
Multi-threaded ASP Solving with clasp 2

Martin Gebser Benjamin Kaufmann Torsten Schaub

University of Potsdam

Outline

1 Introduction

2 Answer Set Solving

3 Multi-threaded Answer Set Solving
Component architecture
Communication architecture
Implementation

4 Experiments

5 Summary

Outline

1 Introduction

2 Answer Set Solving

3 Multi-threaded Answer Set Solving
Component architecture
Communication architecture
Implementation

4 Experiments

5 Summary

Introduction

Goal Leverage the power of today’s multi-core machines
for supporting parallel conflict-driven solving

Approach Coarse-grained, task-parallel approach via shared
memory multi-threading

Result clasp 2 allows for parallel ASP, PB, and SAT solving
via search space splitting and/or competing strategies

Introduction

Goal Leverage the power of today’s multi-core machines
for supporting parallel conflict-driven solving

Approach Coarse-grained, task-parallel approach via shared
memory multi-threading

Result clasp 2 allows for parallel ASP, PB, and SAT solving
via search space splitting and/or competing strategies

Introduction

Goal Leverage the power of today’s multi-core machines
for supporting parallel conflict-driven solving

Approach Coarse-grained, task-parallel approach via shared
memory multi-threading

Result clasp 2 allows for parallel ASP, PB, and SAT solving
via search space splitting and/or competing strategies

Conflict-Driven Answer Set Solving

Approach Computation of answer sets of logic programs,
based on concepts from

Constraint Processing (CP) and
Satisfiability Checking (SAT)

Idea View inferences in Answer Set Programming (ASP) as
unit propagation on nogoods

Benefits

A uniform constraint-based framework for different
kinds of inferences in ASP
Advanced techniques from the areas of CP and SAT
Highly competitive implementation

Awards clasp won several prizes at ASP, PB, and SAT
competitions

Outline

1 Introduction

2 Answer Set Solving

3 Multi-threaded Answer Set Solving
Component architecture
Communication architecture
Implementation

4 Experiments

5 Summary

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

Traditional DPLL-style approach
(DPLL stands for ‘Davis-Putnam-Logemann-Loveland’)

(Unit) propagation
(Chronological) backtracking

in ASP, eg smodels

Modern CDCL-style approach
(CDCL stands for ‘Conflict-Driven Constraint Learning’)

(Unit) propagation
Conflict analysis (via resolution)
Learning + Backjumping + Assertion

in ASP, eg clasp

DPLL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

backtrack // unassign literals made after last decision
flip // assign complement of last decision literal

CDCL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

Outline

1 Introduction

2 Answer Set Solving

3 Multi-threaded Answer Set Solving
Component architecture
Communication architecture
Implementation

4 Experiments

5 Summary

Parallel CDCL-style solving in clasp 2

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)

Parallel CDCL-style solving in clasp 2

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)

Parallel CDCL-style solving in clasp 2

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)

Parallel CDCL-style solving in clasp 2

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)

Parallel CDCL-style solving in clasp 2

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Outline

1 Introduction

2 Answer Set Solving

3 Multi-threaded Answer Set Solving
Component architecture
Communication architecture
Implementation

4 Experiments

5 Summary

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

SharedContext

The SharedContext object is initialized by the main thread
and shared among all participating threads

Among others, the SharedContext object contains

the set of relevant Boolean variables together with type
information (eg atom, body, aggregate, etc),
a symbol table, mapping (named) atoms from the program to
internal variables,
the positive atom-body dependency graph, restricted to its
strongly connected components,
the set of Boolean constraints, among them nogoods,
cardinality and weight constraints, minimize constraints, and
an implication graph capturing inferences from binary and
ternary nogoods

SharedContext

The SharedContext object is initialized by the main thread
and shared among all participating threads

Among others, the SharedContext object contains

the set of relevant Boolean variables together with type
information (eg atom, body, aggregate, etc),
a symbol table, mapping (named) atoms from the program to
internal variables,
the positive atom-body dependency graph, restricted to its
strongly connected components,
the set of Boolean constraints, among them nogoods,
cardinality and weight constraints, minimize constraints, and
an implication graph capturing inferences from binary and
ternary nogoods

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Solver

Each thread contains one Solver object, implementing
parallel CDCL-style search

Each Solver object stores

local data, including assignment, watch lists, constraint
database, etc
local strategies, regarding heuristics, restarts, constraint
deletion, etc

and uses the NogoodDistributor to share recorded nogoods

Each Solver object maintains a list of post propagators that
are consecutively processed after unit propagation

Solver

Each thread contains one Solver object, implementing
parallel CDCL-style search

Each Solver object stores

local data, including assignment, watch lists, constraint
database, etc
local strategies, regarding heuristics, restarts, constraint
deletion, etc

and uses the NogoodDistributor to share recorded nogoods

Each Solver object maintains a list of post propagators that
are consecutively processed after unit propagation

