
Answer Set Solving in Practice

Martin Gebser and Torsten Schaub
University of Potsdam

torsten@cs.uni-potsdam.de

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 1 / 426

Rough Roadmap

1 Introduction

2 Language

3 Modeling

4 Grounding

5 Foundations

6 Solving

7 Systems

8 Applications

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 2 / 426

Resources

Course material

http://www.cs.uni-potsdam.de/wv/lehre

http://moodle.cs.uni-potsdam.de

http://potassco.sourceforge.net/teaching.html

Systems

clasp http://potassco.sourceforge.net

dlv http://www.dlvsystem.com

smodels http://www.tcs.hut.fi/Software/smodels

gringo http://potassco.sourceforge.net

lparse http://www.tcs.hut.fi/Software/smodels

clingo http://potassco.sourceforge.net

iclingo http://potassco.sourceforge.net

oclingo http://potassco.sourceforge.net

asparagus http://asparagus.cs.uni-potsdam.de

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 3 / 426

http://www.cs.uni-potsdam.de/wv/lehre
http://moodle.cs.uni-potsdam.de
http://potassco.sourceforge.net/teaching.html
http://potassco.sourceforge.net
http://www.dlvsystem.com
 http://www.tcs.hut.fi/Software/smodels
http://potassco.sourceforge.net
http://www.tcs.hut.fi/Software/smodels
http://potassco.sourceforge.net
http://potassco.sourceforge.net
http://potassco.sourceforge.net
 http://asparagus.cs.uni-potsdam.de

The Potassco Book

1. Motivation
2. Introduction
3. Basic modeling
4. Grounding
5. Characterizations
6. Solving
7. Systems
8. Advanced modeling
9. Conclusions

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
University of Potsdam

SYNTHESIS LECTURES ON SAMPLE SERIES #1

C
M
&

cLaypoolMorgan publishers&

Resources

http://potassco.sourceforge.net/book.html

http://potassco.sourceforge.net/teaching.html

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 4 / 426

http://potassco.sourceforge.net/book.html
http://potassco.sourceforge.net/teaching.html

Literature

Books [4], [29], [53]

Surveys [50], [2], [39], [21], [11]

Articles [41], [42], [6], [61], [54], [49], [40], etc.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 5 / 426

Motivation: Overview

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 6 / 426

Motivation

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 7 / 426

Motivation

Informatics

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 426

Motivation

Informatics

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 426

Motivation

Traditional programming

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 426

Motivation

Traditional programming

“What is the problem?” versus “How to solve the problem?”

Problem

Program

Solution

Output
?

-

6

Programming Interpreting

Executing

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 426

Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Interpreting

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 426

Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Representation

Solution

Output
?

-

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 426

Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Representation

Solution

Output
?

-

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 426

Nutshell

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 9 / 426

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 426

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 426

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 426

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 426

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 426

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 426

Nutshell

Answer Set Programming
in a Hazelnutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 426

Nutshell

Answer Set Programming
in a Hazelnutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

ASP = DB+LP+KR+SAT

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 426

Shifting paradigms

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 426

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 13 / 426

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 13 / 426

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 13 / 426

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 13 / 426

Shifting paradigms

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models

SAT

propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 14 / 426

Shifting paradigms

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models

SAT

propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 14 / 426

Shifting paradigms

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models SAT
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 14 / 426

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 15 / 426

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 15 / 426

Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).

true.

?- above(c,a).

no.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 16 / 426

Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).

true.

?- above(c,a).

no.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 16 / 426

Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).

true.

?- above(c,a).

no.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 16 / 426

Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries (testing entailment)

?- above(a,c).

true.

?- above(c,a).

no.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 16 / 426

Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries

?- above(a,c).

Fatal Error: local stack overflow.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 17 / 426

Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries

?- above(a,c).

Fatal Error: local stack overflow.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 17 / 426

Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries (answered via fixed execution)

?- above(a,c).

Fatal Error: local stack overflow.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 17 / 426

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 18 / 426

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 18 / 426

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 426

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 426

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model (among 426!){
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 426

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model (among 426!){
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 426

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model (among 426!){
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 426

Rooting ASP

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 20 / 426

Rooting ASP

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 21 / 426

Rooting ASP

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

å Answer Set Programming (ASP)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 21 / 426

Rooting ASP

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 426

Rooting ASP

Answer Set Programming at large

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 426

Rooting ASP

Answer Set Programming commonly

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 426

Rooting ASP

Answer Set Programming in practice

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 426

Rooting ASP

Answer Set Programming in practice

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

first-order programs stable Herbrand models

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 426

Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 426

Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 426

Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model (and no others)

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 426

Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- above(Z,Y), on(X,Z).

above(X,Y) :- on(X,Y).

Stable Herbrand model (and no others)

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 426

Rooting ASP

ASP versus LP

ASP Prolog

Model generation Query orientation

Bottom-up Top-down

Modeling language Programming language

Rule-based format

Instantiation Unification
Flat terms Nested terms

(Turing +) NP(NP) Turing

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 24 / 426

Rooting ASP

ASP versus SAT

ASP SAT

Model generation

Bottom-up

Constructive Logic Classical Logic

Closed (and open) Open world reasoning
world reasoning

Modeling language —

Complex reasoning modes Satisfiability testing

Satisfiability Satisfiability
Enumeration/Projection —
Intersection/Union —
Optimization —

(Turing +) NP(NP) NP

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 25 / 426

ASP solving

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 26 / 426

ASP solving

ASP solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 27 / 426

ASP solving

SAT solving

Problem

Formula
(CNF) Solver Classical

Models

Solution

- -

?

6

Programming Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 28 / 426

ASP solving

Rooting ASP solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 29 / 426

ASP solving

Rooting ASP solving

Problem

Logic
Program

LP

Grounder

DB

Solver

SAT

Stable
Models

DB+KR+LP

Solution

- - -

?

6

Modeling KR Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 29 / 426

Using ASP

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 30 / 426

Using ASP

Two sides of a coin

ASP as High-level Language

Express problem instance(s) as sets of facts
Encode problem (class) as a set of rules
Read off solutions from stable models of facts and rules

ASP as Low-level Language

Compile a problem into a logic program
Solve the original problem by solving its compilation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 31 / 426

Using ASP

What is ASP good for?

Combinatorial search problems in the realm of P, NP, and NPNP

(some with substantial amount of data), like

Automated Planning
Code Optimization
Composition of Renaissance Music
Database Integration
Decision Support for NASA shuttle controllers
Model Checking
Product Configuration
Robotics
Systems Biology
System Synthesis
(industrial) Team-building
and many many more

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 426

Using ASP

What is ASP good for?

Combinatorial search problems in the realm of P, NP, and NPNP

(some with substantial amount of data), like

Automated Planning
Code Optimization
Composition of Renaissance Music
Database Integration
Decision Support for NASA shuttle controllers
Model Checking
Product Configuration
Robotics
Systems Biology
System Synthesis
(industrial) Team-building
and many many more

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 426

Using ASP

What does ASP offer?

Integration of DB, KR, and SAT techniques

Succinct, elaboration-tolerant problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications

including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SAT

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 33 / 426

Using ASP

What does ASP offer?

Integration of DB, KR, and SAT techniques

Succinct, elaboration-tolerant problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications

including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SAT

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 33 / 426

Using ASP

What does ASP offer?

Integration of DB, KR, and SAT techniques

Succinct, elaboration-tolerant problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications

including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SMT

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 33 / 426

Introduction: Overview

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 34 / 426

Syntax

Outline

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 35 / 426

Syntax

Problem solving in ASP: Syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 36 / 426

Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

head(r) = a0

body(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}
atom(P) =

⋃
r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program P is positive if body(r)− = ∅ for all r ∈ P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 37 / 426

Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

head(r) = a0

body(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}
atom(P) =

⋃
r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program P is positive if body(r)− = ∅ for all r ∈ P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 37 / 426

Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

head(r) = a0

body(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}
atom(P) =

⋃
r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program P is positive if body(r)− = ∅ for all r ∈ P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 37 / 426

Syntax

Rough notational convention

We sometimes use the following notation interchangeably
in order to stress the respective view:

default classical
true, false if and or iff negation negation

source code :- , | not -

logic program ← , ; ∼ ¬
formula ⊥,> → ∧ ∨ ↔ ∼ ¬

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 38 / 426

Semantics

Outline

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 426

Semantics

Problem solving in ASP: Semantics

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 40 / 426

Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 41 / 426

Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 41 / 426

Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 41 / 426

Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 41 / 426

Semantics

Some “logical” remarks

Positive rules are also referred to as definite clauses

Definite clauses are disjunctions with exactly one positive atom:

a0 ∨ ¬a1 ∨ · · · ∨ ¬am

A set of definite clauses has a (unique) smallest model

Horn clauses are clauses with at most one positive atom

Every definite clause is a Horn clause but not vice versa
Non-definite Horn clauses can be regarded as integrity constraints

A set of Horn clauses has a smallest model or none

This smallest model is the intended semantics of such sets of clauses

Given a positive program P, Cn(P) corresponds to the smallest model
of the set of definite clauses corresponding to P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 42 / 426

Semantics

Some “logical” remarks

Positive rules are also referred to as definite clauses

Definite clauses are disjunctions with exactly one positive atom:

a0 ∨ ¬a1 ∨ · · · ∨ ¬am

A set of definite clauses has a (unique) smallest model

Horn clauses are clauses with at most one positive atom

Every definite clause is a Horn clause but not vice versa
Non-definite Horn clauses can be regarded as integrity constraints

A set of Horn clauses has a smallest model or none

This smallest model is the intended semantics of such sets of clauses

Given a positive program P, Cn(P) corresponds to the smallest model
of the set of definite clauses corresponding to P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 42 / 426

Semantics

Some “logical” remarks

Positive rules are also referred to as definite clauses

Definite clauses are disjunctions with exactly one positive atom:

a0 ∨ ¬a1 ∨ · · · ∨ ¬am

A set of definite clauses has a (unique) smallest model

Horn clauses are clauses with at most one positive atom

Every definite clause is a Horn clause but not vice versa
Non-definite Horn clauses can be regarded as integrity constraints

A set of Horn clauses has a smallest model or none

This smallest model is the intended semantics of such sets of clauses

Given a positive program P, Cn(P) corresponds to the smallest model
of the set of definite clauses corresponding to P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 42 / 426

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 43 / 426

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 43 / 426

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 43 / 426

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 43 / 426

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 43 / 426

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 43 / 426

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 43 / 426

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 43 / 426

Semantics

Formal Definition
Stable model of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX) = X

Note Cn(PX) is the ⊆–smallest (classical) model of PX

Note Every atom in X is justified by an “applying rule from P”

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 44 / 426

Semantics

Formal Definition
Stable model of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX) = X

Note Cn(PX) is the ⊆–smallest (classical) model of PX

Note Every atom in X is justified by an “applying rule from P”

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 44 / 426

Semantics

Formal Definition
Stable model of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX) = X

Note Cn(PX) is the ⊆–smallest (classical) model of PX

Note Every atom in X is justified by an “applying rule from P”

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 44 / 426

Semantics

A closer look at PX

In other words, given a set X of atoms from P,

PX is obtained from P by deleting

1 each rule having ∼a in its body with a ∈ X
and then

2 all negative atoms of the form ∼a
in the bodies of the remaining rules

Note Only negative body literals are evaluated wrt X

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 45 / 426

Semantics

A closer look at PX

In other words, given a set X of atoms from P,

PX is obtained from P by deleting

1 each rule having ∼a in its body with a ∈ X
and then

2 all negative atoms of the form ∼a
in the bodies of the remaining rules

Note Only negative body literals are evaluated wrt X

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 45 / 426

Examples

Outline

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 46 / 426

Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 47 / 426

Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 47 / 426

Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 47 / 426

Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 47 / 426

Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 47 / 426

Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 47 / 426

Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 47 / 426

Examples

A first example

P = {p ← p, q ← ¬p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 4

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 47 / 426

Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 48 / 426

Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 48 / 426

Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 48 / 426

Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 48 / 426

Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 48 / 426

Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅ 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 48 / 426

Examples

A second example

P = {p ← ¬q, q ← ¬p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅ 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 48 / 426

Examples

A third example

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 49 / 426

Examples

A third example

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 49 / 426

Examples

A third example

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 49 / 426

Examples

A third example

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅ 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 49 / 426

Examples

A third example

P = {p ← ¬p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅ 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 49 / 426

Examples

Some properties

A logic program may have zero, one, or multiple stable models!

If X is a stable model of a logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a normal program P,
then X 6⊂ Y

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 50 / 426

Examples

Some properties

A logic program may have zero, one, or multiple stable models!

If X is a stable model of a logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a normal program P,
then X 6⊂ Y

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 50 / 426

Variables

Outline

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 51 / 426

Variables

Programs with Variables

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 52 / 426

Variables

Programs with Variables

Let P be a logic program

Let T be a set of

(

variable-free

)

terms (also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T
(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 52 / 426

Variables

Programs with Variables

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 52 / 426

Variables

Programs with Variables

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 52 / 426

Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Intelligent Grounding aims at reducing the ground instantiation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 53 / 426

Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Intelligent Grounding aims at reducing the ground instantiation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 53 / 426

Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Intelligent Grounding aims at reducing the ground instantiation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 53 / 426

Variables

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X) = X

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 54 / 426

Variables

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X) = X

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 54 / 426

Language constructs

Outline

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 55 / 426

Language constructs

Problem solving in ASP: Extended Syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 56 / 426

Language constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 57 / 426

Language constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 57 / 426

Language constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 57 / 426

Language constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 57 / 426

Language constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 57 / 426

Language constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 57 / 426

Language constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 57 / 426

Language constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 57 / 426

Reasoning modes

Outline

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 58 / 426

Reasoning modes

Problem solving in ASP: Reasoning Modes

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 59 / 426

Reasoning modes

Reasoning Modes

Satisfiability

Enumeration†

Projection†

Intersection‡

Union‡

Optimization

and combinations of them

† without solution recording
‡ without solution enumeration

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 60 / 426

Basic Modeling: Overview

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 61 / 426

Modeling and Interpreting

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 62 / 426

Modeling

For solving a problem class C for a problem instance I,
encode

1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

PI is (still) called problem instance

PC is often called the problem encoding

An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 63 / 426

Modeling

For solving a problem class C for a problem instance I,
encode

1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

PI is (still) called problem instance

PC is often called the problem encoding

An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 63 / 426

Modeling

For solving a problem class C for a problem instance I,
encode

1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

PI is (still) called problem instance

PC is often called the problem encoding

An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 63 / 426

ASP solving process

Outline

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 64 / 426

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 65 / 426

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 65 / 426

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 65 / 426

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 65 / 426

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 65 / 426

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 65 / 426

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving6

Elaborating

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 65 / 426

ASP solving process

A case-study: Graph coloring

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 66 / 426

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 67 / 426

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 67 / 426

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

1 2

3

4

5

6

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 67 / 426

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

1 2

3

4

5

6

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 67 / 426

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate col/1

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 67 / 426

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate col/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 67 / 426

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate col/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color

In other words,

1 Each node has a unique color
2 Two connected nodes must not have the same color

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 67 / 426

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 68 / 426

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 69 / 426

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 69 / 426

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 69 / 426

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 69 / 426

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 69 / 426

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 69 / 426

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 69 / 426

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 69 / 426

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 69 / 426

ASP solving process

color.lp

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 69 / 426

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 70 / 426

ASP solving process

Graph coloring: Grounding

$ gringo --text color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(1,g)} 1.

1 {color(2,r), color(2,b), color(2,g)} 1.

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1.

1 {color(5,r), color(5,b), color(5,g)} 1.

1 {color(6,r), color(6,b), color(6,g)} 1.

:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).

:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).

:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).

:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).

:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).

:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).

:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).

:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).

:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).

:- color(2,r), color(4,r). :- color(3,g), color(4,g).

:- color(2,b), color(4,b). :- color(3,r), color(5,r).

:- color(2,g), color(4,g). :- color(3,b), color(5,b).

:- color(2,r), color(5,r). :- color(3,g), color(5,g).

:- color(2,b), color(5,b). :- color(4,r), color(1,r).
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 71 / 426

ASP solving process

Graph coloring: Grounding

$ gringo --text color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(1,g)} 1.

1 {color(2,r), color(2,b), color(2,g)} 1.

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1.

1 {color(5,r), color(5,b), color(5,g)} 1.

1 {color(6,r), color(6,b), color(6,g)} 1.

:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).

:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).

:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).

:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).

:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).

:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).

:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).

:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).

:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).

:- color(2,r), color(4,r). :- color(3,g), color(4,g).

:- color(2,b), color(4,b). :- color(3,r), color(5,r).

:- color(2,g), color(4,g). :- color(3,b), color(5,b).

:- color(2,r), color(5,r). :- color(3,g), color(5,g).

:- color(2,b), color(5,b). :- color(4,r), color(1,r).
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 71 / 426

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 72 / 426

ASP solving process

Graph coloring: Solving

$ gringo color.lp | clasp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,g) color(4,b) color(3,r) color(2,r) color(1,g)

Answer: 2

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,g) color(4,r) color(3,b) color(2,b) color(1,g)

Answer: 3

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,b) color(4,g) color(3,r) color(2,r) color(1,b)

Answer: 4

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,b) color(4,r) color(3,g) color(2,g) color(1,b)

Answer: 5

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,r) color(4,g) color(3,b) color(2,b) color(1,r)

Answer: 6

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 73 / 426

ASP solving process

Graph coloring: Solving

$ gringo color.lp | clasp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,g) color(4,b) color(3,r) color(2,r) color(1,g)

Answer: 2

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,g) color(4,r) color(3,b) color(2,b) color(1,g)

Answer: 3

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,b) color(4,g) color(3,r) color(2,r) color(1,b)

Answer: 4

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,b) color(4,r) color(3,g) color(2,g) color(1,b)

Answer: 5

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,r) color(4,g) color(3,b) color(2,b) color(1,r)

Answer: 6

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 73 / 426

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 74 / 426

ASP solving process

A coloring

Answer: 6

edge(1,2) ... col(r) ... node(1) ... \

color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

1 2

3

4

5

6

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 75 / 426

ASP solving process

A coloring

Answer: 6

edge(1,2) ... col(r) ... node(1) ... \

color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

1 2

3

4

5

6

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 75 / 426

Methodology

Outline

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 76 / 426

Methodology

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester (+ Optimizer)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 77 / 426

Methodology

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester (+ Optimizer)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 77 / 426

Methodology Satisfiability

Outline

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 78 / 426

Methodology Satisfiability

Satisfiability testing

Problem Instance: A propositional formula φ in CNF

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program:

Generator Tester Stable models
{ a, b } ← ← ∼a, b

← a,∼b
X1 = {a, b}
X2 = {}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 79 / 426

Methodology Satisfiability

Satisfiability testing

Problem Instance: A propositional formula φ in CNF

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program:

Generator Tester Stable models
{ a, b } ← ← ∼a, b

← a,∼b
X1 = {a, b}
X2 = {}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 79 / 426

Methodology Satisfiability

Satisfiability testing

Problem Instance: A propositional formula φ in CNF

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program:

Generator Tester Stable models
{ a, b } ← ← ∼a, b

← a,∼b
X1 = {a, b}
X2 = {}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 79 / 426

Methodology Satisfiability

Satisfiability testing

Problem Instance: A propositional formula φ in CNF

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program:

Generator Tester Stable models
{ a, b } ← ← ∼a, b

← a,∼b
X1 = {a, b}
X2 = {}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 79 / 426

Methodology Satisfiability

Satisfiability testing

Problem Instance: A propositional formula φ in CNF

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program:

Generator Tester Stable models
{ a, b } ← ← ∼a, b

← a,∼b
X1 = {a, b}
X2 = {}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 79 / 426

Methodology Queens

Outline

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 80 / 426

Methodology Queens

The n-Queens Problem

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

Place n queens on an n × n
chess board

Queens must not attack one
another

Q Q Q

Q Q

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 81 / 426

Methodology Queens

Defining the Field

queens.lp

row(1..n).

col(1..n).

Create file queens.lp

Define the field

n rows
n columns

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 82 / 426

Methodology Queens

Defining the Field

Running . . .

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

SATISFIABLE

Models : 1

Time : 0.000

Prepare : 0.000

Prepro. : 0.000

Solving : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 83 / 426

Methodology Queens

Placing some Queens

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I) : col(J) }.

Guess a solution candidate

by placing some queens on the board

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 84 / 426

Methodology Queens

Placing some Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 3

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(1,1)

Answer: 3

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(2,1)

SATISFIABLE

Models : 3+

...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 85 / 426

Methodology Queens

Placing some Queens: Answer 1

Answer 1

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 86 / 426

Methodology Queens

Placing some Queens: Answer 2

Answer 2

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 L0Z0Z

1 2 3 4 5

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 87 / 426

Methodology Queens

Placing some Queens: Answer 3

Answer 3

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 QZ0Z0
1 Z0Z0Z

1 2 3 4 5

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 88 / 426

Methodology Queens

Placing n Queens

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I) : col(J) }.

:- not n { queen(I,J) } n.

Place exactly n queens on the board

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 89 / 426

Methodology Queens

Placing n Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 2

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,1) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(1,2) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 90 / 426

Methodology Queens

Placing n Queens: Answer 1

Answer 1

5 L0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 L0Z0Z

1 2 3 4 5

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 91 / 426

Methodology Queens

Placing n Queens: Answer 2

Answer 2

5 Z0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 LQZ0Z

1 2 3 4 5

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 92 / 426

Methodology Queens

Horizontal and Vertical Attack

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I) : col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,JJ), J != JJ.

:- queen(I,J), queen(II,J), I != II.

Forbid horizontal attacks

Forbid vertical attacks

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 93 / 426

Methodology Queens

Horizontal and Vertical Attack

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I) : col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,JJ), J != JJ.

:- queen(I,J), queen(II,J), I != II.

Forbid horizontal attacks

Forbid vertical attacks

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 93 / 426

Methodology Queens

Horizontal and Vertical Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,5) queen(4,4) queen(3,3) \

queen(2,2) queen(1,1)

...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 94 / 426

Methodology Queens

Horizontal and Vertical Attack: Answer 1

Answer 1

5 Z0Z0L
4 0Z0L0
3 Z0L0Z
2 0L0Z0
1 L0Z0Z

1 2 3 4 5

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 95 / 426

Methodology Queens

Diagonal Attack

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I) : col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,JJ), J != JJ.

:- queen(I,J), queen(II,J), I != II.

:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ), I-J == II-JJ.

:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ), I+J == II+JJ.

Forbid diagonal attacks

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 96 / 426

Methodology Queens

Diagonal Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(4,5) queen(1,4) queen(3,3) queen(5,2) queen(2,1)

SATISFIABLE

Models : 1+

Time : 0.000

Prepare : 0.000

Prepro. : 0.000

Solving : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 97 / 426

Methodology Queens

Diagonal Attack: Answer 1

Answer 1

5 ZQZ0Z
4 0Z0ZQ
3 Z0L0Z
2 QZ0Z0
1 Z0ZQZ

1 2 3 4 5

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 98 / 426

Methodology Queens

Optimizing

queens-opt.lp

1 { queen(I,1..n) } 1 :- I = 1..n.

1 { queen(1..n,J) } 1 :- J = 1..n.

:- 2 { queen(D-J,J) }, D = 2..2*n.

:- 2 { queen(D+J,J) }, D = 1-n..n-1.

Encoding can be optimized

Much faster to solve

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 99 / 426

Methodology Queens

And sometimes it rocks
$ clingo -c n=5000 queens-opt-diag.lp --config=jumpy -q --stats=3

clingo version 4.1.0

Solving...

SATISFIABLE

Models : 1+

Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)

CPU Time : 3758.320s

Choices : 288594554

Conflicts : 3442 (Analyzed: 3442)

Restarts : 17 (Average: 202.47 Last: 3442)

Model-Level : 7594728.0

Problems : 1 (Average Length: 0.00 Splits: 0)

Lemmas : 3442 (Deleted: 0)

Binary : 0 (Ratio: 0.00%)

Ternary : 0 (Ratio: 0.00%)

Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)

Loop : 0 (Average Length: 0.0 Ratio: 0.00%)

Other : 0 (Average Length: 0.0 Ratio: 0.00%)

Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)

Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)

Bodies : 25090103

Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: 0 Other: 75020000)

Tight : Yes

Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)

Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)

Executed : 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)

Bounded : 0 (Average: 0.00 Max: 0 Sum: 0 Ratio: 0.00%)
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 100 / 426

Methodology Traveling Salesperson

Outline

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 101 / 426

Methodology Traveling Salesperson

Traveling Salesperson

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).

edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

cost(1,2,2). cost(1,3,3). cost(1,4,1).

cost(2,4,2). cost(2,5,2). cost(2,6,4).

cost(3,1,3). cost(3,4,2). cost(3,5,2).

cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).

cost(6,2,4). cost(6,3,3). cost(6,5,1).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 102 / 426

Methodology Traveling Salesperson

Traveling Salesperson

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).

edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

cost(1,2,2). cost(1,3,3). cost(1,4,1).

cost(2,4,2). cost(2,5,2). cost(2,6,4).

cost(3,1,3). cost(3,4,2). cost(3,5,2).

cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).

cost(6,2,4). cost(6,3,3). cost(6,5,1).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 102 / 426

Methodology Traveling Salesperson

Traveling Salesperson

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).

edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

cost(1,2,2). cost(1,3,3). cost(1,4,1).

cost(2,4,2). cost(2,5,2). cost(2,6,4).

cost(3,1,3). cost(3,4,2). cost(3,5,2).

cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).

cost(6,2,4). cost(6,3,3). cost(6,5,1).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 102 / 426

Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize [cycle(X,Y) = C : cost(X,Y,C)].

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 103 / 426

Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize [cycle(X,Y) = C : cost(X,Y,C)].

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 103 / 426

Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize [cycle(X,Y) = C : cost(X,Y,C)].

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 103 / 426

Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize [cycle(X,Y) = C : cost(X,Y,C)].

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 103 / 426

Methodology Reviewer Assignment

Outline

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 104 / 426

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 105 / 426

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 105 / 426

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 105 / 426

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 105 / 426

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 105 / 426

Methodology Planning

Outline

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 106 / 426

Methodology Planning

Simplistic STRIPS Planning

time(1..k). lasttime(T) :- time(T), not time(T+1).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occ(A,T), add(A,F).

nolds(F,T) :- occ(A,T), del(A,F).

:- query(F), not holds(F,T), lasttime(T).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 107 / 426

Methodology Planning

Simplistic STRIPS Planning

time(1..k). lasttime(T) :- time(T), not time(T+1).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occ(A,T), add(A,F).

nolds(F,T) :- occ(A,T), del(A,F).

:- query(F), not holds(F,T), lasttime(T).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 107 / 426

Methodology Planning

Simplistic STRIPS Planning

time(1..k). lasttime(T) :- time(T), not time(T+1).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occ(A,T), add(A,F).

nolds(F,T) :- occ(A,T), del(A,F).

:- query(F), not holds(F,T), lasttime(T).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 107 / 426

Methodology Planning

Simplistic STRIPS Planning

time(1..k). lasttime(T) :- time(T), not time(T+1).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occ(A,T), add(A,F).

nolds(F,T) :- occ(A,T), del(A,F).

:- query(F), not holds(F,T), lasttime(T).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 107 / 426

Language: Overview

15 Motivation

16 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

17 Extended language
Conditional literal
Optimization statement

18 smodels format

19 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 108 / 426

Motivation

Outline

15 Motivation

16 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

17 Extended language
Conditional literal
Optimization statement

18 smodels format

19 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 109 / 426

Motivation

Basic language extensions

The expressiveness of a language can be enhanced by introducing
new constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 110 / 426

Motivation

Basic language extensions

The expressiveness of a language can be enhanced by introducing
new constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 110 / 426

Motivation

Basic language extensions

The expressiveness of a language can be enhanced by introducing
new constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 110 / 426

Core language

Outline

15 Motivation

16 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

17 Extended language
Conditional literal
Optimization statement

18 smodels format

19 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 111 / 426

Core language Integrity constraint

Outline

15 Motivation

16 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

17 Extended language
Conditional literal
Optimization statement

18 smodels format

19 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 112 / 426

Core language Integrity constraint

Integrity constraint

Idea Eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

Example :- edge(3,7), color(3,red), color(7,red).

Embedding The above integrity constraint can be turned into the
normal rule

x ← a1, . . . , am,∼am+1, . . . ,∼an,∼x

where x is a new symbol, that is, x 6∈ A.

Another example P = {a← ∼b, b ← ∼a}
versus P ′ = P ∪ {← a} and P ′′ = P ∪ {← ∼a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 113 / 426

Core language Integrity constraint

Integrity constraint

Idea Eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

Example :- edge(3,7), color(3,red), color(7,red).

Embedding The above integrity constraint can be turned into the
normal rule

x ← a1, . . . , am,∼am+1, . . . ,∼an,∼x

where x is a new symbol, that is, x 6∈ A.

Another example P = {a← ∼b, b ← ∼a}
versus P ′ = P ∪ {← a} and P ′′ = P ∪ {← ∼a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 113 / 426

Core language Integrity constraint

Integrity constraint

Idea Eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

Example :- edge(3,7), color(3,red), color(7,red).

Embedding The above integrity constraint can be turned into the
normal rule

x ← a1, . . . , am,∼am+1, . . . ,∼an,∼x

where x is a new symbol, that is, x 6∈ A.

Another example P = {a← ∼b, b ← ∼a}
versus P ′ = P ∪ {← a} and P ′′ = P ∪ {← ∼a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 113 / 426

Core language Choice rule

Outline

15 Motivation

16 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

17 Extended language
Conditional literal
Optimization statement

18 smodels format

19 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 114 / 426

Core language Choice rule

Choice rule

Idea Choices over subsets

Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

Example { buy(pizza), buy(wine), buy(corn) } :- at(grocery).

Another Example P = {{a} ← b, b ←} has two stable models:
{b} and {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 115 / 426

Core language Choice rule

Choice rule

Idea Choices over subsets

Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

Example { buy(pizza), buy(wine), buy(corn) } :- at(grocery).

Another Example P = {{a} ← b, b ←} has two stable models:
{b} and {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 115 / 426

Core language Choice rule

Choice rule

Idea Choices over subsets

Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

Example { buy(pizza), buy(wine), buy(corn) } :- at(grocery).

Another Example P = {{a} ← b, b ←} has two stable models:
{b} and {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 115 / 426

Core language Choice rule

Choice rule

Idea Choices over subsets

Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

Example { buy(pizza), buy(wine), buy(corn) } :- at(grocery).

Another Example P = {{a} ← b, b ←} has two stable models:
{b} and {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 115 / 426

Core language Choice rule

Embedding in normal rules

A choice rule of form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

can be translated into 2m + 1 normal rules

a′ ← am+1, . . . , an,∼an+1, . . . ,∼ao

a1 ← a′,∼a1 . . . am ← a′,∼am

a1 ← ∼a1 . . . am ← ∼am

by introducing new atoms a′, a1, . . . , am.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 116 / 426

Core language Choice rule

Embedding in normal rules

A choice rule of form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

can be translated into 2m + 1 normal rules

a′ ← am+1, . . . , an,∼an+1, . . . ,∼ao

a1 ← a′,∼a1 . . . am ← a′,∼am

a1 ← ∼a1 . . . am ← ∼am

by introducing new atoms a′, a1, . . . , am.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 116 / 426

Core language Choice rule

Embedding in normal rules

A choice rule of form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

can be translated into 2m + 1 normal rules

a′ ← am+1, . . . , an,∼an+1, . . . ,∼ao

a1 ← a′,∼a1 . . . am ← a′,∼am

a1 ← ∼a1 . . . am ← ∼am

by introducing new atoms a′, a1, . . . , am.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 116 / 426

Core language Cardinality rule

Outline

15 Motivation

16 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

17 Extended language
Conditional literal
Optimization statement

18 smodels format

19 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 117 / 426

Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets

Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

Note l acts as a lower bound on the body

Example pass(c42) :- 2 { pass(a1), pass(a2), pass(a3) }.
Another Example P = {a← 1{b, c}, b ←} has stable model {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 118 / 426

Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets

Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

Note l acts as a lower bound on the body

Example pass(c42) :- 2 { pass(a1), pass(a2), pass(a3) }.
Another Example P = {a← 1{b, c}, b ←} has stable model {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 118 / 426

Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets

Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

Note l acts as a lower bound on the body

Example pass(c42) :- 2 { pass(a1), pass(a2), pass(a3) }.
Another Example P = {a← 1{b, c}, b ←} has stable model {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 118 / 426

Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets

Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

Note l acts as a lower bound on the body

Example pass(c42) :- 2 { pass(a1), pass(a2), pass(a3) }.
Another Example P = {a← 1{b, c}, b ←} has stable model {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 118 / 426

Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai

ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj

ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 119 / 426

Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai

ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj

ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 119 / 426

Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai

ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj

ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 119 / 426

Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai

ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj

ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 119 / 426

Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai

ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj

ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 119 / 426

Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai

ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj

ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 119 / 426

Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai

ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj

ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 119 / 426

Core language Cardinality rule

An example

Program {a←, c ← 1 {a, b}} has the stable model {a, c}
Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 120 / 426

Core language Cardinality rule

An example

Program {a←, c ← 1 {a, b}} has the stable model {a, c}
Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 120 / 426

Core language Cardinality rule

. . . and vice versa

A normal rule

a0 ← a1, . . . , am,∼am+1, . . . ,∼an,

can be represented by the cardinality rule

a0 ← n {a1, . . . , am,∼am+1, . . . ,∼an}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 121 / 426

Core language Cardinality rule

Cardinality rules with upper bounds

A rule of the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b,∼c
b ← l { a1, . . . , am,∼am+1, . . . ,∼an }
c ← u+1 { a1, . . . , am,∼am+1, . . . ,∼an }

where b and c are new symbols

The single constraint in the body of the above cardinality rule is
referred to as a cardinality constraint

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 122 / 426

Core language Cardinality rule

Cardinality rules with upper bounds

A rule of the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b,∼c
b ← l { a1, . . . , am,∼am+1, . . . ,∼an }
c ← u+1 { a1, . . . , am,∼am+1, . . . ,∼an }

where b and c are new symbols

The single constraint in the body of the above cardinality rule is
referred to as a cardinality constraint

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 122 / 426

Core language Cardinality rule

Cardinality rules with upper bounds

A rule of the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b,∼c
b ← l { a1, . . . , am,∼am+1, . . . ,∼an }
c ← u+1 { a1, . . . , am,∼am+1, . . . ,∼an }

where b and c are new symbols

The single constraint in the body of the above cardinality rule is
referred to as a cardinality constraint

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 122 / 426

Core language Cardinality rule

Cardinality constraints

Syntax A cardinality constraint is of the form

l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

Informal meaning A cardinality constraint is satisfied by a stable
model X , if the number of its contained literals satisfied by X is
between l and u (inclusive)

In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 123 / 426

Core language Cardinality rule

Cardinality constraints

Syntax A cardinality constraint is of the form

l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

Informal meaning A cardinality constraint is satisfied by a stable
model X , if the number of its contained literals satisfied by X is
between l and u (inclusive)

In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 123 / 426

Core language Cardinality rule

Cardinality constraints

Syntax A cardinality constraint is of the form

l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

Informal meaning A cardinality constraint is satisfied by a stable
model X , if the number of its contained literals satisfied by X is
between l and u (inclusive)

In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 123 / 426

Core language Cardinality rule

Cardinality constraints as heads

A rule of the form

l {a1, . . . , am,∼am+1, . . . ,∼an} u ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

{a1, . . . , am} ← b
c ← l {a1, . . . , am, ,∼am+1, . . . ,∼an} u
← b,∼c

where b and c are new symbols

Example 1 { color(v42,red),color(v42,green),color(v42,blue) } 1.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 124 / 426

Core language Cardinality rule

Cardinality constraints as heads

A rule of the form

l {a1, . . . , am,∼am+1, . . . ,∼an} u ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

