
Ricochet Robots Reloaded
A Case-study in Multi-shot ASP Solving

Torsten Schaub

University of Potsdam

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 1 / 32

Outline

1 Multi-shot ASP Solving

2 Ricochet Robots

3 Demonstration

4 Summary

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 2 / 32

Multi-shot ASP Solving

Outline

1 Multi-shot ASP Solving

2 Ricochet Robots

3 Demonstration

4 Summary

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 3 / 32

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 4 / 32

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 4 / 32

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 4 / 32

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 4 / 32

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: ground∗ | solve∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 4 / 32

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: (ground∗ | solve∗)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 4 / 32

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: (input | ground∗ | solve∗)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 4 / 32

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: (input | ground∗ | solve∗| theory)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 4 / 32

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 4 / 32

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 4 / 32

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 4 / 32

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 4 / 32

Multi-shot ASP Solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 5 / 32

Multi-shot ASP Solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 5 / 32

Multi-shot ASP Solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 5 / 32

Multi-shot ASP Solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 5 / 32

Multi-shot ASP Solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 5 / 32

Multi-shot ASP Solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 5 / 32

Ricochet Robots

Outline

1 Multi-shot ASP Solving

2 Ricochet Robots

3 Demonstration

4 Summary

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 6 / 32

Ricochet Robots

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 7 / 32

Ricochet Robots

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 7 / 32

Ricochet Robots

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 7 / 32

Ricochet Robots

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 7 / 32

Ricochet Robots

Solving goal(13) from cornered robots
(ctd)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 8 / 32

Ricochet Robots

Solving goal(13) from cornered robots
(ctd)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 8 / 32

Ricochet Robots

Solving goal(13) from cornered robots
(ctd)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 8 / 32

Ricochet Robots

Solving goal(13) from cornered robots
(ctd)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 8 / 32

Ricochet Robots

Solving goal(13) from cornered robots
(ctd)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 8 / 32

Ricochet Robots

Solving goal(13) from cornered robots
(ctd)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 8 / 32

Ricochet Robots

Solving goal(13) from cornered robots
(ctd)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 8 / 32

Ricochet Robots

Solving goal(13) from cornered robots
(ctd)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 8 / 32

Ricochet Robots

board.lp

dim (1..16).

barrier(2, 1, 1, 0). barrier (13,11, 1, 0). barrier(9, 7, 0, 1).

barrier (10, 1, 1, 0). barrier (11,12, 1, 0). barrier (11, 7, 0, 1).

barrier(4, 2, 1, 0). barrier (14,13, 1, 0). barrier (14, 7, 0, 1).

barrier (14, 2, 1, 0). barrier(6,14, 1, 0). barrier (16, 9, 0, 1).

barrier(2, 3, 1, 0). barrier(3,15, 1, 0). barrier(2,10, 0, 1).

barrier (11, 3, 1, 0). barrier (10,15, 1, 0). barrier(5,10, 0, 1).

barrier(7, 4, 1, 0). barrier(4,16, 1, 0). barrier(8,10, 0,-1).

barrier(3, 7, 1, 0). barrier (12,16, 1, 0). barrier(9,10, 0,-1).

barrier (14, 7, 1, 0). barrier(5, 1, 0, 1). barrier(9,10, 0, 1).

barrier(7, 8, 1, 0). barrier (15, 1, 0, 1). barrier (14,10, 0, 1).

barrier (10, 8,-1, 0). barrier(2, 2, 0, 1). barrier(1,12, 0, 1).

barrier (11, 8, 1, 0). barrier (12, 3, 0, 1). barrier (11,12, 0, 1).

barrier(7, 9, 1, 0). barrier(7, 4, 0, 1). barrier(7,13, 0, 1).

barrier (10, 9,-1, 0). barrier (16, 4, 0, 1). barrier (15,13, 0, 1).

barrier(4,10, 1, 0). barrier(1, 6, 0, 1). barrier (10,14, 0, 1).

barrier(2,11, 1, 0). barrier(4, 7, 0, 1). barrier(3,15, 0, 1).

barrier(8,11, 1, 0). barrier(8, 7, 0, 1).

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 9 / 32

Ricochet Robots

targets.lp

#external goal (1..16).

target(red , 5, 2) :- goal (1).

target(red , 15, 2) :- goal (2).

target(green , 2, 3) :- goal (3).

target(blue , 12, 3) :- goal (4).

target(yellow , 7, 4) :- goal (5).

target(blue , 4, 7) :- goal (6).

target(green , 14, 7) :- goal (7).

target(yellow ,11, 8) :- goal (8).

target(yellow , 5,10) :- goal (9).

target(green , 2,11) :- goal (10).

target(red , 14,11) :- goal (11).

target(green , 11 ,12) :- goal (12).

target(yellow ,15 ,13) :- goal (13).

target(blue , 7,14) :- goal (14).

target(red , 3,15) :- goal (15).

target(blue , 10,15) :- goal (16).

robot(red;green;blue;yellow).

