pour(b,0), amount(b,0) $> 30. ... :- pour(b,3), amount(b,3) $> 30.

:- not pour(a,0), amount(a,0) $!= 0. ... :- not pour(a,3), amount(a,3) $!= 0.

:- not pour(b,0), amount(b,0) $!= 0. ... :- not pour(b,3), amount(b,3) $!= 0.

:- volume(a,1) $!= (volume(a,0) $+ amount(a,0)). ... :- volume(a,4) $!= (volume(a,3) $+ amount(a,3)).

:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)). ... :- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).

down(a,0) :- volume(a,0) $< volume(a,0). ... down(a,4) :- volume(a,4) $< volume(a,4).

down(a,0) :- volume(b,0) $< volume(a,0). ... down(a,4) :- volume(b,4) $< volume(a,4).

down(b,0) :- volume(a,0) $< volume(b,0). ... down(b,4) :- volume(a,4) $< volume(b,4).

down(b,0) :- volume(b,0) $< volume(b,0). ... down(b,4) :- volume(b,4) $< volume(b,4).

up(a,0) :- not down(a,0). ... up(a,4) :- not down(a,4).

up(b,0) :- not down(b,0). ... up(b,4) :- not down(b,4).

:- up(a,4).
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Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --text

time(0). ... time(4). $domain(0..500).

bucket(a). :- volume(a,0) $!= 0.

bucket(b). :- volume(b,0) $!= 100.

1 { pour(b,0), pour(a,0) } 1. ... 1 { pour(b,3), pour(a,3) } 1.

:- pour(a,0), 1 $> amount(a,0). ... :- pour(a,3), 1 $> amount(a,3).

:- pour(b,0), 1 $> amount(b,0). ... :- pour(b,3), 1 $> amount(b,3).

:- pour(a,0), amount(a,0) $> 30. ... :- pour(a,3), amount(a,3) $> 30.

:- pour(b,0), amount(b,0) $> 30. ... :- pour(b,3), amount(b,3) $> 30.

:- not pour(a,0), amount(a,0) $!= 0. ... :- not pour(a,3), amount(a,3) $!= 0.

:- not pour(b,0), amount(b,0) $!= 0. ... :- not pour(b,3), amount(b,3) $!= 0.

:- volume(a,1) $!= (volume(a,0) $+ amount(a,0)). ... :- volume(a,4) $!= (volume(a,3) $+ amount(a,3)).

:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)). ... :- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).

down(a,0) :- volume(a,0) $< volume(a,0). ... down(a,4) :- volume(a,4) $< volume(a,4).

down(a,0) :- volume(b,0) $< volume(a,0). ... down(a,4) :- volume(b,4) $< volume(a,4).

down(b,0) :- volume(a,0) $< volume(b,0). ... down(b,4) :- volume(a,4) $< volume(b,4).

down(b,0) :- volume(b,0) $< volume(b,0). ... down(b,4) :- volume(b,4) $< volume(b,4).

up(a,0) :- not down(a,0). ... up(a,4) :- not down(a,4).

up(b,0) :- not down(b,0). ... up(b,4) :- not down(b,4).

:- up(a,4).
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Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --text

time(0). ... time(4). $domain(0..500).

bucket(a). :- volume(a,0) $!= 0.

bucket(b). :- volume(b,0) $!= 100.

1 { pour(b,0), pour(a,0) } 1. ... 1 { pour(b,3), pour(a,3) } 1.

:- pour(a,0), 1 $> amount(a,0). ... :- pour(a,3), 1 $> amount(a,3).

:- pour(b,0), 1 $> amount(b,0). ... :- pour(b,3), 1 $> amount(b,3).

:- pour(a,0), amount(a,0) $> 30. ... :- pour(a,3), amount(a,3) $> 30.

:- pour(b,0), amount(b,0) $> 30. ... :- pour(b,3), amount(b,3) $> 30.

:- not pour(a,0), amount(a,0) $!= 0. ... :- not pour(a,3), amount(a,3) $!= 0.