{a1, . . . , am} ← b
c ← l {a1, . . . , am, ,∼am+1, . . . ,∼an} u
← b,∼c

where b and c are new symbols

Example 1 { color(v42,red),color(v42,green),color(v42,blue) } 1.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 124 / 426

Core language Cardinality rule

Cardinality constraints as heads

A rule of the form

l {a1, . . . , am,∼am+1, . . . ,∼an} u ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

{a1, . . . , am} ← b
c ← l {a1, . . . , am, ,∼am+1, . . . ,∼an} u
← b,∼c

where b and c are new symbols

Example 1 { color(v42,red),color(v42,green),color(v42,blue) } 1.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 124 / 426

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where for 0 ≤ i ≤ n each li Si ui

stands for 0 ≤ i ≤ n

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si

← a, c0 ci ← ui +1 Si

where a, bi , ci are new symbols

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 125 / 426

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where for 0 ≤ i ≤ n each li Si ui

stands for 0 ≤ i ≤ n

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si

← a, c0 ci ← ui +1 Si

where a, bi , ci are new symbols

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 125 / 426

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where for 0 ≤ i ≤ n each li Si ui

stands for 0 ≤ i ≤ n

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si

← a, c0 ci ← ui +1 Si

where a, bi , ci are new symbols

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 125 / 426

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where for 0 ≤ i ≤ n each li Si ui

stands for 0 ≤ i ≤ n

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si

← a, c0 ci ← ui +1 Si

where a, bi , ci are new symbols

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 125 / 426

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where for 0 ≤ i ≤ n each li Si ui

stands for 0 ≤ i ≤ n

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si

← a, c0 ci ← ui +1 Si

where a, bi , ci are new symbols

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 125 / 426

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where for 0 ≤ i ≤ n each li Si ui

stands for 0 ≤ i ≤ n

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si

← a, c0 ci ← ui +1 Si

where a, bi , ci are new symbols

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 125 / 426

Core language Weight rule

Outline

15 Motivation

16 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

17 Extended language
Conditional literal
Optimization statement

18 smodels format

19 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 126 / 426

Core language Weight rule

Weight rule

Syntax A weight rule is the form

a0 ← l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

A weighted literal, `i = wi , associates each literal `i with a weight wi

Note A cardinality rule is a weight rule where wi = 1 for 0 ≤ i ≤ n

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 127 / 426

Core language Weight rule

Weight rule

Syntax A weight rule is the form

a0 ← l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

A weighted literal, `i = wi , associates each literal `i with a weight wi

Note A cardinality rule is a weight rule where wi = 1 for 0 ≤ i ≤ n

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 127 / 426

Core language Weight rule

Weight constraints

Syntax A weight constraint is of the form

l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn } u

where 0 ≤ m ≤ n and each ai is an atom;
l , u and wi are integers for 1 ≤ i ≤ n

Meaning A weight constraint is satisfied by a stable model X , if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

Example 10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 128 / 426

Core language Weight rule

Weight constraints

Syntax A weight constraint is of the form

l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn } u

where 0 ≤ m ≤ n and each ai is an atom;
l , u and wi are integers for 1 ≤ i ≤ n

Meaning A weight constraint is satisfied by a stable model X , if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

Example 10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 128 / 426

Core language Weight rule

Weight constraints

Syntax A weight constraint is of the form

l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn } u

where 0 ≤ m ≤ n and each ai is an atom;
l , u and wi are integers for 1 ≤ i ≤ n

Meaning A weight constraint is satisfied by a stable model X , if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

Example 10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 128 / 426

Core language Weight rule

Weight constraints

Syntax A weight constraint is of the form

l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn } u

where 0 ≤ m ≤ n and each ai is an atom;
l , u and wi are integers for 1 ≤ i ≤ n

Meaning A weight constraint is satisfied by a stable model X , if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

Example 10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 128 / 426

Extended language

Outline

15 Motivation

16 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

17 Extended language
Conditional literal
Optimization statement

18 smodels format

19 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 129 / 426

Extended language Conditional literal

Outline

15 Motivation

16 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

17 Extended language
Conditional literal
Optimization statement

18 smodels format

19 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 130 / 426

Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 131 / 426

Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 131 / 426

Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 131 / 426

Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 131 / 426

Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 131 / 426

Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 131 / 426

Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 131 / 426

Extended language Optimization statement

Outline

15 Motivation

16 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

17 Extended language
Conditional literal
Optimization statement

18 smodels format

19 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 132 / 426

Extended language Optimization statement

Optimization statement

Idea Express cost functions subject to minimization and/or
maximization

Syntax A minimize statement is of the form

minimize{ `1 = w1@p1, . . . , `n = wn@pn }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi , allow for representing lexicographically ordered
minimization objectives

Meaning A minimize statement is a directive that instructs the ASP
solver to compute optimal stable models by minimizing a weighted
sum of elements

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 133 / 426

Extended language Optimization statement

Optimization statement

Idea Express cost functions subject to minimization and/or
maximization

Syntax A minimize statement is of the form

minimize{ `1 = w1@p1, . . . , `n = wn@pn }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi , allow for representing lexicographically ordered
minimization objectives

Meaning A minimize statement is a directive that instructs the ASP
solver to compute optimal stable models by minimizing a weighted
sum of elements

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 133 / 426

Extended language Optimization statement

Optimization statement

Idea Express cost functions subject to minimization and/or
maximization

Syntax A minimize statement is of the form

minimize{ `1 = w1@p1, . . . , `n = wn@pn }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi , allow for representing lexicographically ordered
minimization objectives

Meaning A minimize statement is a directive that instructs the ASP
solver to compute optimal stable models by minimizing a weighted
sum of elements

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 133 / 426

Extended language Optimization statement

Optimization statement

A maximize statement of the form

maximize{ `1 = w1@p1, . . . , `n = wn@pn }

stands for minimize{ `1 = −w1@p1, . . . , `n = −wn@pn }

Example When configuring a computer, we may want to maximize
hard disk capacity, while minimizing price

#maximize[hd(1)=250@1, hd(2)=500@1, hd(3)=750@1, hd(4)=1000@1].

#minimize[hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2].

The priority levels indicate that (minimizing) price is more important
than (maximizing) capacity

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 134 / 426

Extended language Optimization statement

Optimization statement

A maximize statement of the form

maximize{ `1 = w1@p1, . . . , `n = wn@pn }

stands for minimize{ `1 = −w1@p1, . . . , `n = −wn@pn }

Example When configuring a computer, we may want to maximize
hard disk capacity, while minimizing price

#maximize[hd(1)=250@1, hd(2)=500@1, hd(3)=750@1, hd(4)=1000@1].

#minimize[hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2].

The priority levels indicate that (minimizing) price is more important
than (maximizing) capacity

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 134 / 426

smodels format

Outline

15 Motivation

16 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

17 Extended language
Conditional literal
Optimization statement

18 smodels format

19 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 135 / 426

smodels format

smodels format

Logic programs in smodels format consist of

normal rules
choice rules
cardinality rules
weight rules
optimization statements

Such a format is obtained by grounders lparse and gringo

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 136 / 426

ASP language standard

Outline

15 Motivation

16 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

17 Extended language
Conditional literal
Optimization statement

18 smodels format

19 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 137 / 426

ASP language standard

ASP-Core-2

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

smodels formatASP-Core-2

smodels format is a machine-oriented standard for ground programs

ASP-Core-2 is a user-oriented standard for (non-ground) programs,
extending the input languages of dlv and gringo series 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 138 / 426

ASP language standard

ASP-Core-2

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

smodels formatASP-Core-2

smodels format is a machine-oriented standard for ground programs

ASP-Core-2 is a user-oriented standard for (non-ground) programs,
extending the input languages of dlv and gringo series 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 138 / 426

ASP language standard

ASP-Core-2

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

smodels formatASP-Core-2

smodels format is a machine-oriented standard for ground programs

ASP-Core-2 is a user-oriented standard for (non-ground) programs,
extending the input languages of dlv and gringo series 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 138 / 426

ASP language standard

ASP-Core-2

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

smodels formatASP-Core-2

smodels format is a machine-oriented standard for ground programs

ASP-Core-2 is a user-oriented standard for (non-ground) programs,
extending the input languages of dlv and gringo series 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 138 / 426

ASP language standard

Aggregates

Syntax ASP-Core-2 aggregates are of the form

t1 ≺1 #A{t11 , . . . , tm1 : `11 , . . . , `n1} ≺2 t2

where
#A ∈ {#count,#sum,#max,#min}
≺1,≺2 ∈ {<,≤,=, 6=, >,≥}
t11 , . . . , tm1 and t1, t2 are terms
`11 , . . . , `n1 are literals

Example Weight constraint

10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

is written as an ASP-Core-2 aggregate as

10 ≤ #sum{6,db:course(db); 6,ai:course(ai);

8,project:course(project); 3,xml:course(xml)} ≤ 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 139 / 426

ASP language standard

Aggregates

Syntax ASP-Core-2 aggregates are of the form

t1 ≺1 #A{t11 , . . . , tm1 : `11 , . . . , `n1 ; . . . ; t1k
, . . . , tmk

: `1k
, . . . , `nk

} ≺2 t2

where
#A ∈ {#count,#sum,#max,#min}
≺1,≺2 ∈ {<,≤,=, 6=, >,≥}
t11 , . . . , tm1 , . . . , t1k

, . . . , tmk
, and t1, t2 are terms

`11 , . . . , `n1 , . . . , `1k
, . . . , `nk

are literals

Example Weight constraint

10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

is written as an ASP-Core-2 aggregate as

10 ≤ #sum{6,db:course(db); 6,ai:course(ai);

8,project:course(project); 3,xml:course(xml)} ≤ 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 139 / 426

ASP language standard

Aggregates

Syntax ASP-Core-2 aggregates are of the form

t1 ≺1 #A{t11 , . . . , tm1 : `11 , . . . , `n1 ; . . . ; t1k
, . . . , tmk

: `1k
, . . . , `nk

} ≺2 t2

where
#A ∈ {#count,#sum,#max,#min}
≺1,≺2 ∈ {<,≤,=, 6=, >,≥}
t11 , . . . , tm1 , . . . , t1k

, . . . , tmk
, and t1, t2 are terms

`11 , . . . , `n1 , . . . , `1k
, . . . , `nk

are literals

Example Weight constraint

10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

is written as an ASP-Core-2 aggregate as

10 ≤ #sum{6,db:course(db); 6,ai:course(ai);

8,project:course(project); 3,xml:course(xml)} ≤ 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 139 / 426

ASP language standard

Aggregates

Syntax ASP-Core-2 aggregates are of the form

t1 ≺1 #A{t11 , . . . , tm1 : `11 , . . . , `n1 ; . . . ; t1k
, . . . , tmk

: `1k
, . . . , `nk

} ≺2 t2

where
#A ∈ {#count,#sum,#max,#min}
≺1,≺2 ∈ {<,≤,=, 6=, >,≥}
t11 , . . . , tm1 , . . . , t1k

, . . . , tmk
, and t1, t2 are terms

`11 , . . . , `n1 , . . . , `1k
, . . . , `nk

are literals

Example Weight constraint

10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

is written as an ASP-Core-2 aggregate as

10 ≤ #sum{6,db:course(db); 6,ai:course(ai);

8,project:course(project); 3,xml:course(xml)} ≤ 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 139 / 426

ASP language standard

Weak constraints

Syntax A weak constraint is of the form

� a1, . . . , am,∼am+1, . . . ,∼an. [w@p, t1, . . . , tm]

where
a1, . . . , an are atoms
t1, . . . , tm, w , and p are terms

a1, . . . , an may contain ASP-Core-2 aggregates

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example Minimize statement

#minimize[hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2].

can be written in terms of weak constraints as

� hd(1). [30@2,1] � hd(3). [60@2,3]

� hd(2). [40@2,2] � hd(4). [80@2,4]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 140 / 426

ASP language standard

Weak constraints

Syntax A weak constraint is of the form

� a1, . . . , am,∼am+1, . . . ,∼an. [w@p, t1, . . . , tm]

where
a1, . . . , an are atoms
t1, . . . , tm, w , and p are terms

a1, . . . , an may contain ASP-Core-2 aggregates

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example Minimize statement

#minimize[hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2].

can be written in terms of weak constraints as

� hd(1). [30@2,1] � hd(3). [60@2,3]

� hd(2). [40@2,2] � hd(4). [80@2,4]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 140 / 426

ASP language standard

Weak constraints

Syntax A weak constraint is of the form

� a1, . . . , am,∼am+1, . . . ,∼an. [w@p, t1, . . . , tm]

where
a1, . . . , an are atoms
t1, . . . , tm, w , and p are terms

a1, . . . , an may contain ASP-Core-2 aggregates

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example Minimize statement

#minimize[hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2].

can be written in terms of weak constraints as

� hd(1). [30@2,1] � hd(3). [60@2,3]

� hd(2). [40@2,2] � hd(4). [80@2,4]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 140 / 426

ASP language standard

Weak constraints

Syntax A weak constraint is of the form

� a1, . . . , am,∼am+1, . . . ,∼an. [w@p, t1, . . . , tm]

where
a1, . . . , an are atoms
t1, . . . , tm, w , and p are terms

a1, . . . , an may contain ASP-Core-2 aggregates

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example Minimize statement

#minimize[hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2].

can be written in terms of weak constraints as

� hd(1). [30@2,1] � hd(3). [60@2,3]

� hd(2). [40@2,2] � hd(4). [80@2,4]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 140 / 426

ASP language standard

gringo 4

The input language of gringo series 4 comprises

ASP-Core-2
concepts from gringo 3 (conditional literals, #show directives, . . .)

Example The gringo 3 rule

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X),not q(X) :- r(X):p(X),not q(X);

1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
#show. #show hello. #show X : p(X). 1 {p(earth);p(mars);p(venus)} 1.

Attention The languages of gringo 3 and 4 are not fully compatible

Many example programs given in this tutorial are written for gringo 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 141 / 426

ASP language standard

gringo 4

The input language of gringo series 4 comprises

ASP-Core-2
concepts from gringo 3 (conditional literals, #show directives, . . .)

Example The gringo 3 rule

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X),not q(X) :- r(X):p(X),not q(X);

1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
#show. #show hello. #show X : p(X). 1 {p(earth);p(mars);p(venus)} 1.

Attention The languages of gringo 3 and 4 are not fully compatible

Many example programs given in this tutorial are written for gringo 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 141 / 426

ASP language standard

gringo 4

The input language of gringo series 4 comprises

ASP-Core-2
concepts from gringo 3 (conditional literals, #show directives, . . .)

Example The gringo 3 rule

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X),not q(X) :- r(X):p(X),not q(X);

1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
#show. #show hello. #show X : p(X). 1 {p(earth);p(mars);p(venus)} 1.

Attention The languages of gringo 3 and 4 are not fully compatible

Many example programs given in this tutorial are written for gringo 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 141 / 426

ASP language standard

gringo 4

The input language of gringo series 4 comprises

ASP-Core-2
concepts from gringo 3 (conditional literals, #show directives, . . .)

Example The gringo 3 rule

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X),not q(X) :- r(X):p(X),not q(X);

1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
#show. #show hello. #show X : p(X). 1 {p(earth);p(mars);p(venus)} 1.

Attention The languages of gringo 3 and 4 are not fully compatible

Many example programs given in this tutorial are written for gringo 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 141 / 426

ASP language standard

gringo 4

The input language of gringo series 4 comprises

ASP-Core-2
concepts from gringo 3 (conditional literals, #show directives, . . .)

Example The gringo 3 rule

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X),not q(X) :- r(X):p(X),not q(X);

1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
#show. #show hello. #show X : p(X). 1 {p(earth);p(mars);p(venus)} 1.

Attention The languages of gringo 3 and 4 are not fully compatible

Many example programs given in this tutorial are written for gringo 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 141 / 426

Language Extensions: Overview

20 Two kinds of negation

21 Disjunctive logic programs

22 Propositional theories

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 142 / 426

Two kinds of negation

Outline

20 Two kinds of negation

21 Disjunctive logic programs

22 Propositional theories

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 143 / 426

Two kinds of negation

Motivation

Classical versus default negation

Symbol ¬ and ∼
Idea

¬a ≈ ¬a ∈ X
∼a ≈ a /∈ X

Example

cross ← ¬train
cross ← ∼train

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 144 / 426

Two kinds of negation

Motivation

Classical versus default negation

Symbol ¬ and ∼
Idea

¬a ≈ ¬a ∈ X
∼a ≈ a /∈ X

Example

cross ← ¬train
cross ← ∼train

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 144 / 426

Two kinds of negation

Motivation

Classical versus default negation

Symbol ¬ and ∼
Idea

¬a ≈ ¬a ∈ X
∼a ≈ a /∈ X

Example

cross ← ¬train
cross ← ∼train

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 144 / 426

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 145 / 426

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 145 / 426

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 145 / 426

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 145 / 426

Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c

c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c


The stable models of P are given by the ones of P ∪ P¬, viz {a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 146 / 426

Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c

c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c


The stable models of P are given by the ones of P ∪ P¬, viz {a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 146 / 426

Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c

c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c


The stable models of P are given by the ones of P ∪ P¬, viz {a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 146 / 426

Two kinds of negation

Properties

The only inconsistent stable “model” is X = A ∪A
Note Strictly speaking, an inconsistemt set like A ∪A is not a model

For a logic program P over A ∪A, exactly one of the following two
cases applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 147 / 426

Two kinds of negation

Properties

The only inconsistent stable “model” is X = A ∪A
Note Strictly speaking, an inconsistemt set like A ∪A is not a model

For a logic program P over A ∪A, exactly one of the following two
cases applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 147 / 426

Two kinds of negation

Properties

The only inconsistent stable “model” is X = A ∪A
Note Strictly speaking, an inconsistemt set like A ∪A is not a model

For a logic program P over A ∪A, exactly one of the following two
cases applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 147 / 426

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 148 / 426

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 148 / 426

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 148 / 426

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 148 / 426

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 148 / 426

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 148 / 426

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 148 / 426

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 148 / 426

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 148 / 426

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 148 / 426

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 148 / 426

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 148 / 426

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 148 / 426

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= ∼a}
∪ {← body(r) ∪ {∼ã} | r ∈ P and head(r) = ∼a}
∪ {ã← ∼a | r ∈ P and head(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 149 / 426

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= ∼a}
∪ {← body(r) ∪ {∼ã} | r ∈ P and head(r) = ∼a}
∪ {ã← ∼a | r ∈ P and head(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 149 / 426

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= ∼a}
∪ {← body(r) ∪ {∼ã} | r ∈ P and head(r) = ∼a}
∪ {ã← ∼a | r ∈ P and head(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 149 / 426

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= ∼a}
∪ {← body(r) ∪ {∼ã} | r ∈ P and head(r) = ∼a}
∪ {ã← ∼a | r ∈ P and head(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 149 / 426

Disjunctive logic programs

Outline

20 Two kinds of negation

21 Disjunctive logic programs

22 Propositional theories

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 150 / 426

Disjunctive logic programs

Disjunctive logic programs

A disjunctive rule, r , is of the form

a1 ; . . . ; am ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

A disjunctive logic program is a finite set of disjunctive rules

Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an,∼an+1, . . . ,∼ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}
atom(P) =

⋃
r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program is called positive if body(r)− = ∅ for all its rules

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 151 / 426

Disjunctive logic programs

Disjunctive logic programs

A disjunctive rule, r , is of the form

a1 ; . . . ; am ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

A disjunctive logic program is a finite set of disjunctive rules

Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an,∼an+1, . . . ,∼ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}
atom(P) =

⋃
r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program is called positive if body(r)− = ∅ for all its rules

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 151 / 426

Disjunctive logic programs

Disjunctive logic programs

A disjunctive rule, r , is of the form

a1 ; . . . ; am ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

A disjunctive logic program is a finite set of disjunctive rules

Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an,∼an+1, . . . ,∼ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}
atom(P) =

⋃
r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program is called positive if body(r)− = ∅ for all its rules

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 151 / 426

Disjunctive logic programs

Stable models

Positive programs

A set X of atoms is closed under a positive program P iff
for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The set of all ⊆-minimal sets of atoms being closed under a positive
program P is denoted by min⊆(P)

min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

Disjunctive programs

The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 152 / 426

Disjunctive logic programs

Stable models

Positive programs

A set X of atoms is closed under a positive program P iff
for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The set of all ⊆-minimal sets of atoms being closed under a positive
program P is denoted by min⊆(P)

min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

Disjunctive programs

The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 152 / 426

Disjunctive logic programs

Stable models

Positive programs

A set X of atoms is closed under a positive program P iff
for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The set of all ⊆-minimal sets of atoms being closed under a positive
program P is denoted by min⊆(P)

min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

Disjunctive programs

The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 152 / 426

Disjunctive logic programs

A “positive” example

P =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under P

We have min⊆(P) = {{a, b}, {a, c}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 153 / 426

Disjunctive logic programs

A “positive” example

P =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under P

We have min⊆(P) = {{a, b}, {a, c}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 153 / 426

Disjunctive logic programs

A “positive” example

P =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under P

We have min⊆(P) = {{a, b}, {a, c}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 153 / 426

Disjunctive logic programs

Graph coloring (reloaded)

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).

edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

color(X,r) | color(X,b) | color(X,g) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 154 / 426

Disjunctive logic programs

Graph coloring (reloaded)

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).

edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

col(r). col(b). col(g).

color(X,C) : col(C) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 154 / 426

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 155 / 426

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 155 / 426

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 155 / 426

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 155 / 426

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 155 / 426

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 155 / 426

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 155 / 426

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 155 / 426

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 155 / 426

Disjunctive logic programs

Some properties

A disjunctive logic program may have zero, one, or multiple stable
models

If X is a stable model of a disjunctive logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a disjunctive logic program P,
then X 6⊂ Y

If A ∈ X for some stable model X of a disjunctive logic program P,
then there is a rule r ∈ P such that
body(r)+ ⊆ X , body(r)− ∩ X = ∅, and head(r) ∩ X = {A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 156 / 426

Disjunctive logic programs

Some properties

A disjunctive logic program may have zero, one, or multiple stable
models

If X is a stable model of a disjunctive logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a disjunctive logic program P,
then X 6⊂ Y

If A ∈ X for some stable model X of a disjunctive logic program P,
then there is a rule r ∈ P such that
body(r)+ ⊆ X , body(r)− ∩ X = ∅, and head(r) ∩ X = {A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 156 / 426

Disjunctive logic programs

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X ,Y),∼c(Y)

}

ground(P) =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


For every stable model X of P, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 157 / 426

Disjunctive logic programs

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X ,Y),∼c(Y)

}

ground(P) =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


For every stable model X of P, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 157 / 426

Disjunctive logic programs

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X ,Y),∼c(Y)

}

ground(P) =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


For every stable model X of P, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 157 / 426

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 158 / 426

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 158 / 426

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 158 / 426

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 158 / 426

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 158 / 426

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 159 / 426

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 159 / 426

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 159 / 426

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 159 / 426

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 159 / 426

Disjunctive logic programs

Default negation in rule heads

Consider disjunctive rules of the form

a1 ; . . . ; am ;∼am+1 ; . . . ;∼an ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {∼ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← ∼a | r ∈ P and a ∈ head(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 160 / 426

Disjunctive logic programs

Default negation in rule heads

Consider disjunctive rules of the form

a1 ; . . . ; am ;∼am+1 ; . . . ;∼an ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {∼ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← ∼a | r ∈ P and a ∈ head(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 160 / 426

Disjunctive logic programs

Default negation in rule heads

Consider disjunctive rules of the form

a1 ; . . . ; am ;∼am+1 ; . . . ;∼an ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {∼ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← ∼a | r ∈ P and a ∈ head(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 160 / 426

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 161 / 426

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 161 / 426

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 161 / 426

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 161 / 426

Propositional theories

Outline

20 Two kinds of negation

21 Disjunctive logic programs

22 Propositional theories

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 162 / 426

Propositional theories

Propositional theories

Formulas are formed from

atoms in A
⊥

using

conjunction (∧)
disjunction (∨)
implication (→)

Notation

> = (⊥ → ⊥)

∼φ = (φ→ ⊥)

A propositional theory is a finite set of formulas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 163 / 426

Propositional theories

Propositional theories

Formulas are formed from

atoms in A
⊥

using

conjunction (∧)
disjunction (∨)
implication (→)

Notation

> = (⊥ → ⊥)

∼φ = (φ→ ⊥)

A propositional theory is a finite set of formulas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 163 / 426

Propositional theories

Propositional theories

Formulas are formed from

atoms in A
⊥

using

conjunction (∧)
disjunction (∨)
implication (→)

Notation

> = (⊥ → ⊥)

∼φ = (φ→ ⊥)

A propositional theory is a finite set of formulas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 163 / 426

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 164 / 426

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 164 / 426

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 164 / 426

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 164 / 426

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 164 / 426

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 164 / 426

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 164 / 426

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 165 / 426

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 165 / 426

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 165 / 426

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 165 / 426

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 165 / 426

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 166 / 426

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 166 / 426

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 166 / 426

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 166 / 426

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 166 / 426

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 166 / 426

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 166 / 426

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 166 / 426

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 166 / 426

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 166 / 426

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 166 / 426

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 166 / 426

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 167 / 426

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 167 / 426

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 167 / 426

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 167 / 426

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 168 / 426

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 168 / 426

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 168 / 426

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 168 / 426

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 168 / 426

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 168 / 426

Grounding: Overview

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 169 / 426

Grounding by example

d(a)
d(c)
d(d)

p(a, b)
p(b, c)
p(c , d)
p(X ,Z)← p(X ,Y), p(Y ,Z)

q(a)
q(b)
q(X)← ∼r(X), d(X)

r(X)← ∼q(X), d(X)
s(X)← ∼r(X), p(X ,Y), q(Y)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 170 / 426

Grounding by example

Safe ?
d(a)
d(c)
d(d)

p(a, b)
p(b, c)
p(c , d)
p(X ,Z)← p(X ,Y), p(Y ,Z)

q(a)
q(b)
q(X)← ∼r(X), d(X)

r(X)← ∼q(X), d(X)
s(X)← ∼r(X), p(X ,Y), q(Y)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 170 / 426

Grounding by example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z)← p(X ,Y), p(Y ,Z)

q(a) 4

q(b) 4

q(X)← ∼r(X), d(X)

r(X)← ∼q(X), d(X)
s(X)← ∼r(X), p(X ,Y), q(Y)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 170 / 426

Grounding by example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z)← p(X ,Y), p(Y ,Z)

q(a) 4

q(b) 4

q(X)← ∼r(X), d(X)

r(X)← ∼q(X), d(X)
s(X)← ∼r(X), p(X ,Y), q(Y)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 170 / 426

Grounding by example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z)← p(X ,Y), p(Y ,Z) 4

q(a) 4

q(b) 4

q(X)← ∼r(X), d(X) 4

r(X)← ∼q(X), d(X) 4

s(X)← ∼r(X), p(X ,Y), q(Y) 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 170 / 426

Match

A substitution is a mapping from variables to terms

Given sets B and D of atoms, a substitution θ is a match of B in D,
if Bθ ⊆ D

Given a set B of atoms and a set D of ground atoms, define

Θ(B,D) = { θ | θ is a ⊆-minimal match of B in D }

Example {X 7→ 1} and {X 7→ 2} are ⊆-minimal matches of {p(X)}
in {p(1), p(2), p(3)}, while match {X 7→ 1,Y 7→ 2} is not

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 171 / 426

Match

A substitution is a mapping from variables to terms

Given sets B and D of atoms, a substitution θ is a match of B in D,
if Bθ ⊆ D

Given a set B of atoms and a set D of ground atoms, define

Θ(B,D) = { θ | θ is a ⊆-minimal match of B in D }

Example {X 7→ 1} and {X 7→ 2} are ⊆-minimal matches of {p(X)}
in {p(1), p(2), p(3)}, while match {X 7→ 1,Y 7→ 2} is not

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 171 / 426

Match

A substitution is a mapping from variables to terms

Given sets B and D of atoms, a substitution θ is a match of B in D,
if Bθ ⊆ D

Given a set B of atoms and a set D of ground atoms, define

Θ(B,D) = { θ | θ is a ⊆-minimal match of B in D }

Example {X 7→ 1} and {X 7→ 2} are ⊆-minimal matches of {p(X)}
in {p(1), p(2), p(3)}, while match {X 7→ 1,Y 7→ 2} is not

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 171 / 426

Match

A substitution is a mapping from variables to terms

Given sets B and D of atoms, a substitution θ is a match of B in D,
if Bθ ⊆ D

Given a set B of atoms and a set D of ground atoms, define

Θ(B,D) = { θ | θ is a ⊆-minimal match of B in D }

Example {X 7→ 1} and {X 7→ 2} are ⊆-minimal matches of {p(X)}
in {p(1), p(2), p(3)}, while match {X 7→ 1,Y 7→ 2} is not

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 171 / 426

Naive instantiation

Algorithm 1: NaiveInstantiation

Input : A safe (first-order) logic program P
Output : A ground logic program P ′

D := ∅
P ′ := ∅
repeat

D ′ := D
foreach r ∈ P do

B := body(r)+

foreach θ ∈ Θ(B,D) do
D := D ∪ {head(r)θ}
P ′ := P ′ ∪ {rθ}

until D = D ′

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 172 / 426

Predicate-rule dependency graph

d(a) d(c) q(a) q(b)

d(d) d/1 q(X)← ∼r(X), d(X) q/1

p(a, b) p(b, c) r(X)← ∼q(X), d(X)

p(c, d) p/2 r/1

p(X ,Z)← p(X ,Y), p(Y ,Z) s(X)← ∼r(X), p(X ,Y), q(Y) s/1

1 2

3
4

5 6

7

8 9

10

11 12 13

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 173 / 426

Instantiation

SCC Θ(B,D) D P ′

1 {∅} d(a) d(a)←
2 {∅} d(c) d(c)←
3 {∅} d(d) d(d)←
5 {∅} q(a) q(a)←
6 {∅} q(b) q(b)←
7 {{X 7→ a}, q(a)← ∼r(a), d(a)

{X 7→ c}, q(c) q(c)← ∼r(c), d(c)
{X 7→ d}, q(d) q(d)← ∼r(d), d(d)
{X 7→ a}, r(a)← ∼q(a), d(a)
{X 7→ c}, r(c) r(c)← ∼q(c), d(c)
{X 7→ d}} r(d) r(d)← ∼q(d), d(d)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 174 / 426

Instantiation

SCC Θ(B,D) D P ′

8 {∅} p(a, b) p(a, b)←
9 {∅} p(b, c) p(b, c)←

10 {∅} p(c , d) p(c , d)←
11 {{X 7→ a,Y 7→ b,Z 7→ c}, p(a, c) p(a, c)← p(a, b), p(b, c)

{X 7→ b,Y 7→ c ,Z 7→ d}} p(b, d) p(b, d)← p(b, c), p(c , d)
{{X 7→ a,Y 7→ c ,Z 7→ d}, p(a, d) p(a, d)← p(a, c), p(c , d)
{X 7→ a,Y 7→ b,Z 7→ d}} p(a, d)← p(a, b), p(b, d)

12 {{X 7→ a,Y 7→ b}, s(a) s(a)← ∼r(a), p(a, b), q(b)
{X 7→ a,Y 7→ c}, s(a)← ∼r(a), p(a, c), q(c)
{X 7→ a,Y 7→ d}, s(a)← ∼r(a), p(a, d), q(d)
{X 7→ b,Y 7→ c}, s(b) s(b)← ∼r(b), p(b, c), q(c)
{X 7→ b,Y 7→ d}, s(b)← ∼r(b), p(b, d), q(d)
{X 7→ c ,Y 7→ d}} s(c) s(c)← ∼r(c), p(c , d), q(d)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 175 / 426

Computational Aspects: Overview

23 Consequence operator

24 Computation from first principles

25 Complexity

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 176 / 426

Consequence operator

Outline

23 Consequence operator

24 Computation from first principles

25 Complexity

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 177 / 426

Consequence operator

Consequence operator

Let P be a positive program and X a set of atoms

The consequence operator TP is defined as follows:

TP X = {head(r) | r ∈ P and body(r) ⊆ X}

Iterated applications of TP are written as T j
P for j ≥ 0,

where

T 0
P X = X and

T i
P X = TP T i−1

P X for i ≥ 1

For any positive program P, we have

Cn(P) =
⋃

i≥0 T i
P∅

X ⊆ Y implies TP X ⊆ TP Y

Cn(P) is the smallest fixpoint of TP

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 178 / 426

Consequence operator

Consequence operator

Let P be a positive program and X a set of atoms

The consequence operator TP is defined as follows:

TP X = {head(r) | r ∈ P and body(r) ⊆ X}

Iterated applications of TP are written as T j
P for j ≥ 0,

where

T 0
P X = X and

T i
P X = TP T i−1

P X for i ≥ 1

For any positive program P, we have

Cn(P) =
⋃

i≥0 T i
P∅

X ⊆ Y implies TP X ⊆ TP Y

Cn(P) is the smallest fixpoint of TP

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 178 / 426

Consequence operator

Consequence operator

Let P be a positive program and X a set of atoms

The consequence operator TP is defined as follows:

TP X = {head(r) | r ∈ P and body(r) ⊆ X}

Iterated applications of TP are written as T j
P for j ≥ 0,

where

T 0
P X = X and

T i
P X = TP T i−1

P X for i ≥ 1

For any positive program P, we have

Cn(P) =
⋃

i≥0 T i
P∅

X ⊆ Y implies TP X ⊆ TP Y

Cn(P) is the smallest fixpoint of TP

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 178 / 426

Consequence operator

An example

Consider the program

P = {p ←, q ←, r ← p, s ← q, t, t ← r , u ← v}

We get

T 0
P∅ = ∅

T 1
P∅ = {p, q} = TPT 0

P∅ = TP∅
T 2

P∅ = {p, q, r} = TPT 1
P∅ = TP{p, q}

T 3
P∅ = {p, q, r , t} = TPT 2

P∅ = TP{p, q, r}
T 4

P∅ = {p, q, r , t, s} = TPT 3
P∅ = TP{p, q, r , t}

T 5
P∅ = {p, q, r , t, s} = TPT 4

P∅ = TP{p, q, r , t, s}
T 6

P∅ = {p, q, r , t, s} = TPT 5
P∅ = TP{p, q, r , t, s}

Cn(P) = {p, q, r , t, s} is the smallest fixpoint of TP because
TP{p, q, r , t, s} = {p, q, r , t, s} and
TP X 6= X for each X ⊂ {p, q, r , t, s}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 179 / 426

Consequence operator

An example

Consider the program

P = {p ←, q ←, r ← p, s ← q, t, t ← r , u ← v}

We get

T 0
P∅ = ∅

T 1
P∅ = {p, q} = TPT 0

P∅ = TP∅
T 2

P∅ = {p, q, r} = TPT 1
P∅ = TP{p, q}

T 3
P∅ = {p, q, r , t} = TPT 2

P∅ = TP{p, q, r}
T 4

P∅ = {p, q, r , t, s} = TPT 3
P∅ = TP{p, q, r , t}

T 5
P∅ = {p, q, r , t, s} = TPT 4

P∅ = TP{p, q, r , t, s}
T 6

P∅ = {p, q, r , t, s} = TPT 5
P∅ = TP{p, q, r , t, s}

Cn(P) = {p, q, r , t, s} is the smallest fixpoint of TP because
TP{p, q, r , t, s} = {p, q, r , t, s} and
TP X 6= X for each X ⊂ {p, q, r , t, s}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 179 / 426

Consequence operator

An example

Consider the program

P = {p ←, q ←, r ← p, s ← q, t, t ← r , u ← v}

We get

T 0
P∅ = ∅

T 1
P∅ = {p, q} = TPT 0

P∅ = TP∅
T 2

P∅ = {p, q, r} = TPT 1
P∅ = TP{p, q}

T 3
P∅ = {p, q, r , t} = TPT 2

P∅ = TP{p, q, r}
T 4

P∅ = {p, q, r , t, s} = TPT 3
P∅ = TP{p, q, r , t}

T 5
P∅ = {p, q, r , t, s} = TPT 4

P∅ = TP{p, q, r , t, s}
T 6

P∅ = {p, q, r , t, s} = TPT 5
P∅ = TP{p, q, r , t, s}

Cn(P) = {p, q, r , t, s} is the smallest fixpoint of TP because
TP{p, q, r , t, s} = {p, q, r , t, s} and
TP X 6= X for each X ⊂ {p, q, r , t, s}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 179 / 426