#external pos((red;green;blue;yellow) ,1..16 ,1..16).

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 10 / 32

Ricochet Robots

ricochet.lp

time (1.. horizon).

dir(-1,0;1,0;0,-1;0,1).

stop(DX, DY,X, Y) :- barrier(X,Y,DX,DY).

stop(-DX,-DY ,X+DX ,Y+DY) :- stop(DX,DY ,X,Y).

pos(R,X,Y,0) :- pos(R,X,Y).

1 { move(R,DX,DY,T) : robot(R), dir(DX ,DY) } 1 :- time(T).

move(R,T) :- move(R,_,_,T).

halt(DX ,DY,X-DX,Y-DY,T) :- pos(_,X,Y,T), dir(DX,DY), dim(X-DX), dim(Y-DY),

not stop(-DX,-DY,X,Y), T < horizon.

goto(R,DX,DY ,X,Y,T) :- pos(R,X,Y,T), dir(DX,DY), T < horizon.

goto(R,DX,DY ,X+DX ,Y+DY,T) :- goto(R,DX,DY ,X,Y,T), dim(X+DX), dim(Y+DY),

not stop(DX,DY ,X,Y), not halt(DX,DY,X,Y,T).

pos(R,X,Y,T) :- move(R,DX,DY,T), goto(R,DX,DY,X,Y,T-1),

not goto(R,DX ,DY,X+DX,Y+DY,T-1).

pos(R,X,Y,T) :- pos(R,X,Y,T-1), time(T), not move(R,T).

:- target(R,X,Y), not pos(R,X,Y,horizon).

#show move /4.

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 11 / 32

Ricochet Robots

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 12 / 32

Ricochet Robots

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 12 / 32

Ricochet Robots

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 12 / 32

Ricochet Robots

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 12 / 32

Ricochet Robots

optimization.lp

goon(T) :- target(R,X,Y), T = 0.. horizon , not pos(R,X,Y,T).

:- move(R,DX ,DY,T-1), time(T), not goon(T-1), not move(R,DX,DY,T).

#minimize{ 1,T : goon(T) }.

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 13 / 32

Ricochet Robots

Solving goal(13) from cornered robots
$ clingo board.lp targets.lp ricochet.lp optimization.lp -c horizon=20 --quiet=1,0 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Optimization: 20

Optimization: 19

Optimization: 18

Optimization: 17

Optimization: 16

Optimization: 15

Optimization: 14

Optimization: 13

Optimization: 12

Optimization: 11

Optimization: 10

Optimization: 9

Answer: 12

move(blue,0,-1,1) move(blue,1,0,2) move(yellow,0,-1,3) move(blue,0,1,4) move(yellow,-1,0,5) \

move(blue,1,0,6) move(blue,0,-1,7) move(yellow,1,0,8) move(yellow,0,1,9) move(yellow,0,1,10) \

move(yellow,0,1,11) move(yellow,0,1,12) move(yellow,0,1,13) move(yellow,0,1,14) move(yellow,0,1,15) \

move(yellow,0,1,16) move(yellow,0,1,17) move(yellow,0,1,18) move(yellow,0,1,19) move(yellow,0,1,20)

OPTIMUM FOUND

Models : 12

Optimum : yes

Optimization : 9

Calls : 1

Time : 16.145s (Solving: 15.01s 1st Model: 3.35s Unsat: 2.02s)

CPU Time : 16.080s

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 14 / 32

Ricochet Robots

Solving goal(13) from cornered robots
$ clingo board.lp targets.lp ricochet.lp optimization.lp -c horizon=20 --quiet=1,0 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Optimization: 20

Optimization: 19

Optimization: 18

Optimization: 17

Optimization: 16

Optimization: 15

Optimization: 14

Optimization: 13

Optimization: 12

Optimization: 11

Optimization: 10

Optimization: 9

Answer: 12

move(blue,0,-1,1) move(blue,1,0,2) move(yellow,0,-1,3) move(blue,0,1,4) move(yellow,-1,0,5) \

move(blue,1,0,6) move(blue,0,-1,7) move(yellow,1,0,8) move(yellow,0,1,9) move(yellow,0,1,10) \

move(yellow,0,1,11) move(yellow,0,1,12) move(yellow,0,1,13) move(yellow,0,1,14) move(yellow,0,1,15) \

move(yellow,0,1,16) move(yellow,0,1,17) move(yellow,0,1,18) move(yellow,0,1,19) move(yellow,0,1,20)

OPTIMUM FOUND

Models : 12

Optimum : yes

Optimization : 9

Calls : 1

Time : 16.145s (Solving: 15.01s 1st Model: 3.35s Unsat: 2.02s)

CPU Time : 16.080s

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 14 / 32

Ricochet Robots

Playing in rounds

Round 1: goal(13)