:- not pour(b,0), amount(b,0) $!= 0. ... :- not pour(b,3), amount(b,3) $!= 0.

:- volume(a,1) $!= (volume(a,0) $+ amount(a,0)). ... :- volume(a,4) $!= (volume(a,3) $+ amount(a,3)).

:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)). ... :- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).

down(a,0) :- volume(a,0) $< volume(a,0). ... down(a,4) :- volume(a,4) $< volume(a,4).

down(a,0) :- volume(b,0) $< volume(a,0). ... down(a,4) :- volume(b,4) $< volume(a,4).

down(b,0) :- volume(a,0) $< volume(b,0). ... down(b,4) :- volume(a,4) $< volume(b,4).

down(b,0) :- volume(b,0) $< volume(b,0). ... down(b,4) :- volume(b,4) $< volume(b,4).

up(a,0) :- not down(a,0). ... up(a,4) :- not down(a,4).

up(b,0) :- not down(b,0). ... up(b,4) :- not down(b,4).

:- up(a,4).
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Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --text

time(0). ... time(4). $domain(0..500).

bucket(a). :- volume(a,0) $!= 0.

bucket(b). :- volume(b,0) $!= 100.

1 { pour(b,0), pour(a,0) } 1. ... 1 { pour(b,3), pour(a,3) } 1.

:- pour(a,0), 1 $> amount(a,0). ... :- pour(a,3), 1 $> amount(a,3).

:- pour(b,0), 1 $> amount(b,0). ... :- pour(b,3), 1 $> amount(b,3).

:- pour(a,0), amount(a,0) $> 30. ... :- pour(a,3), amount(a,3) $> 30.

:- pour(b,0), amount(b,0) $> 30. ... :- pour(b,3), amount(b,3) $> 30.

:- not pour(a,0), amount(a,0) $!= 0. ... :- not pour(a,3), amount(a,3) $!= 0.

:- not pour(b,0), amount(b,0) $!= 0. ... :- not pour(b,3), amount(b,3) $!= 0.

:- volume(a,1) $!= (volume(a,0) $+ amount(a,0)). ... :- volume(a,4) $!= (volume(a,3) $+ amount(a,3)).

:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)). ... :- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).

down(a,0) :- volume(a,0) $< volume(a,0). ... down(a,4) :- volume(a,4) $< volume(a,4).

down(a,0) :- volume(b,0) $< volume(a,0). ... down(a,4) :- volume(b,4) $< volume(a,4).

down(b,0) :- volume(a,0) $< volume(b,0). ... down(b,4) :- volume(a,4) $< volume(b,4).

down(b,0) :- volume(b,0) $< volume(b,0). ... down(b,4) :- volume(b,4) $< volume(b,4).

up(a,0) :- not down(a,0). ... up(a,4) :- not down(a,4).

up(b,0) :- not down(b,0). ... up(b,4) :- not down(b,4).

:- up(a,4).
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Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000
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Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000
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Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000
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Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 373 / 426



Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000 Boolean variables
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Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000 Non-Boolean variables
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Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --csp-num-as=1

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=11 amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=30 amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=30 amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=30 amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=11 volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=41 volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=71 volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=101 volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1+

Time : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 374 / 426



Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --csp-num-as=1

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=11 amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=30 amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=30 amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=30 amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=11 volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=41 volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=71 volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=101 volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1+

Time : 0.000
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Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --csp-num-as=1

Answer: 1
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Siblings iclingo

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis
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Siblings iclingo

iclingo

Incremental grounding and solving

Offline solving in dynamic domains, like Automated Planning

Basic architecture of iclingo:

gringo clasp

iclingo
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Siblings iclingo

Incremental ASP Solving Process

Logic
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Siblings iclingo

Simplistic STRIPS Planning

#base.

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

#cumulative t.

1 { occ(A,t) : action(A) } 1.