Computation from first principles

Outline

23 Consequence operator

24 Computation from first principles

25 Complexity

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 180 / 426

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 181 / 426

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 181 / 426

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 181 / 426

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 181 / 426

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 181 / 426

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 181 / 426

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 181 / 426

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 181 / 426

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 181 / 426

Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 182 / 426

Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 182 / 426

Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 182 / 426

Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 182 / 426

Computation from first principles

The simplistic expand algorithm

expandP(L,U)
repeat

L′ ← L
U ′ ← U

L← L′ ∪ Cn(PU′)
U ← U ′ ∩ Cn(PL′)

if L 6⊆ U then return

until L = L′ and U = U ′

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 183 / 426

Computation from first principles

An example

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a} {a} {a, b, c , d , e} {a, b, d , e} {a, b, d , e}
2 {a} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}
3 {a, b} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}

Note We have {a, b} ⊆ X and (A \ {a, b, d , e}) ∩ X = ({c} ∩ X) = ∅
for every stable model X of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 184 / 426

Computation from first principles

An example

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a} {a} {a, b, c , d , e} {a, b, d , e} {a, b, d , e}
2 {a} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}
3 {a, b} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}

Note We have {a, b} ⊆ X and (A \ {a, b, d , e}) ∩ X = ({c} ∩ X) = ∅
for every stable model X of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 184 / 426

Computation from first principles

An example

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a} {a} {a, b, c , d , e} {a, b, d , e} {a, b, d , e}
2 {a} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}
3 {a, b} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}

Note We have {a, b} ⊆ X and (A \ {a, b, d , e}) ∩ X = ({c} ∩ X) = ∅
for every stable model X of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 184 / 426

Computation from first principles

The simplistic expand algorithm

expandP

tightens the approximation on stable models
is stable model preserving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 185 / 426

Computation from first principles

Let’s expand with d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 {d} {a} {a, d} {a, b, c , d , e} {a, b, d} {a, b, d}
2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}
3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

Note {a, b, d} is a stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 186 / 426

Computation from first principles

Let’s expand with d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 {d} {a} {a, d} {a, b, c , d , e} {a, b, d} {a, b, d}
2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}
3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

Note {a, b, d} is a stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 186 / 426

Computation from first principles

Let’s expand with d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 {d} {a} {a, d} {a, b, c , d , e} {a, b, d} {a, b, d}
2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}
3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

Note {a, b, d} is a stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 186 / 426

Computation from first principles

Let’s expand with ∼d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a, e} {a, e} {a, b, c , e} {a, b, d , e} {a, b, e}
2 {a, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}
3 {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}

Note {a, b, e} is a stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 187 / 426

Computation from first principles

Let’s expand with ∼d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a, e} {a, e} {a, b, c , e} {a, b, d , e} {a, b, e}
2 {a, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}
3 {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}

Note {a, b, e} is a stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 187 / 426

Computation from first principles

Let’s expand with ∼d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a, e} {a, e} {a, b, c , e} {a, b, d , e} {a, b, e}
2 {a, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}
3 {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}

Note {a, b, e} is a stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 187 / 426

Computation from first principles

A simplistic solving algorithm

solveP(L,U)

(L,U)← expandP(L,U) // propagation

if L 6⊆ U then failure // failure

if L = U then output L // success

else choose a ∈ U \ L // choice

solveP(L ∪ {a},U)

solveP(L,U \ {a})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 188 / 426

Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 189 / 426

Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 189 / 426

Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 189 / 426

Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 189 / 426

Complexity

Outline

23 Consequence operator

24 Computation from first principles

25 Complexity

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 190 / 426

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 191 / 426

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 191 / 426

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 191 / 426

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 191 / 426

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is
co-NPNP -complete
Deciding whether a is in an optimal stable model of P is ∆p

3-complete

For a propositional theory Φ:

Deciding whether X is a stable model of Φ is co-NP-complete
Deciding whether a is in a stable model of Φ is NPNP -complete

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 192 / 426

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is
co-NPNP -complete
Deciding whether a is in an optimal stable model of P is ∆p

3-complete

For a propositional theory Φ:

Deciding whether X is a stable model of Φ is co-NP-complete
Deciding whether a is in a stable model of Φ is NPNP -complete

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 192 / 426

Axiomatic Characterization: Overview

26 Completion

27 Tightness

28 Loops and Loop Formulas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 193 / 426

Completion

Outline

26 Completion

27 Tightness

28 Loops and Loop Formulas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 194 / 426

Completion

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Although each atom is defined through a set of rules,
each such rule provides only a sufficient condition for its head atom

Idea The idea of program completion is to turn such implications into
a definition by adding the corresponding necessary counterpart

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 195 / 426

Completion

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Although each atom is defined through a set of rules,
each such rule provides only a sufficient condition for its head atom

Idea The idea of program completion is to turn such implications into
a definition by adding the corresponding necessary counterpart

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 195 / 426

Completion

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Although each atom is defined through a set of rules,
each such rule provides only a sufficient condition for its head atom

Idea The idea of program completion is to turn such implications into
a definition by adding the corresponding necessary counterpart

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 195 / 426

Completion

Program completion

Let P be a normal logic program

The completion CF (P) of P is defined as follows

CF (P) =
{

a↔
∨

r∈P,head(r)=aBF (body(r)) | a ∈ atom(P)
}

where

BF (body(r)) =
∧

a∈body(r)+a ∧
∧

a∈body(r)−¬a

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 196 / 426

Completion

An example

P =



a←
b ← ∼a
c ← a,∼d
d ← ∼c,∼e
e ← b,∼f
e ← e


CF (P) =



a↔ >
b ↔ ¬a
c ↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e ↔ (b ∧ ¬f) ∨ e
f ↔ ⊥



M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 197 / 426

Completion

An example

P =



a←
b ← ∼a
c ← a,∼d
d ← ∼c,∼e
e ← b,∼f
e ← e


CF (P) =



a↔ >
b ↔ ¬a
c ↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e ↔ (b ∧ ¬f) ∨ e
f ↔ ⊥



M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 197 / 426

Completion

A closer look

CF (P) is logically equivalent to
←−
CF (P) ∪

−→
CF (P), where

←−
CF (P) =

{
a←

∨
B∈bodyP (a)BF (B) | a ∈ atom(P)

}
−→
CF (P) =

{
a→

∨
B∈bodyP (a)BF (B) | a ∈ atom(P)

}
body P(a) = {body(r) | r ∈ P and head(r) = a}

←−
CF (P) characterizes the classical models of P
−→
CF (P) completes P by adding necessary conditions for all atoms

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 198 / 426

Completion

A closer look

CF (P) is logically equivalent to
←−
CF (P) ∪

−→
CF (P), where

←−
CF (P) =

{
a←

∨
B∈bodyP (a)BF (B) | a ∈ atom(P)

}
−→
CF (P) =

{
a→

∨
B∈bodyP (a)BF (B) | a ∈ atom(P)

}
body P(a) = {body(r) | r ∈ P and head(r) = a}

←−
CF (P) characterizes the classical models of P
−→
CF (P) completes P by adding necessary conditions for all atoms

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 198 / 426

Completion

A closer look

P =



a←
b ← ∼a
c ← a,∼d
d ← ∼c,∼e
e ← b,∼f
e ← e



M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 199 / 426

Completion

A closer look

P =



a←
b ← ∼a
c ← a,∼d
d ← ∼c,∼e
e ← b,∼f
e ← e


←−
CF (P) =



a← >
b ← ¬a
c ← a ∧ ¬d
d ← ¬c ∧ ¬e
e ← (b ∧ ¬f) ∨ e
f ← ⊥



M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 199 / 426

Completion

A closer look

←−
CF (P) =



a← >
b ← ¬a
c ← a ∧ ¬d
d ← ¬c ∧ ¬e
e ← (b ∧ ¬f) ∨ e
f ← ⊥



M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 199 / 426

Completion

A closer look

←−
CF (P) =



a← >
b ← ¬a
c ← a ∧ ¬d
d ← ¬c ∧ ¬e
e ← (b ∧ ¬f) ∨ e
f ← ⊥





a→ >
b → ¬a
c → a ∧ ¬d
d → ¬c ∧ ¬e
e → (b ∧ ¬f) ∨ e
f → ⊥


=
−→
CF (P)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 199 / 426

Completion

A closer look

←−
CF (P) =



a← >
b ← ¬a
c ← a ∧ ¬d
d ← ¬c ∧ ¬e
e ← (b ∧ ¬f) ∨ e
f ← ⊥





a→ >
b → ¬a
c → a ∧ ¬d
d → ¬c ∧ ¬e
e → (b ∧ ¬f) ∨ e
f → ⊥


=
−→
CF (P)

CF (P) =



a↔ >
b ↔ ¬a
c ↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e ↔ (b ∧ ¬f) ∨ e
f ↔ ⊥


M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 199 / 426

Completion

A closer look

←−
CF (P) =



a← >
b ← ¬a
c ← a ∧ ¬d
d ← ¬c ∧ ¬e
e ← (b ∧ ¬f) ∨ e
f ← ⊥





a→ >
b → ¬a
c → a ∧ ¬d
d → ¬c ∧ ¬e
e → (b ∧ ¬f) ∨ e
f → ⊥


=
−→
CF (P)

CF (P) =



a↔ >
b ↔ ¬a
c ↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e ↔ (b ∧ ¬f) ∨ e
f ↔ ⊥


≡

←−
CF (P) ∪

−→
CF (P)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 199 / 426

Completion

Supported models

Every stable model of P is a model of CF (P), but not vice versa

Models of CF (P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 200 / 426

Completion

Supported models

Every stable model of P is a model of CF (P), but not vice versa

Models of CF (P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 200 / 426

Completion

Supported models

Every stable model of P is a model of CF (P), but not vice versa

Models of CF (P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 200 / 426

Completion

Supported models

Every stable model of P is a model of CF (P), but not vice versa

Models of CF (P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 200 / 426

Completion

An example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has 21 models, including {a, c}, {a, d}, but also {a, b, c , d , e, f }
P has 3 supported models, namely {a, c}, {a, d}, and {a, c , e}
P has 2 stable models, namely {a, c} and {a, d}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 201 / 426

Completion

An example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has 21 models, including {a, c}, {a, d}, but also {a, b, c , d , e, f }
P has 3 supported models, namely {a, c}, {a, d}, and {a, c , e}
P has 2 stable models, namely {a, c} and {a, d}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 201 / 426

Completion

An example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has 21 models, including {a, c}, {a, d}, but also {a, b, c , d , e, f }
P has 3 supported models, namely {a, c}, {a, d}, and {a, c , e}
P has 2 stable models, namely {a, c} and {a, d}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 201 / 426

Completion

An example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has 21 models, including {a, c}, {a, d}, but also {a, b, c , d , e, f }
P has 3 supported models, namely {a, c}, {a, d}, and {a, c , e}
P has 2 stable models, namely {a, c} and {a, d}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 201 / 426

Tightness

Outline

26 Completion

27 Tightness

28 Loops and Loop Formulas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 202 / 426

Tightness

The mismatch

Question What causes the mismatch between supported models and
stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer Cyclic derivations are causing the mismatch between
supported and stable models

Atoms in a stable model can be “derived” from a program in a finite
number of steps
Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 203 / 426

Tightness

The mismatch

Question What causes the mismatch between supported models and
stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer Cyclic derivations are causing the mismatch between
supported and stable models

Atoms in a stable model can be “derived” from a program in a finite
number of steps
Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 203 / 426

Tightness

The mismatch

Question What causes the mismatch between supported models and
stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer Cyclic derivations are causing the mismatch between
supported and stable models

Atoms in a stable model can be “derived” from a program in a finite
number of steps
Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 203 / 426

Tightness

The mismatch

Question What causes the mismatch between supported models and
stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer Cyclic derivations are causing the mismatch between
supported and stable models

Atoms in a stable model can be “derived” from a program in a finite
number of steps
Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 203 / 426

Tightness

The mismatch

Question What causes the mismatch between supported models and
stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer Cyclic derivations are causing the mismatch between
supported and stable models

Atoms in a stable model can be “derived” from a program in a finite
number of steps
Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 203 / 426

Tightness

The mismatch

Question What causes the mismatch between supported models and
stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer Cyclic derivations are causing the mismatch between
supported and stable models

Atoms in a stable model can be “derived” from a program in a finite
number of steps
Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 203 / 426

Tightness

Non-cyclic derivations

Let X be a stable model of normal logic program P

For every atom A ∈ X , there is a finite sequence of positive rules

〈r1, . . . , rn〉

such that

1 head(r1) = A
2 body(ri)

+ ⊆ {head(rj) | i < j ≤ n} for 1 ≤ i ≤ n
3 ri ∈ PX for 1 ≤ i ≤ n

That is, each atom of X has a non-cyclic derivation from PX

Example There is no finite sequence of rules providing a derivation
for e from P{a,c,e}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 204 / 426

Tightness

Non-cyclic derivations

Let X be a stable model of normal logic program P

For every atom A ∈ X , there is a finite sequence of positive rules

〈r1, . . . , rn〉

such that

1 head(r1) = A
2 body(ri)

+ ⊆ {head(rj) | i < j ≤ n} for 1 ≤ i ≤ n
3 ri ∈ PX for 1 ≤ i ≤ n

That is, each atom of X has a non-cyclic derivation from PX

Example There is no finite sequence of rules providing a derivation
for e from P{a,c,e}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 204 / 426

Tightness

Non-cyclic derivations

Let X be a stable model of normal logic program P

For every atom A ∈ X , there is a finite sequence of positive rules

〈r1, . . . , rn〉

such that

1 head(r1) = A
2 body(ri)

+ ⊆ {head(rj) | i < j ≤ n} for 1 ≤ i ≤ n
3 ri ∈ PX for 1 ≤ i ≤ n

That is, each atom of X has a non-cyclic derivation from PX

Example There is no finite sequence of rules providing a derivation
for e from P{a,c,e}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 204 / 426

Tightness

Positive atom dependency graph

The origin of (potential) circular derivations can be read off the
positive atom dependency graph G (P) of a logic program P given by

(atom(P), {(a, b) | r ∈ P, a ∈ body(r)+, head(r) = b})

A logic program P is called tight, if G (P) is acyclic

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 205 / 426

Tightness

Positive atom dependency graph

The origin of (potential) circular derivations can be read off the
positive atom dependency graph G (P) of a logic program P given by

(atom(P), {(a, b) | r ∈ P, a ∈ body(r)+, head(r) = b})

A logic program P is called tight, if G (P) is acyclic

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 205 / 426

Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e}, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 206 / 426

Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e}, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 206 / 426

Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e}, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 206 / 426

Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e}, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 206 / 426

Tightness

Tight programs

A logic program P is called tight, if G (P) is acyclic

For tight programs, stable and supported models coincide:

Fages’ Theorem

Let P be a tight normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 207 / 426

Tightness

Tight programs

A logic program P is called tight, if G (P) is acyclic

For tight programs, stable and supported models coincide:

Fages’ Theorem

Let P be a tight normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 207 / 426

Tightness

Tight programs

A logic program P is called tight, if G (P) is acyclic

For tight programs, stable and supported models coincide:

Fages’ Theorem

Let P be a tight normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 207 / 426

Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 208 / 426

Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 208 / 426

Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 208 / 426

Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 208 / 426

Loops and Loop Formulas

Outline

26 Completion

27 Tightness

28 Loops and Loop Formulas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 209 / 426

Loops and Loop Formulas

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Idea Add formulas prohibiting circular support of sets of atoms

Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 210 / 426

Loops and Loop Formulas

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Idea Add formulas prohibiting circular support of sets of atoms

Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 210 / 426

Loops and Loop Formulas

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Idea Add formulas prohibiting circular support of sets of atoms

Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 210 / 426

Loops and Loop Formulas

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Idea Add formulas prohibiting circular support of sets of atoms

Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 210 / 426

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (atom(P),E) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 211 / 426

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (atom(P),E) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 211 / 426

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (atom(P),E) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 211 / 426

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (atom(P),E) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 211 / 426

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (atom(P),E) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 211 / 426

Loops and Loop Formulas

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 212 / 426

Loops and Loop Formulas

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 212 / 426

Loops and Loop Formulas

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}

d a c e

b

loop(P) = {{c , d}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 213 / 426

Loops and Loop Formulas

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}

d a c e

b

loop(P) = {{c , d}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 213 / 426

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 214 / 426

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 214 / 426

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 214 / 426

Loops and Loop Formulas

Loop formulas

Let P be a normal logic program

For L ⊆ atom(P), define the external supports of L for P as

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

Define the external bodies of L in P as EBP(L) = body(ESP(L))

The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP (L)BF (B)
)

≡
(∧

B∈EBP (L)¬BF (B)
)
→
(∧

a∈L¬a
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Define LF (P) = {LFP(L) | L ∈ loop(P)}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 215 / 426

Loops and Loop Formulas

Loop formulas

Let P be a normal logic program

For L ⊆ atom(P), define the external supports of L for P as

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

Define the external bodies of L in P as EBP(L) = body(ESP(L))

The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP (L)BF (B)
)

≡
(∧

B∈EBP (L)¬BF (B)
)
→
(∧

a∈L¬a
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Define LF (P) = {LFP(L) | L ∈ loop(P)}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 215 / 426

Loops and Loop Formulas

Loop formulas

Let P be a normal logic program

For L ⊆ atom(P), define the external supports of L for P as

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

Define the external bodies of L in P as EBP(L) = body(ESP(L))

The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP (L)BF (B)
)

≡
(∧

B∈EBP (L)¬BF (B)
)
→
(∧

a∈L¬a
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Define LF (P) = {LFP(L) | L ∈ loop(P)}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 215 / 426

Loops and Loop Formulas

Loop formulas

Let P be a normal logic program

For L ⊆ atom(P), define the external supports of L for P as

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

Define the external bodies of L in P as EBP(L) = body(ESP(L))

The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP (L)BF (B)
)

≡
(∧

B∈EBP (L)¬BF (B)
)
→
(∧

a∈L¬a
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Define LF (P) = {LFP(L) | L ∈ loop(P)}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 215 / 426

Loops and Loop Formulas

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}
LF (P) = {e → b ∧ ¬f }

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 216 / 426

Loops and Loop Formulas

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}
LF (P) = {e → b ∧ ¬f }

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 216 / 426

Loops and Loop Formulas

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}

d a c e

b

loop(P) = {{c , d}}
LF (P) = {c ∨ d → (a ∧ b) ∨ a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 217 / 426

Loops and Loop Formulas

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}

d a c e

b

loop(P) = {{c , d}}
LF (P) = {c ∨ d → (a ∧ b) ∨ a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 217 / 426

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =


c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)


M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 218 / 426

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =


c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)


M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 218 / 426

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =


c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)


M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 218 / 426

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =


c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)


M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 218 / 426

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =


c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)


M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 218 / 426

Loops and Loop Formulas

Lin-Zhao Theorem

Theorem

Let P be a normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P) ∪ LF (P)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 219 / 426

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

Then, X is a stable model of P iff

X |= {LFP (U) | U ⊆ atom(P)};
X |= {LFP (U) | U ⊆ X};
X |= {LFP (L) | L ∈ loop(P)}, that is, X |= LF (P);
X |= {LFP (L) | L ∈ loop(P) and L ⊆ X}

Note If X is not a stable model of P,
then there is a loop L ⊆ X \ Cn(PX) such that X 6|= LFP(L)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 220 / 426

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

Then, X is a stable model of P iff

X |= {LFP (U) | U ⊆ atom(P)};
X |= {LFP (U) | U ⊆ X};
X |= {LFP (L) | L ∈ loop(P)}, that is, X |= LF (P);
X |= {LFP (L) | L ∈ loop(P) and L ⊆ X}

Note If X is not a stable model of P,
then there is a loop L ⊆ X \ Cn(PX) such that X 6|= LFP(L)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 220 / 426

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

Then, X is a stable model of P iff

X |= {LFP (U) | U ⊆ atom(P)};
X |= {LFP (U) | U ⊆ X};
X |= {LFP (L) | L ∈ loop(P)}, that is, X |= LF (P);
X |= {LFP (L) | L ∈ loop(P) and L ⊆ X}

Note If X is not a stable model of P,
then there is a loop L ⊆ X \ Cn(PX) such that X 6|= LFP(L)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 220 / 426

Loops and Loop Formulas

Loops and loop formulas: Properties (ctd)

If P 6⊆ NC1/poly ,1 then there is no translation T from logic programs to
propositional formulas such that, for each normal logic program P, both of
the following conditions hold:

1 The propositional variables in T [P] are a subset of atom(P)

2 The size of T [P] is polynomial in the size of P

Note Every vocabulary-preserving translation from normal logic
programs to propositional formulas must be exponential
(in the worst case).

Observations

Translation CF (P) ∪ LF (P) preserves the vocabulary of
P
The number of loops in loop(P) may be exponential in
|atom(P)|

1A conjecture from the theory of complexity that is widely believed to be
true.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 221 / 426

Loops and Loop Formulas

Loops and loop formulas: Properties (ctd)

If P 6⊆ NC1/poly ,1 then there is no translation T from logic programs to
propositional formulas such that, for each normal logic program P, both of
the following conditions hold:

1 The propositional variables in T [P] are a subset of atom(P)

2 The size of T [P] is polynomial in the size of P

Note Every vocabulary-preserving translation from normal logic
programs to propositional formulas must be exponential
(in the worst case).

Observations

Translation CF (P) ∪ LF (P) preserves the vocabulary of
P
The number of loops in loop(P) may be exponential in
|atom(P)|

1A conjecture from the theory of complexity that is widely believed to be
true.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 221 / 426

Loops and Loop Formulas

Loops and loop formulas: Properties (ctd)

If P 6⊆ NC1/poly ,1 then there is no translation T from logic programs to
propositional formulas such that, for each normal logic program P, both of
the following conditions hold:

1 The propositional variables in T [P] are a subset of atom(P)

2 The size of T [P] is polynomial in the size of P

Note Every vocabulary-preserving translation from normal logic
programs to propositional formulas must be exponential
(in the worst case).

Observations

Translation CF (P) ∪ LF (P) preserves the vocabulary of
P
The number of loops in loop(P) may be exponential in
|atom(P)|

1A conjecture from the theory of complexity that is widely believed to be
true.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 221 / 426

Operational Characterization: Overview

29 Partial Interpretations

30 Fitting Operator

31 Unfounded Sets

32 Well-Founded Operator

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 222 / 426

Partial Interpretations

Outline

29 Partial Interpretations

30 Fitting Operator

31 Unfounded Sets

32 Well-Founded Operator

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 223 / 426

Partial Interpretations

Interlude: Partial interpretations
or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false,
and unknown

Representation 〈T ,F 〉, where

T is the set of all true atoms and
F is the set of all false atoms
Truth of atoms in A \ (T ∪ F) is unknown

Properties

〈T ,F 〉 is conflicting if T ∩ F 6= ∅
〈T ,F 〉 is total if T ∪ F = A and T ∩ F = ∅

Definition For 〈T1,F1〉 and 〈T2,F2〉, define

〈T1,F1〉 v 〈T2,F2〉 iff T1 ⊆ T2 and F1 ⊆ F2

〈T1,F1〉 t 〈T2,F2〉 = 〈T1 ∪ T2,F1 ∪ F2〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 224 / 426

Partial Interpretations

Interlude: Partial interpretations
or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false,
and unknown

Representation 〈T ,F 〉, where

T is the set of all true atoms and
F is the set of all false atoms
Truth of atoms in A \ (T ∪ F) is unknown

Properties

〈T ,F 〉 is conflicting if T ∩ F 6= ∅
〈T ,F 〉 is total if T ∪ F = A and T ∩ F = ∅

Definition For 〈T1,F1〉 and 〈T2,F2〉, define

〈T1,F1〉 v 〈T2,F2〉 iff T1 ⊆ T2 and F1 ⊆ F2

〈T1,F1〉 t 〈T2,F2〉 = 〈T1 ∪ T2,F1 ∪ F2〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 224 / 426

Partial Interpretations

Interlude: Partial interpretations
or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false,
and unknown

Representation 〈T ,F 〉, where

T is the set of all true atoms and
F is the set of all false atoms
Truth of atoms in A \ (T ∪ F) is unknown

Properties

〈T ,F 〉 is conflicting if T ∩ F 6= ∅
〈T ,F 〉 is total if T ∪ F = A and T ∩ F = ∅

Definition For 〈T1,F1〉 and 〈T2,F2〉, define

〈T1,F1〉 v 〈T2,F2〉 iff T1 ⊆ T2 and F1 ⊆ F2

〈T1,F1〉 t 〈T2,F2〉 = 〈T1 ∪ T2,F1 ∪ F2〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 224 / 426

Partial Interpretations

Interlude: Partial interpretations
or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false,
and unknown

Representation 〈T ,F 〉, where

T is the set of all true atoms and
F is the set of all false atoms
Truth of atoms in A \ (T ∪ F) is unknown

Properties

〈T ,F 〉 is conflicting if T ∩ F 6= ∅
〈T ,F 〉 is total if T ∪ F = A and T ∩ F = ∅

Definition For 〈T1,F1〉 and 〈T2,F2〉, define

〈T1,F1〉 v 〈T2,F2〉 iff T1 ⊆ T2 and F1 ⊆ F2

〈T1,F1〉 t 〈T2,F2〉 = 〈T1 ∪ T2,F1 ∪ F2〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 224 / 426

Fitting Operator

Outline

29 Partial Interpretations

30 Fitting Operator

31 Unfounded Sets

32 Well-Founded Operator

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 225 / 426

Fitting Operator

Basic idea

Idea Extend TP to normal logic programs

Logical background The idea is to turn a program’s completion
into an operator such that

the head atom of a rule must be true
if the rule’s body is true
an atom must be false
if the body of each rule having it as head is false

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 226 / 426

Fitting Operator

Definition

Let P be a normal logic program

Define

ΦP〈T ,F 〉 = 〈TP〈T ,F 〉,FP〈T ,F 〉〉

where

TP〈T ,F 〉 = {head(r) | r ∈ P, body(r)+ ⊆ T , body(r)− ⊆ F}
FP〈T ,F 〉 = {a ∈ atom(P) |

body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅
for each r ∈ P such that head(r) = a }

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 227 / 426

Fitting Operator

Definition

Let P be a normal logic program

Define

ΦP〈T ,F 〉 = 〈TP〈T ,F 〉,FP〈T ,F 〉〉

where

TP〈T ,F 〉 = {head(r) | r ∈ P, body(r)+ ⊆ T , body(r)− ⊆ F}
FP〈T ,F 〉 = {a ∈ atom(P) |

body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅
for each r ∈ P such that head(r) = a }

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 227 / 426

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Let’s iterate ΦP on 〈{a}, {d}〉:

ΦP〈{a}, {d}〉 = 〈{a, c}, {b, f }〉
ΦP〈{a, c}, {b, f }〉 = 〈{a}, {b, d , f }〉
ΦP〈{a}, {b, d , f }〉 = 〈{a, c}, {b, f }〉

...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 228 / 426

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Let’s iterate ΦP on 〈{a}, {d}〉:

ΦP〈{a}, {d}〉 = 〈{a, c}, {b, f }〉
ΦP〈{a, c}, {b, f }〉 = 〈{a}, {b, d , f }〉
ΦP〈{a}, {b, d , f }〉 = 〈{a, c}, {b, f }〉

...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 228 / 426

Fitting Operator

Fitting semantics

Define the iterative variant of ΦP analogously to TP :

Φ0
P〈T ,F 〉 = 〈T ,F 〉 Φi+1

P 〈T ,F 〉 = ΦPΦi
P〈T ,F 〉

Define the Fitting semantics of a normal logic program P
as the partial interpretation:⊔

i≥0Φi
P〈∅, ∅〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 229 / 426

Fitting Operator

Fitting semantics

Define the iterative variant of ΦP analogously to TP :

Φ0
P〈T ,F 〉 = 〈T ,F 〉 Φi+1

P 〈T ,F 〉 = ΦPΦi
P〈T ,F 〉

Define the Fitting semantics of a normal logic program P
as the partial interpretation:⊔

i≥0Φi
P〈∅, ∅〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 229 / 426

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Φ0〈∅, ∅〉 = 〈∅, ∅〉
Φ1〈∅, ∅〉 = Φ〈∅, ∅〉 = 〈{a}, {f }〉
Φ2〈∅, ∅〉 = Φ〈{a}, {f }〉 = 〈{a}, {b, f }〉
Φ3〈∅, ∅〉 = Φ〈{a}, {b, f }〉 = 〈{a}, {b, f }〉⊔

i≥0 Φi 〈∅, ∅〉 = 〈{a}, {b, f }〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 230 / 426

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Φ0〈∅, ∅〉 = 〈∅, ∅〉
Φ1〈∅, ∅〉 = Φ〈∅, ∅〉 = 〈{a}, {f }〉
Φ2〈∅, ∅〉 = Φ〈{a}, {f }〉 = 〈{a}, {b, f }〉
Φ3〈∅, ∅〉 = Φ〈{a}, {b, f }〉 = 〈{a}, {b, f }〉⊔

i≥0 Φi 〈∅, ∅〉 = 〈{a}, {b, f }〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 230 / 426

Fitting Operator

Properties

Let P be a normal logic program

ΦP〈∅, ∅〉 is monotonic
That is, Φi

P〈∅, ∅〉 v Φi+1
P 〈∅, ∅〉

The Fitting semantics of P is

not conflicting,
and generally not total

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 231 / 426

Fitting Operator

Fitting fixpoints

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Define 〈T ,F 〉 as a Fitting fixpoint of P if ΦP〈T ,F 〉 = 〈T ,F 〉

The Fitting semantics is the v-least Fitting fixpoint of P
Any other Fitting fixpoint extends the Fitting semantics
Total Fitting fixpoints correspond to supported models

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 232 / 426

Fitting Operator

Fitting fixpoints

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Define 〈T ,F 〉 as a Fitting fixpoint of P if ΦP〈T ,F 〉 = 〈T ,F 〉

The Fitting semantics is the v-least Fitting fixpoint of P
Any other Fitting fixpoint extends the Fitting semantics
Total Fitting fixpoints correspond to supported models

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 232 / 426

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has three total Fitting fixpoints:

1 〈{a, c}, {b, d , e}〉
2 〈{a, d}, {b, c , e}〉
3 〈{a, c , e}, {b, d}〉

P has three supported models, two of them are stable models

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 233 / 426

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has three total Fitting fixpoints:

1 〈{a, c}, {b, d , e}〉
2 〈{a, d}, {b, c , e}〉
3 〈{a, c , e}, {b, d}〉

P has three supported models, two of them are stable models

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 233 / 426

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has three total Fitting fixpoints:

1 〈{a, c}, {b, d , e}〉
2 〈{a, d}, {b, c , e}〉
3 〈{a, c , e}, {b, d}〉

P has three supported models, two of them are stable models

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 233 / 426

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has three total Fitting fixpoints:

1 〈{a, c}, {b, d , e}〉
2 〈{a, d}, {b, c , e}〉
3 〈{a, c , e}, {b, d}〉

P has three supported models, two of them are stable models

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 233 / 426

Fitting Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΦP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΦP is stable model preserving

Hence, ΦP can be used for approximating stable models and so for
propagation in ASP-solvers

However, ΦP is still insufficient, because total fixpoints correspond to
supported models, not necessarily stable models

Note The problem is the same as with program completion

The missing piece is non-circularity of derivations !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 234 / 426

Fitting Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΦP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΦP is stable model preserving

Hence, ΦP can be used for approximating stable models and so for
propagation in ASP-solvers

However, ΦP is still insufficient, because total fixpoints correspond to
supported models, not necessarily stable models

Note The problem is the same as with program completion

The missing piece is non-circularity of derivations !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 234 / 426

Fitting Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΦP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΦP is stable model preserving

Hence, ΦP can be used for approximating stable models and so for
propagation in ASP-solvers

However, ΦP is still insufficient, because total fixpoints correspond to
supported models, not necessarily stable models

Note The problem is the same as with program completion

The missing piece is non-circularity of derivations !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 234 / 426

Fitting Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΦP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΦP is stable model preserving

Hence, ΦP can be used for approximating stable models and so for
propagation in ASP-solvers

However, ΦP is still insufficient, because total fixpoints correspond to
supported models, not necessarily stable models

Note The problem is the same as with program completion

The missing piece is non-circularity of derivations !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 234 / 426

Fitting Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΦP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΦP is stable model preserving

Hence, ΦP can be used for approximating stable models and so for
propagation in ASP-solvers

However, ΦP is still insufficient, because total fixpoints correspond to
supported models, not necessarily stable models

Note The problem is the same as with program completion

The missing piece is non-circularity of derivations !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 234 / 426

Fitting Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΦP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΦP is stable model preserving

Hence, ΦP can be used for approximating stable models and so for
propagation in ASP-solvers

However, ΦP is still insufficient, because total fixpoints correspond to
supported models, not necessarily stable models

Note The problem is the same as with program completion

The missing piece is non-circularity of derivations !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 234 / 426

Fitting Operator

Example

P =

{
a ← b
b ← a

}

Φ0
P〈∅, ∅〉 = 〈∅, ∅〉

Φ1
P〈∅, ∅〉 = 〈∅, ∅〉

That is, Fitting semantics cannot assign false to a and b,
although they can never become true !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 235 / 426

Fitting Operator

Example

P =

{
a ← b
b ← a

}

Φ0
P〈∅, ∅〉 = 〈∅, ∅〉

Φ1
P〈∅, ∅〉 = 〈∅, ∅〉

That is, Fitting semantics cannot assign false to a and b,
although they can never become true !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 235 / 426

Fitting Operator

Example

P =

{
a ← b
b ← a

}

Φ0
P〈∅, ∅〉 = 〈∅, ∅〉

Φ1
P〈∅, ∅〉 = 〈∅, ∅〉

That is, Fitting semantics cannot assign false to a and b,
although they can never become true !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 235 / 426

Unfounded Sets

Outline

29 Partial Interpretations

30 Fitting Operator

31 Unfounded Sets

32 Well-Founded Operator

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 236 / 426

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ atom(P) is an unfounded set of P wrt 〈T ,F 〉,
if we have for each rule r ∈ P such that head(r) ∈ U either

1 body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅ or
2 body(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 237 / 426

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ atom(P) is an unfounded set of P wrt 〈T ,F 〉,
if we have for each rule r ∈ P such that head(r) ∈ U either

1 body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅ or
2 body(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 237 / 426

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ atom(P) is an unfounded set of P wrt 〈T ,F 〉,
if we have for each rule r ∈ P such that head(r) ∈ U either

1 body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅ or
2 body(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 237 / 426

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ atom(P) is an unfounded set of P wrt 〈T ,F 〉,
if we have for each rule r ∈ P such that head(r) ∈ U either

1 body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅ or
2 body(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 237 / 426

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ atom(P) is an unfounded set of P wrt 〈T ,F 〉,
if we have for each rule r ∈ P such that head(r) ∈ U either

1 body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅ or
2 body(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 237 / 426

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ atom(P) is an unfounded set of P wrt 〈T ,F 〉,
if we have for each rule r ∈ P such that head(r) ∈ U either

1 body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅ or
2 body(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 237 / 426

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ atom(P) is an unfounded set of P wrt 〈T ,F 〉,
if we have for each rule r ∈ P such that head(r) ∈ U either

1 body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅ or
2 body(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 237 / 426

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ atom(P) is an unfounded set of P wrt 〈T ,F 〉,
if we have for each rule r ∈ P such that head(r) ∈ U either

1 body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅ or
2 body(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 237 / 426

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ atom(P) is an unfounded set of P wrt 〈T ,F 〉,
if we have for each rule r ∈ P such that head(r) ∈ U either