Post Propagation

Post propagators are assigned different priorities and
are called in priority order

Existing post propagators include

Unfounded-set checking
Failed-literal detection
Theory propagation (in clingcon)

Parallelism is also handled by means of post propagators:

a high-priority post propagator for message handling and
a low-priority post propagator for integrating information

Post Propagation

Post propagators are assigned different priorities and
are called in priority order

Existing post propagators include

Unfounded-set checking
Failed-literal detection
Theory propagation (in clingcon)

Parallelism is also handled by means of post propagators:

a high-priority post propagator for message handling and
a low-priority post propagator for integrating information

Post Propagation

Post propagators are assigned different priorities and
are called in priority order

Existing post propagators include

Unfounded-set checking
Failed-literal detection
Theory propagation (in clingcon)

Parallelism is also handled by means of post propagators:

a high-priority post propagator for message handling and
a low-priority post propagator for integrating information

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

ParallelContext

For controlling parallel search, the ParallelSolve object
maintains a set of atomic message flags:

terminate signals the end of a computation,
interrupt forces outside termination (eg Ctrl+C),
sync indicates that all threads shall synchronize, and
split is set during splitting-based search whenever at least one
thread needs work

These flags are used to implement clasp’s two major search
strategies:

splitting-based search via distribution of guiding paths and
dynamic load balancing by means of a split-request and
-response protocol, and
competition-based search via freely configurable solver
portfolios

Solver portfolios can also be used in splitting-based search!

ParallelContext

For controlling parallel search, the ParallelSolve object
maintains a set of atomic message flags:

terminate signals the end of a computation,
interrupt forces outside termination (eg Ctrl+C),
sync indicates that all threads shall synchronize, and
split is set during splitting-based search whenever at least one
thread needs work

These flags are used to implement clasp’s two major search
strategies:

splitting-based search via distribution of guiding paths and
dynamic load balancing by means of a split-request and
-response protocol, and
competition-based search via freely configurable solver
portfolios

Solver portfolios can also be used in splitting-based search!

ParallelContext

For controlling parallel search, the ParallelSolve object
maintains a set of atomic message flags:

terminate signals the end of a computation,
interrupt forces outside termination (eg Ctrl+C),
sync indicates that all threads shall synchronize, and
split is set during splitting-based search whenever at least one
thread needs work

These flags are used to implement clasp’s two major search
strategies:

splitting-based search via distribution of guiding paths and
dynamic load balancing by means of a split-request and
-response protocol, and
competition-based search via freely configurable solver
portfolios

Solver portfolios can also be used in splitting-based search!

Outline

1 Introduction

2 Answer Set Solving

3 Multi-threaded Answer Set Solving
Component architecture
Communication architecture
Implementation

4 Experiments

5 Summary

Communication architecture

Thread Coordination

relies on message passing, efficiently implemented by
lock-free atomic integers.

Nogood Exchange

is controlled by separate distribution and integration
components

Complex Reasoning Modes

regular and projected model enumeration
intersection and union of models
uniform and hierarchical (multi-criteria) optimization
as well as combinations thereof

See paper for details!

Communication architecture

Thread Coordination

relies on message passing, efficiently implemented by
lock-free atomic integers.

Nogood Exchange

is controlled by separate distribution and integration
components

Complex Reasoning Modes

regular and projected model enumeration
intersection and union of models
uniform and hierarchical (multi-criteria) optimization
as well as combinations thereof

See paper for details!

Outline

1 Introduction

2 Answer Set Solving

3 Multi-threaded Answer Set Solving
Component architecture
Communication architecture
Implementation

4 Experiments

5 Summary

Implementation

Clear distinction between three types of data representations

read-only
shared
thread-local

For instance, constraints are typically separated into

a thread-local part usually containing search-specific and thus
dynamic data and
a (possibly shared) read-only part typically comprises static
data not being subject to change

See paper for details!

Implementation

Clear distinction between three types of data representations

read-only
shared
thread-local

For instance, constraints are typically separated into

a thread-local part usually containing search-specific and thus
dynamic data and
a (possibly shared) read-only part typically comprises static
data not being subject to change

See paper for details!

Implementation

Clear distinction between three types of data representations

read-only
shared
thread-local

For instance, constraints are typically separated into

a thread-local part usually containing search-specific and thus
dynamic data and
a (possibly shared) read-only part typically comprises static
data not being subject to change

See paper for details!