:- occ(A,t), pre(A,F), not holds(F,t-1).

holds(F,t) :- holds(F,t-1), not nolds(F,t).

holds(F,t) :- occ(A,t), add(A,F).

nolds(F,t) :- occ(A,t), del(A,F).

#volatile t.

:- query(F), not holds(F,t).

#hide. #show occ/2.
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Siblings iclingo

Simplistic STRIPS Planning

$ iclingo iplanning.lp

Answer: 1

occ(a,1) occ(b,2)

SATISFIABLE

Models : 1

Total Steps : 2

Time : 0.000
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Siblings iclingo

Simplistic STRIPS Planning

$ iclingo iplanning.lp --istats

=============== step 1 ===============

Models : 0

Time : 0.000 (g: 0.000, p: 0.000, s: 0.000)

Rules : 27

Choices : 0

Conflicts: 0

=============== step 2 ===============

Answer: 1

occ(a,1) occ(b,2)

Models : 1

Time : 0.000 (g: 0.000, p: 0.000, s: 0.000)

Rules : 16

Choices : 0

Conflicts: 0

=============== Summary ===============

SATISFIABLE

Models : 1

Total Steps : 2

Time : 0.000
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Siblings oclingo

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis
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Siblings oclingo

oclingo

Reactive grounding and solving

Online solving in dynamic domains, like Robotics

Basic architecture of oclingo:

gringo clasp

oclingo

Controller
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Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder Solver

Stable
Models

- - -

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426



Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder Solver

Stable
Models

- - -

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426



Siblings oclingo

Reactive ASP Solving Process

Logic
Program

Grounder Solver
Stable
Models

- - -

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426



Siblings oclingo

Reactive ASP Solving Process

Logic
Program

Grounder Solver
Stable
Models

- - -

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426
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Siblings oclingo

Elevator Control

#base.

floor(1..3).

atFloor(1,0).

#cumulative t.

#external request(F,t) : floor(F).

1 { atFloor(F-1;F+1,t) } 1 :- atFloor(F,t-1), floor(F).

:- atFloor(F,t), not floor(F).

requested(F,t) :- request(F,t), floor(F), not atFloor(F,t).

requested(F,t) :- requested(F,t-1), floor(F), not atFloor(F,t).

goal(t) :- not requested(F,t) : floor(F).

#volatile t.

:- not goal(t).
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Siblings oclingo

Pushing a button

oClingo acts as a server listening on a port
waiting for client requests

To issue such requests, a separate controller program
sends online progressions using network sockets

For instance,

#step 1.

request(3,1).

#endstep.

This process terminates when the client sends

#stop.
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Siblings clavis

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis
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Siblings clavis

clavis

Analysis and visualization toolchain for clasp

clavis

Event logger integrated in clasp
Records CDCL events like propagation, conflicts, restarts, . . .
Generated logfiles readable with different backends
Easily configurable
Applicable to clasp variants like hclasp

insight

Visualization backend for clavis
Combines information about problem structure and solving process
Networks for structural and aggregated information
Plots for temporal information and navigation
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Siblings clavis

Visualization Examples

8-Queens: program interaction graph
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Siblings clavis

Visualization Examples

Towers of Hanoi: program interaction graph
Colors showing flipped assignments
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Siblings clavis

Visualization Examples

Towers of Hanoi: flipped assignments between decisions
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Siblings clavis

Visualization Examples

Towers of Hanoi: flipped assignments between decisions (zoomed in)
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Siblings clavis

Visualization Examples

Towers of Hanoi: learned nogoods during zoomed in segment
projected onto program interaction graph layout
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Siblings clavis

Visualization Examples

Towers of Hanoi: learned nogoods during zoomed in segment
compared to program interaction graph
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Siblings clavis

Interactive View

Symbol table shows additional information about variables

Search bar and symbol table allow for dynamic change of the view
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Siblings clavis

Interactive View

Symbol table shows additional information about variables
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Advanced Modeling: Overview

41 Tweaking N-Queens

42 Do’s and Dont’s

43 Hints
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Anything left to worry about?

ASP offers

rich yet easy modeling languages
efficient instantiation procedures
powerful search engines

BUT The problem encoding (still) matters!