1 body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅ or
2 body(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 237 / 426

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 238 / 426

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 238 / 426

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 238 / 426

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 238 / 426

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 238 / 426

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 238 / 426

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 238 / 426

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 238 / 426

Unfounded Sets

Greatest unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation The union of two unfounded sets is an unfounded set

The greatest unfounded set of P wrt 〈T ,F 〉 is the union of all
unfounded sets of P wrt 〈T ,F 〉
It is denoted by UP〈T ,F 〉
Alternatively, we may define

UP〈T ,F 〉 = atom(P) \ Cn({r ∈ P | body(r)+ ∩ F = ∅}T)

Note Cn({r ∈ P | body(r)+ ∩ F = ∅}T) contains all non-circularly
derivable atoms from P wrt 〈T ,F 〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 239 / 426

Unfounded Sets

Greatest unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation The union of two unfounded sets is an unfounded set

The greatest unfounded set of P wrt 〈T ,F 〉 is the union of all
unfounded sets of P wrt 〈T ,F 〉
It is denoted by UP〈T ,F 〉
Alternatively, we may define

UP〈T ,F 〉 = atom(P) \ Cn({r ∈ P | body(r)+ ∩ F = ∅}T)

Note Cn({r ∈ P | body(r)+ ∩ F = ∅}T) contains all non-circularly
derivable atoms from P wrt 〈T ,F 〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 239 / 426

Unfounded Sets

Greatest unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation The union of two unfounded sets is an unfounded set

The greatest unfounded set of P wrt 〈T ,F 〉 is the union of all
unfounded sets of P wrt 〈T ,F 〉
It is denoted by UP〈T ,F 〉
Alternatively, we may define

UP〈T ,F 〉 = atom(P) \ Cn({r ∈ P | body(r)+ ∩ F = ∅}T)

Note Cn({r ∈ P | body(r)+ ∩ F = ∅}T) contains all non-circularly
derivable atoms from P wrt 〈T ,F 〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 239 / 426

Unfounded Sets

Greatest unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation The union of two unfounded sets is an unfounded set

The greatest unfounded set of P wrt 〈T ,F 〉 is the union of all
unfounded sets of P wrt 〈T ,F 〉
It is denoted by UP〈T ,F 〉
Alternatively, we may define

UP〈T ,F 〉 = atom(P) \ Cn({r ∈ P | body(r)+ ∩ F = ∅}T)

Note Cn({r ∈ P | body(r)+ ∩ F = ∅}T) contains all non-circularly
derivable atoms from P wrt 〈T ,F 〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 239 / 426

Unfounded Sets

Greatest unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation The union of two unfounded sets is an unfounded set

The greatest unfounded set of P wrt 〈T ,F 〉 is the union of all
unfounded sets of P wrt 〈T ,F 〉
It is denoted by UP〈T ,F 〉
Alternatively, we may define

UP〈T ,F 〉 = atom(P) \ Cn({r ∈ P | body(r)+ ∩ F = ∅}T)

Note Cn({r ∈ P | body(r)+ ∩ F = ∅}T) contains all non-circularly
derivable atoms from P wrt 〈T ,F 〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 239 / 426

Unfounded Sets

Greatest unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation The union of two unfounded sets is an unfounded set

The greatest unfounded set of P wrt 〈T ,F 〉 is the union of all
unfounded sets of P wrt 〈T ,F 〉
It is denoted by UP〈T ,F 〉
Alternatively, we may define

UP〈T ,F 〉 = atom(P) \ Cn({r ∈ P | body(r)+ ∩ F = ∅}T)

Note Cn({r ∈ P | body(r)+ ∩ F = ∅}T) contains all non-circularly
derivable atoms from P wrt 〈T ,F 〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 239 / 426

Well-Founded Operator

Outline

29 Partial Interpretations

30 Fitting Operator

31 Unfounded Sets

32 Well-Founded Operator

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 240 / 426

Well-Founded Operator

Well-founded operator

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation Condition 1 (in the definition of an unfounded set)
corresponds to FP〈T ,F 〉 of Fitting’s ΦP〈T ,F 〉
Idea Extend (negative part of) Fitting’s operator ΦP

That is,

keep definition of TP〈T ,F 〉 from ΦP〈T ,F 〉 and
replace FP〈T ,F 〉 from ΦP〈T ,F 〉 by UP〈T ,F 〉

In words, an atom must be false
if it belongs to the greatest unfounded set

Definition ΩP〈T ,F 〉 = 〈TP〈T ,F 〉,UP〈T ,F 〉〉
Property ΦP〈T ,F 〉 v ΩP〈T ,F 〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 241 / 426

Well-Founded Operator

Well-founded operator

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation Condition 1 (in the definition of an unfounded set)
corresponds to FP〈T ,F 〉 of Fitting’s ΦP〈T ,F 〉
Idea Extend (negative part of) Fitting’s operator ΦP

That is,

keep definition of TP〈T ,F 〉 from ΦP〈T ,F 〉 and
replace FP〈T ,F 〉 from ΦP〈T ,F 〉 by UP〈T ,F 〉

In words, an atom must be false
if it belongs to the greatest unfounded set

Definition ΩP〈T ,F 〉 = 〈TP〈T ,F 〉,UP〈T ,F 〉〉
Property ΦP〈T ,F 〉 v ΩP〈T ,F 〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 241 / 426

Well-Founded Operator

Well-founded operator

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation Condition 1 (in the definition of an unfounded set)
corresponds to FP〈T ,F 〉 of Fitting’s ΦP〈T ,F 〉
Idea Extend (negative part of) Fitting’s operator ΦP

That is,

keep definition of TP〈T ,F 〉 from ΦP〈T ,F 〉 and
replace FP〈T ,F 〉 from ΦP〈T ,F 〉 by UP〈T ,F 〉

In words, an atom must be false
if it belongs to the greatest unfounded set

Definition ΩP〈T ,F 〉 = 〈TP〈T ,F 〉,UP〈T ,F 〉〉
Property ΦP〈T ,F 〉 v ΩP〈T ,F 〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 241 / 426

Well-Founded Operator

Well-founded operator

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation Condition 1 (in the definition of an unfounded set)
corresponds to FP〈T ,F 〉 of Fitting’s ΦP〈T ,F 〉
Idea Extend (negative part of) Fitting’s operator ΦP

That is,

keep definition of TP〈T ,F 〉 from ΦP〈T ,F 〉 and
replace FP〈T ,F 〉 from ΦP〈T ,F 〉 by UP〈T ,F 〉

In words, an atom must be false
if it belongs to the greatest unfounded set

Definition ΩP〈T ,F 〉 = 〈TP〈T ,F 〉,UP〈T ,F 〉〉
Property ΦP〈T ,F 〉 v ΩP〈T ,F 〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 241 / 426

Well-Founded Operator

Well-founded operator

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation Condition 1 (in the definition of an unfounded set)
corresponds to FP〈T ,F 〉 of Fitting’s ΦP〈T ,F 〉
Idea Extend (negative part of) Fitting’s operator ΦP

That is,

keep definition of TP〈T ,F 〉 from ΦP〈T ,F 〉 and
replace FP〈T ,F 〉 from ΦP〈T ,F 〉 by UP〈T ,F 〉

In words, an atom must be false
if it belongs to the greatest unfounded set

Definition ΩP〈T ,F 〉 = 〈TP〈T ,F 〉,UP〈T ,F 〉〉
Property ΦP〈T ,F 〉 v ΩP〈T ,F 〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 241 / 426

Well-Founded Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Let’s iterate ΩP1 on 〈{c}, ∅〉:

ΩP〈{c}, ∅〉 = 〈{a}, {d , f }〉
ΩP〈{a}, {d , f }〉 = 〈{a, c}, {b, e, f }〉

ΩP〈{a, c}, {b, e, f }〉 = 〈{a}, {b, d , e, f }〉
ΩP〈{a}, {b, d , e, f }〉 = 〈{a, c}, {b, e, f }〉

...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 242 / 426

Well-Founded Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Let’s iterate ΩP1 on 〈{c}, ∅〉:

ΩP〈{c}, ∅〉 = 〈{a}, {d , f }〉
ΩP〈{a}, {d , f }〉 = 〈{a, c}, {b, e, f }〉

ΩP〈{a, c}, {b, e, f }〉 = 〈{a}, {b, d , e, f }〉
ΩP〈{a}, {b, d , e, f }〉 = 〈{a, c}, {b, e, f }〉

...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 242 / 426

Well-Founded Operator

Well-founded semantics

Define the iterative variant of ΩP analogously to ΦP :

Ω0
P〈T ,F 〉 = 〈T ,F 〉 Ωi+1

P 〈T ,F 〉 = ΩPΩi
P〈T ,F 〉

Define the well-founded semantics of a normal logic program P
as the partial interpretation:⊔

i≥0Ωi
P〈∅, ∅〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 243 / 426

Well-Founded Operator

Well-founded semantics

Define the iterative variant of ΩP analogously to ΦP :

Ω0
P〈T ,F 〉 = 〈T ,F 〉 Ωi+1

P 〈T ,F 〉 = ΩPΩi
P〈T ,F 〉

Define the well-founded semantics of a normal logic program P
as the partial interpretation:⊔

i≥0Ωi
P〈∅, ∅〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 243 / 426

Well-Founded Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Ω0〈∅, ∅〉 = 〈∅, ∅〉
Ω1〈∅, ∅〉 = Ω〈∅, ∅〉 = 〈{a}, {f }〉
Ω2〈∅, ∅〉 = Ω〈{a}, {f }〉 = 〈{a}, {b, e, f }〉
Ω3〈∅, ∅〉 = Ω〈{a}, {b, e, f }〉 = 〈{a}, {b, e, f }〉⊔

i≥0 Ωi 〈∅, ∅〉 = 〈{a}, {b, e, f }〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 244 / 426

Well-Founded Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Ω0〈∅, ∅〉 = 〈∅, ∅〉
Ω1〈∅, ∅〉 = Ω〈∅, ∅〉 = 〈{a}, {f }〉
Ω2〈∅, ∅〉 = Ω〈{a}, {f }〉 = 〈{a}, {b, e, f }〉
Ω3〈∅, ∅〉 = Ω〈{a}, {b, e, f }〉 = 〈{a}, {b, e, f }〉⊔

i≥0 Ωi 〈∅, ∅〉 = 〈{a}, {b, e, f }〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 244 / 426

Well-Founded Operator

Properties

Let P be a normal logic program

ΩP〈∅, ∅〉 is monotonic
That is, Ωi

P〈∅, ∅〉 v Ωi+1
P 〈∅, ∅〉

The well-founded semantics of P is

not conflicting,
and generally not total

We have
⊔

i≥0 Φi
P〈∅, ∅〉 v

⊔
i≥0 Ωi

P〈∅, ∅〉

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 245 / 426

Well-Founded Operator

Well-founded fixpoints

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Define 〈T ,F 〉 as a well-founded fixpoint of P if ΩP〈T ,F 〉 = 〈T ,F 〉

The well-founded semantics is the v-least well-founded fixpoint of P
Any other well-founded fixpoint extends the well-founded semantics
Total well-founded fixpoints correspond to stable models

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 246 / 426

Well-Founded Operator

Well-founded fixpoints

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Define 〈T ,F 〉 as a well-founded fixpoint of P if ΩP〈T ,F 〉 = 〈T ,F 〉

The well-founded semantics is the v-least well-founded fixpoint of P
Any other well-founded fixpoint extends the well-founded semantics
Total well-founded fixpoints correspond to stable models

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 246 / 426

Well-Founded Operator

Well-founded fixpoints: Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has two total well-founded fixpoints:

1 〈{a, c}, {b, d , e}〉
2 〈{a, d}, {b, c , e}〉

Both of them represent stable models

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 247 / 426

Well-Founded Operator

Well-founded fixpoints: Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has two total well-founded fixpoints:

1 〈{a, c}, {b, d , e}〉
2 〈{a, d}, {b, c , e}〉

Both of them represent stable models

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 247 / 426

Well-Founded Operator

Well-founded fixpoints: Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has two total well-founded fixpoints:

1 〈{a, c}, {b, d , e}〉
2 〈{a, d}, {b, c , e}〉

Both of them represent stable models

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 247 / 426

Well-Founded Operator

Well-founded fixpoints: Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has two total well-founded fixpoints:

1 〈{a, c}, {b, d , e}〉
2 〈{a, d}, {b, c , e}〉

Both of them represent stable models

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 247 / 426

Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 248 / 426

Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 248 / 426

Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 248 / 426

Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 248 / 426

Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 248 / 426

Proof-theoretic Characterization:
Overview

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 249 / 426

Motivation

Goal Analyze computations in ASP solvers

Wanted A declarative and fine-grained instrument for
characterizing operations as well as strategies of ASP solvers

Idea View stable model computations as derivations in
an inference system

Consider Tableau-based proof systems for analyzing ASP solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 250 / 426

Motivation

Goal Analyze computations in ASP solvers

Wanted A declarative and fine-grained instrument for
characterizing operations as well as strategies of ASP solvers

Idea View stable model computations as derivations in
an inference system

Consider Tableau-based proof systems for analyzing ASP solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 250 / 426

Motivation

Goal Analyze computations in ASP solvers

Wanted A declarative and fine-grained instrument for
characterizing operations as well as strategies of ASP solvers

Idea View stable model computations as derivations in
an inference system

Consider Tableau-based proof systems for analyzing ASP solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 250 / 426

Tableau calculi

Traditionally, tableau calculi are used for

automated theorem proving and
proof theoretical analysis

in classical as well as non-classical logics

General idea Given an input, prove some property by decomposition
Decomposition is done by applying deduction rules

For details, see Handbook of Tableau Methods, Kluwer, 1999

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 251 / 426

General definitions

A tableau is a (mostly binary) tree

A branch in a tableau is a path from the root to a leaf

A branch containing γ1, . . . , γm can be extended by applying
tableau rules of form

γ1, . . . , γm

α1
...
αn

γ1, . . . , γm

β1 | . . . | βn

Rules of the former format append entries α1, . . . , αn to the branch

Rules of the latter format create multiple sub-branches for β1, . . . , βn

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 252 / 426

General definitions

A tableau is a (mostly binary) tree

A branch in a tableau is a path from the root to a leaf

A branch containing γ1, . . . , γm can be extended by applying
tableau rules of form

γ1, . . . , γm

α1
...
αn

γ1, . . . , γm

β1 | . . . | βn

Rules of the former format append entries α1, . . . , αn to the branch

Rules of the latter format create multiple sub-branches for β1, . . . , βn

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 252 / 426

General definitions

A tableau is a (mostly binary) tree

A branch in a tableau is a path from the root to a leaf

A branch containing γ1, . . . , γm can be extended by applying
tableau rules of form

γ1, . . . , γm

α1
...
αn

γ1, . . . , γm

β1 | . . . | βn

Rules of the former format append entries α1, . . . , αn to the branch

Rules of the latter format create multiple sub-branches for β1, . . . , βn

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 252 / 426

Example

A simple tableau calculus for proving unsatisfiability of propositional
formulas, composed from ¬, ∧, and ∨, consists of rules

¬¬α
α

α1 ∧ α2

α1
α2

β1 ∨ β2

β1 | β2

All rules are semantically valid, when interpreting entries in a branch
conjunctively and distinct (sub-)branches as connected disjunctively

A propositional formula ϕ is unsatisfiable iff there is a tableau with
ϕ as the root node such that

1 all other entries can be produced by tableau rules and
2 every branch contains some formulas α and ¬α

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 253 / 426

Example

A simple tableau calculus for proving unsatisfiability of propositional
formulas, composed from ¬, ∧, and ∨, consists of rules

¬¬α
α

α1 ∧ α2

α1
α2

β1 ∨ β2

β1 | β2

All rules are semantically valid, when interpreting entries in a branch
conjunctively and distinct (sub-)branches as connected disjunctively

A propositional formula ϕ is unsatisfiable iff there is a tableau with
ϕ as the root node such that

1 all other entries can be produced by tableau rules and
2 every branch contains some formulas α and ¬α

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 253 / 426

Example

A simple tableau calculus for proving unsatisfiability of propositional
formulas, composed from ¬, ∧, and ∨, consists of rules

¬¬α
α

α1 ∧ α2

α1
α2

β1 ∨ β2

β1 | β2

All rules are semantically valid, when interpreting entries in a branch
conjunctively and distinct (sub-)branches as connected disjunctively

A propositional formula ϕ is unsatisfiable iff there is a tableau with
ϕ as the root node such that

1 all other entries can be produced by tableau rules and
2 every branch contains some formulas α and ¬α

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 253 / 426

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 254 / 426

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 254 / 426

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 254 / 426

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 254 / 426

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 254 / 426

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 254 / 426

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 254 / 426

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 254 / 426

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 254 / 426

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 254 / 426

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 254 / 426

Tableaux and ASP

A tableau rule captures an elementary inference scheme in an
ASP solver

A branch in a tableau corresponds to a successful or unsuccessful
computation of a stable model

An entire tableau represents a traversal of the search space

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 255 / 426

Tableaux and ASP

A tableau rule captures an elementary inference scheme in an
ASP solver

A branch in a tableau corresponds to a successful or unsuccessful
computation of a stable model

An entire tableau represents a traversal of the search space

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 255 / 426

Tableaux and ASP

A tableau rule captures an elementary inference scheme in an
ASP solver

A branch in a tableau corresponds to a successful or unsuccessful
computation of a stable model

An entire tableau represents a traversal of the search space

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 255 / 426

ASP-specific definitions

A (signed) tableau for a logic program P is a binary tree such that

the root node of the tree consists of the rules in P;
the other nodes in the tree are entries of the form Tv or Fv , called
signed literals, where v is a variable,
generated by extending a tableau using deduction rules (given below)

An entry Tv (Fv) reflects that variable v is true (false) in a
corresponding variable assignment

A set of signed literals constitutes a partial assignment

For a normal logic program P,

atoms of P in atom(P) and
bodies of P in body(P)

can occur as variables in signed literals

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 256 / 426

ASP-specific definitions

A (signed) tableau for a logic program P is a binary tree such that

the root node of the tree consists of the rules in P;
the other nodes in the tree are entries of the form Tv or Fv , called
signed literals, where v is a variable,
generated by extending a tableau using deduction rules (given below)

An entry Tv (Fv) reflects that variable v is true (false) in a
corresponding variable assignment

A set of signed literals constitutes a partial assignment

For a normal logic program P,

atoms of P in atom(P) and
bodies of P in body(P)

can occur as variables in signed literals

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 256 / 426

ASP-specific definitions

A (signed) tableau for a logic program P is a binary tree such that

the root node of the tree consists of the rules in P;
the other nodes in the tree are entries of the form Tv or Fv , called
signed literals, where v is a variable,
generated by extending a tableau using deduction rules (given below)

An entry Tv (Fv) reflects that variable v is true (false) in a
corresponding variable assignment

A set of signed literals constitutes a partial assignment

For a normal logic program P,

atoms of P in atom(P) and
bodies of P in body(P)

can occur as variables in signed literals

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 256 / 426

Tableau rules for ASP at a glance

(FTB)
p ← l1, . . . , ln

tl1, . . . , tln
T{l1, . . . , ln}

(BFB)
F{l1, . . . , li , . . . , ln}

tl1, . . . , tli−1, tli+1, . . . , tln
f li

(FTA)
p ← l1, . . . , ln
T{l1, . . . , ln}

Tp
(BFA)

p ← l1, . . . , ln
Fp

F{l1, . . . , ln}

(FFB)
p ← l1, . . . , li , . . . , ln

f li
F{l1, . . . , li , . . . , ln}

(BTB)
T{l1, . . . , li , . . . , ln}

tli

(FFA)
FB1, . . . ,FBm

Fp (§)
(BTA)

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

TBi
(§)

(WFN)
FB1, . . . ,FBm

Fp (†)
(WFJ)

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

TBi
(†)

(FL)
FB1, . . . ,FBm

Fp (‡)
(BL)

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

TBi
(‡)

(Cut[X])
Tv | Fv (][X])

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 257 / 426

More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ atom(P) ∪ body(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 258 / 426

More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ atom(P) ∪ body(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 258 / 426

More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ atom(P) ∪ body(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 258 / 426

More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ atom(P) ∪ body(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 258 / 426

More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ atom(P) ∪ body(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 258 / 426

More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ atom(P) ∪ body(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 258 / 426

More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ atom(P) ∪ body(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 258 / 426

Example

Consider the program

P =


a←
c ← ∼b,∼d
d ← a,∼c


having stable models {a, c} and {a, d}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 259 / 426

(Previewed) Example

a←
c ← ∼b,∼d
d ← a,∼c

(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[atom(P)]) Tc Fc
(BTA) T{∼b,∼d} (BFA) F{∼b,∼d}
(BTB) Fd (BFB) Td
(FFB) F{a,∼c} (FTB) T{a,∼c}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 260 / 426

(Previewed) Example

a←
c ← ∼b,∼d
d ← a,∼c

(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[atom(P)]) Tc Fc
(BTA) T{∼b,∼d} (BFA) F{∼b,∼d}
(BTB) Fd (BFB) Td
(FFB) F{a,∼c} (FTB) T{a,∼c}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 260 / 426

(Previewed) Example

a←
c ← ∼b,∼d
d ← a,∼c

(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[atom(P)]) Tc Fc
(BTA) T{∼b,∼d} (BFA) F{∼b,∼d}
(BTB) Fd (BFB) Td
(FFB) F{a,∼c} (FTB) T{a,∼c}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 260 / 426

(Previewed) Example

a←
c ← ∼b,∼d
d ← a,∼c

(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[atom(P)]) Tc Fc
(BTA) T{∼b,∼d} (BFA) F{∼b,∼d}
(BTB) Fd (BFB) Td
(FFB) F{a,∼c} (FTB) T{a,∼c}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 260 / 426

(Previewed) Example

a←
c ← ∼b,∼d
d ← a,∼c

(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[atom(P)]) Tc Fc
(BTA) T{∼b,∼d} (BFA) F{∼b,∼d}
(BTB) Fd (BFB) Td
(FFB) F{a,∼c} (FTB) T{a,∼c}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 260 / 426

(Previewed) Example

a←
c ← ∼b,∼d
d ← a,∼c

(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[atom(P)]) Tc Fc
(BTA) T{∼b,∼d} (BFA) F{∼b,∼d}
(BTB) Fd (BFB) Td
(FFB) F{a,∼c} (FTB) T{a,∼c}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 260 / 426

Auxiliary definitions

For a literal l , define conjugation functions t and f as follows

tl =

{
Tl if l is an atom
Fa if l = ∼a for an atom a

f l =

{
Fl if l is an atom
Ta if l = ∼a for an atom a

Examples ta = Ta, fa = Fa, t∼a = Fa, and f∼a = Ta

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 261 / 426

Auxiliary definitions

For a literal l , define conjugation functions t and f as follows

tl =

{
Tl if l is an atom
Fa if l = ∼a for an atom a

f l =

{
Fl if l is an atom
Ta if l = ∼a for an atom a

Examples ta = Ta, fa = Fa, t∼a = Fa, and f∼a = Ta

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 261 / 426

Auxiliary definitions

Some tableau rules require conditions for their application

Such conditions are specified as provisos

prerequisites
(proviso)

consequence
proviso: some condition(s)

Note All tableau rules given in the sequel are stable model preserving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 262 / 426

Forward True Body (FTB)

Prerequisites All of a body’s literals are true

Consequence The body is true

Tableau Rule FTB

p ← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}

Example

a← b,∼c
Tb
Fc

T{b,∼c}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 263 / 426

Forward True Body (FTB)

Prerequisites All of a body’s literals are true

Consequence The body is true

Tableau Rule FTB

p ← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}

Example

a← b,∼c
Tb
Fc

T{b,∼c}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 263 / 426

Backward False Body (BFB)

Prerequisites A body is false, and all its literals except for one are true

Consequence The residual body literal is false

Tableau Rule BFB

F{l1, . . . , li , . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

Examples

F{b,∼c}
Tb

Tc

F{b,∼c}
Fc

Fb

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 264 / 426

Backward False Body (BFB)

Prerequisites A body is false, and all its literals except for one are true

Consequence The residual body literal is false

Tableau Rule BFB

F{l1, . . . , li , . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

Examples

F{b,∼c}
Tb

Tc

F{b,∼c}
Fc

Fb

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 264 / 426

Forward False Body (FFB)

Prerequisites Some literal of a body is false

Consequence The body is false

Tableau Rule FFB

p ← l1, . . . , li , . . . , ln
f li

F{l1, . . . , li , . . . , ln}

Examples

a← b,∼c
Fb

F{b,∼c}

a← b,∼c
Tc

F{b,∼c}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 265 / 426

Forward False Body (FFB)

Prerequisites Some literal of a body is false

Consequence The body is false

Tableau Rule FFB

p ← l1, . . . , li , . . . , ln
f li

F{l1, . . . , li , . . . , ln}

Examples

a← b,∼c
Fb

F{b,∼c}

a← b,∼c
Tc

F{b,∼c}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 265 / 426

Backward True Body (BTB)

Prerequisites A body is true

Consequence The body’s literals are true

Tableau Rule BTB

T{l1, . . . , li , . . . , ln}
tli

Examples

T{b,∼c}
Tb

T{b,∼c}
Fc

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 266 / 426

Backward True Body (BTB)

Prerequisites A body is true

Consequence The body’s literals are true

Tableau Rule BTB

T{l1, . . . , li , . . . , ln}
tli

Examples

T{b,∼c}
Tb

T{b,∼c}
Fc

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 266 / 426

Tableau rules for bodies

Consider rule body B = {l1, . . . , ln}

Rules FTB and BFB amount to implication

l1 ∧ · · · ∧ ln → B

Rules FFB and BTB amount to implication

B → l1 ∧ · · · ∧ ln

Together they yield

B ≡ l1 ∧ · · · ∧ ln

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 267 / 426

Tableau rules for bodies

Consider rule body B = {l1, . . . , ln}

Rules FTB and BFB amount to implication

l1 ∧ · · · ∧ ln → B

Rules FFB and BTB amount to implication

B → l1 ∧ · · · ∧ ln

Together they yield

B ≡ l1 ∧ · · · ∧ ln

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 267 / 426

Tableau rules for bodies

Consider rule body B = {l1, . . . , ln}

Rules FTB and BFB amount to implication

l1 ∧ · · · ∧ ln → B

Rules FFB and BTB amount to implication

B → l1 ∧ · · · ∧ ln

Together they yield

B ≡ l1 ∧ · · · ∧ ln

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 267 / 426

Forward True Atom (FTA)

Prerequisites Some of an atom’s bodies is true

Consequence The atom is true

Tableau Rule FTA

p ← l1, . . . , ln
T{l1, . . . , ln}

Tp

Examples

a← b,∼c
T{b,∼c}

Ta

a← d ,∼e
T{d ,∼e}

Ta

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 268 / 426

Forward True Atom (FTA)

Prerequisites Some of an atom’s bodies is true

Consequence The atom is true

Tableau Rule FTA

p ← l1, . . . , ln
T{l1, . . . , ln}

Tp

Examples

a← b,∼c
T{b,∼c}

Ta

a← d ,∼e
T{d ,∼e}

Ta

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 268 / 426

Backward False Atom (BFA)

Prerequisites An atom is false

Consequence The bodies of all rules with the atom as head are false

Tableau Rule BFA

p ← l1, . . . , ln
Fp

F{l1, . . . , ln}

Examples

a← b,∼c
Fa

F{b,∼c}

a← d ,∼e
Fa

F{d ,∼e}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 269 / 426

Backward False Atom (BFA)

Prerequisites An atom is false

Consequence The bodies of all rules with the atom as head are false

Tableau Rule BFA

p ← l1, . . . , ln
Fp

F{l1, . . . , ln}

Examples

a← b,∼c
Fa

F{b,∼c}

a← d ,∼e
Fa

F{d ,∼e}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 269 / 426

Forward False Atom (FFA)

Prerequisites For some atom, the bodies of all rules with the atom as
head are false

Consequence The atom is false

Tableau Rule FFA

FB1, . . . ,FBm
(body P(p) = {B1, . . . ,Bm})Fp

Example

F{b,∼c}
F{d ,∼e}

(body P(a) = {{b,∼c}, {d ,∼e}})Fa

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 270 / 426

Forward False Atom (FFA)

Prerequisites For some atom, the bodies of all rules with the atom as
head are false

Consequence The atom is false

Tableau Rule FFA

FB1, . . . ,FBm
(body P(p) = {B1, . . . ,Bm})Fp

Example

F{b,∼c}
F{d ,∼e}

(body P(a) = {{b,∼c}, {d ,∼e}})Fa

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 270 / 426

Backward True Atom (BTA)

Prerequisites An atom is true, and the bodies of all rules with the
atom as head except for one are false

Consequence The residual body is true

Tableau Rule BTA

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(body P(p) = {B1, . . . ,Bm})TBi

Examples

Ta
F{b,∼c}

(∗)T{d ,∼e}

Ta
F{d ,∼e}

(∗)T{b,∼c}

(∗) body P(a) = {{b,∼c}, {d ,∼e}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 271 / 426

Backward True Atom (BTA)

Prerequisites An atom is true, and the bodies of all rules with the
atom as head except for one are false

Consequence The residual body is true

Tableau Rule BTA

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(body P(p) = {B1, . . . ,Bm})TBi

Examples

Ta
F{b,∼c}

(∗)T{d ,∼e}

Ta
F{d ,∼e}

(∗)T{b,∼c}

(∗) body P(a) = {{b,∼c}, {d ,∼e}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 271 / 426

Tableau rules for atoms

Consider an atom p such that body P(p) = {B1, . . . ,Bm}

Rules FTA and BFA amount to implication

B1 ∨ · · · ∨ Bm → p

Rules FFA and BTA amount to implication

p → B1 ∨ · · · ∨ Bm

Together they yield

p ≡ B1 ∨ · · · ∨ Bm

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 272 / 426

Tableau rules for atoms

Consider an atom p such that body P(p) = {B1, . . . ,Bm}

Rules FTA and BFA amount to implication

B1 ∨ · · · ∨ Bm → p

Rules FFA and BTA amount to implication

p → B1 ∨ · · · ∨ Bm

Together they yield

p ≡ B1 ∨ · · · ∨ Bm

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 272 / 426

Tableau rules for atoms

Consider an atom p such that body P(p) = {B1, . . . ,Bm}

Rules FTA and BFA amount to implication

B1 ∨ · · · ∨ Bm → p

Rules FFA and BTA amount to implication

p → B1 ∨ · · · ∨ Bm

Together they yield

p ≡ B1 ∨ · · · ∨ Bm

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 272 / 426

Relationship with program completion

Let P be a normal logic program

The eight tableau rules introduced so far essentially provide
(straightforward) inferences from CF (P)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 273 / 426

Preliminaries for unfounded sets

Let P be a normal logic program

For P ′ ⊆ P, define the greatest unfounded set of P wrt P ′ as

UP(P ′) = atom(P) \ Cn((P ′)∅)

For a loop L ∈ loop(P), define the external bodies of L as

EBP(L) = {body(r) | r ∈ P, head(r) ∈ L, body(r)+ ∩ L = ∅}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 274 / 426

Preliminaries for unfounded sets

Let P be a normal logic program

For P ′ ⊆ P, define the greatest unfounded set of P wrt P ′ as

UP(P ′) = atom(P) \ Cn((P ′)∅)

For a loop L ∈ loop(P), define the external bodies of L as

EBP(L) = {body(r) | r ∈ P, head(r) ∈ L, body(r)+ ∩ L = ∅}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 274 / 426

Well-Founded Negation (WFN)

Prerequisites An atom is in the greatest unfounded set wrt rules
whose bodies are false

Consequence The atom is false

Tableau Rule WFN

FB1, . . . ,FBm
(p ∈ UP({r ∈ P | body(r) 6∈ {B1, . . . ,Bm}}))Fp

Examples

a← ∼b
F{∼b}

(∗)Fa

a← a
a← ∼b
F{∼b}

(∗)Fa

(∗) a ∈ UP(P \ {a← ∼b})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 275 / 426

Well-Founded Negation (WFN)

Prerequisites An atom is in the greatest unfounded set wrt rules
whose bodies are false

Consequence The atom is false

Tableau Rule WFN

FB1, . . . ,FBm
(p ∈ UP({r ∈ P | body(r) 6∈ {B1, . . . ,Bm}}))Fp

Examples

a← ∼b
F{∼b}

(∗)Fa

a← a
a← ∼b
F{∼b}

(∗)Fa

(∗) a ∈ UP(P \ {a← ∼b})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 275 / 426

Well-Founded Justification (WFJ)

Prerequisites A true atom is in the greatest unfounded set wrt rules
whose bodies are false, if a particular body is made false

Consequence The respective body is true

Tableau Rule WFJ

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ UP ({r ∈ P | body(r) 6∈ {B1, . . . ,Bm}}))TBi

Examples

a← ∼b
Ta

(∗)T{∼b}

a← a
a← ∼b

Ta
(∗)T{∼b}

(∗) a ∈ UP(P \ {a← ∼b})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 276 / 426

Well-Founded Justification (WFJ)

Prerequisites A true atom is in the greatest unfounded set wrt rules
whose bodies are false, if a particular body is made false

Consequence The respective body is true

Tableau Rule WFJ

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ UP ({r ∈ P | body(r) 6∈ {B1, . . . ,Bm}}))TBi

Examples

a← ∼b
Ta

(∗)T{∼b}

a← a
a← ∼b

Ta
(∗)T{∼b}

(∗) a ∈ UP(P \ {a← ∼b})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 276 / 426

Well-founded tableau rules

Tableau rules WFN and WFJ ensure non-circular support for true
atoms

Note

1 WFN subsumes falsifying atoms via FFA,
2 WFJ can be viewed as “backward propagation” for unfounded sets,
3 WFJ subsumes backward propagation of true atoms via BTA

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 277 / 426

Well-founded tableau rules

Tableau rules WFN and WFJ ensure non-circular support for true
atoms

Note

1 WFN subsumes falsifying atoms via FFA,
2 WFJ can be viewed as “backward propagation” for unfounded sets,
3 WFJ subsumes backward propagation of true atoms via BTA

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 277 / 426

Relationship with well-founded operator

Let P be a normal logic program, 〈T ,F 〉 a partial interpretation, and
P ′ = {r ∈ P | body(r)+ ∩ F = ∅ and body(r)− ∩ T = ∅}.

The following conditions are equivalent

1 p ∈ UP〈T ,F 〉
2 p ∈ UP (P ′)

Hence, the well-founded operator Ω and WFN coincide

Note In contrast to Ω, WFN does not necessarily require a rule body
to contain a false literal for the rule being inapplicable

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 278 / 426

Relationship with well-founded operator

Let P be a normal logic program, 〈T ,F 〉 a partial interpretation, and
P ′ = {r ∈ P | body(r)+ ∩ F = ∅ and body(r)− ∩ T = ∅}.

The following conditions are equivalent

1 p ∈ UP〈T ,F 〉
2 p ∈ UP (P ′)

Hence, the well-founded operator Ω and WFN coincide

Note In contrast to Ω, WFN does not necessarily require a rule body
to contain a false literal for the rule being inapplicable

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 278 / 426

Relationship with well-founded operator

Let P be a normal logic program, 〈T ,F 〉 a partial interpretation, and
P ′ = {r ∈ P | body(r)+ ∩ F = ∅ and body(r)− ∩ T = ∅}.

The following conditions are equivalent

1 p ∈ UP〈T ,F 〉
2 p ∈ UP (P ′)

Hence, the well-founded operator Ω and WFN coincide

Note In contrast to Ω, WFN does not necessarily require a rule body
to contain a false literal for the rule being inapplicable

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 278 / 426

Relationship with well-founded operator

Let P be a normal logic program, 〈T ,F 〉 a partial interpretation, and
P ′ = {r ∈ P | body(r)+ ∩ F = ∅ and body(r)− ∩ T = ∅}.