Outline

1 Introduction

2 Answer Set Solving

3 Multi-threaded Answer Set Solving
Component architecture
Communication architecture
Implementation

4 Experiments

5 Summary

clasp in context

Compare clasp (2.0.5) to the multi-threaded SAT solvers

cryptominisat (2.9.2)
manysat (1.1)
miraxt (2009)
plingeling (587f)

all run with four and eight threads in their default settings

160/300 benchmarks from crafted category at SAT’11

all solvable by ppfolio in 1000 seconds
crafted SAT benchmarks are closest to ASP benchmarks

clasp in context

 20

 40

 60

 80

 100

 120

 1 10 100 1000

S
o
lv

e
d
 i
n
s
ta

n
c
e
s

Time in seconds

clasp-t1
 -t4
 -t8

cryptominisat-2.9.2-t4
 -t8
miraxt-2009-t4

 -t8
plingeling-587-t4

 -t8
manysat-1.1-t4

 -t8

Impact of parallel search strategies

Compare parallel search strategies

portfolio of competing threads (PORT)
search space splitting via guiding paths (GP)
splitting-based search with a portfolio of different
configurations (PORT+GP)
previous setting plus global restarts (PORT+GP+GR)

1435 benchmark instances from ASP and SAT competitions

Impact of parallel search strategies

 400

 600

 800

 1000

 1200

 1400

 1 10 100 1000

S
o
lv

e
d
 i
n
s
ta

n
c
e
s

Time in seconds

 t1

PORT-t2

 -t4

 -t8

GP-t2

 -t4

 -t8

PORT+GP-t2

 -t4

 -t8

 PORT+GP+GR-t2

 -t4

 -t8

Impact of nogood exchange policies

Compare nogood exchange policies of clasp (PORT)

short nogoods are shared “silently” (NO)
short nogoods are shared and communicated (SHORT)
nogoods with LBD 2 are shared and communicated (LBD-2)
nogoods with LBD 4 are shared and communicated (LBD-4)

(LBD stands for Literal Block Distance)

1435 benchmark instances from ASP and SAT competitions

Impact of nogood exchange policies

 400

 600

 800

 1000

 1200

 1400

 1 10 100 1000

S
o
lv

e
d
 i
n
s
ta

n
c
e
s

Time in seconds

 t1

 NO-t2

 -t4

 -t8

SHORT-t2

 -t4

 -t8

LBD-2-t2

 -t4

 -t8

LBD-4-t2

 -t4

 -t8

clasp 2.1

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

chatty: Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit

clasp 2.1

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

chatty: Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit

clasp 2.1

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

chatty: Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit

clasp 2.1

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

chatty: Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit

clasp 2.1

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

chatty: Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit

Outline

1 Introduction

2 Answer Set Solving

3 Multi-threaded Answer Set Solving
Component architecture
Communication architecture
Implementation

4 Experiments

5 Summary

Summary

clasp 2 is a CDCL-based solver

supporting parallelization via multi-threading

enhancing robustness (via up to 64 threads)

featuring

different parallel search strategies
nogood exchange policies
various input formats

smodels (ASP)
dimacs (SAT and MaxSAT)
opb and wbo (PB)

Visit the Potassco project !

Sourceforge http://potassco.sourceforge.net

Google+ https://plus.google.com/102537396696345299260

http://potassco.sourceforge.net
https://plus.google.com/102537396696345299260

Summary

clasp 2 is a CDCL-based solver

supporting parallelization via multi-threading

enhancing robustness (via up to 64 threads)

featuring

different parallel search strategies
nogood exchange policies
various input formats

smodels (ASP)
dimacs (SAT and MaxSAT)
opb and wbo (PB)

Visit the Potassco project !

Sourceforge http://potassco.sourceforge.net

Google+ https://plus.google.com/102537396696345299260

http://potassco.sourceforge.net
https://plus.google.com/102537396696345299260

Summary

clasp 2 is a CDCL-based solver

supporting parallelization via multi-threading

enhancing robustness (via up to 64 threads)

featuring

different parallel search strategies
nogood exchange policies
various input formats

smodels (ASP)
dimacs (SAT and MaxSAT)
opb and wbo (PB)

Visit the Potassco project !

Sourceforge http://potassco.sourceforge.net

Google+ https://plus.google.com/102537396696345299260

http://potassco.sourceforge.net
https://plus.google.com/102537396696345299260

Summary

clasp 2 is a CDCL-based solver

supporting parallelization via multi-threading

enhancing robustness (via up to 64 threads)

featuring

different parallel search strategies
nogood exchange policies
various input formats

smodels (ASP)
dimacs (SAT and MaxSAT)
opb and wbo (PB)

Visit the Potassco project !

Sourceforge http://potassco.sourceforge.net

Google+ https://plus.google.com/102537396696345299260

http://potassco.sourceforge.net
https://plus.google.com/102537396696345299260

	Introduction
	Answer Set Solving
	Multi-threaded Answer Set Solving
	Component architecture
	Communication architecture
	Implementation

	Experiments
	Summary