Example Sort a list with 8 elements

divide-and-conquer ∼ 8(log28) = 16 “operations”
permutation guessing ∼ 8!/2 = 20160 “operations”
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Tweaking N-Queens

Outline

41 Tweaking N-Queens

42 Do’s and Dont’s

43 Hints
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Tweaking N-Queens

N-Queens Problem

Problem Specification

Given an N×N chessboard,
place N queens such that they do not attack each other
(neither horizontally, vertically, nor diagonally)

N = 4

Chessboard

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

Placement

4 0ZQZ
3 L0Z0
2 0Z0L
1 ZQZ0

1 2 3 4
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Tweaking N-Queens

A First Encoding

1 Each square may host a queen

2 No row, column, or diagonal hosts two queens

3 A placement is given by instances of queen in a stable model

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.

% DISPLAY

#hide. #show queen/2.

Anything missing?
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Tweaking N-Queens
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Tweaking N-Queens

A First Encoding

1 Each square may host a queen
2 No row, column, or diagonal hosts two queens
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Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 queens_0.lp | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8
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Tweaking N-Queens

A First Encoding
Let’s Place 22 Queens!

gringo -c n=22 queens_0.lp | clasp --stats

Answer: 1

queen(1,10) queen(2,6) queen(3,16) queen(4,14) queen(5,8) ...

SATISFIABLE

Models : 1+

Time : 150.531s (Solving: 150.37s 1st Model: 150.34s Unsat: 0.00s)

CPU Time : 147.480s

Choices : 594960

Conflicts : 574565

Restarts : 19

Variables : 17271

Constraints : 16787
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Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.

:- queen(X1,Y1), queen(X2,Y1), X1 < X2.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

:- not n #count{ queen(X,Y) }.

% DISPLAY

#hide. #show queen/2.
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Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
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Tweaking N-Queens

A First Refinement
Let’s Place 22 Queens!

gringo -c n=22 queens_1.lp | clasp --stats

Answer: 1

queen(1,18) queen(2,10) queen(3,21) queen(4,3) queen(5,5) ...

SATISFIABLE

Models : 1+

Time : 0.113s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.020s

Choices : 132

Conflicts : 105

Restarts : 1

Variables : 7238

Constraints : 6710
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Tweaking N-Queens

A First Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_1.lp | clasp --stats

Answer: 1

queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...

SATISFIABLE

Models : 1+

Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)

CPU Time : 6.930s

Choices : 1373

Conflicts : 845

Restarts : 4

Variables : 1211338

Constraints : 1196210
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Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | clasp --stats

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s
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Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | wc)
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Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals make trouble!
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Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space
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Tweaking N-Queens

Enumerating Diagonals

N = 4

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

#diagonal1 =
(#row + #column)− 1

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

#diagonal2 =
(#row−#column) + N

Note For each N, indexes 1, . . . , (2∗N)−1 refer to squares on
#diagonal1/2
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#diagonal1/2
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Tweaking N-Queens

Enumerating Diagonals
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Tweaking N-Queens

A Second Refinement
Let’s go for Diagonals!

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

% DISPLAY

#hide. #show queen/2.
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Tweaking N-Queens

A Second Refinement
Let’s go for Diagonals!

queens_2.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.
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Tweaking N-Queens

A Second Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_2.lp | clasp --stats

Answer: 1

queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...

SATISFIABLE

Models : 1+

Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)

CPU Time : 0.210s

Choices : 11036

Conflicts : 499

Restarts : 3

Variables : 16098

Constraints : 970
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Tweaking N-Queens

A Second Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_2.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)

CPU Time : 7.250s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394
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Tweaking N-Queens

A Third Refinement
Let’s Precalculate Indexes!

queens_2.lp

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.
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Tweaking N-Queens

A Third Refinement
Let’s Precalculate Indexes!

queens_3.lp

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).
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Tweaking N-Queens

A Third Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_3.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 8.889s (Solving: 6.61s 1st Model: 6.60s Unsat: 0.00s)

CPU Time : 7.320s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394
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Tweaking N-Queens

A Third Refinement
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12

Variables : 365994

Constraints : 4794
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Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12

Variables : 365994

Constraints : 4794
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A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats
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Answer: 1

queen(1,422) queen(2,458) queen(3,224) queen(4,408) queen(5,405) ...