The following conditions are equivalent

1 p ∈ UP〈T ,F 〉
2 p ∈ UP (P ′)

Hence, the well-founded operator Ω and WFN coincide

Note In contrast to Ω, WFN does not necessarily require a rule body
to contain a false literal for the rule being inapplicable

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 278 / 426

Forward Loop (FL)

Prerequisites The external bodies of a loop are false

Consequence The atoms in the loop are false

Tableau Rule FL

FB1, . . . ,FBm
(p ∈ L, L ∈ loop(P),EBP(L) = {B1, . . . ,Bm})Fp

Example

a← a
a← ∼b
F{∼b}

(EBP({a}) = {{∼b}})Fa

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 279 / 426

Forward Loop (FL)

Prerequisites The external bodies of a loop are false

Consequence The atoms in the loop are false

Tableau Rule FL

FB1, . . . ,FBm
(p ∈ L, L ∈ loop(P),EBP(L) = {B1, . . . ,Bm})Fp

Example

a← a
a← ∼b
F{∼b}

(EBP({a}) = {{∼b}})Fa

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 279 / 426

Backward Loop (BL)

Prerequisites An atom of a loop is true, and all external bodies except
for one are false

Consequence The residual external body is true

Tableau Rule BL

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ L, L ∈ loop(P),EBP (L) = {B1, . . . ,Bm})TBi

Example

a← a
a← ∼b

Ta
(EBP({a}) = {{∼b}})T{∼b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 280 / 426

Backward Loop (BL)

Prerequisites An atom of a loop is true, and all external bodies except
for one are false

Consequence The residual external body is true

Tableau Rule BL

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ L, L ∈ loop(P),EBP (L) = {B1, . . . ,Bm})TBi

Example

a← a
a← ∼b

Ta
(EBP({a}) = {{∼b}})T{∼b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 280 / 426

Tableau rules for loops

Tableau rules FL and BL ensure non-circular support for true atoms

For a loop L such that EBP(L) = {B1, . . . ,Bm},
they amount to implications of form∨

p∈L p → B1 ∨ · · · ∨ Bm

Comparison to well-founded tableau rules yields

FL (plus FFA and FFB) is equivalent to WFN (plus FFB),
BL cannot simulate inferences via WFJ

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 281 / 426

Tableau rules for loops

Tableau rules FL and BL ensure non-circular support for true atoms

For a loop L such that EBP(L) = {B1, . . . ,Bm},
they amount to implications of form∨

p∈L p → B1 ∨ · · · ∨ Bm

Comparison to well-founded tableau rules yields

FL (plus FFA and FFB) is equivalent to WFN (plus FFB),
BL cannot simulate inferences via WFJ

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 281 / 426

Tableau rules for loops

Tableau rules FL and BL ensure non-circular support for true atoms

For a loop L such that EBP(L) = {B1, . . . ,Bm},
they amount to implications of form∨

p∈L p → B1 ∨ · · · ∨ Bm

Comparison to well-founded tableau rules yields

FL (plus FFA and FFB) is equivalent to WFN (plus FFB),
BL cannot simulate inferences via WFJ

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 281 / 426

Relationship with loop formulas

Tableau rules FL and BL essentially provide (straightforward)
inferences from loop formulas

Impractical to precompute exponentially many loop formulas

In practice, ASP solvers such as smodels and clasp

exploit strongly connected components of positive atom
dependency graphs

can be viewed as an interpolation of FL

do not directly implement BL (and neither WFJ)

probably difficult to do efficiently

could simulate BL via FL/WFN by means of failed-literal detection
(lookahead)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 282 / 426

Relationship with loop formulas

Tableau rules FL and BL essentially provide (straightforward)
inferences from loop formulas

Impractical to precompute exponentially many loop formulas

In practice, ASP solvers such as smodels and clasp

exploit strongly connected components of positive atom
dependency graphs

can be viewed as an interpolation of FL

do not directly implement BL (and neither WFJ)

probably difficult to do efficiently

could simulate BL via FL/WFN by means of failed-literal detection
(lookahead)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 282 / 426

Relationship with loop formulas

Tableau rules FL and BL essentially provide (straightforward)
inferences from loop formulas

Impractical to precompute exponentially many loop formulas

In practice, ASP solvers such as smodels and clasp

exploit strongly connected components of positive atom
dependency graphs

can be viewed as an interpolation of FL

do not directly implement BL (and neither WFJ)

probably difficult to do efficiently

could simulate BL via FL/WFN by means of failed-literal detection
(lookahead)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 282 / 426

Relationship with loop formulas

Tableau rules FL and BL essentially provide (straightforward)
inferences from loop formulas

Impractical to precompute exponentially many loop formulas

In practice, ASP solvers such as smodels and clasp

exploit strongly connected components of positive atom
dependency graphs

can be viewed as an interpolation of FL

do not directly implement BL (and neither WFJ)

probably difficult to do efficiently

could simulate BL via FL/WFN by means of failed-literal detection
(lookahead)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 282 / 426

Case analysis by Cut

Up to now, all tableau rules are deterministic

That is, rules extend a single branch but cannot create sub-branches

In general, closing a branch leads to a partial assignment

Case analysis is done by Cut[C] where C ⊆ atom(P) ∪ body(P)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 283 / 426

Case analysis by Cut

Up to now, all tableau rules are deterministic

That is, rules extend a single branch but cannot create sub-branches

In general, closing a branch leads to a partial assignment

Case analysis is done by Cut[C] where C ⊆ atom(P) ∪ body(P)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 283 / 426

Case analysis by Cut

Up to now, all tableau rules are deterministic

That is, rules extend a single branch but cannot create sub-branches

In general, closing a branch leads to a partial assignment

Case analysis is done by Cut[C] where C ⊆ atom(P) ∪ body(P)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 283 / 426

Case analysis by Cut

Prerequisites None

Consequence Two alternative (complementary) entries

Tableau Rule Cut[C]

(v ∈ C)Tv | Fv

Examples

a← ∼b
b ← ∼a

(C = atom(P))Ta | Fa

a← ∼b
b ← ∼a

(C = body(P))T{∼b} | F{∼b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 284 / 426

Case analysis by Cut

Prerequisites None

Consequence Two alternative (complementary) entries

Tableau Rule Cut[C]

(v ∈ C)Tv | Fv

Examples

a← ∼b
b ← ∼a

(C = atom(P))Ta | Fa

a← ∼b
b ← ∼a

(C = body(P))T{∼b} | F{∼b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 284 / 426

Well-known tableau calculi

Fitting’s operator Φ applies forward propagation without
sophisticated unfounded set checks

TΦ = {FTB,FTA,FFB,FFA}

Well-founded operator Ω replaces negation of single atoms with
negation of unfounded sets

TΩ = {FTB,FTA,FFB,WFN}

“Local” propagation via a program’s completion can be determined
by elementary inferences on atoms and rule bodies

Tcompletion = {FTB,FTA,FFB,FFA,BTB,BTA,BFB,BFA}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 285 / 426

Well-known tableau calculi

Fitting’s operator Φ applies forward propagation without
sophisticated unfounded set checks

TΦ = {FTB,FTA,FFB,FFA}

Well-founded operator Ω replaces negation of single atoms with
negation of unfounded sets

TΩ = {FTB,FTA,FFB,WFN}

“Local” propagation via a program’s completion can be determined
by elementary inferences on atoms and rule bodies

Tcompletion = {FTB,FTA,FFB,FFA,BTB,BTA,BFB,BFA}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 285 / 426

Well-known tableau calculi

Fitting’s operator Φ applies forward propagation without
sophisticated unfounded set checks

TΦ = {FTB,FTA,FFB,FFA}

Well-founded operator Ω replaces negation of single atoms with
negation of unfounded sets

TΩ = {FTB,FTA,FFB,WFN}

“Local” propagation via a program’s completion can be determined
by elementary inferences on atoms and rule bodies

Tcompletion = {FTB,FTA,FFB,FFA,BTB,BTA,BFB,BFA}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 285 / 426

Tableau calculi characterizing ASP solvers

ASP solvers combine propagation with case analysis

We obtain the following tableau calculi characterizing

Tcmodels-1 = Tcompletion ∪ {Cut[atom(P) ∪ body(P)]}
Tassat = Tcompletion ∪ {FL} ∪ {Cut[atom(P) ∪ body(P)]}
Tsmodels = Tcompletion ∪ {WFN} ∪ {Cut[atom(P)]}
TnoMoRe = Tcompletion ∪ {WFN} ∪ {Cut[body(P)]}
Tnomore++ = Tcompletion ∪ {WFN} ∪ {Cut[atom(P) ∪ body(P)]}

SAT-based ASP solvers, assat and cmodels,
incrementally add loop formulas to a program’s completion

Native ASP solvers, smodels, dlv, noMoRe, and nomore++,
essentially differ only in their Cut rules

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 286 / 426

Tableau calculi characterizing ASP solvers

ASP solvers combine propagation with case analysis

We obtain the following tableau calculi characterizing

Tcmodels-1 = Tcompletion ∪ {Cut[atom(P) ∪ body(P)]}
Tassat = Tcompletion ∪ {FL} ∪ {Cut[atom(P) ∪ body(P)]}
Tsmodels = Tcompletion ∪ {WFN} ∪ {Cut[atom(P)]}
TnoMoRe = Tcompletion ∪ {WFN} ∪ {Cut[body(P)]}
Tnomore++ = Tcompletion ∪ {WFN} ∪ {Cut[atom(P) ∪ body(P)]}

SAT-based ASP solvers, assat and cmodels,
incrementally add loop formulas to a program’s completion

Native ASP solvers, smodels, dlv, noMoRe, and nomore++,
essentially differ only in their Cut rules

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 286 / 426

Tableau calculi characterizing ASP solvers

ASP solvers combine propagation with case analysis

We obtain the following tableau calculi characterizing

Tcmodels-1 = Tcompletion ∪ {Cut[atom(P) ∪ body(P)]}
Tassat = Tcompletion ∪ {FL} ∪ {Cut[atom(P) ∪ body(P)]}
Tsmodels = Tcompletion ∪ {WFN} ∪ {Cut[atom(P)]}
TnoMoRe = Tcompletion ∪ {WFN} ∪ {Cut[body(P)]}
Tnomore++ = Tcompletion ∪ {WFN} ∪ {Cut[atom(P) ∪ body(P)]}

SAT-based ASP solvers, assat and cmodels,
incrementally add loop formulas to a program’s completion

Native ASP solvers, smodels, dlv, noMoRe, and nomore++,
essentially differ only in their Cut rules

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 286 / 426

Tableau calculi characterizing ASP solvers

ASP solvers combine propagation with case analysis

We obtain the following tableau calculi characterizing

Tcmodels-1 = Tcompletion ∪ {Cut[atom(P) ∪ body(P)]}
Tassat = Tcompletion ∪ {FL} ∪ {Cut[atom(P) ∪ body(P)]}
Tsmodels = Tcompletion ∪ {WFN} ∪ {Cut[atom(P)]}
TnoMoRe = Tcompletion ∪ {WFN} ∪ {Cut[body(P)]}
Tnomore++ = Tcompletion ∪ {WFN} ∪ {Cut[atom(P) ∪ body(P)]}

SAT-based ASP solvers, assat and cmodels,
incrementally add loop formulas to a program’s completion

Native ASP solvers, smodels, dlv, noMoRe, and nomore++,
essentially differ only in their Cut rules

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 286 / 426

Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations

It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 287 / 426

Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations

It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 287 / 426

Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations

It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 287 / 426

Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations

It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 287 / 426

Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations

It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 287 / 426

Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations

It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 287 / 426

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to atom(P) and TnoMoRe to body(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =


x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =


x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =


a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn

bn ← ∼an


In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[body(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels

requires exponentially many applications of Cut[atom(Pn
a ∪ Pn

c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[atom(Pn

b ∪ Pn
c)] with Tsmodels and exponentially

many applications of Cut[body(Pn
b ∪ Pn

c)] with TnoMoRe

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 288 / 426

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to atom(P) and TnoMoRe to body(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =


x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =


x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =


a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn

bn ← ∼an


In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[body(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels

requires exponentially many applications of Cut[atom(Pn
a ∪ Pn

c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[atom(Pn

b ∪ Pn
c)] with Tsmodels and exponentially

many applications of Cut[body(Pn
b ∪ Pn

c)] with TnoMoRe

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 288 / 426

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to atom(P) and TnoMoRe to body(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =


x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =


x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =


a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn

bn ← ∼an


In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[body(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels

requires exponentially many applications of Cut[atom(Pn
a ∪ Pn

c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[atom(Pn

b ∪ Pn
c)] with Tsmodels and exponentially

many applications of Cut[body(Pn
b ∪ Pn

c)] with TnoMoRe

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 288 / 426

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to atom(P) and TnoMoRe to body(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =


x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =


x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =


a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn

bn ← ∼an


In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[body(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels

requires exponentially many applications of Cut[atom(Pn
a ∪ Pn

c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[atom(Pn

b ∪ Pn
c)] with Tsmodels and exponentially

many applications of Cut[body(Pn
b ∪ Pn

c)] with TnoMoRe

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 288 / 426

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to atom(P) and TnoMoRe to body(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =


x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =


x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =


a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn

bn ← ∼an


In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[body(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels

requires exponentially many applications of Cut[atom(Pn
a ∪ Pn

c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[atom(Pn

b ∪ Pn
c)] with Tsmodels and exponentially

many applications of Cut[body(Pn
b ∪ Pn

c)] with TnoMoRe

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 288 / 426

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to atom(P) and TnoMoRe to body(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =


x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =


x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =


a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn

bn ← ∼an


In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[body(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels

requires exponentially many applications of Cut[atom(Pn
a ∪ Pn

c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[atom(Pn

b ∪ Pn
c)] with Tsmodels and exponentially

many applications of Cut[body(Pn
b ∪ Pn

c)] with TnoMoRe

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 288 / 426

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to atom(P) and TnoMoRe to body(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =


x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =


x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =


a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn

bn ← ∼an


In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[body(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels

requires exponentially many applications of Cut[atom(Pn
a ∪ Pn

c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[atom(Pn

b ∪ Pn
c)] with Tsmodels and exponentially

many applications of Cut[body(Pn
b ∪ Pn

c)] with TnoMoRe

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 288 / 426

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to atom(P) and TnoMoRe to body(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =


x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =


x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =


a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn

bn ← ∼an


In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[body(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels

requires exponentially many applications of Cut[atom(Pn
a ∪ Pn

c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[atom(Pn

b ∪ Pn
c)] with Tsmodels and exponentially

many applications of Cut[body(Pn
b ∪ Pn

c)] with TnoMoRe

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 288 / 426

Relative efficiency

As witnessed by {Pn
a ∪ Pn

c } and {Pn
b ∪ Pn

c }, respectively,
Tsmodels and TnoMoRe do not polynomially simulate one another

Any refutation of Tsmodels or TnoMoRe is a refutation of Tnomore++

(but not vice versa)

Hence

both Tsmodels and TnoMoRe are polynomially simulated by Tnomore++ and
Tnomore++ is polynomially simulated by neither Tsmodels nor TnoMoRe

More generally, the proof system obtained with
Cut[atom(P) ∪ body(P)] is exponentially stronger than
the ones with either Cut[atom(P)] or Cut[body(P)]

Case analyses (at least) on atoms and bodies are mandatory in
powerful ASP solvers

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 289 / 426

Relative efficiency

As witnessed by {Pn
a ∪ Pn

c } and {Pn
b ∪ Pn

c }, respectively,
Tsmodels and TnoMoRe do not polynomially simulate one another

Any refutation of Tsmodels or TnoMoRe is a refutation of Tnomore++

(but not vice versa)

Hence

both Tsmodels and TnoMoRe are polynomially simulated by Tnomore++ and
Tnomore++ is polynomially simulated by neither Tsmodels nor TnoMoRe

More generally, the proof system obtained with
Cut[atom(P) ∪ body(P)] is exponentially stronger than
the ones with either Cut[atom(P)] or Cut[body(P)]

Case analyses (at least) on atoms and bodies are mandatory in
powerful ASP solvers

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 289 / 426

Relative efficiency

As witnessed by {Pn
a ∪ Pn

c } and {Pn
b ∪ Pn

c }, respectively,
Tsmodels and TnoMoRe do not polynomially simulate one another

Any refutation of Tsmodels or TnoMoRe is a refutation of Tnomore++

(but not vice versa)

Hence

both Tsmodels and TnoMoRe are polynomially simulated by Tnomore++ and
Tnomore++ is polynomially simulated by neither Tsmodels nor TnoMoRe

More generally, the proof system obtained with
Cut[atom(P) ∪ body(P)] is exponentially stronger than
the ones with either Cut[atom(P)] or Cut[body(P)]

Case analyses (at least) on atoms and bodies are mandatory in
powerful ASP solvers

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 289 / 426

Relative efficiency

As witnessed by {Pn
a ∪ Pn

c } and {Pn
b ∪ Pn

c }, respectively,
Tsmodels and TnoMoRe do not polynomially simulate one another

Any refutation of Tsmodels or TnoMoRe is a refutation of Tnomore++

(but not vice versa)

Hence

both Tsmodels and TnoMoRe are polynomially simulated by Tnomore++ and
Tnomore++ is polynomially simulated by neither Tsmodels nor TnoMoRe

More generally, the proof system obtained with
Cut[atom(P) ∪ body(P)] is exponentially stronger than
the ones with either Cut[atom(P)] or Cut[body(P)]

Case analyses (at least) on atoms and bodies are mandatory in
powerful ASP solvers

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 289 / 426

Relative efficiency

As witnessed by {Pn
a ∪ Pn

c } and {Pn
b ∪ Pn

c }, respectively,
Tsmodels and TnoMoRe do not polynomially simulate one another

Any refutation of Tsmodels or TnoMoRe is a refutation of Tnomore++

(but not vice versa)

Hence

both Tsmodels and TnoMoRe are polynomially simulated by Tnomore++ and
Tnomore++ is polynomially simulated by neither Tsmodels nor TnoMoRe

More generally, the proof system obtained with
Cut[atom(P) ∪ body(P)] is exponentially stronger than
the ones with either Cut[atom(P)] or Cut[body(P)]

Case analyses (at least) on atoms and bodies are mandatory in
powerful ASP solvers

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 289 / 426

Tsmodels: Example tableau

(r1) a← ∼b (r2) b ← d ,∼a (r3) c ← b, d
(r4) c ← g (r5) d ← c (r6) d ← g
(r7) e ← f ,∼c (r8) f ← ∼g (r9) g ← ∼a,∼f

(1) Ta [Cut]
(2) T{∼b} [BTA: r1, 1]
(3) Fb [BTB: 2]
(4) F{d,∼a} [BFA: r2, 3]
(5) F{∼a,∼f } [FFB: r9, 1]
(6) Fg [FFA: r9, 5]
(7) T{∼g} [FTB: r8, 6]
(8) Tf [FTA: r8, 7]
(9) F{b, d} [FFB: r3, 3]
(10) F{g} [FFB: r4, r6, 6]
(11) Fc [FFA: r3, r4, 9, 10]
(12) F{c} [FFB: r5, 11]
(13) Fd [FFA: r5, r6, 10, 12]
(14) T{f ,∼c} [FTB: r7, 8, 11]
(15) Te [FTA: r7, 14]

(16) Fa [Cut]
(17) F{∼b} [BFA: r1, 16]
(18) Tb [BFB: 17]
(19) T{d,∼a} [BTA: r2, 18]
(20) Td [BTB: 19]
(21) T{b, d} [FTB: r3, 18, 20]
(22) Tc [FTA: r3, 21]
(23) F{f ,∼c} [FFB: r7, 22]
(24) Fe [FFA: r7, 23]
(25) T{c} [FTB: r5, 22]

(26) Tf [Cut]
(27) F{∼a,∼f } [FFB: r9, 26]
(28) Fc [WFN: 27]

(29) Ff [Cut]
(30) T{∼a,∼f } [FTB: r9, 16, 29]
(31) Tg [FTA: r9, 30]
(32) T{g} [FTB: r4, r6, 31]
(33) F{∼g} [FFB: r8, 31]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 290 / 426

TnoMoRe: Example tableau

(r1) a← ∼b (r2) b ← d ,∼a (r3) c ← b, d
(r4) c ← g (r5) d ← c (r6) d ← g
(r7) e ← f ,∼c (r8) f ← ∼g (r9) g ← ∼a,∼f

(1) T{∼b} [Cut]
(2) Ta [FTA: r1, 1]
(3) Fb [BTB: 1]
(4) F{d,∼a} [BFA: r2, 3]
(5) F{∼a,∼f } [FFB: r9, 2]
(6) Fg [FFA: r9, 5]
(7) T{∼g} [FTB: r8, 6]
(8) Tf [FTA: r8, 7]
(9) F{b, d} [FFB: r3, 3]
(10) F{g} [FFB: r4, r6, 6]
(11) Fc [FFA: r3, r4, 9, 10]
(12) F{c} [FFB: r5, 11]
(13) Fd [FFA: r5, r6, 10, 12]
(14) T{f ,∼c} [FTB: r7, 8, 11]
(15) Te [FTA: r7, 14]

(16) F{∼b} [Cut]
(17) Fa [FFA: r1, 16]
(18) Tb [BFB: 16]
(19) T{d,∼a} [BTA: r2, 18]
(20) Td [BTB: 19]
(21) T{b, d} [FTB: r3, 18, 20]
(22) Tc [FTA: r3, 21]
(23) F{f ,∼c} [FFB: r7, 22]
(24) Fe [FFA: r7, 23]
(25) T{c} [FTB: r5, 22]

(26) T{∼g} [Cut]
(27) Fg [BTB: 26]
(28) F{g} [FFB: r4, r6, 27]
(29) Fc [WFN: 28]

(30) F{∼g} [Cut]
(31) Tg [BFB: 30]
(32) T{g} [FTB: r4, r6, 31]
(33) Ff [FFA: r8, 30]
(34) T{∼a,∼f } [FTB: r9, 17, 33]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 291 / 426

Tnomore++: Example tableau

(r1) a← ∼b (r2) b ← d ,∼a (r3) c ← b, d
(r4) c ← g (r5) d ← c (r6) d ← g
(r7) e ← f ,∼c (r8) f ← ∼g (r9) g ← ∼a,∼f

(1) Ta [Cut]
(2) T{∼b} [BTA: r1, 1]
(3) Fb [BTB: 2]
(4) F{d,∼a} [BFA: r2, 3]
(5) F{∼a,∼f } [FFB: r9, 1]
(6) Fg [FFA: r9, 5]
(7) T{∼g} [FTB: r8, 6]
(8) Tf [FTA: r8, 7]
(9) F{b, d} [FFB: r3, 3]
(10) F{g} [FFB: r4, r6, 6]
(11) Fc [FFA: r3, r4, 9, 10]
(12) F{c} [FFB: r5, 11]
(13) Fd [FFA: r5, r6, 10, 12]
(14) T{f ,∼c} [FTB: r7, 8, 11]
(15) Te [FTA: r7, 14]

(16) Fa [Cut]
(17) F{∼b} [BFA: r1, 16]
(18) Tb [BFB: 17]
(19) T{d,∼a} [BTA: r2, 18]
(20) Td [BTB: 19]
(21) T{b, d} [FTB: r3, 18, 20]
(22) Tc [FTA: r3, 21]
(23) F{f ,∼c} [FFB: r7, 22]
(24) Fe [FFA: r7, 23]
(25) T{c} [FTB: r5, 22]

(26) T{∼g} [Cut]
(27) Fg [BTB: 26]
(28) F{g} [FFB: r4, r6, 27]
(29) Fc [WFN: 28]

(30) F{∼g} [Cut]
(31) Tg [BFB: 30]
(32) T{g} [FTB: r4, r6, 31]
(33) Ff [FFA: r8, 30]
(34) T{∼a,∼f } [FTB: r9, 16, 33]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 292 / 426

Conflict-driven ASP Solving: Overview

33 Motivation

34 Boolean constraints

35 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

36 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 293 / 426

Motivation

Outline

33 Motivation

34 Boolean constraints

35 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

36 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 294 / 426

Motivation

Motivation

Goal Approach to computing stable models of logic programs,
based on concepts from

Constraint Processing (CP) and
Satisfiability Testing (SAT)

Idea View inferences in ASP as unit propagation on nogoods

Benefits

A uniform constraint-based framework for different
kinds of inferences in ASP
Advanced techniques from the areas of CP and SAT
Highly competitive implementation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 295 / 426

Boolean constraints

Outline

33 Motivation

34 Boolean constraints

35 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

36 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 296 / 426

Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 297 / 426

Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 297 / 426

Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 297 / 426

Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 297 / 426

Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 297 / 426

Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 297 / 426

Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 297 / 426

Boolean constraints

Nogoods, solutions, and unit propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 298 / 426

Boolean constraints

Nogoods, solutions, and unit propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 298 / 426

Boolean constraints

Nogoods, solutions, and unit propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 298 / 426

Boolean constraints

Nogoods, solutions, and unit propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 298 / 426

Nogoods from logic programs

Outline

33 Motivation

34 Boolean constraints

35 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

36 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 299 / 426

Nogoods from logic programs Nogoods from program completion

Outline

33 Motivation

34 Boolean constraints

35 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

36 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 300 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The completion of a logic program P can be defined as follows:

{vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an |
B ∈ body(P) and B = {a1, . . . , am,∼am+1, . . . ,∼an}}

∪ {a↔ vB1 ∨ · · · ∨ vBk
|

a ∈ atom(P) and body P(a) = {B1, . . . ,Bk}} ,

where body P(a) = {body(r) | r ∈ P and head(r) = a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 301 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 302 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

1 vB → a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

is equivalent to the conjunction of

¬vB ∨ a1, . . . , ¬vB ∨ am, ¬vB ∨ ¬am+1, . . . , ¬vB ∨ ¬an

and induces the set of nogoods

∆(B) = { {TB,Fa1}, . . . , {TB,Fam}, {TB,Tam+1}, . . . , {TB,Tan} }

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 302 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

2 a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an → vB

gives rise to the nogood

δ(B) = {FB,Ta1, . . . ,Tam,Fam+1, . . . ,Fan}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 302 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

Analogously, the (atom-oriented) equivalence

a↔ vB1 ∨ · · · ∨ vBk

yields the nogoods

1 ∆(a) = { {Fa,TB1}, . . . , {Fa,TBk} } and

2 δ(a) = {Ta,FB1, . . . ,FBk}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 303 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where body P(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 304 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where body P(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 304 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where body P(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 304 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where body P(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 304 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where body P(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 304 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where body P(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 304 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where body P(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 304 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where body P(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 304 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where body P(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 304 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where body P(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 304 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where body P(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 304 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where body P(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 304 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where body P(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 304 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where body P(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 304 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
body-oriented nogoods

For a body B = {a1, . . . , am,∼am+1, . . . ,∼an}, we get

{FB,Ta1, . . . ,Tam,Fam+1, . . . ,Fan}
{ {TB,Fa1}, . . . , {TB,Fam}, {TB,Tam+1}, . . . , {TB,Tan} }

Example Given Body {x ,∼y}, we obtain

. . .← x ,∼y...

. . .← x ,∼y

{F{x ,∼y},Tx ,Fy}
{ {T{x ,∼y},Fx}, {T{x ,∼y},Ty} }

For nogood δ({x ,∼y}) = {F{x ,∼y},Tx ,Fy}, the signed literal

T{x ,∼y} is unit-resulting wrt assignment (Tx ,Fy) and
Ty is unit-resulting wrt assignment (F{x ,∼y},Tx)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 305 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
body-oriented nogoods

For a body B = {a1, . . . , am,∼am+1, . . . ,∼an}, we get

{FB,Ta1, . . . ,Tam,Fam+1, . . . ,Fan}
{ {TB,Fa1}, . . . , {TB,Fam}, {TB,Tam+1}, . . . , {TB,Tan} }

Example Given Body {x ,∼y}, we obtain

. . .← x ,∼y...

. . .← x ,∼y

{F{x ,∼y},Tx ,Fy}
{ {T{x ,∼y},Fx}, {T{x ,∼y},Ty} }

For nogood δ({x ,∼y}) = {F{x ,∼y},Tx ,Fy}, the signed literal

T{x ,∼y} is unit-resulting wrt assignment (Tx ,Fy) and
Ty is unit-resulting wrt assignment (F{x ,∼y},Tx)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 305 / 426

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
body-oriented nogoods

For a body B = {a1, . . . , am,∼am+1, . . . ,∼an}, we get

{FB,Ta1, . . . ,Tam,Fam+1, . . . ,Fan}
{ {TB,Fa1}, . . . , {TB,Fam}, {TB,Tam+1}, . . . , {TB,Tan} }

Example Given Body {x ,∼y}, we obtain

. . .← x ,∼y...

. . .← x ,∼y

{F{x ,∼y},Tx ,Fy}
{ {T{x ,∼y},Fx}, {T{x ,∼y},Ty} }

For nogood δ({x ,∼y}) = {F{x ,∼y},Tx ,Fy}, the signed literal

T{x ,∼y} is unit-resulting wrt assignment (Tx ,Fy) and
Ty is unit-resulting wrt assignment (F{x ,∼y},Tx)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 305 / 426

Nogoods from logic programs Nogoods from program completion

Characterization of stable models
for tight logic programs

Let P be a logic program and

∆P = {δ(a) | a ∈ atom(P)} ∪ {δ ∈ ∆(a) | a ∈ atom(P)}
∪ {δ(B) | B ∈ body(P)} ∪ {δ ∈ ∆(B) | B ∈ body(P)}

Theorem

Let P be a tight logic program. Then,
X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 306 / 426

Nogoods from logic programs Nogoods from program completion

Characterization of stable models
for tight logic programs

Let P be a logic program and

∆P = {δ(a) | a ∈ atom(P)} ∪ {δ ∈ ∆(a) | a ∈ atom(P)}
∪ {δ(B) | B ∈ body(P)} ∪ {δ ∈ ∆(B) | B ∈ body(P)}

Theorem

Let P be a tight logic program. Then,
X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 306 / 426

Nogoods from logic programs Nogoods from program completion

Characterization of stable models
for tight logic programs, ie. free of positive recursion

Let P be a logic program and

∆P = {δ(a) | a ∈ atom(P)} ∪ {δ ∈ ∆(a) | a ∈ atom(P)}
∪ {δ(B) | B ∈ body(P)} ∪ {δ ∈ ∆(B) | B ∈ body(P)}

Theorem

Let P be a tight logic program. Then,
X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 306 / 426

Nogoods from logic programs Nogoods from loop formulas

Outline

33 Motivation

34 Boolean constraints

35 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

36 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 307 / 426

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:

For L ⊆ atom(P), the external supports of L for P are

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}
The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

A∈LA
)
→
(∨

r∈ESP (L)body(r)
)

≡
(∧

r∈ESP (L)¬body(r)
)
→
(∧

A∈L¬A
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

The external bodies of L for P are

EBP(L) = {body(r) | r ∈ ESP(L)}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 308 / 426

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:

For L ⊆ atom(P), the external supports of L for P are

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}
The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

A∈LA
)
→
(∨

r∈ESP (L)body(r)
)

≡
(∧

r∈ESP (L)¬body(r)
)
→
(∧

A∈L¬A
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

The external bodies of L for P are

EBP(L) = {body(r) | r ∈ ESP(L)}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 308 / 426

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:

For L ⊆ atom(P), the external supports of L for P are

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}
The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

A∈LA
)
→
(∨

r∈ESP (L)body(r)
)

≡
(∧

r∈ESP (L)¬body(r)
)
→
(∧

A∈L¬A
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

The external bodies of L for P are

EBP(L) = {body(r) | r ∈ ESP(L)}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 308 / 426

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
loop nogoods

For a logic program P and some ∅ ⊂ U ⊆ atom(P),
define the loop nogood of an atom a ∈ U as

λ(a,U) = {Ta,FB1, . . . ,FBk}
where EBP(U) = {B1, . . . ,Bk}

We get the following set of loop nogoods for P:

ΛP =
⋃
∅⊂U⊆atom(P){λ(a,U) | a ∈ U}

The set ΛP of loop nogoods denies cyclic support among true atoms

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 309 / 426

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
loop nogoods

For a logic program P and some ∅ ⊂ U ⊆ atom(P),
define the loop nogood of an atom a ∈ U as

λ(a,U) = {Ta,FB1, . . . ,FBk}
where EBP(U) = {B1, . . . ,Bk}

We get the following set of loop nogoods for P:

ΛP =
⋃
∅⊂U⊆atom(P){λ(a,U) | a ∈ U}

The set ΛP of loop nogoods denies cyclic support among true atoms

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 309 / 426

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
loop nogoods

For a logic program P and some ∅ ⊂ U ⊆ atom(P),
define the loop nogood of an atom a ∈ U as

λ(a,U) = {Ta,FB1, . . . ,FBk}
where EBP(U) = {B1, . . . ,Bk}

We get the following set of loop nogoods for P:

ΛP =
⋃
∅⊂U⊆atom(P){λ(a,U) | a ∈ U}

The set ΛP of loop nogoods denies cyclic support among true atoms

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 309 / 426

Nogoods from logic programs Nogoods from loop formulas

Example

Consider the program x ← ∼y
y ← ∼x

u ← x
u ← v
v ← u, y


For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu,F{x}}
Similarly for v in {u, v}, we get:

λ(v , {u, v}) = {Tv ,F{x}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 310 / 426

Nogoods from logic programs Nogoods from loop formulas

Example

Consider the program x ← ∼y
y ← ∼x

u ← x
u ← v
v ← u, y


For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu,F{x}}
Similarly for v in {u, v}, we get:

λ(v , {u, v}) = {Tv ,F{x}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 310 / 426

Nogoods from logic programs Nogoods from loop formulas

Example

Consider the program x ← ∼y
y ← ∼x

u ← x
u ← v
v ← u, y


For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu,F{x}}
Similarly for v in {u, v}, we get:

λ(v , {u, v}) = {Tv ,F{x}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 310 / 426

Nogoods from logic programs Nogoods from loop formulas

Characterization of stable models

Theorem

Let P be a logic program. Then,
X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P ∪ ΛP

Some remarks

Nogoods in ΛP augment ∆P with conditions checking
for unfounded sets, in particular, those being loops
While |∆P | is linear in the size of P, ΛP may contain
exponentially many (non-redundant) loop nogoods

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 311 / 426

Nogoods from logic programs Nogoods from loop formulas

Characterization of stable models

Theorem

Let P be a logic program. Then,
X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P ∪ ΛP

Some remarks

Nogoods in ΛP augment ∆P with conditions checking
for unfounded sets, in particular, those being loops
While |∆P | is linear in the size of P, ΛP may contain
exponentially many (non-redundant) loop nogoods

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 311 / 426

Conflict-driven nogood learning

Outline

33 Motivation

34 Boolean constraints

35 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

36 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 312 / 426

Conflict-driven nogood learning

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

Traditional DPLL-style approach
(DPLL stands for ‘Davis-Putnam-Logemann-Loveland’)

(Unit) propagation
(Chronological) backtracking

in ASP, eg smodels

Modern CDCL-style approach
(CDCL stands for ‘Conflict-Driven Constraint Learning’)

(Unit) propagation
Conflict analysis (via resolution)
Learning + Backjumping + Assertion

in ASP, eg clasp

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 313 / 426

Conflict-driven nogood learning

DPLL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

backtrack // unassign literals propagated after last decision
flip // assign complement of last decision literal

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 314 / 426

Conflict-driven nogood learning

CDCL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 315 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Outline

33 Motivation

34 Boolean constraints

35 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

36 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 316 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

Keep track of deterministic consequences by unit propagation on:

Program completion [∆P]
Loop nogoods, determined and recorded on demand [ΛP]
Dynamic nogoods, derived from conflicts and unfounded sets [∇]

When a nogood in ∆P ∪∇ becomes violated:

Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
Learn the derived conflict nogood δ
Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for δ
Assert the complement of the UIP and proceed
(by unit propagation)

Terminate when either:

Finding a stable model (a solution for ∆P ∪ ΛP)
Deriving a conflict independently of (heuristic) choices

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 317 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

Keep track of deterministic consequences by unit propagation on:

Program completion [∆P]
Loop nogoods, determined and recorded on demand [ΛP]
Dynamic nogoods, derived from conflicts and unfounded sets [∇]

When a nogood in ∆P ∪∇ becomes violated:

Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
Learn the derived conflict nogood δ
Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for δ
Assert the complement of the UIP and proceed
(by unit propagation)

Terminate when either:

Finding a stable model (a solution for ∆P ∪ ΛP)
Deriving a conflict independently of (heuristic) choices

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 317 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

Keep track of deterministic consequences by unit propagation on:

Program completion [∆P]
Loop nogoods, determined and recorded on demand [ΛP]
Dynamic nogoods, derived from conflicts and unfounded sets [∇]

When a nogood in ∆P ∪∇ becomes violated:

Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
Learn the derived conflict nogood δ
Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for δ
Assert the complement of the UIP and proceed
(by unit propagation)

Terminate when either:

Finding a stable model (a solution for ∆P ∪ ΛP)
Deriving a conflict independently of (heuristic) choices

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 317 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Algorithm 2: CDNL-ASP

Input : A normal program P
Output : A stable model of P or “no stable model”

A := ∅ // assignment over atom(P) ∪ body(P)
∇ := ∅ // set of recorded nogoods
dl := 0 // decision level

loop
(A,∇) := NogoodPropagation(P,∇,A)

if ε ⊆ A for some ε ∈ ∆P ∪∇ then // conflict

if max({dlevel(σ) | σ ∈ ε} ∪ {0}) = 0 then return no stable model
(δ, dl) := ConflictAnalysis(ε,P,∇,A)
∇ := ∇∪ {δ} // (temporarily) record conflict nogood
A := A \ {σ ∈ A | dl < dlevel(σ)} // backjumping

else if AT ∪ AF = atom(P) ∪ body(P) then // stable model
return AT ∩ atom(P)

else
σd := Select(P,∇,A) // decision
dl := dl + 1
dlevel(σd) := dl
A := A ◦ σd

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 318 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Observations

Decision level dl , initially set to 0, is used to count the number of
heuristically chosen literals in assignment A

For a heuristically chosen literal σd = Ta or σd = Fa, respectively, we
require a ∈ (atom(P) ∪ body(P)) \ (AT ∪ AF)

For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the
value dl had when σ was assigned

A conflict is detected from violation of a nogood ε ⊆ ∆P ∪∇
A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of stable models

A nogood δ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for δ at a decision level k < dl

After learning δ and backjumping to decision level k,
at least one literal is newly derivable by unit propagation
No explicit flipping of heuristically chosen literals !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 319 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Observations

Decision level dl , initially set to 0, is used to count the number of
heuristically chosen literals in assignment A

For a heuristically chosen literal σd = Ta or σd = Fa, respectively, we
require a ∈ (atom(P) ∪ body(P)) \ (AT ∪ AF)

For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the
value dl had when σ was assigned

A conflict is detected from violation of a nogood ε ⊆ ∆P ∪∇
A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of stable models

A nogood δ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for δ at a decision level k < dl

After learning δ and backjumping to decision level k,
at least one literal is newly derivable by unit propagation
No explicit flipping of heuristically chosen literals !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 319 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Observations

Decision level dl , initially set to 0, is used to count the number of
heuristically chosen literals in assignment A

For a heuristically chosen literal σd = Ta or σd = Fa, respectively, we
require a ∈ (atom(P) ∪ body(P)) \ (AT ∪ AF)

For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the
value dl had when σ was assigned

A conflict is detected from violation of a nogood ε ⊆ ∆P ∪∇
A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of stable models

A nogood δ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for δ at a decision level k < dl

After learning δ and backjumping to decision level k,
at least one literal is newly derivable by unit propagation
No explicit flipping of heuristically chosen literals !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 319 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 320 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 320 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 320 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 320 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 320 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 320 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 320 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu
Tx {Tu,Fx} ∈ ∇
...