Round 2: goal(4)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 15 / 32

Ricochet Robots

Control loop

1 Create an operational clingo object

2 Load and ground the logic programs encoding Ricochet Robot
(relative to some fixed horizon) within the control object

3 While there is a goal, do the following

1 Enforce the initial robot positions
2 Enforce the current goal
3 Solve the logic program contained in the control object

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 16 / 32

Ricochet Robots

Ricochet Robot Player
ricochet.py

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 17 / 32

Ricochet Robots

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 18 / 32

Ricochet Robots

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 18 / 32

Ricochet Robots

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 18 / 32

Ricochet Robots

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 18 / 32

Ricochet Robots

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 18 / 32

Ricochet Robots

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 18 / 32

Ricochet Robots

Ricochet Robot Player
Setup and control loop

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 19 / 32

Ricochet Robots

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 20 / 32

Ricochet Robots

Setup and control loop

>> horizon = 15

>> encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

>> positions = [Fun("pos", [Fun("red"), 1, 1]),

>> Fun("pos", [Fun("blue"), 1, 16]),

>> Fun("pos", [Fun("green"), 16, 1]),

>> Fun("pos", [Fun("yellow"), 16, 16])]

>> sequence = [Fun("goal", [13]),

>> Fun("goal", [4]),

>> Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 20 / 32

Ricochet Robots

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

>> player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 20 / 32

Ricochet Robots

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

player = Player(horizon, positions, encodings)

>> for goal in sequence:

>> print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 20 / 32

Ricochet Robots

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 20 / 32

Ricochet Robots

Ricochet Robot Player
init

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 21 / 32

Ricochet Robots

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 22 / 32

Ricochet Robots

init

def __init__(self, horizon, positions, files):

>> self.last_positions = positions

>> self.last_solution = None

>> self.undo_external = []

>> self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 22 / 32

Ricochet Robots

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

>> self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 22 / 32

Ricochet Robots

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

>> for x in files:

>> self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 22 / 32

Ricochet Robots

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

>> self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 22 / 32

Ricochet Robots

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 22 / 32

Ricochet Robots

Ricochet Robot Player
solve

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 23 / 32

Ricochet Robots

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 24 / 32

Ricochet Robots

solve

def solve(self, goal):

>> for x in self.undo_external:

>> self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 24 / 32

Ricochet Robots

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

>> self.undo_external = []

>> for x in self.last_positions + [goal]:

>> self.ctl.assign_external(x, True)

>> self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 24 / 32

Ricochet Robots

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

>> self.last_solution = None

>> self.ctl.solve(on_model=self.on_model)

>> return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 24 / 32

Ricochet Robots

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 24 / 32

Ricochet Robots

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 24 / 32

Ricochet Robots

Ricochet Robot Player
on model

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 25 / 32

Ricochet Robots

on model

def on_model(self, model):

self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 26 / 32

Ricochet Robots

on model

def on_model(self, model):

>> self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 26 / 32

Ricochet Robots

on model

def on_model(self, model):

self.last_solution = model.atoms()

>> self.last_positions = []

>> for atom in model.atoms(Model.ATOMS):

>> if (atom.name() == "pos" and

>> len(atom.args()) == 4 and

>> atom.args()[3] == self.horizon):

>> self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 26 / 32

Ricochet Robots

on model

def on_model(self, model):

self.last_solution = model.atoms()

>> self.last_positions = []

>> for atom in model.atoms(Model.ATOMS):

>> if (atom.name() == "pos" and

>> len(atom.args()) == 4 and

>> atom.args()[3] == self.horizon):

>> self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 26 / 32

Ricochet Robots

on model

def on_model(self, model):

self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 26 / 32

Ricochet Robots

on model

def on_model(self, model):

self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 26 / 32

Ricochet Robots

ricochet.py
from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 27 / 32

Ricochet Robots

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$ python robotviz

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 28 / 32

Ricochet Robots

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$ python robotviz

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 28 / 32

Ricochet Robots

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$ python robotviz

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 28 / 32

Demonstration

Outline

1 Multi-shot ASP Solving

2 Ricochet Robots

3 Demonstration

4 Summary

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 29 / 32

Demonstration

Just do it!

.

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 30 / 32

Summary

Outline

1 Multi-shot ASP Solving

2 Ricochet Robots

3 Demonstration

4 Summary

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 31 / 32

Summary

Summary

Case-study is an exemplar for the interplay of ASP and Python

Illustration of clingo 4 approach

http://potassco.sourceforge.net

+ gringo/clingo distribution /examples/clingo/robots/

Torsten Schaub (KRR@UP) Ricochet Robots Reloaded A Case-study in Multi-shot ASP Solving 32 / 32

http://potassco.sourceforge.net

	Multi-shot ASP Solving
	Ricochet Robots
	Demonstration
	Summary