SATISFIABLE

Models : 1+

Time : 37.454s (Solving: 26.38s 1st Model: 26.26s Unsat: 0.00s)

CPU Time : 29.580s

Choices : 961315

Conflicts : 3222

Restarts : 7

Variables : 365994
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Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,90) queen(2,452) queen(3,494) queen(4,145) queen(5,84) ...

SATISFIABLE

Models : 1+

Time : 22.654s (Solving: 10.53s 1st Model: 10.47s Unsat: 0.00s)

CPU Time : 15.750s

Choices : 1058729

Conflicts : 2128

Restarts : 6

Variables : 403123

Constraints : 49636
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Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).
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Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean). pre(clean).

buy(X) :- veg(X), not bye(X). bye(X) :- veg(X), pre(P), not pro(X,P).
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Do’s and Dont’s

Running Example: Latin Square

Given: an N×N board

1
2
3
4
5
6

1 2 3 4 5 6

represented by facts:

square(1,1). ... square(1,6).

square(2,1). ... square(2,6).

square(3,1). ... square(3,6).

square(4,1). ... square(4,6).

square(5,1). ... square(5,6).

square(6,1). ... square(6,6).

Wanted: assignment of 1, . . . ,N

1 1 2 3 4 5 6
2 2 3 4 5 6 1
3 3 4 5 6 1 2
4 4 5 6 1 2 3
5 5 6 1 2 3 4
6 6 1 2 3 4 5

1 2 3 4 5 6

represented by atoms:

num(1,1,1) num(1,2,2) ... num(1,6,6)

num(2,1,2) num(2,2,3) ... num(2,6,1)

num(3,1,3) num(3,2,4) ... num(3,6,2)

num(4,1,4) num(4,2,5) ... num(4,6,3)

num(5,1,5) num(5,2,6) ... num(5,6,4)

num(6,1,6) num(6,2,1) ... num(6,6.5)
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Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- square(X1,Y1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- square(X1,Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

Note unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522
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Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 != Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 != X2.

Note duplicate ground rules (swapping Y1/Y2 and X1/X2 gives the
“same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558
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Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

Note uniqueness of N in a row/column checked by ENUMERATING
PAIRS!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744
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Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).
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Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[ square(X,n) = X ].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 421 / 426
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Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[ square(X,n) = X ].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C #count{ num(X,Y,N) } C, C = 0..n.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C #count{ num(X,Y,N) } C, C = 0..n.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

Note internal transformation by gringo
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Do’s and Dont’s
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occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }. 7
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Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).
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Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc
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Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.
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The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

Note many symmetric solutions (mirroring, rotation, value
permutation)
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Note easy and safe to fix a full row/column!
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% DOMAIN
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Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#hide. #show num/3.

Note Let’s compare enumeration speed!
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Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.
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Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#hide. #show num/3.

gringo -c n=5 latin_7.lp | clasp -q 0

Models : 161280 Time : 2.078s
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Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#hide. #show num/3.

gringo -c n=5 latin_7.lp | clasp -q 0

Models : 1344 Time : 0.024s
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Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

Note If the format of facts makes encoding painful (for instance,
abusing grounding for “scientific calculations”), revise the fact format
as well.
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Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo -t)
if answer sets are unintended, investigate conditions that fail to hold
if answer sets are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)
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Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . . ] | wc))
2 profiling info (eg. gringo --gstats --verbose=3 [. . . ] > /dev/null)

Note once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option ‘--configuration’)
2 try auto-configuration (offered by claspfolio)
3 try manual fine-tuning (requires expert knowledge!)
4 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver
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