...
Tv {Fv ,T{x}} ∈ ∆(v)
Fy {Ty ,F{∼x}} = δ(y)
Fw {Tw ,F{∼x ,∼y}} = δ(w)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 321 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu
Tx {Tu,Fx} ∈ ∇
...

...
Tv {Fv ,T{x}} ∈ ∆(v)
Fy {Ty ,F{∼x}} = δ(y)
Fw {Tw ,F{∼x ,∼y}} = δ(w)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 321 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu
Tx {Tu,Fx} ∈ ∇
...

...
Tv {Fv ,T{x}} ∈ ∆(v)
Fy {Ty ,F{∼x}} = δ(y)
Fw {Tw ,F{∼x ,∼y}} = δ(w)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 321 / 426

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu
Tx {Tu,Fx} ∈ ∇
...

...
Tv {Fv ,T{x}} ∈ ∆(v)
Fy {Ty ,F{∼x}} = δ(y)
Fw {Tw ,F{∼x ,∼y}} = δ(w)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 321 / 426

Conflict-driven nogood learning Nogood Propagation

Outline

33 Motivation

34 Boolean constraints

35 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

36 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 322 / 426

Conflict-driven nogood learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:

Unit propagation on ∆P and ∇;
Unfounded sets U ⊆ atom(P)

Note that U is unfounded if EBP(U) ⊆ AF

Note For any a ∈ U, we have (λ(a,U) \ {Ta}) ⊆ A

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(P) \ AF)

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P

Note Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some a ∈ U, adding λ(a,U) to ∇
triggers a conflict or further derivations by unit propagation

Note Add loop nogoods atom by atom to eventually falsify all a ∈ U

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 323 / 426

Conflict-driven nogood learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:

Unit propagation on ∆P and ∇;
Unfounded sets U ⊆ atom(P)

Note that U is unfounded if EBP(U) ⊆ AF

Note For any a ∈ U, we have (λ(a,U) \ {Ta}) ⊆ A

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(P) \ AF)

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P

Note Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some a ∈ U, adding λ(a,U) to ∇
triggers a conflict or further derivations by unit propagation

Note Add loop nogoods atom by atom to eventually falsify all a ∈ U

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 323 / 426

Conflict-driven nogood learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:

Unit propagation on ∆P and ∇;
Unfounded sets U ⊆ atom(P)

Note that U is unfounded if EBP(U) ⊆ AF

Note For any a ∈ U, we have (λ(a,U) \ {Ta}) ⊆ A

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(P) \ AF)

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P

Note Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some a ∈ U, adding λ(a,U) to ∇
triggers a conflict or further derivations by unit propagation

Note Add loop nogoods atom by atom to eventually falsify all a ∈ U

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 323 / 426

Conflict-driven nogood learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:

Unit propagation on ∆P and ∇;
Unfounded sets U ⊆ atom(P)

Note that U is unfounded if EBP(U) ⊆ AF

Note For any a ∈ U, we have (λ(a,U) \ {Ta}) ⊆ A

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(P) \ AF)

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P

Note Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some a ∈ U, adding λ(a,U) to ∇
triggers a conflict or further derivations by unit propagation

Note Add loop nogoods atom by atom to eventually falsify all a ∈ U

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 323 / 426

Conflict-driven nogood learning Nogood Propagation

Algorithm 3: NogoodPropagation

Input : A normal program P, a set ∇ of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

U := ∅ // unfounded set

loop
repeat

if δ ⊆ A for some δ ∈ ∆P ∪∇ then return (A,∇) // conflict
Σ := {δ ∈ ∆P ∪∇ | δ \ A = {σ}, σ /∈ A} // unit-resulting nogoods
if Σ 6= ∅ then let σ ∈ δ \ A for some δ ∈ Σ in

dlevel(σ) := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
A := A ◦ σ

until Σ = ∅
if loop(P) = ∅ then return (A,∇)

U := U \ AF

if U = ∅ then U := UnfoundedSet(P,A)

if U = ∅ then return (A,∇) // no unfounded set ∅ ⊂ U ⊆ atom(P) \ AF

let a ∈ U in
∇ := ∇∪ {{Ta} ∪ {FB | B ∈ EBP (U)}} // record loop nogood

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 324 / 426

Conflict-driven nogood learning Nogood Propagation

Requirements for UnfoundedSet

Implementations of UnfoundedSet must guarantee the following
for a result U

1 U ⊆ (atom(P) \ AF)
2 EBP (U) ⊆ AF

3 U = ∅ iff there is no nonempty unfounded subset of (atom(P) \ AF)

Beyond that, there are various alternatives, such as:

Calculating the greatest unfounded set
Calculating unfounded sets within strongly connected components of
the positive atom dependency graph of P

Usually, the latter option is implemented in ASP solvers

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 325 / 426

Conflict-driven nogood learning Nogood Propagation

Requirements for UnfoundedSet

Implementations of UnfoundedSet must guarantee the following
for a result U

1 U ⊆ (atom(P) \ AF)
2 EBP (U) ⊆ AF

3 U = ∅ iff there is no nonempty unfounded subset of (atom(P) \ AF)

Beyond that, there are various alternatives, such as:

Calculating the greatest unfounded set
Calculating unfounded sets within strongly connected components of
the positive atom dependency graph of P

Usually, the latter option is implemented in ASP solvers

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 325 / 426

Conflict-driven nogood learning Nogood Propagation

Example: NogoodPropagation

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 326 / 426

Conflict-driven nogood learning Conflict Analysis

Outline

33 Motivation

34 Boolean constraints

35 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

36 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 327 / 426

Conflict-driven nogood learning Conflict Analysis

Outline of ConflictAnalysis

Conflict analysis is triggered whenever some nogood δ ∈ ∆P ∪∇
becomes violated, viz. δ ⊆ A, at a decision level dl > 0

Note that all but the first literal assigned at dl have been unit-resulting
for nogoods ε ∈ ∆P ∪∇
If σ ∈ δ has been unit-resulting for ε, we obtain a new violated nogood
by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ})

Resolution is directed by resolving first over the literal σ ∈ δ derived
last, viz. (δ \ A[σ]) = {σ}

Iterated resolution progresses in inverse order of assignment

Iterated resolution stops as soon as it generates a nogood δ
containing exactly one literal σ assigned at decision level dl

This literal σ is called First Unique Implication Point (First-UIP)
All literals in (δ \ {σ}) are assigned at decision levels smaller than dl

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 328 / 426

Conflict-driven nogood learning Conflict Analysis

Outline of ConflictAnalysis

Conflict analysis is triggered whenever some nogood δ ∈ ∆P ∪∇
becomes violated, viz. δ ⊆ A, at a decision level dl > 0

Note that all but the first literal assigned at dl have been unit-resulting
for nogoods ε ∈ ∆P ∪∇
If σ ∈ δ has been unit-resulting for ε, we obtain a new violated nogood
by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ})

Resolution is directed by resolving first over the literal σ ∈ δ derived
last, viz. (δ \ A[σ]) = {σ}

Iterated resolution progresses in inverse order of assignment

Iterated resolution stops as soon as it generates a nogood δ
containing exactly one literal σ assigned at decision level dl

This literal σ is called First Unique Implication Point (First-UIP)
All literals in (δ \ {σ}) are assigned at decision levels smaller than dl

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 328 / 426

Conflict-driven nogood learning Conflict Analysis

Outline of ConflictAnalysis

Conflict analysis is triggered whenever some nogood δ ∈ ∆P ∪∇
becomes violated, viz. δ ⊆ A, at a decision level dl > 0

Note that all but the first literal assigned at dl have been unit-resulting
for nogoods ε ∈ ∆P ∪∇
If σ ∈ δ has been unit-resulting for ε, we obtain a new violated nogood
by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ})

Resolution is directed by resolving first over the literal σ ∈ δ derived
last, viz. (δ \ A[σ]) = {σ}

Iterated resolution progresses in inverse order of assignment

Iterated resolution stops as soon as it generates a nogood δ
containing exactly one literal σ assigned at decision level dl

This literal σ is called First Unique Implication Point (First-UIP)
All literals in (δ \ {σ}) are assigned at decision levels smaller than dl

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 328 / 426

Conflict-driven nogood learning Conflict Analysis

Algorithm 4: ConflictAnalysis

Input : A non-empty violated nogood δ, a normal program P, a set ∇ of
nogoods, and an assignment A.

Output : A derived nogood and a decision level.

loop
let σ ∈ δ such that δ \ A[σ] = {σ} in

k := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
if k = dlevel(σ) then

let ε ∈ ∆P ∪∇ such that ε \ A[σ] = {σ} in
δ := (δ \ {σ}) ∪ (ε \ {σ}) // resolution

else return (δ, k)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 329 / 426

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 330 / 426

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 330 / 426

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 330 / 426

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 330 / 426

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 330 / 426

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 330 / 426

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 330 / 426

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 330 / 426

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 330 / 426

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 330 / 426

Conflict-driven nogood learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates

In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl

After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !
Such a nogood δ is called asserting

Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 331 / 426

Conflict-driven nogood learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates

In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl

After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !
Such a nogood δ is called asserting

Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 331 / 426

Conflict-driven nogood learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates

In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl

After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !
Such a nogood δ is called asserting

Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 331 / 426

Conflict-driven nogood learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates

In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl

After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !
Such a nogood δ is called asserting

Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 331 / 426

Systems: Overview

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 332 / 426

Potassco

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 333 / 426

Potassco

potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam,
for instance:

Grounder gringo, lingo, pyngo

Solver clasp, {a,h,un}clasp, claspD, claspfolio, claspar, aspeed

Grounder+Solver Clingo, iClingo, {ros}oClingo, Clingcon

Further Tools asp{un}cud, coala, fimo, metasp, plasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Teaching material potassco.sourceforge.net/teaching.html

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 334 / 426

potassco.sourceforge.net
asparagus.cs.uni-potsdam.de
potassco.sourceforge.net/teaching.html

Potassco

potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam,
for instance:

Grounder gringo, lingo, pyngo

Solver clasp, {a,h,un}clasp, claspD, claspfolio, claspar, aspeed

Grounder+Solver Clingo, iClingo, {ros}oClingo, Clingcon

Further Tools asp{un}cud, coala, fimo, metasp, plasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Teaching material potassco.sourceforge.net/teaching.html

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 334 / 426

potassco.sourceforge.net
asparagus.cs.uni-potsdam.de
potassco.sourceforge.net/teaching.html

Potassco

potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam,
for instance:

Grounder gringo, lingo, pyngo

Solver clasp, {a,h,un}clasp, claspD, claspfolio, claspar, aspeed

Grounder+Solver Clingo, iClingo, {ros}oClingo, Clingcon

Further Tools asp{un}cud, coala, fimo, metasp, plasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Teaching material potassco.sourceforge.net/teaching.html

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 334 / 426

potassco.sourceforge.net
asparagus.cs.uni-potsdam.de
potassco.sourceforge.net/teaching.html

gringo

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 335 / 426

gringo

gringo

Accepts safe programs with aggregates

Tolerates unrestricted use of function symbols
(as long as it yields a finite ground instantiation :)

Expressive power of a Turing machine

Basic architecture of gringo:

Parser Preprocessor Grounder Output

--lparse
--text
--reify

--ground

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 336 / 426

clasp

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 337 / 426

clasp

clasp

clasp is a native ASP solver combining conflict-driven search with
sophisticated reasoning techniques:

advanced preprocessing, including equivalence reasoning
lookback-based decision heuristics
restart policies
nogood deletion
progress saving
dedicated data structures for binary and ternary nogoods
lazy data structures (watched literals) for long nogoods
dedicated data structures for cardinality and weight constraints
lazy unfounded set checking based on “source pointers”
tight integration of unit propagation and unfounded set checking
various reasoning modes
parallel search
. . .

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 338 / 426

clasp

clasp

clasp is a native ASP solver combining conflict-driven search with
sophisticated reasoning techniques:

advanced preprocessing, including equivalence reasoning
lookback-based decision heuristics
restart policies
nogood deletion
progress saving
dedicated data structures for binary and ternary nogoods
lazy data structures (watched literals) for long nogoods
dedicated data structures for cardinality and weight constraints
lazy unfounded set checking based on “source pointers”
tight integration of unit propagation and unfounded set checking
various reasoning modes
parallel search
. . .

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 338 / 426

clasp

clasp

clasp is a native ASP solver combining conflict-driven search with
sophisticated reasoning techniques:

advanced preprocessing, including equivalence reasoning
lookback-based decision heuristics
restart policies
nogood deletion
progress saving
dedicated data structures for binary and ternary nogoods
lazy data structures (watched literals) for long nogoods
dedicated data structures for cardinality and weight constraints
lazy unfounded set checking based on “source pointers”
tight integration of unit propagation and unfounded set checking
various reasoning modes
parallel search
. . .

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 338 / 426

clasp

Reasoning modes of clasp

Beyond deciding (stable) model existence, clasp allows for:

Optimization
Enumeration (without solution recording)
Projective enumeration (without solution recording)
Intersection and Union (linear solution computation)
and combinations thereof

clasp allows for

ASP solving (smodels format)
MaxSAT and SAT solving (extended dimacs format)
PB solving (opb and wbo format)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 339 / 426

clasp

Reasoning modes of clasp

Beyond deciding (stable) model existence, clasp allows for:

Optimization
Enumeration (without solution recording)
Projective enumeration (without solution recording)
Intersection and Union (linear solution computation)
and combinations thereof

clasp allows for

ASP solving (smodels format)
MaxSAT and SAT solving (extended dimacs format)
PB solving (opb and wbo format)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 339 / 426

clasp

Parallel search in clasp

clasp

pursues a coarse-grained, task-parallel approach to parallel search
via shared memory multi-threading

up to 64 configurable (non-hierarchic) threads

allows for parallel solving via search space splitting
and/or competing strategies

both supported by solver portfolios

features different nogood exchange policies

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 340 / 426

clasp

Parallel search in clasp

clasp

pursues a coarse-grained, task-parallel approach to parallel search
via shared memory multi-threading

up to 64 configurable (non-hierarchic) threads

allows for parallel solving via search space splitting
and/or competing strategies

both supported by solver portfolios

features different nogood exchange policies

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 340 / 426

clasp

Parallel search in clasp

clasp

pursues a coarse-grained, task-parallel approach to parallel search
via shared memory multi-threading

up to 64 configurable (non-hierarchic) threads

allows for parallel solving via search space splitting
and/or competing strategies

both supported by solver portfolios

features different nogood exchange policies

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 340 / 426

clasp

Parallel search in clasp

clasp

pursues a coarse-grained, task-parallel approach to parallel search
via shared memory multi-threading

up to 64 configurable (non-hierarchic) threads

allows for parallel solving via search space splitting
and/or competing strategies

both supported by solver portfolios

features different nogood exchange policies

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 340 / 426

clasp

Sequential CDCL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 341 / 426

clasp

Parallel CDCL-style solving in clasp

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 342 / 426

clasp

Parallel CDCL-style solving in clasp

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 342 / 426

clasp

Parallel CDCL-style solving in clasp

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 342 / 426

clasp

Parallel CDCL-style solving in clasp

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 342 / 426

clasp

Parallel CDCL-style solving in clasp

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 342 / 426

clasp

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 343 / 426

clasp

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 343 / 426

clasp

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 343 / 426

clasp

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 343 / 426

clasp

clasp in context

Compare clasp (2.0.5) to the multi-threaded SAT solvers

cryptominisat (2.9.2)
manysat (1.1)
miraxt (2009)
plingeling (587f)

all run with four and eight threads in their default settings

160/300 benchmarks from crafted category at SAT’11

all solvable by ppfolio in 1000 seconds
crafted SAT benchmarks are closest to ASP benchmarks

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 344 / 426

clasp

clasp in context

 20

 40

 60

 80

 100

 120

 1 10 100 1000

S
o

lv
e

d
 i
n

s
ta

n
c
e

s

Time in seconds

clasp-t1
 -t4
 -t8

cryptominisat-2.9.2-t4
 -t8
miraxt-2009-t4

 -t8
plingeling-587-t4

 -t8
manysat-1.1-t4

 -t8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 345 / 426

clasp

Using clasp

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

chatty: Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 346 / 426

clasp

Using clasp

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

chatty: Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 346 / 426

clasp

Using clasp

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

chatty: Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 346 / 426

clasp

Using clasp

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

chatty: Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 346 / 426

clasp

Using clasp

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

chatty: Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 346 / 426

Siblings

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 347 / 426

Siblings hclasp

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 348 / 426

Siblings hclasp

hclasp

hclasp allows for incorporating domain-specific heuristics
into ASP solving

input language for expressing domain-specific heuristics
solving capacities for integrating domain-specific heuristics

Example

_heuristics(occ(A,T),factor,T) :- action(A), time(T).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 349 / 426

Siblings hclasp

hclasp

hclasp allows for incorporating domain-specific heuristics
into ASP solving

input language for expressing domain-specific heuristics
solving capacities for integrating domain-specific heuristics

Example

_heuristics(occ(A,T),factor,T) :- action(A), time(T).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 349 / 426

Siblings hclasp

Basic CDCL decision algorithm

loop

propagate // compute deterministic consequences

if no conflict then
if all variables assigned then return variable assignment
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add a conflict constraint
backjump // undo assignments until conflict constraint is unit

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 350 / 426

Siblings hclasp

Basic CDCL decision algorithm

loop

propagate // compute deterministic consequences

if no conflict then
if all variables assigned then return variable assignment
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add a conflict constraint
backjump // undo assignments until conflict constraint is unit

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 350 / 426

Siblings hclasp

Inside decide

Heuristic functions

h : A → [0,+∞) and s : A → {T,F}

Algorithmic scheme

1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := A \ (AT ∪ AF)
3 C := argmaxa∈U h(a)
4 a := τ(C)
5 A := A ∪ {a 7→ s(a)}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 351 / 426

Siblings hclasp

Inside decide

Heuristic functions

h : A → [0,+∞) and s : A → {T,F}

Algorithmic scheme

1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := A \ (AT ∪ AF)
3 C := argmaxa∈U h(a)
4 a := τ(C)
5 A := A ∪ {a 7→ s(a)}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 351 / 426

Siblings hclasp

Inside decide

Heuristic functions

h : A → [0,+∞) and s : A → {T,F}

Algorithmic scheme

1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := A \ (AT ∪ AF)
3 C := argmaxa∈U h(a)
4 a := τ(C)
5 A := A ∪ {a 7→ s(a)}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 351 / 426

Siblings hclasp

Heuristic language elements

Heuristic predicate heuristic

Heuristic modifiers (atom, a, and integer, v)

init for initializing the heuristic value of a with v
factor for amplifying the heuristic value of a by factor v
level for ranking all atoms; the rank of a is v
sign for attributing the sign of v as truth value to a

Heuristic atoms

_heuristic(occurs(A,T),factor,T) :- action(A), time(T).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 352 / 426

Siblings hclasp

Heuristic language elements

Heuristic predicate heuristic

Heuristic modifiers (atom, a, and integer, v)

init for initializing the heuristic value of a with v
factor for amplifying the heuristic value of a by factor v
level for ranking all atoms; the rank of a is v
sign for attributing the sign of v as truth value to a

Heuristic atoms

_heuristic(occurs(A,T),factor,T) :- action(A), time(T).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 352 / 426

Siblings hclasp

Heuristic language elements

Heuristic predicate heuristic

Heuristic modifiers (atom, a, and integer, v)

init for initializing the heuristic value of a with v
factor for amplifying the heuristic value of a by factor v
level for ranking all atoms; the rank of a is v
sign for attributing the sign of v as truth value to a

Heuristic atoms

_heuristic(occurs(A,T),factor,T) :- action(A), time(T).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 352 / 426

Siblings hclasp

Heuristic language elements

Heuristic predicate heuristic

Heuristic modifiers (atom, a, and integer, v)

init for initializing the heuristic value of a with v
factor for amplifying the heuristic value of a by factor v
level for ranking all atoms; the rank of a is v
sign for attributing the sign of v as truth value to a

Heuristic atoms

_heuristic(occurs(mv,5),factor,5) :- action(mv), time(5).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 352 / 426

Siblings hclasp

Heuristic language elements

Heuristic predicate heuristic

Heuristic modifiers (atom, a, and integer, v)

init for initializing the heuristic value of a with v
factor for amplifying the heuristic value of a by factor v
level for ranking all atoms; the rank of a is v
sign for attributing the sign of v as truth value to a

Heuristic atoms

_heuristic(occurs(mv,5),factor,5) :- action(mv), time(5).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 352 / 426

Siblings hclasp

Heuristic language elements

Heuristic predicate heuristic

Heuristic modifiers (atom, a, and integer, v)

init for initializing the heuristic value of a with v
factor for amplifying the heuristic value of a by factor v
level for ranking all atoms; the rank of a is v
sign for attributing the sign of v as truth value to a

Heuristic atoms

_heuristic(occurs(mv,5),factor,5) :- action(mv), time(5).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 352 / 426

Siblings hclasp

Heuristic language elements

Heuristic predicate heuristic

Heuristic modifiers (atom, a, and integer, v)

init for initializing the heuristic value of a with v
factor for amplifying the heuristic value of a by factor v
level for ranking all atoms; the rank of a is v
sign for attributing the sign of v as truth value to a

Heuristic atoms

_heuristic(occurs(mv,5),factor,5) :- action(mv), time(5).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 352 / 426

Siblings hclasp

Simple STRIPS planner

time(1..t).

holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).

:- occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occurs(A,T), add(A,F).

nolds(F,T) :- occurs(A,T), del(A,F).

:- query(F), not holds(F,t).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 353 / 426

Siblings hclasp

Simple STRIPS planner

time(1..t).

holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).

:- occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occurs(A,T), add(A,F).

nolds(F,T) :- occurs(A,T), del(A,F).

:- query(F), not holds(F,t).

_heuristic(occurs(A,T),factor,2) :- action(A), time(T).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 353 / 426

Siblings hclasp

Simple STRIPS planner

time(1..t).

holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).

:- occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occurs(A,T), add(A,F).

nolds(F,T) :- occurs(A,T), del(A,F).

:- query(F), not holds(F,t).

_heuristic(occurs(A,T),level,1) :- action(A), time(T).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 353 / 426

Siblings hclasp

Simple STRIPS planner

time(1..t).

holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).

:- occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occurs(A,T), add(A,F).

nolds(F,T) :- occurs(A,T), del(A,F).

:- query(F), not holds(F,t).

_heuristic(occurs(A,T),factor,T) :- action(A), time(T).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 353 / 426

Siblings hclasp

Simple STRIPS planner

time(1..t).

holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).

:- occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occurs(A,T), add(A,F).

nolds(F,T) :- occurs(A,T), del(A,F).

:- query(F), not holds(F,t).

_heuristic(A,level,V) :- _heuristic(A,true, V).

_heuristic(A,sign, 1) :- _heuristic(A,true, V).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 353 / 426

Siblings hclasp

Simple STRIPS planner

time(1..t).

holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).

:- occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occurs(A,T), add(A,F).

nolds(F,T) :- occurs(A,T), del(A,F).

:- query(F), not holds(F,t).

_heuristic(A,level,V) :- _heuristic(A,false,V).

_heuristic(A,sign,-1) :- _heuristic(A,false,V).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 353 / 426

Siblings hclasp

Simple STRIPS planner

time(1..t).

holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).

:- occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occurs(A,T), add(A,F).

nolds(F,T) :- occurs(A,T), del(A,F).

:- query(F), not holds(F,t).

_heuristic(holds(F,T-1),true, t-T+1) :- holds(F,T).

_heuristic(holds(F,T-1),false,t-T+1) :-

fluent(F), time(T), not holds(F,T).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 353 / 426

Siblings hclasp

Heuristic modifications to functions h and s

ν(Va,m(A)) — “value for modifier m on atom a wrt assignment A”

init and factor

d0(a) = ν(Va,init(A0)) + h0(a)

di (a) =

{
ν(Va,factor(Ai))× hi (a) if Va,factor(Ai) 6= ∅

hi (a) otherwise

sign

ti (a) =


T if ν(Va,sign(Ai)) > 0
F if ν(Va,sign(Ai)) < 0

si (a) otherwise

level `Ai
(A′) = argmaxa∈A′ν(Va,level(Ai)) A′ ⊆ A

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 354 / 426

Siblings hclasp

Heuristic modifications to functions h and s

ν(Va,m(A)) — “value for modifier m on atom a wrt assignment A”

init and factor

d0(a) = ν(Va,init(A0)) + h0(a)

di (a) =

{
ν(Va,factor(Ai))× hi (a) if Va,factor(Ai) 6= ∅

hi (a) otherwise

sign

ti (a) =


T if ν(Va,sign(Ai)) > 0
F if ν(Va,sign(Ai)) < 0

si (a) otherwise

level `Ai
(A′) = argmaxa∈A′ν(Va,level(Ai)) A′ ⊆ A

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 354 / 426

Siblings hclasp

Heuristic modifications to functions h and s

ν(Va,m(A)) — “value for modifier m on atom a wrt assignment A”

init and factor

d0(a) = ν(Va,init(A0)) + h0(a)

di (a) =

{
ν(Va,factor(Ai))× hi (a) if Va,factor(Ai) 6= ∅

hi (a) otherwise

sign

ti (a) =


T if ν(Va,sign(Ai)) > 0
F if ν(Va,sign(Ai)) < 0

si (a) otherwise

level `Ai
(A′) = argmaxa∈A′ν(Va,level(Ai)) A′ ⊆ A

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 354 / 426

Siblings hclasp

Heuristic modifications to functions h and s

ν(Va,m(A)) — “value for modifier m on atom a wrt assignment A”

init and factor

d0(a) = ν(Va,init(A0)) + h0(a)

di (a) =

{
ν(Va,factor(Ai))× hi (a) if Va,factor(Ai) 6= ∅

hi (a) otherwise

sign

ti (a) =


T if ν(Va,sign(Ai)) > 0
F if ν(Va,sign(Ai)) < 0

si (a) otherwise

level `Ai
(A′) = argmaxa∈A′ν(Va,level(Ai)) A′ ⊆ A

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 354 / 426

Siblings hclasp

Heuristic modifications to functions h and s

ν(Va,m(A)) — “value for modifier m on atom a wrt assignment A”

init and factor

d0(a) = ν(Va,init(A0)) + h0(a)

di (a) =

{
ν(Va,factor(Ai))× hi (a) if Va,factor(Ai) 6= ∅

hi (a) otherwise

sign

ti (a) =


T if ν(Va,sign(Ai)) > 0
F if ν(Va,sign(Ai)) < 0

si (a) otherwise

level `Ai
(A′) = argmaxa∈A′ν(Va,level(Ai)) A′ ⊆ A

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 354 / 426

Siblings hclasp

Heuristic modifications to functions h and s

ν(Va,m(A)) — “value for modifier m on atom a wrt assignment A”

init and factor

d0(a) = ν(Va,init(A0)) + h0(a)

di (a) =

{
ν(Va,factor(Ai))× hi (a) if Va,factor(Ai) 6= ∅

hi (a) otherwise

sign

ti (a) =


T if ν(Va,sign(Ai)) > 0
F if ν(Va,sign(Ai)) < 0

si (a) otherwise

level `Ai
(A′) = argmaxa∈A′ν(Va,level(Ai)) A′ ⊆ A

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 354 / 426

Siblings hclasp

Heuristic modifications to functions h and s

ν(Va,m(A)) — “value for modifier m on atom a wrt assignment A”

init and factor

d0(a) = ν(Va,init(A0)) + h0(a)

di (a) =

{
ν(Va,factor(Ai))× hi (a) if Va,factor(Ai) 6= ∅

hi (a) otherwise

sign

ti (a) =


T if ν(Va,sign(Ai)) > 0
F if ν(Va,sign(Ai)) < 0

si (a) otherwise

level `Ai
(A′) = argmaxa∈A′ν(Va,level(Ai)) A′ ⊆ A

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 354 / 426

Siblings hclasp

Inside decide, heuristically modified

0 h(a) := d(a) for each a ∈ A
1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := `A(A \ (AT ∪ AF))

3 C := argmaxa∈Ud(a)

4 a := τ(C)

5 A := A ∪ {a 7→ t(a)}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 355 / 426

Siblings hclasp

Inside decide, heuristically modified

0 h(a) := d(a) for each a ∈ A
1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := `A(A \ (AT ∪ AF))

3 C := argmaxa∈Ud(a)

4 a := τ(C)

5 A := A ∪ {a 7→ t(a)}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 355 / 426

Siblings hclasp

Inside decide, heuristically modified

0 h(a) := d(a) for each a ∈ A
1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := `A(A \ (AT ∪ AF))

3 C := argmaxa∈Ud(a)

4 a := τ(C)

5 A := A ∪ {a 7→ t(a)}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 355 / 426

Siblings hclasp

Selected high scores from
systematic experiments

Setting Labyrinth Sokoban Hanoi Tower

base configuration 9,108s (14) 2,844s (3) 9,137s (11)
24,545,667 19,371,267 41,016,235

a, init, 2 95% (12) 94% 91% (1) 84% 85% (9) 89%
a, factor, 4 78% (8) 30% 120% (1) 107% 109% (11) 110%

a, factor, 16 78% (10) 23% 120% (1) 107% 109% (11) 110%
a, level, 1 90% (12) 5% 119% (2) 91% 126% (15) 120%

f , init, 2 103% (14) 123% 74% (2) 71% 97% (10) 109%
f , factor, 2 98% (12) 49% 116% (3) 134% 55% (6) 70%

f , sign, -1 94% (13) 89% 105% (1) 100% 92% (12) 92%

base configuration versus 38 (static) heuristic modifications
(action, a, and fluent, f)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 356 / 426

Siblings hclasp

Selected high scores from
systematic experiments

Setting Labyrinth Sokoban Hanoi Tower

base configuration 9,108s (14) 2,844s (3) 9,137s (11)
24,545,667 19,371,267 41,016,235

a, init, 2 95% (12) 94% 91% (1) 84% 85% (9) 89%
a, factor, 4 78% (8) 30% 120% (1) 107% 109% (11) 110%

a, factor, 16 78% (10) 23% 120% (1) 107% 109% (11) 110%
a, level, 1 90% (12) 5% 119% (2) 91% 126% (15) 120%

f , init, 2 103% (14) 123% 74% (2) 71% 97% (10) 109%
f , factor, 2 98% (12) 49% 116% (3) 134% 55% (6) 70%

f , sign, -1 94% (13) 89% 105% (1) 100% 92% (12) 92%

base configuration versus 38 (static) heuristic modifications
(action, a, and fluent, f)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 356 / 426

Siblings hclasp

Abductive problems with optimization

Setting Diagnosis Expansion Repair (H) Repair (S)

base configuration 111.1s (115) 161.5s (100) 101.3s (113) 33.3s (27)

sign,-1 324.5s (407) 7.6s (3) 8.4s (5) 3.1s (0)
sign,-1 factor,2 310.1s (387) 7.4s (2) 3.5s (0) 3.2s (1)
sign,-1 factor,8 305.9s (376) 7.7s (2) 3.1s (0) 2.9s (0)
sign,-1 level,1 76.1s (83) 6.6s (2) 0.8s (0) 2.2s (1)

level,1 77.3s (86) 12.9s (5) 3.4s (0) 2.1s (0)

(abducibles subject to optimization)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 357 / 426

Siblings hclasp

Abductive problems with optimization

Setting Diagnosis Expansion Repair (H) Repair (S)

base configuration 111.1s (115) 161.5s (100) 101.3s (113) 33.3s (27)

sign,-1 324.5s (407) 7.6s (3) 8.4s (5) 3.1s (0)
sign,-1 factor,2 310.1s (387) 7.4s (2) 3.5s (0) 3.2s (1)
sign,-1 factor,8 305.9s (376) 7.7s (2) 3.1s (0) 2.9s (0)
sign,-1 level,1 76.1s (83) 6.6s (2) 0.8s (0) 2.2s (1)

level,1 77.3s (86) 12.9s (5) 3.4s (0) 2.1s (0)

(abducibles subject to optimization)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 357 / 426

Siblings hclasp

Planning Competition Benchmarks

_heuristic(holds(F,T-1),true, t-T+1) :- holds(F,T).

