
A Portfolio Solver for Answer Set Programming:
Preliminary Report

M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub,
M. Schneider, and S. Ziller

University of Potsdam



Outline

1 Introduction

2 Preliminaries

3 A Portfolio Solver: claspfolio

4 Benchmarks

5 Summary



Outline

1 Introduction

2 Preliminaries

3 A Portfolio Solver: claspfolio

4 Benchmarks

5 Summary



Motivation: Per-Instance Configuration

Problem (1): Problems are
sensible to different solver
configurations.
Question: How to decide
automatically what is a good
configuration for a given
problem?

Problem (2): There is no best
configuration for all kind of
problems.
Solution: Per-instance
configuration

1 2 3
0

100

200

300

400

500

600

700

800

Configuration

R
un

tim
e 

in
 S

ec

 

 

Labyrinth1
Labyrinth2



Motivation: Per-Instance Configuration

Problem (1): Problems are
sensible to different solver
configurations.
Question: How to decide
automatically what is a good
configuration for a given
problem?

Problem (2): There is no best
configuration for all kind of
problems.
Solution: Per-instance
configuration

1 2 3
0

100

200

300

400

500

600

700

800

Configuration

R
un

tim
e 

in
 S

ec

 

 

Labyrinth1
Labyrinth2



Motivation: Per-Instance Configuration

Problem (1): Problems are
sensible to different solver
configurations.
Question: How to decide
automatically what is a good
configuration for a given
problem?

Problem (2): There is no best
configuration for all kind of
problems.
Solution: Per-instance
configuration

1 2 3
0

100

200

300

400

500

600

700

800

Configuration

R
un

tim
e 

in
 S

ec

 

 

Labyrinth1
Labyrinth2



Motivation: Per-Instance Configuration

Problem (1): Problems are
sensible to different solver
configurations.
Question: How to decide
automatically what is a good
configuration for a given
problem?

Problem (2): There is no best
configuration for all kind of
problems.
Solution: Per-instance
configuration

1 2 3
0

100

200

300

400

500

600

700

800

Configuration

R
un

tim
e 

in
 S

ec

 

 

Labyrinth1
Labyrinth2



Motivation: Per-Instance Configuration

Problem (1): Problems are
sensible to different solver
configurations.
Question: How to decide
automatically what is a good
configuration for a given
problem?

Problem (2): There is no best
configuration for all kind of
problems.
Solution: Per-instance
configuration

1 2 3
0

100

200

300

400

500

600

700

800

Configuration

R
un

tim
e 

in
 S

ec

 

 

Labyrinth1
Labyrinth2



Outline

1 Introduction

2 Preliminaries

3 A Portfolio Solver: claspfolio

4 Benchmarks

5 Summary



Features

Features of instances can be mapped to runtime

Plain instance features:
Number of atoms
Number of different
types of rules
. . .

Features after
preprocessing

Tight?
Equivalence between
atoms and bodys
Number of different
types of constraints
. . .

Solving with clasp till 4
restarts were performed

Search features after each
restart:

Number of choices

Number of conflicts

Number of different
types of learnt nogoods

Number of deleted
nogoods

Average length of jumps

. . .

All in all 84 features will be calculated.



ML-Models

To predict the quality of a configuration per instance a
regression is used

~f 7→ R

Examples of possible regression techniques:

Ridge Regression (SATzilla: [2])
Random Regression Forrest (SMAC: [4])
Support Vector Regression [6]

Important for a good prediction are

Representative Training set
Features



Outline

1 Introduction

2 Preliminaries

3 A Portfolio Solver: claspfolio

4 Benchmarks

5 Summary



Workflow: Gringo+Clasp

LP Gringo Clasp

Figure: Architecture of gringo | clasp



Workflow: Gringo+Claspfolio

Claspfolio

LP Gringo Claspre SVR Clasp

Models

Configuration

Figure: Architecture of claspfolio

1SVR from the libSVM-Package [7]
2Inspired by SATzilla [2]



Training and Run

Training:

1 Instance set I and portfolio of configurations C

2 Compute features ~f (i) for all i ∈ I

3 Compute runtimes t(i , c) if all tuples (i , c) ∈ I × C

4 Train a regression model sc : ~f 7→ R for each configuration

sc(i) =
minj (t(i , j))

t(i , c)

Run for a given (unknown) instance i :

1 Compute with claspre features f (i)

2 Predict score for each configuration sc(i) based on the trained
models and the computed features

3 Run clasp with best scored configuration argminc(sc(i))



Portfolio

Our portfolio of configurations consists of different strategies for:

Decision Heuristic

Restarts

Deletion

Preprocessing

Combination of these strategies

Claspfolio Version 0.8 : 12 configurations

Claspfolio Version 1.0 : 25 configurations

Future: Claspfolio Version 1.1 : Approach from Hydra [5] to
collect our portfolio



Outline

1 Introduction

2 Preliminaries

3 A Portfolio Solver: claspfolio

4 Benchmarks

5 Summary



Benchmark Settings

Intel Xeon E5520 machine equipped with 2.26 GHz and 6 GB
RAM per core

Systems:

clasp : clasp 1.3.4
claspfoliob : theoretical best choice on the portfolio
configurations
claspfolio : claspfolio 0.8.0
claspfoliov : 10-fold cross validation1

paramILSc : clasp tuned with paramILS2 on each problem class
paramILSa : clasp tuned with paramILS on all problem class

Benchmark classes of the ASP Competition 2009

1dividing instances in training and test sets
2paramILS: focused iterated local search tool to tune solver [3]



Benchmark Results

Benchmark Class # clasp claspfoliob claspfolio × claspfoliov ×
15Puzzle 37 510 111 208 2.4 254 2.0
BlockedNQueens 65 412 139 264 1.5 410 1.0
ConnectDomSet 21 1, 428 30 53 26.9 649 2.2
GraphColouring 23 17, 404 5, 746 5, 867 2.9 5, 867 2.9
GraphPartitioning 13 135 57 69 1.9 97 1.4
Hanoi 29 458 35 175 2.6 233 2.0
Labyrinth 29 1, 249 112 785 1.5 2, 537 0.5
MazeGeneration 28 3, 652 558 581 6.2 567 6.4
SchurNumbers 29 726 41 399 1.8 957 0.7
Sokoban 29 18 12 57 0.3 54 0.3
Solitaire 22 2, 494 73 317 7.8 1, 610 1.5
WeightDomSet 29 3, 572 5 1, 147 3.1 5, 441 0.6
WireRouting 23 1, 223 43 144 8.4 289 4.2

Total 377 33, 281 6, 962 10, 066 3.3 18, 965 1.8

Table: Runtimes in seconds and speedups on benchmark classes of the
2009 ASP competition



Benchmark Results(2)

Benchmark Class # paramILSc paramILSa claspfolio claspfoliov clasp

15Puzzle 37 104 322 208 254 510
BlockedNQueens 65 212 352 264 410 412
ConnectDomSet 21 28 686 53 649 1, 428
GraphColouring 23 7, 596 10, 865 5, 867 5, 867 17, 404
GraphPartitioning 13 39 86 69 97 135
Hanoi 29 35 147 175 233 458
Labyrinth 29 462 3, 080 785 2, 537 1, 249
MazeGeneration 28 700 2, 610 581 567 3, 652
SchurNumbers 29 278 871 399 957 726
Sokoban 29 11 18 57 54 18
Solitaire 22 2, 374 4, 357 317 1, 610 2, 494
WeightDomSet 29 8 2, 649 1, 147 5, 441 3, 572
WireRouting 23 87 535 144 289 1, 223

Total 377 11, 934 26, 578 10, 066 18, 965 33, 281

Table: Comparison with paramILS on benchmark classes of the 2009
ASP competition



Outline

1 Introduction

2 Preliminaries

3 A Portfolio Solver: claspfolio

4 Benchmarks

5 Summary



Summary

Per-instance configuration is faster than a single configuration

Important factors for predicting configuration performance

Features
Good portfolio of configurations

Release of claspfolio version 1.0.03 : Today!

Future work:

Importance of features
New features
Updates of (SVR-)models
Hydra to compute portfolio

3http://potassco.sourceforge.net

http://potassco.sourceforge.net


Summary

Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.:

Conflict-driven answer set solving.
In IJCAI’07, AAAI Press (2007) 386–392

Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.:

SATzilla: Portfolio-based algorithm selection for SAT.
JAIR 32 (2008) 565–606

Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.:

ParamILS: An automatic algorithm configuration framework.
JAIR 36 (2009) 267–306

Hutter, F., Hoos, H., Leyton-Brown, K.:

Sequential Model-Based Optimization for General Algorithm Configuration.
LION 32 (2011) to appear

Xu, L., Hoos, H., Leyton-Brown, K.:

Hydra: Automatically configuring algorithms for portfolio-based selection.
In AAAI’10, AAAI Press (2010) 210–216

Basak, D., Pal, S., Patranabis, D.:

Support vector regression.
NIP 11(10) (2007) 203–224

C. Chang and C. Li:

LIBSVM: a library for support vector machines
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Preliminaries
	A Portfolio Solver: claspfolio
	Benchmarks
	Summary