_heuristic(holds(F,T-1),false,t-T+1) :-

fluent(F), time(T), not holds(F,T).

Problem base configuration heuristic base c. (SAT) heur. (SAT)
Blocks’00 134.4s (180/61) 9.2s (239/3) 163.2s (59) 2.6s (0)

Elevator’00 3.1s (279/0) 0.0s (279/0) 3.4s (0) 0.0s (0)
Freecell’00 288.7s (147/115) 184.2s (194/74) 226.4s (47) 52.0s (0)

Logistics’00 145.8s (148/61) 115.3s (168/52) 113.9s (23) 15.5s (3)
Depots’02 400.3s (51/184) 297.4s (115/135) 389.0s (64) 61.6s (0)

Driverlog’02 308.3s (108/143) 189.6s (169/92) 245.8s (61) 6.1s (0)
Rovers’02 245.8s (138/112) 165.7s (179/79) 162.9s (41) 5.7s (0)

Satellite’02 398.4s (73/186) 229.9s (155/106) 364.6s (82) 30.8s (0)
Zenotravel’02 350.7s (101/169) 239.0s (154/116) 224.5s (53) 6.3s (0)

Total 252.8s (1225/1031) 158.9s (1652/657) 187.2s (430) 17.1s (3)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 358 / 426

Siblings hclasp

Planning Competition Benchmarks

_heuristic(holds(F,T-1),true, t-T+1) :- holds(F,T).

_heuristic(holds(F,T-1),false,t-T+1) :-

fluent(F), time(T), not holds(F,T).

Problem base configuration heuristic base c. (SAT) heur. (SAT)
Blocks’00 134.4s (180/61) 9.2s (239/3) 163.2s (59) 2.6s (0)

Elevator’00 3.1s (279/0) 0.0s (279/0) 3.4s (0) 0.0s (0)
Freecell’00 288.7s (147/115) 184.2s (194/74) 226.4s (47) 52.0s (0)

Logistics’00 145.8s (148/61) 115.3s (168/52) 113.9s (23) 15.5s (3)
Depots’02 400.3s (51/184) 297.4s (115/135) 389.0s (64) 61.6s (0)

Driverlog’02 308.3s (108/143) 189.6s (169/92) 245.8s (61) 6.1s (0)
Rovers’02 245.8s (138/112) 165.7s (179/79) 162.9s (41) 5.7s (0)

Satellite’02 398.4s (73/186) 229.9s (155/106) 364.6s (82) 30.8s (0)
Zenotravel’02 350.7s (101/169) 239.0s (154/116) 224.5s (53) 6.3s (0)

Total 252.8s (1225/1031) 158.9s (1652/657) 187.2s (430) 17.1s (3)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 358 / 426

Siblings hclasp

Planning Competition Benchmarks

_heuristic(holds(F,T-1),true, t-T+1) :- holds(F,T).

_heuristic(holds(F,T-1),false,t-T+1) :-

fluent(F), time(T), not holds(F,T).

Problem base configuration heuristic base c. (SAT) heur. (SAT)
Blocks’00 134.4s (180/61) 9.2s (239/3) 163.2s (59) 2.6s (0)

Elevator’00 3.1s (279/0) 0.0s (279/0) 3.4s (0) 0.0s (0)
Freecell’00 288.7s (147/115) 184.2s (194/74) 226.4s (47) 52.0s (0)

Logistics’00 145.8s (148/61) 115.3s (168/52) 113.9s (23) 15.5s (3)
Depots’02 400.3s (51/184) 297.4s (115/135) 389.0s (64) 61.6s (0)

Driverlog’02 308.3s (108/143) 189.6s (169/92) 245.8s (61) 6.1s (0)
Rovers’02 245.8s (138/112) 165.7s (179/79) 162.9s (41) 5.7s (0)

Satellite’02 398.4s (73/186) 229.9s (155/106) 364.6s (82) 30.8s (0)
Zenotravel’02 350.7s (101/169) 239.0s (154/116) 224.5s (53) 6.3s (0)

Total 252.8s (1225/1031) 158.9s (1652/657) 187.2s (430) 17.1s (3)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 358 / 426

Siblings claspfolio

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 359 / 426

Siblings claspfolio

claspfolio

Automatic selection of some clasp configuration among
several predefined ones via (learned) classifiers

Basic architecture of claspfolio:

gringo clasp Prediction clasp

Models claspfolio

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 360 / 426

Siblings claspfolio

Instance Feature Clusters (after PCA)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 361 / 426

Siblings claspfolio

Solving with clasp (as usual)

$ clasp queens500 --quiet

clasp version 2.0.2

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 11.445s (Solving: 10.58s 1st Model: 10.55s Unsat: 0.00s)

CPU Time : 11.410s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 362 / 426

Siblings claspfolio

Solving with clasp (as usual)

$ clasp queens500 --quiet

clasp version 2.0.2

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 11.445s (Solving: 10.58s 1st Model: 10.55s Unsat: 0.00s)

CPU Time : 11.410s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 362 / 426

Siblings claspfolio

Solving with claspfolio

$ claspfolio queens500 --quiet

PRESOLVING

Reading from queens500

Solving...

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.785s (Solving: 3.96s 1st Model: 3.92s Unsat: 0.00s)

CPU Time : 4.780s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 363 / 426

Siblings claspfolio

Solving with claspfolio

$ claspfolio queens500 --quiet

PRESOLVING

Reading from queens500

Solving...

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.785s (Solving: 3.96s 1st Model: 3.92s Unsat: 0.00s)

CPU Time : 4.780s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 363 / 426

Siblings claspfolio

Solving with claspfolio

$ claspfolio queens500 --quiet

PRESOLVING

Reading from queens500

Solving...

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.785s (Solving: 3.96s 1st Model: 3.92s Unsat: 0.00s)

CPU Time : 4.780s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 363 / 426

Siblings claspfolio

Solving with claspfolio

$ claspfolio queens500 --quiet

PRESOLVING

Reading from queens500

Solving...

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.785s (Solving: 3.96s 1st Model: 3.92s Unsat: 0.00s)

CPU Time : 4.780s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 363 / 426

Siblings claspfolio

Feature-extraction with claspfolio

$ claspfolio --features queens500

PRESOLVING

Reading from queens500

Solving...

UNKNOWN

Features : 84998,3994,0,250000,1.020,62.594,63.844,21.281,84998, \

3994,100,250000,1.020,62.594,63.844,21.281,84998,3994,250,250000, \

1.020,62.594,63.844,21.281,84998,3994,475,250000,1.020,62.594, \

63.844,21.281,757989,757989,0,510983,506992,3990,1,0,127.066,9983, \

1023958,502993,1994,518971,1,0,0,254994,0,3990,0.100,0.000,99.900, \

0,270303,812,4,0,812,2223,2223,262,262,2.738,2.738,0.000,812,812, \

2270.982,0,0.000

$ claspfolio --list-features

maxLearnt,Constraints,LearntConstraints,FreeVars,Vars/FreeVars, ...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 364 / 426

Siblings claspfolio

Feature-extraction with claspfolio

$ claspfolio --features queens500

PRESOLVING

Reading from queens500

Solving...

UNKNOWN

Features : 84998,3994,0,250000,1.020,62.594,63.844,21.281,84998, \

3994,100,250000,1.020,62.594,63.844,21.281,84998,3994,250,250000, \

1.020,62.594,63.844,21.281,84998,3994,475,250000,1.020,62.594, \

63.844,21.281,757989,757989,0,510983,506992,3990,1,0,127.066,9983, \

1023958,502993,1994,518971,1,0,0,254994,0,3990,0.100,0.000,99.900, \

0,270303,812,4,0,812,2223,2223,262,262,2.738,2.738,0.000,812,812, \

2270.982,0,0.000

$ claspfolio --list-features

maxLearnt,Constraints,LearntConstraints,FreeVars,Vars/FreeVars, ...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 364 / 426

Siblings claspfolio

Feature-extraction with claspfolio

$ claspfolio --features queens500

PRESOLVING

Reading from queens500

Solving...

UNKNOWN

Features : 84998,3994,0,250000,1.020,62.594,63.844,21.281,84998, \

3994,100,250000,1.020,62.594,63.844,21.281,84998,3994,250,250000, \

1.020,62.594,63.844,21.281,84998,3994,475,250000,1.020,62.594, \

63.844,21.281,757989,757989,0,510983,506992,3990,1,0,127.066,9983, \

1023958,502993,1994,518971,1,0,0,254994,0,3990,0.100,0.000,99.900, \

0,270303,812,4,0,812,2223,2223,262,262,2.738,2.738,0.000,812,812, \

2270.982,0,0.000

$ claspfolio --list-features

maxLearnt,Constraints,LearntConstraints,FreeVars,Vars/FreeVars, ...

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 364 / 426

Siblings claspfolio

Prediction with claspfolio

$ claspfolio queens500 --decisionvalues

PRESOLVING

Reading from queens500

Solving...

Portfolio Decision Values:

[1] : 3.437538 [10] : 3.639444 [19] : 3.726391

[2] : 3.501728 [11] : 3.483334 [20] : 3.020325

[3] : 3.784733 [12] : 3.271890 [21] : 3.220219

[4] : 3.672955 [13] : 3.344085 [22] : 3.998709

[5] : 3.557408 [14] : 3.315235 [23] : 3.961214

[6] : 3.942037 [15] : 3.620479 [24] : 3.512924

[7] : 3.335304 [16] : 3.396838 [25] : 3.078143

[8] : 3.375315 [17] : 3.238764

[9] : 3.432931 [18] : 3.403484

UNKNOWN

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 365 / 426

Siblings claspfolio

Prediction with claspfolio

$ claspfolio queens500 --decisionvalues

PRESOLVING

Reading from queens500

Solving...

Portfolio Decision Values:

[1] : 3.437538 [10] : 3.639444 [19] : 3.726391

[2] : 3.501728 [11] : 3.483334 [20] : 3.020325

[3] : 3.784733 [12] : 3.271890 [21] : 3.220219

[4] : 3.672955 [13] : 3.344085 [22] : 3.998709

[5] : 3.557408 [14] : 3.315235 [23] : 3.961214

[6] : 3.942037 [15] : 3.620479 [24] : 3.512924

[7] : 3.335304 [16] : 3.396838 [25] : 3.078143

[8] : 3.375315 [17] : 3.238764

[9] : 3.432931 [18] : 3.403484

UNKNOWN

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 365 / 426

Siblings claspfolio

Prediction with claspfolio

$ claspfolio queens500 --decisionvalues

PRESOLVING

Reading from queens500

Solving...

Portfolio Decision Values:

[1] : 3.437538 [10] : 3.639444 [19] : 3.726391

[2] : 3.501728 [11] : 3.483334 [20] : 3.020325

[3] : 3.784733 [12] : 3.271890 [21] : 3.220219

[4] : 3.672955 [13] : 3.344085 [22] : 3.998709

[5] : 3.557408 [14] : 3.315235 [23] : 3.961214

[6] : 3.942037 [15] : 3.620479 [24] : 3.512924

[7] : 3.335304 [16] : 3.396838 [25] : 3.078143

[8] : 3.375315 [17] : 3.238764

[9] : 3.432931 [18] : 3.403484

UNKNOWN

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 365 / 426

Siblings claspfolio

Solving with claspfolio (slightly verbosely)

$ claspfolio queens500 --quiet --autoverbose=1

PRESOLVING

Reading from queens500

Solving...

Chosen configuration: [20]

clasp --configurations=./models/portfolio.txt \

--modelpath=./models/ \

queens500 --quiet --autoverbose=1 \

--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)

CPU Time : 4.760s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 366 / 426

Siblings claspfolio

Solving with claspfolio (slightly verbosely)

$ claspfolio queens500 --quiet --autoverbose=1

PRESOLVING

Reading from queens500

Solving...

Chosen configuration: [20]

clasp --configurations=./models/portfolio.txt \

--modelpath=./models/ \

queens500 --quiet --autoverbose=1 \

--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)

CPU Time : 4.760s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 366 / 426

Siblings claspfolio

Solving with claspfolio (slightly verbosely)

$ claspfolio queens500 --quiet --autoverbose=1

PRESOLVING

Reading from queens500

Solving...

Chosen configuration: [20]

clasp --configurations=./models/portfolio.txt \

--modelpath=./models/ \

queens500 --quiet --autoverbose=1 \

--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)

CPU Time : 4.760s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 366 / 426

Siblings claspfolio

Solving with claspfolio (slightly verbosely)

$ claspfolio queens500 --quiet --autoverbose=1

PRESOLVING

Reading from queens500

Solving...

Chosen configuration: [20]

clasp --configurations=./models/portfolio.txt \

--modelpath=./models/ \

queens500 --quiet --autoverbose=1 \

--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)

CPU Time : 4.760s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 366 / 426

Siblings claspfolio

Solving with claspfolio (slightly verbosely)

$ claspfolio queens500 --quiet --autoverbose=1

PRESOLVING

Reading from queens500

Solving...

Chosen configuration: [20]

clasp --configurations=./models/portfolio.txt \

--modelpath=./models/ \

queens500 --quiet --autoverbose=1 \

--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)

CPU Time : 4.760s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 366 / 426

Siblings claspD

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 367 / 426

Siblings claspD

claspD

claspD is a multi-threaded solver for disjunctive logic programs

aiming at an equitable interplay between “generating” and “testing”
solver units

allowing for a bidirectional dynamic information exchange between
solver units for orthogonal tasks

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 368 / 426

Siblings claspD

claspD

claspD is a multi-threaded solver for disjunctive logic programs

aiming at an equitable interplay between “generating” and “testing”
solver units

allowing for a bidirectional dynamic information exchange between
solver units for orthogonal tasks

Preprocessing

Shared
Data

HCC1
Data

HCCk
Data

Solver1 Solver1 Solver1

Solvern Solvern Solvern

Generator Tester1 Testerk

Non-HCF SCCs

Generator
Configuration

Tester Configuration

...

...

.
.

.

.
.

.

.
.

.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 368 / 426

Siblings clingcon

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 369 / 426

Siblings clingcon

clingcon

Hybrid grounding and solving

Solving in hybrid domains, like Bio-Informatics

Basic architecture of clingcon:

Theory
Language

gringo clasp

Theory
Propagator

Theory
Solver

clingcon

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 370 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

1 $<= amount(B,T) :- pour(B,T), T < t.

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 371 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

1 $<= amount(B,T) :- pour(B,T), T < t.

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 371 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

1 $<= amount(B,T) :- pour(B,T), T < t.

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 371 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

1 $<= amount(B,T) :- pour(B,T), T < t.

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 371 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

:- pour(B,T), T < t, not (1 $<= amount(B,T)).

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 371 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

:- pour(B,T), T < t, 1 $> amount(B,T).

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 371 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

:- pour(B,T), T < t, 1 $> amount(B,T).

:- pour(B,T), T < t, amount(B,T) $> 30.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 371 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

:- pour(B,T), T < t, 1 $> amount(B,T).

:- pour(B,T), T < t, amount(B,T) $> 30.

:- not pour(B,T), bucket(B), time(T), T < t, amount(B,T) $!= 0.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 371 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

:- pour(B,T), T < t, 1 $> amount(B,T).

:- pour(B,T), T < t, amount(B,T) $> 30.

:- not pour(B,T), bucket(B), time(T), T < t, amount(B,T) $!= 0.

:- bucket(B), time(T), T < t, volume(B,T+1) $!= volume(B,T)$+amount(B,T).

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 371 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --text

time(0). ... time(4). $domain(0..500).

bucket(a). :- volume(a,0) $!= 0.

bucket(b). :- volume(b,0) $!= 100.

1 { pour(b,0), pour(a,0) } 1. ... 1 { pour(b,3), pour(a,3) } 1.

:- pour(a,0), 1 $> amount(a,0). ... :- pour(a,3), 1 $> amount(a,3).

:- pour(b,0), 1 $> amount(b,0). ... :- pour(b,3), 1 $> amount(b,3).

:- pour(a,0), amount(a,0) $> 30. ... :- pour(a,3), amount(a,3) $> 30.

:- pour(b,0), amount(b,0) $> 30. ... :- pour(b,3), amount(b,3) $> 30.

:- not pour(a,0), amount(a,0) $!= 0. ... :- not pour(a,3), amount(a,3) $!= 0.

:- not pour(b,0), amount(b,0) $!= 0. ... :- not pour(b,3), amount(b,3) $!= 0.

:- volume(a,1) $!= (volume(a,0) $+ amount(a,0)). ... :- volume(a,4) $!= (volume(a,3) $+ amount(a,3)).

:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)). ... :- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).

down(a,0) :- volume(a,0) $< volume(a,0). ... down(a,4) :- volume(a,4) $< volume(a,4).

down(a,0) :- volume(b,0) $< volume(a,0). ... down(a,4) :- volume(b,4) $< volume(a,4).

down(b,0) :- volume(a,0) $< volume(b,0). ... down(b,4) :- volume(a,4) $< volume(b,4).

down(b,0) :- volume(b,0) $< volume(b,0). ... down(b,4) :- volume(b,4) $< volume(b,4).

up(a,0) :- not down(a,0). ... up(a,4) :- not down(a,4).

up(b,0) :- not down(b,0). ... up(b,4) :- not down(b,4).

:- up(a,4).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 372 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --text

time(0). ... time(4). $domain(0..500).

bucket(a). :- volume(a,0) $!= 0.

bucket(b). :- volume(b,0) $!= 100.

1 { pour(b,0), pour(a,0) } 1. ... 1 { pour(b,3), pour(a,3) } 1.

:- pour(a,0), 1 $> amount(a,0). ... :- pour(a,3), 1 $> amount(a,3).

:- pour(b,0), 1 $> amount(b,0). ... :- pour(b,3), 1 $> amount(b,3).

:- pour(a,0), amount(a,0) $> 30. ... :- pour(a,3), amount(a,3) $> 30.

:- pour(b,0), amount(b,0) $> 30. ... :- pour(b,3), amount(b,3) $> 30.

:- not pour(a,0), amount(a,0) $!= 0. ... :- not pour(a,3), amount(a,3) $!= 0.

:- not pour(b,0), amount(b,0) $!= 0. ... :- not pour(b,3), amount(b,3) $!= 0.

:- volume(a,1) $!= (volume(a,0) $+ amount(a,0)). ... :- volume(a,4) $!= (volume(a,3) $+ amount(a,3)).

:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)). ... :- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).

down(a,0) :- volume(a,0) $< volume(a,0). ... down(a,4) :- volume(a,4) $< volume(a,4).

down(a,0) :- volume(b,0) $< volume(a,0). ... down(a,4) :- volume(b,4) $< volume(a,4).

down(b,0) :- volume(a,0) $< volume(b,0). ... down(b,4) :- volume(a,4) $< volume(b,4).

down(b,0) :- volume(b,0) $< volume(b,0). ... down(b,4) :- volume(b,4) $< volume(b,4).

up(a,0) :- not down(a,0). ... up(a,4) :- not down(a,4).

up(b,0) :- not down(b,0). ... up(b,4) :- not down(b,4).

:- up(a,4).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 372 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --text

time(0). ... time(4). $domain(0..500).

bucket(a). :- volume(a,0) $!= 0.

bucket(b). :- volume(b,0) $!= 100.

1 { pour(b,0), pour(a,0) } 1. ... 1 { pour(b,3), pour(a,3) } 1.

:- pour(a,0), 1 $> amount(a,0). ... :- pour(a,3), 1 $> amount(a,3).

:- pour(b,0), 1 $> amount(b,0). ... :- pour(b,3), 1 $> amount(b,3).

:- pour(a,0), amount(a,0) $> 30. ... :- pour(a,3), amount(a,3) $> 30.

:- pour(b,0), amount(b,0) $> 30. ... :- pour(b,3), amount(b,3) $> 30.

:- not pour(a,0), amount(a,0) $!= 0. ... :- not pour(a,3), amount(a,3) $!= 0.

:- not pour(b,0), amount(b,0) $!= 0. ... :- not pour(b,3), amount(b,3) $!= 0.

:- volume(a,1) $!= (volume(a,0) $+ amount(a,0)). ... :- volume(a,4) $!= (volume(a,3) $+ amount(a,3)).

:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)). ... :- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).

down(a,0) :- volume(a,0) $< volume(a,0). ... down(a,4) :- volume(a,4) $< volume(a,4).

down(a,0) :- volume(b,0) $< volume(a,0). ... down(a,4) :- volume(b,4) $< volume(a,4).

down(b,0) :- volume(a,0) $< volume(b,0). ... down(b,4) :- volume(a,4) $< volume(b,4).

down(b,0) :- volume(b,0) $< volume(b,0). ... down(b,4) :- volume(b,4) $< volume(b,4).

up(a,0) :- not down(a,0). ... up(a,4) :- not down(a,4).

up(b,0) :- not down(b,0). ... up(b,4) :- not down(b,4).

:- up(a,4).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 372 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --text

time(0). ... time(4). $domain(0..500).

bucket(a). :- volume(a,0) $!= 0.

bucket(b). :- volume(b,0) $!= 100.

1 { pour(b,0), pour(a,0) } 1. ... 1 { pour(b,3), pour(a,3) } 1.

:- pour(a,0), 1 $> amount(a,0). ... :- pour(a,3), 1 $> amount(a,3).

:- pour(b,0), 1 $> amount(b,0). ... :- pour(b,3), 1 $> amount(b,3).

:- pour(a,0), amount(a,0) $> 30. ... :- pour(a,3), amount(a,3) $> 30.

:- pour(b,0), amount(b,0) $> 30. ... :- pour(b,3), amount(b,3) $> 30.

:- not pour(a,0), amount(a,0) $!= 0. ... :- not pour(a,3), amount(a,3) $!= 0.

:- not pour(b,0), amount(b,0) $!= 0. ... :- not pour(b,3), amount(b,3) $!= 0.

:- volume(a,1) $!= (volume(a,0) $+ amount(a,0)). ... :- volume(a,4) $!= (volume(a,3) $+ amount(a,3)).

:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)). ... :- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).

down(a,0) :- volume(a,0) $< volume(a,0). ... down(a,4) :- volume(a,4) $< volume(a,4).

down(a,0) :- volume(b,0) $< volume(a,0). ... down(a,4) :- volume(b,4) $< volume(a,4).

down(b,0) :- volume(a,0) $< volume(b,0). ... down(b,4) :- volume(a,4) $< volume(b,4).

down(b,0) :- volume(b,0) $< volume(b,0). ... down(b,4) :- volume(b,4) $< volume(b,4).

up(a,0) :- not down(a,0). ... up(a,4) :- not down(a,4).

up(b,0) :- not down(b,0). ... up(b,4) :- not down(b,4).

:- up(a,4).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 372 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --text

time(0). ... time(4). $domain(0..500).

bucket(a). :- volume(a,0) $!= 0.

bucket(b). :- volume(b,0) $!= 100.

1 { pour(b,0), pour(a,0) } 1. ... 1 { pour(b,3), pour(a,3) } 1.

:- pour(a,0), 1 $> amount(a,0). ... :- pour(a,3), 1 $> amount(a,3).

:- pour(b,0), 1 $> amount(b,0). ... :- pour(b,3), 1 $> amount(b,3).

:- pour(a,0), amount(a,0) $> 30. ... :- pour(a,3), amount(a,3) $> 30.

:- pour(b,0), amount(b,0) $> 30. ... :- pour(b,3), amount(b,3) $> 30.

:- not pour(a,0), amount(a,0) $!= 0. ... :- not pour(a,3), amount(a,3) $!= 0.

:- not pour(b,0), amount(b,0) $!= 0. ... :- not pour(b,3), amount(b,3) $!= 0.

:- volume(a,1) $!= (volume(a,0) $+ amount(a,0)). ... :- volume(a,4) $!= (volume(a,3) $+ amount(a,3)).

:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)). ... :- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).

down(a,0) :- volume(a,0) $< volume(a,0). ... down(a,4) :- volume(a,4) $< volume(a,4).

down(a,0) :- volume(b,0) $< volume(a,0). ... down(a,4) :- volume(b,4) $< volume(a,4).

down(b,0) :- volume(a,0) $< volume(b,0). ... down(b,4) :- volume(a,4) $< volume(b,4).

down(b,0) :- volume(b,0) $< volume(b,0). ... down(b,4) :- volume(b,4) $< volume(b,4).

up(a,0) :- not down(a,0). ... up(a,4) :- not down(a,4).

up(b,0) :- not down(b,0). ... up(b,4) :- not down(b,4).

:- up(a,4).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 372 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 373 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 373 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 373 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 373 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000 Boolean variables

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 373 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000 Non-Boolean variables

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 373 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --csp-num-as=1

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=11 amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=30 amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=30 amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=30 amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=11 volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=41 volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=71 volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=101 volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1+

Time : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 374 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --csp-num-as=1

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=11 amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=30 amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=30 amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=30 amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=11 volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=41 volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=71 volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=101 volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1+

Time : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 374 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --csp-num-as=1

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=11 amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=30 amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=30 amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=30 amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=11 volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=41 volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=71 volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=101 volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1+

Time : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 374 / 426

Siblings clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --csp-num-as=1

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=11 amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=30 amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=30 amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=30 amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=11 volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=41 volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=71 volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=101 volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1+

Time : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 374 / 426

Siblings iclingo

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 375 / 426

Siblings iclingo

iclingo

Incremental grounding and solving

Offline solving in dynamic domains, like Automated Planning

Basic architecture of iclingo:

gringo clasp

iclingo

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 376 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder Solver

Stable
Models

- - -

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

Q1

P1

B

8
?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder Solver

Stable
Models

- - -

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

Q1

P1

B

8
?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program

Grounder Solver
Stable
Models

- - -

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

Q1

P1

B

8
?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program

Grounder Solver
Stable
Models

- - -

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

Q1

P1

B

8
?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

Q1

P1

B

8
?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8
?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8
?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8

P3

Q3

8
...

Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8

P3

Q3

8
...

Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8

P3

Q3

8

...
Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8

P3

Q3

8
...

Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8

P3

Q3

8

...
Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8

P3

Q3

8

...
Pn

Qn

4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 377 / 426

Siblings iclingo

Simplistic STRIPS Planning

#base.

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

#cumulative t.

1 { occ(A,t) : action(A) } 1.

:- occ(A,t), pre(A,F), not holds(F,t-1).

holds(F,t) :- holds(F,t-1), not nolds(F,t).

holds(F,t) :- occ(A,t), add(A,F).

nolds(F,t) :- occ(A,t), del(A,F).

#volatile t.

:- query(F), not holds(F,t).

#hide. #show occ/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 378 / 426

Siblings iclingo

Simplistic STRIPS Planning

#base.

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

#cumulative t.

1 { occ(A,t) : action(A) } 1.

:- occ(A,t), pre(A,F), not holds(F,t-1).

holds(F,t) :- holds(F,t-1), not nolds(F,t).

holds(F,t) :- occ(A,t), add(A,F).

nolds(F,t) :- occ(A,t), del(A,F).

#volatile t.

:- query(F), not holds(F,t).

#hide. #show occ/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 378 / 426

Siblings iclingo

Simplistic STRIPS Planning

#base.

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

#cumulative t.

1 { occ(A,t) : action(A) } 1.

:- occ(A,t), pre(A,F), not holds(F,t-1).

holds(F,t) :- holds(F,t-1), not nolds(F,t).

holds(F,t) :- occ(A,t), add(A,F).

nolds(F,t) :- occ(A,t), del(A,F).

#volatile t.

:- query(F), not holds(F,t).

#hide. #show occ/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 378 / 426

Siblings iclingo

Simplistic STRIPS Planning

#base.

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

#cumulative t.

1 { occ(A,t) : action(A) } 1.

:- occ(A,t), pre(A,F), not holds(F,t-1).

holds(F,t) :- holds(F,t-1), not nolds(F,t).

holds(F,t) :- occ(A,t), add(A,F).

nolds(F,t) :- occ(A,t), del(A,F).

#volatile t.

:- query(F), not holds(F,t).

#hide. #show occ/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 378 / 426

Siblings iclingo

Simplistic STRIPS Planning

$ iclingo iplanning.lp

Answer: 1

occ(a,1) occ(b,2)

SATISFIABLE

Models : 1

Total Steps : 2

Time : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 379 / 426

Siblings iclingo

Simplistic STRIPS Planning

$ iclingo iplanning.lp

Answer: 1

occ(a,1) occ(b,2)

SATISFIABLE

Models : 1

Total Steps : 2

Time : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 379 / 426

Siblings iclingo

Simplistic STRIPS Planning

$ iclingo iplanning.lp --istats

=============== step 1 ===============

Models : 0

Time : 0.000 (g: 0.000, p: 0.000, s: 0.000)

Rules : 27

Choices : 0

Conflicts: 0

=============== step 2 ===============

Answer: 1

occ(a,1) occ(b,2)

Models : 1

Time : 0.000 (g: 0.000, p: 0.000, s: 0.000)

Rules : 16

Choices : 0

Conflicts: 0

=============== Summary ===============

SATISFIABLE

Models : 1

Total Steps : 2

Time : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 380 / 426

Siblings iclingo

Simplistic STRIPS Planning

$ iclingo iplanning.lp --istats

=============== step 1 ===============

Models : 0

Time : 0.000 (g: 0.000, p: 0.000, s: 0.000)

Rules : 27

Choices : 0

Conflicts: 0

=============== step 2 ===============

Answer: 1

occ(a,1) occ(b,2)

Models : 1

Time : 0.000 (g: 0.000, p: 0.000, s: 0.000)

Rules : 16

Choices : 0

Conflicts: 0

=============== Summary ===============

SATISFIABLE

Models : 1

Total Steps : 2

Time : 0.000

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 380 / 426

Siblings oclingo

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 381 / 426

Siblings oclingo

oclingo

Reactive grounding and solving

Online solving in dynamic domains, like Robotics

Basic architecture of oclingo:

gringo clasp

oclingo

Controller

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 382 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder Solver

Stable
Models

- - -

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder Solver

Stable
Models

- - -

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program

Grounder Solver
Stable
Models

- - -

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program

Grounder Solver
Stable
Models

- - -

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B

P1
...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4

Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4

Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41

F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4

Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41

F41

...

E42

F42

Pn42

Qn42

4

UpdateQuery

Erasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4

Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

Update

QueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4

Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

Update

Query

Erasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Stable
Models

- -

-

6�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E41

F41F41

...

E42

F42

Pn42

Qn42

4

UpdateQueryErasure

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 383 / 426

Siblings oclingo

Elevator Control

#base.

floor(1..3).

atFloor(1,0).

#cumulative t.

#external request(F,t) : floor(F).

1 { atFloor(F-1;F+1,t) } 1 :- atFloor(F,t-1), floor(F).

:- atFloor(F,t), not floor(F).

requested(F,t) :- request(F,t), floor(F), not atFloor(F,t).

requested(F,t) :- requested(F,t-1), floor(F), not atFloor(F,t).

goal(t) :- not requested(F,t) : floor(F).

#volatile t.

:- not goal(t).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 384 / 426

Siblings oclingo

Pushing a button

oClingo acts as a server listening on a port
waiting for client requests

To issue such requests, a separate controller program
sends online progressions using network sockets

For instance,

#step 1.

request(3,1).

#endstep.

This process terminates when the client sends

#stop.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 385 / 426

Siblings oclingo

Pushing a button

oClingo acts as a server listening on a port
waiting for client requests

To issue such requests, a separate controller program
sends online progressions using network sockets

For instance,

#step 1.

request(3,1).

#endstep.

This process terminates when the client sends

#stop.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 385 / 426

Siblings oclingo

Pushing a button

oClingo acts as a server listening on a port
waiting for client requests

To issue such requests, a separate controller program
sends online progressions using network sockets

For instance,

#step 1.

request(3,1).

#endstep.

This process terminates when the client sends

#stop.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 385 / 426

Siblings oclingo

Pushing a button

oClingo acts as a server listening on a port
waiting for client requests

To issue such requests, a separate controller program
sends online progressions using network sockets

For instance,

#step 1.

request(3,1).

#endstep.

This process terminates when the client sends

#stop.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 385 / 426

Siblings clavis

Outline

37 Potassco

38 gringo

39 clasp

40 Siblings
hclasp
claspfolio
claspD
clingcon
iclingo
oclingo
clavis

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 386 / 426

Siblings clavis

clavis

Analysis and visualization toolchain for clasp

clavis

Event logger integrated in clasp
Records CDCL events like propagation, conflicts, restarts, . . .
Generated logfiles readable with different backends
Easily configurable
Applicable to clasp variants like hclasp

insight

Visualization backend for clavis
Combines information about problem structure and solving process
Networks for structural and aggregated information
Plots for temporal information and navigation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 387 / 426

Siblings clavis

clavis

Analysis and visualization toolchain for clasp

clavis

Event logger integrated in clasp
Records CDCL events like propagation, conflicts, restarts, . . .
Generated logfiles readable with different backends
Easily configurable
Applicable to clasp variants like hclasp

insight

Visualization backend for clavis
Combines information about problem structure and solving process
Networks for structural and aggregated information
Plots for temporal information and navigation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 387 / 426

Siblings clavis

clavis

Analysis and visualization toolchain for clasp

clavis

Event logger integrated in clasp
Records CDCL events like propagation, conflicts, restarts, . . .
Generated logfiles readable with different backends
Easily configurable
Applicable to clasp variants like hclasp

insight

Visualization backend for clavis
Combines information about problem structure and solving process
Networks for structural and aggregated information
Plots for temporal information and navigation

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 387 / 426

Siblings clavis

Visualization Examples

8-Queens: program interaction graph

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 388 / 426

Siblings clavis

Visualization Examples

Towers of Hanoi: program interaction graph
Colors showing flipped assignments

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 389 / 426

Siblings clavis

Visualization Examples

Towers of Hanoi: flipped assignments between decisions

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 390 / 426

Siblings clavis

Visualization Examples

Towers of Hanoi: flipped assignments between decisions (zoomed in)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 391 / 426

Siblings clavis

Visualization Examples

Towers of Hanoi: learned nogoods during zoomed in segment
projected onto program interaction graph layout

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 392 / 426

Siblings clavis

Visualization Examples

Towers of Hanoi: learned nogoods during zoomed in segment
compared to program interaction graph

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 393 / 426

Siblings clavis

Interactive View

Symbol table shows additional information about variables

Search bar and symbol table allow for dynamic change of the view

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 394 / 426

Siblings clavis

Interactive View

Symbol table shows additional information about variables

Search bar and symbol table allow for dynamic change of the view

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 394 / 426

Siblings clavis

Interactive View

Symbol table shows additional information about variables

Search bar and symbol table allow for dynamic change of the view

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 394 / 426

Advanced Modeling: Overview

41 Tweaking N-Queens

42 Do’s and Dont’s

43 Hints

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 395 / 426

Anything left to worry about?

ASP offers

rich yet easy modeling languages
efficient instantiation procedures
powerful search engines

BUT The problem encoding (still) matters!

Example Sort a list with 8 elements

divide-and-conquer ∼ 8(log28) = 16 “operations”
permutation guessing ∼ 8!/2 = 20160 “operations”

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 396 / 426

Anything left to worry about?

ASP offers

rich yet easy modeling languages
efficient instantiation procedures
powerful search engines

BUT The problem encoding (still) matters!

Example Sort a list with 8 elements

divide-and-conquer ∼ 8(log28) = 16 “operations”
permutation guessing ∼ 8!/2 = 20160 “operations”

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 396 / 426

Anything left to worry about?

ASP offers

rich yet easy modeling languages
efficient instantiation procedures
powerful search engines

BUT The problem encoding (still) matters!

Example Sort a list with 8 elements

divide-and-conquer ∼ 8(log28) = 16 “operations”
permutation guessing ∼ 8!/2 = 20160 “operations”

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 396 / 426

Anything left to worry about?

ASP offers

rich yet easy modeling languages
efficient instantiation procedures
powerful search engines

BUT The problem encoding (still) matters!

Example Sort a list with 8 elements

divide-and-conquer ∼ 8(log28) = 16 “operations”
permutation guessing ∼ 8!/2 = 20160 “operations”

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 396 / 426

Tweaking N-Queens

Outline

41 Tweaking N-Queens

42 Do’s and Dont’s

43 Hints

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 397 / 426

Tweaking N-Queens

N-Queens Problem

Problem Specification

Given an N×N chessboard,
place N queens such that they do not attack each other
(neither horizontally, vertically, nor diagonally)

N = 4

Chessboard

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

Placement

4 0ZQZ
3 L0Z0
2 0Z0L
1 ZQZ0

1 2 3 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 398 / 426

Tweaking N-Queens

N-Queens Problem

Problem Specification

Given an N×N chessboard,
place N queens such that they do not attack each other
(neither horizontally, vertically, nor diagonally)

N = 4

Chessboard

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

Placement

4 0ZQZ
3 L0Z0
2 0Z0L
1 ZQZ0

1 2 3 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 398 / 426

Tweaking N-Queens

A First Encoding

1 Each square may host a queen

2 No row, column, or diagonal hosts two queens

3 A placement is given by instances of queen in a stable model

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.

% DISPLAY

#hide. #show queen/2.

Anything missing?

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 399 / 426

Tweaking N-Queens

A First Encoding

1 Each square may host a queen

2 No row, column, or diagonal hosts two queens

3 A placement is given by instances of queen in a stable model

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.

% DISPLAY

#hide. #show queen/2.

Anything missing?

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 399 / 426

Tweaking N-Queens

A First Encoding

1 Each square may host a queen

2 No row, column, or diagonal hosts two queens

3 A placement is given by instances of queen in a stable model

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X2,Y1), X1 < X2.

% DISPLAY

#hide. #show queen/2.

Anything missing?

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 399 / 426

Tweaking N-Queens

A First Encoding

1 Each square may host a queen

2 No row, column, or diagonal hosts two queens

3 A placement is given by instances of queen in a stable model

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

% DISPLAY

#hide. #show queen/2.

Anything missing?

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 399 / 426

Tweaking N-Queens

A First Encoding

1 Each square may host a queen

2 No row, column, or diagonal hosts two queens

3 A placement is given by instances of queen in a stable model

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

[...]

% DISPLAY

#hide. #show queen/2.

Anything missing?

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 399 / 426

Tweaking N-Queens

A First Encoding

1 Each square may host a queen

2 No row, column, or diagonal hosts two queens

3 A placement is given by instances of queen in a stable model

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

[...]

% DISPLAY

#hide. #show queen/2.

Anything missing?

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 399 / 426

Tweaking N-Queens

A First Encoding

1 Each square may host a queen
2 No row, column, or diagonal hosts two queens
3 A placement is given by instances of queen in a stable model
4 We have to place (at least) N queens

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

[...]

:- not n #count{ queen(X,Y) }.

% DISPLAY

#hide. #show queen/2.

Anything missing?

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 399 / 426

Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 queens_0.lp | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 400 / 426

Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 queens_0.lp | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 400 / 426

Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 queens_0.lp | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 400 / 426

Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 queens_0.lp | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 400 / 426

Tweaking N-Queens

A First Encoding
Let’s Place 22 Queens!

gringo -c n=22 queens_0.lp | clasp --stats

Answer: 1

queen(1,10) queen(2,6) queen(3,16) queen(4,14) queen(5,8) ...

SATISFIABLE

Models : 1+

Time : 150.531s (Solving: 150.37s 1st Model: 150.34s Unsat: 0.00s)

CPU Time : 147.480s

Choices : 594960

Conflicts : 574565

Restarts : 19

Variables : 17271

Constraints : 16787

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 401 / 426

Tweaking N-Queens

A First Encoding
Let’s Place 22 Queens!

gringo -c n=22 queens_0.lp | clasp --stats

Answer: 1

queen(1,10) queen(2,6) queen(3,16) queen(4,14) queen(5,8) ...

SATISFIABLE

Models : 1+

Time : 150.531s (Solving: 150.37s 1st Model: 150.34s Unsat: 0.00s)

CPU Time : 147.480s

Choices : 594960

Conflicts : 574565

Restarts : 19

Variables : 17271

Constraints : 16787

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 401 / 426

Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.

:- queen(X1,Y1), queen(X2,Y1), X1 < X2.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

:- not n #count{ queen(X,Y) }.

% DISPLAY

#hide. #show queen/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 402 / 426

Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- queen(X1,Y1), queen(X2,Y1), X1 < X2.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

:- not n #count{ queen(X,Y) }.

% DISPLAY

#hide. #show queen/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 402 / 426

Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

:- not n #count{ queen(X,Y) }.

% DISPLAY

#hide. #show queen/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 402 / 426

Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

% DISPLAY

#hide. #show queen/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 402 / 426

Tweaking N-Queens

A First Refinement
Let’s Place 22 Queens!

gringo -c n=22 queens_1.lp | clasp --stats

Answer: 1

queen(1,18) queen(2,10) queen(3,21) queen(4,3) queen(5,5) ...

SATISFIABLE

Models : 1+

Time : 0.113s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.020s

Choices : 132

Conflicts : 105

Restarts : 1

Variables : 7238

Constraints : 6710

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 403 / 426

Tweaking N-Queens

A First Refinement
Let’s Place 22 Queens!

gringo -c n=22 queens_1.lp | clasp --stats

Answer: 1

queen(1,18) queen(2,10) queen(3,21) queen(4,3) queen(5,5) ...

SATISFIABLE

Models : 1+

Time : 0.113s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.020s

Choices : 132

Conflicts : 105

Restarts : 1

Variables : 7238

Constraints : 6710

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 403 / 426

Tweaking N-Queens

A First Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_1.lp | clasp --stats

Answer: 1

queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...

SATISFIABLE

Models : 1+

Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)

CPU Time : 6.930s

Choices : 1373

Conflicts : 845

Restarts : 4

Variables : 1211338

Constraints : 1196210

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 404 / 426

Tweaking N-Queens

A First Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_1.lp | clasp --stats

Answer: 1

queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...

SATISFIABLE

Models : 1+

Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)

CPU Time : 6.930s

Choices : 1373

Conflicts : 845

Restarts : 4

Variables : 1211338

Constraints : 1196210

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 404 / 426

Tweaking N-Queens

A First Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_1.lp | clasp --stats

Answer: 1

queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...

SATISFIABLE

Models : 1+

Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)

CPU Time : 6.930s

Choices : 1373

Conflicts : 845

Restarts : 4

Variables : 1211338

Constraints : 1196210

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 404 / 426

Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | clasp --stats

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 405 / 426

Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | wc)

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 405 / 426

Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | wc)

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 405 / 426

Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | wc)

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 405 / 426

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals make trouble!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 406 / 426

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals make trouble!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 406 / 426

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals make trouble!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 406 / 426

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals make trouble!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 406 / 426

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals make trouble!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 406 / 426

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals make trouble!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 406 / 426

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals make trouble!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 406 / 426

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals make trouble!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 406 / 426

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals make trouble!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 406 / 426

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals make trouble!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 406 / 426

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2. Diagonals make trouble!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 406 / 426

Tweaking N-Queens

Enumerating Diagonals

N = 4

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

#diagonal1 =
(#row + #column)− 1

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

#diagonal2 =
(#row−#column) + N

Note For each N, indexes 1, . . . , (2∗N)−1 refer to squares on
#diagonal1/2

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 407 / 426

Tweaking N-Queens

Enumerating Diagonals

N = 4

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

1

2

2

3

3

3

4

4

4

4

5

5

5

6

6

7

#diagonal1 =
(#row + #column)− 1

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

7

6

6

5

5

5

4

4

4

4

3

3

3

2

2

1

#diagonal2 =
(#row−#column) + N

Note For each N, indexes 1, . . . , (2∗N)−1 refer to squares on
#diagonal1/2

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 407 / 426

Tweaking N-Queens

Enumerating Diagonals

N = 4

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

1

2

2

3

3

3

4

4

4

4

5

5

5

6

6

7

#diagonal1 =
(#row + #column)− 1

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

7

6

6

5

5

5

4

4

4

4

3

3

3

2

2

1

#diagonal2 =
(#row−#column) + N

Note For each N, indexes 1, . . . , (2∗N)−1 refer to squares on
#diagonal1/2

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 407 / 426

Tweaking N-Queens

Enumerating Diagonals

N = 4

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

1

2

2

3

3

3

4

4

4

4

5

5

5

6

6

7

#diagonal1 =
(#row + #column)− 1

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

7

6

6

5

5

5

4

4

4

4

3

3

3

2

2

1

#diagonal2 =
(#row−#column) + N

Note For each N, indexes 1, . . . , (2∗N)−1 refer to squares on
#diagonal1/2

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 407 / 426

Tweaking N-Queens

A Second Refinement
Let’s go for Diagonals!

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

% DISPLAY

#hide. #show queen/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 408 / 426

Tweaking N-Queens

A Second Refinement
Let’s go for Diagonals!

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1

% DISPLAY

#hide. #show queen/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 408 / 426

Tweaking N-Queens

A Second Refinement
Let’s go for Diagonals!

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 408 / 426

Tweaking N-Queens

A Second Refinement
Let’s go for Diagonals!

queens_2.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 408 / 426

Tweaking N-Queens

A Second Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_2.lp | clasp --stats

Answer: 1

queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...

SATISFIABLE

Models : 1+

Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)

CPU Time : 0.210s

Choices : 11036

Conflicts : 499

Restarts : 3

Variables : 16098

Constraints : 970

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 409 / 426

Tweaking N-Queens

A Second Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_2.lp | clasp --stats

Answer: 1

queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...

SATISFIABLE

Models : 1+

Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)

CPU Time : 0.210s

Choices : 11036

Conflicts : 499

Restarts : 3

Variables : 16098

Constraints : 970

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 409 / 426

Tweaking N-Queens

A Second Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_2.lp | clasp --stats

Answer: 1

queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...

SATISFIABLE

Models : 1+

Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)

CPU Time : 0.210s

Choices : 11036

Conflicts : 499

Restarts : 3

Variables : 16098

Constraints : 970

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 409 / 426

Tweaking N-Queens

A Second Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_2.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)

CPU Time : 7.250s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 410 / 426

Tweaking N-Queens

A Second Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_2.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)

CPU Time : 7.250s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 410 / 426

Tweaking N-Queens

A Second Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_2.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)

CPU Time : 7.250s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 410 / 426

Tweaking N-Queens

A Third Refinement
Let’s Precalculate Indexes!

queens_2.lp

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 411 / 426

Tweaking N-Queens

A Third Refinement
Let’s Precalculate Indexes!

queens_2.lp

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 411 / 426

Tweaking N-Queens

A Third Refinement
Let’s Precalculate Indexes!

queens_2.lp

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 411 / 426

Tweaking N-Queens

A Third Refinement
Let’s Precalculate Indexes!

queens_3.lp

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 411 / 426

Tweaking N-Queens

A Third Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_3.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 8.889s (Solving: 6.61s 1st Model: 6.60s Unsat: 0.00s)

CPU Time : 7.320s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 412 / 426

Tweaking N-Queens

A Third Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_3.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 8.889s (Solving: 6.61s 1st Model: 6.60s Unsat: 0.00s)

CPU Time : 7.320s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 412 / 426

Tweaking N-Queens

A Third Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_3.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 8.889s (Solving: 6.61s 1st Model: 6.60s Unsat: 0.00s)

CPU Time : 7.320s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 412 / 426

Tweaking N-Queens

A Third Refinement
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12

Variables : 365994

Constraints : 4794

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 413 / 426

Tweaking N-Queens

A Third Refinement
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12

Variables : 365994

Constraints : 4794

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 413 / 426

Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12

Variables : 365994

Constraints : 4794

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 414 / 426

Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12

Variables : 365994

Constraints : 4794

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 414 / 426

Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,422) queen(2,458) queen(3,224) queen(4,408) queen(5,405) ...

SATISFIABLE

Models : 1+

Time : 37.454s (Solving: 26.38s 1st Model: 26.26s Unsat: 0.00s)

CPU Time : 29.580s

Choices : 961315

Conflicts : 3222

Restarts : 7

Variables : 365994

Constraints : 4794

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 414 / 426

Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,422) queen(2,458) queen(3,224) queen(4,408) queen(5,405) ...

SATISFIABLE

Models : 1+

Time : 37.454s (Solving: 26.38s 1st Model: 26.26s Unsat: 0.00s)

CPU Time : 29.580s

Choices : 961315

Conflicts : 3222

Restarts : 7

Variables : 365994

Constraints : 4794

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 414 / 426

Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,90) queen(2,452) queen(3,494) queen(4,145) queen(5,84) ...

SATISFIABLE

Models : 1+

Time : 22.654s (Solving: 10.53s 1st Model: 10.47s Unsat: 0.00s)

CPU Time : 15.750s

Choices : 1058729

Conflicts : 2128

Restarts : 6

Variables : 403123

Constraints : 49636

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 414 / 426

Do’s and Dont’s

Outline

41 Tweaking N-Queens

42 Do’s and Dont’s

43 Hints

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 415 / 426

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 416 / 426

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).

buy(X) :- veg(X), pro(X,cheap), pro(X,fresh), pro(X,tasty).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 416 / 426

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).

pro(asparagus,clean).

buy(X) :- veg(X), pro(X,cheap), pro(X,fresh), pro(X,tasty), pro(X,clean).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 416 / 426

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).

pro(asparagus,clean).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 416 / 426

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean).

buy(X) :- veg(X), pro(X,P) : pre(P).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 416 / 426

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean). pre(clean).

buy(X) :- veg(X), pro(X,P) : pre(P).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 416 / 426

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 416 / 426

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean).

buy(X) :- veg(X), not bye(X). bye(X) :- veg(X), pre(P), not pro(X,P).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 416 / 426

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean). pre(clean).

buy(X) :- veg(X), not bye(X). bye(X) :- veg(X), pre(P), not pro(X,P).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 416 / 426

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean). pre(clean).

buy(X) :- veg(X), not bye(X). bye(X) :- veg(X), pre(P), not pro(X,P).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 416 / 426

Do’s and Dont’s

Running Example: Latin Square

Given: an N×N board

1
2
3
4
5
6

1 2 3 4 5 6

represented by facts:

square(1,1). ... square(1,6).

square(2,1). ... square(2,6).

square(3,1). ... square(3,6).

square(4,1). ... square(4,6).

square(5,1). ... square(5,6).

square(6,1). ... square(6,6).

Wanted: assignment of 1, . . . ,N

1 1 2 3 4 5 6
2 2 3 4 5 6 1
3 3 4 5 6 1 2
4 4 5 6 1 2 3
5 5 6 1 2 3 4
6 6 1 2 3 4 5

1 2 3 4 5 6

represented by atoms:

num(1,1,1) num(1,2,2) ... num(1,6,6)

num(2,1,2) num(2,2,3) ... num(2,6,1)

num(3,1,3) num(3,2,4) ... num(3,6,2)

num(4,1,4) num(4,2,5) ... num(4,6,3)

num(5,1,5) num(5,2,6) ... num(5,6,4)

num(6,1,6) num(6,2,1) ... num(6,6.5)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 417 / 426

Do’s and Dont’s

Running Example: Latin Square

Given: an N×N board

1
2
3
4
5
6

1 2 3 4 5 6

represented by facts:

square(1,1). ... square(1,6).

square(2,1). ... square(2,6).

square(3,1). ... square(3,6).

square(4,1). ... square(4,6).

square(5,1). ... square(5,6).

square(6,1). ... square(6,6).

Wanted: assignment of 1, . . . ,N

1 1 2 3 4 5 6
2 2 3 4 5 6 1
3 3 4 5 6 1 2
4 4 5 6 1 2 3
5 5 6 1 2 3 4
6 6 1 2 3 4 5

1 2 3 4 5 6

represented by atoms:

num(1,1,1) num(1,2,2) ... num(1,6,6)

num(2,1,2) num(2,2,3) ... num(2,6,1)

num(3,1,3) num(3,2,4) ... num(3,6,2)

num(4,1,4) num(4,2,5) ... num(4,6,3)

num(5,1,5) num(5,2,6) ... num(5,6,4)

num(6,1,6) num(6,2,1) ... num(6,6.5)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 417 / 426

Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- square(X1,Y1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- square(X1,Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

Note unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 418 / 426

Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- square(X1,Y1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- square(X1,Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

Note unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 418 / 426

Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- square(X1,Y1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- square(X1,Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

Note unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 418 / 426

Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

squareX(X) :- square(X,Y). squareY(Y) :- square(X,Y).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- squareX(X1) , N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- squareY(Y1) , N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

Note unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 418 / 426

Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

squareX(X) :- square(X,Y). squareY(Y) :- square(X,Y).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- squareX(X1) , N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- squareY(Y1) , N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

Note unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 418 / 426

Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 != Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 != X2.

Note duplicate ground rules (swapping Y1/Y2 and X1/X2 gives the
“same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 419 / 426

Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 != Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 != X2.

Note duplicate ground rules (swapping Y1/Y2 and X1/X2 gives the
“same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 419 / 426

Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 != Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 != X2.

Note duplicate ground rules (swapping Y1/Y2 and X1/X2 gives the
“same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 419 / 426

Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

Note duplicate ground rules (swapping Y1/Y2 and X1/X2 gives the
“same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 419 / 426

Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

Note duplicate ground rules (swapping Y1/Y2 and X1/X2 gives the
“same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 419 / 426

Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

Note uniqueness of N in a row/column checked by ENUMERATING
PAIRS!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 420 / 426

Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

Note uniqueness of N in a row/column checked by ENUMERATING
PAIRS!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 420 / 426

Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

Note uniqueness of N in a row/column checked by ENUMERATING
PAIRS!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 420 / 426

Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

gtX(X-1,Y,N) :- num(X,Y,N), 1 < X. gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.

gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X. gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

:- num(X,Y,N), gtX(X,Y,N). :- num(X,Y,N), gtY(X,Y,N).

Note uniqueness of N in a row/column checked by ENUMERATING
PAIRS!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 420 / 426

Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

gtX(X-1,Y,N) :- num(X,Y,N), 1 < X. gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.

gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X. gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

:- num(X,Y,N), gtX(X,Y,N). :- num(X,Y,N), gtY(X,Y,N).

Note uniqueness of N in a row/column checked by ENUMERATING
PAIRS!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 420 / 426

Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

gtX(X-1,Y,N) :- num(X,Y,N), 1 < X. gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.

gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X. gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

:- num(X,Y,N), gtX(X,Y,N). :- num(X,Y,N), gtY(X,Y,N).

Note uniqueness of N in a row/column checked by ENUMERATING
PAIRS!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 420 / 426

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[square(X,n) = X].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 421 / 426

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[square(X,n) = X].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 421 / 426

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[square(X,n) = X]. 4

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 421 / 426

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[square(X,n) = X].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 421 / 426

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[square(X,n) = X].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C #count{ num(X,Y,N) } C, C = 0..n.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C #count{ num(X,Y,N) } C, C = 0..n.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

Note internal transformation by gringo

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 421 / 426

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[square(X,n) = X].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }. 7

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }. 7

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 421 / 426

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3.

gringo latin_5.lp | wc gringo latin_6.lp | wc

48136 373768 2185042

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 421 / 426

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 421 / 426

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 421 / 426

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 421 / 426

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 422 / 426

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

Note many symmetric solutions (mirroring, rotation, value
permutation)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 422 / 426

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

Note easy and safe to fix a full row/column!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 422 / 426

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#hide. #show num/3.

Note easy and safe to fix a full row/column!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 422 / 426

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#hide. #show num/3.

Note Let’s compare enumeration speed!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 422 / 426

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

gringo -c n=5 latin_6.lp | clasp -q 0

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 422 / 426

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

gringo -c n=5 latin_6.lp | clasp -q 0

Models : 161280 Time : 2.078s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 422 / 426

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#hide. #show num/3.

gringo -c n=5 latin_7.lp | clasp -q 0

Models : 161280 Time : 2.078s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 422 / 426

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#hide. #show num/3.

gringo -c n=5 latin_7.lp | clasp -q 0

Models : 1344 Time : 0.024s

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 422 / 426

Hints

Outline

41 Tweaking N-Queens

42 Do’s and Dont’s

43 Hints

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 423 / 426

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

Note If the format of facts makes encoding painful (for instance,
abusing grounding for “scientific calculations”), revise the fact format
as well.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 424 / 426

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

Note If the format of facts makes encoding painful (for instance,
abusing grounding for “scientific calculations”), revise the fact format
as well.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 424 / 426

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

Note If the format of facts makes encoding painful (for instance,
abusing grounding for “scientific calculations”), revise the fact format
as well.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 424 / 426

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

Note If the format of facts makes encoding painful (for instance,
abusing grounding for “scientific calculations”), revise the fact format
as well.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 424 / 426

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

Note If the format of facts makes encoding painful (for instance,
abusing grounding for “scientific calculations”), revise the fact format
as well.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 424 / 426

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

Note If the format of facts makes encoding painful (for instance,
abusing grounding for “scientific calculations”), revise the fact format
as well.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 424 / 426

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo -t)
if answer sets are unintended, investigate conditions that fail to hold
if answer sets are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 425 / 426

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo -t)
if answer sets are unintended, investigate conditions that fail to hold
if answer sets are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 425 / 426

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo -t)
if answer sets are unintended, investigate conditions that fail to hold
if answer sets are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 425 / 426

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo -t)
if answer sets are unintended, investigate conditions that fail to hold
if answer sets are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 425 / 426

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo -t)
if answer sets are unintended, investigate conditions that fail to hold
if answer sets are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 425 / 426

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo -t)
if answer sets are unintended, investigate conditions that fail to hold
if answer sets are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 425 / 426

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 profiling info (eg. gringo --gstats --verbose=3 [. . .] > /dev/null)

Note once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option ‘--configuration’)
2 try auto-configuration (offered by claspfolio)
3 try manual fine-tuning (requires expert knowledge!)
4 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 profiling info (eg. gringo --gstats --verbose=3 [. . .] > /dev/null)

Note once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option ‘--configuration’)
2 try auto-configuration (offered by claspfolio)
3 try manual fine-tuning (requires expert knowledge!)
4 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 profiling info (eg. gringo --gstats --verbose=3 [. . .] > /dev/null)

Note once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option ‘--configuration’)
2 try auto-configuration (offered by claspfolio)
3 try manual fine-tuning (requires expert knowledge!)
4 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 profiling info (eg. gringo --gstats --verbose=3 [. . .] > /dev/null)

Note once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option ‘--configuration’)
2 try auto-configuration (offered by claspfolio)
3 try manual fine-tuning (requires expert knowledge!)
4 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 profiling info (eg. gringo --gstats --verbose=3 [. . .] > /dev/null)

Note once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option ‘--configuration’)
2 try auto-configuration (offered by claspfolio)
3 try manual fine-tuning (requires expert knowledge!)
4 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 profiling info (eg. gringo --gstats --verbose=3 [. . .] > /dev/null)

Note once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option ‘--configuration’)
2 try auto-configuration (offered by claspfolio)
3 try manual fine-tuning (requires expert knowledge!)
4 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

[1] C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub.
The nomore++ approach to answer set solving.
In G. Sutcliffe and A. Voronkov, editors, Proceedings of the Twelfth
International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’05), volume 3835 of Lecture
Notes in Artificial Intelligence, pages 95–109. Springer-Verlag, 2005.

[2] C. Anger, K. Konczak, T. Linke, and T. Schaub.
A glimpse of answer set programming.
Künstliche Intelligenz, 19(1):12–17, 2005.

[3] Y. Babovich and V. Lifschitz.
Computing answer sets using program completion.
Unpublished draft, 2003.

[4] C. Baral.
Knowledge Representation, Reasoning and Declarative Problem
Solving.
Cambridge University Press, 2003.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

[5] C. Baral, G. Brewka, and J. Schlipf, editors.
Proceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07), volume
4483 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2007.

[6] C. Baral and M. Gelfond.
Logic programming and knowledge representation.
Journal of Logic Programming, 12:1–80, 1994.

[7] S. Baselice, P. Bonatti, and M. Gelfond.
Towards an integration of answer set and constraint solving.
In M. Gabbrielli and G. Gupta, editors, Proceedings of the
Twenty-first International Conference on Logic Programming
(ICLP’05), volume 3668 of Lecture Notes in Computer Science, pages
52–66. Springer-Verlag, 2005.

[8] A. Biere.
Adaptive restart strategies for conflict driven SAT solvers.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

In H. Kleine Büning and X. Zhao, editors, Proceedings of the
Eleventh International Conference on Theory and Applications of
Satisfiability Testing (SAT’08), volume 4996 of Lecture Notes in
Computer Science, pages 28–33. Springer-Verlag, 2008.

[9] A. Biere.
PicoSAT essentials.
Journal on Satisfiability, Boolean Modeling and Computation,
4:75–97, 2008.

[10] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications.
IOS Press, 2009.

[11] G. Brewka, T. Eiter, and M. Truszczyński.
Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

[12] K. Clark.
Negation as failure.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, 1978.

[13] M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors.
Handbook of Tableau Methods.
Kluwer Academic Publishers, 1999.

[14] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic programming.
In Proceedings of the Twelfth Annual IEEE Conference on
Computational Complexity (CCC’97), pages 82–101. IEEE Computer
Society Press, 1997.

[15] M. Davis, G. Logemann, and D. Loveland.
A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[16] M. Davis and H. Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

[17] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König,
M. Ostrowski, and T. Schaub.
Conflict-driven disjunctive answer set solving.
In G. Brewka and J. Lang, editors, Proceedings of the Eleventh
International Conference on Principles of Knowledge Representation
and Reasoning (KR’08), pages 422–432. AAAI Press, 2008.

[18] C. Drescher, M. Gebser, B. Kaufmann, and T. Schaub.
Heuristics in conflict resolution.
In M. Pagnucco and M. Thielscher, editors, Proceedings of the
Twelfth International Workshop on Nonmonotonic Reasoning
(NMR’08), number UNSW-CSE-TR-0819 in School of Computer
Science and Engineering, The University of New South Wales,
Technical Report Series, pages 141–149, 2008.

[19] N. Eén and N. Sörensson.
An extensible SAT-solver.
In E. Giunchiglia and A. Tacchella, editors, Proceedings of the Sixth
International Conference on Theory and Applications of Satisfiability

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

Testing (SAT’03), volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer-Verlag, 2004.

[20] T. Eiter and G. Gottlob.
On the computational cost of disjunctive logic programming:
Propositional case.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323,
1995.

[21] T. Eiter, G. Ianni, and T. Krennwallner.
Answer Set Programming: A Primer.
In S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh,
M. Rousset, and R. Schmidt, editors, Fifth International Reasoning
Web Summer School (RW’09), volume 5689 of Lecture Notes in
Computer Science, pages 40–110. Springer-Verlag, 2009.

[22] F. Fages.
Consistency of Clark’s completion and the existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

[23] P. Ferraris.
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

Answer sets for propositional theories.
In C. Baral, G. Greco, N. Leone, and G. Terracina, editors,
Proceedings of the Eighth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05), volume
3662 of Lecture Notes in Artificial Intelligence, pages 119–131.
Springer-Verlag, 2005.

[24] P. Ferraris and V. Lifschitz.
Mathematical foundations of answer set programming.
In S. Artëmov, H. Barringer, A. d’Avila Garcez, L. Lamb, and
J. Woods, editors, We Will Show Them! Essays in Honour of Dov
Gabbay, volume 1, pages 615–664. College Publications, 2005.

[25] M. Fitting.
A Kripke-Kleene semantics for logic programs.
Journal of Logic Programming, 2(4):295–312, 1985.

[26] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
A user’s guide to gringo, clasp, clingo, and iclingo.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

[27] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
Engineering an incremental ASP solver.
In M. Garcia de la Banda and E. Pontelli, editors, Proceedings of the
Twenty-fourth International Conference on Logic Programming
(ICLP’08), volume 5366 of Lecture Notes in Computer Science, pages
190–205. Springer-Verlag, 2008.

[28] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
On the implementation of weight constraint rules in conflict-driven
ASP solvers.
In Hill and Warren [44], pages 250–264.

[29] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

[30] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

clasp: A conflict-driven answer set solver.
In Baral et al. [5], pages 260–265.

[31] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set enumeration.
In Baral et al. [5], pages 136–148.

[32] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set solving.
In Veloso [68], pages 386–392.

[33] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Advanced preprocessing for answer set solving.
In M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris, editors,
Proceedings of the Eighteenth European Conference on Artificial
Intelligence (ECAI’08), pages 15–19. IOS Press, 2008.

[34] M. Gebser, B. Kaufmann, and T. Schaub.
The conflict-driven answer set solver clasp: Progress report.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

In E. Erdem, F. Lin, and T. Schaub, editors, Proceedings of the
Tenth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’09), volume 5753 of Lecture
Notes in Artificial Intelligence, pages 509–514. Springer-Verlag, 2009.

[35] M. Gebser, B. Kaufmann, and T. Schaub.
Solution enumeration for projected Boolean search problems.
In W. van Hoeve and J. Hooker, editors, Proceedings of the Sixth
International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems
(CPAIOR’09), volume 5547 of Lecture Notes in Computer Science,
pages 71–86. Springer-Verlag, 2009.

[36] M. Gebser, M. Ostrowski, and T. Schaub.
Constraint answer set solving.
In Hill and Warren [44], pages 235–249.

[37] M. Gebser and T. Schaub.
Tableau calculi for answer set programming.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

In S. Etalle and M. Truszczyński, editors, Proceedings of the
Twenty-second International Conference on Logic Programming
(ICLP’06), volume 4079 of Lecture Notes in Computer Science, pages
11–25. Springer-Verlag, 2006.

[38] M. Gebser and T. Schaub.
Generic tableaux for answer set programming.
In V. Dahl and I. Niemelä, editors, Proceedings of the Twenty-third
International Conference on Logic Programming (ICLP’07), volume
4670 of Lecture Notes in Computer Science, pages 119–133.
Springer-Verlag, 2007.

[39] M. Gelfond.
Answer sets.
In V. Lifschitz, F. van Harmelen, and B. Porter, editors, Handbook of
Knowledge Representation, chapter 7, pages 285–316. Elsevier
Science, 2008.

[40] M. Gelfond and N. Leone.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

Logic programming and knowledge representation — the A-Prolog
perspective.
Artificial Intelligence, 138(1-2):3–38, 2002.

[41] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth
International Conference and Symposium of Logic Programming
(ICLP’88), pages 1070–1080. MIT Press, 1988.

[42] M. Gelfond and V. Lifschitz.
Logic programs with classical negation.
In D. Warren and P. Szeredi, editors, Proceedings of the Seventh
International Conference on Logic Programming (ICLP’90), pages
579–597. MIT Press, 1990.

[43] E. Giunchiglia, Y. Lierler, and M. Maratea.
Answer set programming based on propositional satisfiability.
Journal of Automated Reasoning, 36(4):345–377, 2006.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

[44] P. Hill and D. Warren, editors.
Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), volume 5649 of Lecture Notes in Computer
Science. Springer-Verlag, 2009.

[45] J. Huang.
The effect of restarts on the efficiency of clause learning.
In Veloso [68], pages 2318–2323.

[46] K. Konczak, T. Linke, and T. Schaub.
Graphs and colorings for answer set programming.
Theory and Practice of Logic Programming, 6(1-2):61–106, 2006.

[47] J. Lee.
A model-theoretic counterpart of loop formulas.
In L. Kaelbling and A. Saffiotti, editors, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI’05), pages 503–508. Professional Book Center, 2005.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

[48] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello.
The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006.

[49] V. Lifschitz.
Answer set programming and plan generation.
Artificial Intelligence, 138(1-2):39–54, 2002.

[50] V. Lifschitz.
Introduction to answer set programming.
Unpublished draft, 2004.

[51] V. Lifschitz and A. Razborov.
Why are there so many loop formulas?
ACM Transactions on Computational Logic, 7(2):261–268, 2006.

[52] F. Lin and Y. Zhao.
ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157(1-2):115–137, 2004.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

[53] V. Marek and M. Truszczyński.
Nonmonotonic logic: context-dependent reasoning.
Artifical Intelligence. Springer-Verlag, 1993.

[54] V. Marek and M. Truszczyński.
Stable models and an alternative logic programming paradigm.
In K. Apt, V. Marek, M. Truszczyński, and D. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

[55] J. Marques-Silva, I. Lynce, and S. Malik.
Conflict-driven clause learning SAT solvers.
In Biere et al. [10], chapter 4, pages 131–153.

[56] J. Marques-Silva and K. Sakallah.
GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, 1999.

[57] V. Mellarkod and M. Gelfond.
Integrating answer set reasoning with constraint solving techniques.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

In J. Garrigue and M. Hermenegildo, editors, Proceedings of the
Ninth International Symposium on Functional and Logic
Programming (FLOPS’08), volume 4989 of Lecture Notes in
Computer Science, pages 15–31. Springer-Verlag, 2008.

[58] V. Mellarkod, M. Gelfond, and Y. Zhang.
Integrating answer set programming and constraint logic
programming.
Annals of Mathematics and Artificial Intelligence, 53(1-4):251–287,
2008.

[59] D. Mitchell.
A SAT solver primer.
Bulletin of the European Association for Theoretical Computer
Science, 85:112–133, 2005.

[60] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the Thirty-eighth Conference on Design
Automation (DAC’01), pages 530–535. ACM Press, 2001.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

[61] I. Niemelä.
Logic programs with stable model semantics as a constraint
programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273,
1999.

[62] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving SAT and SAT modulo theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

[63] K. Pipatsrisawat and A. Darwiche.
A lightweight component caching scheme for satisfiability solvers.
In J. Marques-Silva and K. Sakallah, editors, Proceedings of the
Tenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’07), volume 4501 of Lecture Notes in
Computer Science, pages 294–299. Springer-Verlag, 2007.

[64] L. Ryan.
Efficient algorithms for clause-learning SAT solvers.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

Master’s thesis, Simon Fraser University, 2004.

[65] P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[66] T. Syrjänen.
Lparse 1.0 user’s manual.

[67] A. Van Gelder, K. Ross, and J. Schlipf.
The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

[68] M. Veloso, editor.
Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI’07). AAAI/MIT Press, 2007.

[69] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik.
Efficient conflict driven learning in a Boolean satisfiability solver.
In Proceedings of the International Conference on Computer-Aided
Design (ICCAD’01), pages 279–285. ACM Press, 2001.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 426 / 426

	Organization
	Motivation
	Motivation
	Nutshell
	Shifting paradigms
	Rooting ASP
	ASP solving
	Using ASP

	Introduction
	Syntax
	Semantics
	Examples
	Variables
	Language constructs
	Reasoning modes

	Basic Modeling
	ASP solving process
	Methodology
	Satisfiability
	Queens
	Traveling Salesperson
	Reviewer Assignment
	Planning

	Language
	Motivation
	Core language
	Integrity constraint
	Choice rule
	Cardinality rule
	Weight rule

	Extended language
	Conditional literal
	Optimization statement

	smodels format
	ASP language standard

	Language Extensions
	Two kinds of negation
	Disjunctive logic programs
	Propositional theories

	Grounding
	Computational Aspects
	Consequence operator
	Computation from first principles
	Complexity

	Axiomatic Characterization
	Completion
	Tightness
	Loops and Loop Formulas

	Operational Characterization
	Partial Interpretations
	Fitting Operator
	Unfounded Sets
	Well-Founded Operator

	Proof-theoretic Characterization
	Conflict-driven ASP Solving
	Motivation
	Boolean constraints
	Nogoods from logic programs
	Nogoods from program completion
	Nogoods from loop formulas

	Conflict-driven nogood learning
	CDNL-ASP Algorithm
	Nogood Propagation
	Conflict Analysis

	Systems
	Potassco
	gringo
	clasp
	Siblings
	hclasp
	claspfolio
	claspD
	clingcon
	iclingo
	oclingo
	clavis

	Advanced Modeling
	Tweaking N-Queens
	Do's and Dont's
	Hints

	References

