
Towards embedded Answer Set Solving

Torsten Schaub

University of Potsdam

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 1 / 60

Outline

1 Introduction

2 Foundations

3 Modeling

4 Modeling and Controlling

5 Case-study: Ricochet Robots

6 Case-sketch: Preferences and optimization

7 Potassco

8 Summary

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 2 / 60

Introduction

Outline

1 Introduction

2 Foundations

3 Modeling

4 Modeling and Controlling

5 Case-study: Ricochet Robots

6 Case-sketch: Preferences and optimization

7 Potassco

8 Summary

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 3 / 60

Introduction

Answer Set Programming (ASP)

ASP is an approach to declarative problem solving

describe the problem, not how to solve it

ASP allows for solving hard search and optimization problems

Systems Biology
Product Configuration
Linux Package Configuration
Robotics
Music Composition
. . .

All search-problems in NP (and NPNP) are expressible

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 4 / 60

Introduction

Answer Set Programming (ASP)

ASP is an approach to declarative problem solving

describe the problem, not how to solve it

ASP allows for solving hard search and optimization problems

Systems Biology
Product Configuration
Linux Package Configuration
Robotics
Music Composition
. . .

All search-problems in NP (and NPNP) are expressible

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 4 / 60

Introduction

Answer Set Programming (ASP)

ASP is an approach to declarative problem solving

describe the problem, not how to solve it

ASP allows for solving hard search and optimization problems

Systems Biology
Product Configuration
Linux Package Configuration
Robotics
Music Composition
. . .

All search-problems in NP (and NPNP) are expressible

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 4 / 60

Introduction

The ASP Solving Process

First-Order
Logic Program

Grounder
Propositional

Logic Program Solver

Stable
Models

Expressive modeling language

Powerful grounding and solving tools

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 5 / 60

Introduction

The ASP Solving Process

First-Order
Logic Program

Grounder
Propositional

Logic Program Solver

Stable
Models

Expressive modeling language

Powerful grounding and solving tools

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 5 / 60

Introduction

The ASP Solving Process

First-Order
Logic Program

Grounder
Propositional

Logic Program Solver

Stable
Models

Expressive modeling language

Powerful grounding and solving tools

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 5 / 60

Introduction

The ASP Solving Process

First-Order
Logic Program

Grounder
Propositional

Logic Program Solver

Stable
Models

Expressive modeling language

Powerful grounding and solving tools

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 5 / 60

Introduction

The ASP Solving Process

First-Order
Logic Program

Grounder
Propositional

Logic Program Solver

Stable
Models

Expressive modeling language

Powerful grounding and solving tools

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 5 / 60

Introduction

The ASP Solving Process

First-Order
Logic Program

Grounder
Propositional

Logic Program Solver

Stable
Models

Expressive modeling language

Powerful grounding and solving tools

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 5 / 60

Introduction

The ASP Solving Process

First-Order
Logic Program

Grounder
Propositional

Logic Program Solver

Stable
Models

Expressive modeling language

Powerful grounding and solving tools

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 5 / 60

Foundations

Outline

1 Introduction

2 Foundations

3 Modeling

4 Modeling and Controlling

5 Case-study: Ricochet Robots

6 Case-sketch: Preferences and optimization

7 Potassco

8 Summary

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 6 / 60

Foundations

Propositional Normal Logic Programs

A logic program Π is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,∼c1, . . . ,∼cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ∼ denote if, and, and default negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
sets X of atoms such that

X is a (classical) model of Π and
each atom in X is justified by some rule in Π

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 7 / 60

Foundations

Logic Programs

A logic program Π is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,∼c1, . . . ,∼cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ∼ denote if, and, and default negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
sets X of atoms such that

X is a (classical) model of Π and
each atom in X is justified by some rule in Π

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 7 / 60

Foundations

Logic Programs

A logic program Π is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,∼c1, . . . ,∼cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ∼ denote if, and, and default negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
sets X of atoms such that

X is a (classical) model of Π and
each atom in X is justified by some rule in Π

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 7 / 60

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π)=

{
a← ¬b b ← ¬a x ← (a ∧ ¬c) ∨ y y ← x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (Π):

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 8 / 60

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
RF (Π)=

{
a← ¬b b ← ¬a x ← (a ∧ ¬c) ∨ y y ← x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of RF (Π): (only true atoms shown)

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 8 / 60

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
RF (Π)=

{
a← ¬b b ← ¬a x ← (a ∧ ¬c) ∨ y y ← x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of RF (Π):

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 8 / 60

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π)=

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of RF (Π):

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 8 / 60

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π)=

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (Π):

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 8 / 60

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π)=

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (Π):

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 8 / 60

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π)=

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (Π) ∪ LF (Π):

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 8 / 60

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π)=

{
a↔

(∨
(a←B)∈ΠBF (B)

)
| a ∈ atom(Π)

}
BF (B)=

∧
b∈B∩atom(Π)b ∧

∧
∼c∈B¬c

LF (Π) =
{(∨

a∈La
)
→
(∨

a∈L,(a←B)∈Π,B∩L=∅BF (B)
)
| L ∈ loop(Π)

}
Classical models of CF (Π) ∪ LF (Π):

Theorem (Lin and Zhao)

Let Π be a normal logic program and X ⊆ atom(Π).
Then, X is a stable model of Π iff X |= CF (Π) ∪ LF (Π).

Size of CF (Π) is linear in the size of Π

Size of LF (Π) may be exponential in the size of Π

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 8 / 60

Modeling

Outline

1 Introduction

2 Foundations

3 Modeling

4 Modeling and Controlling

5 Case-study: Ricochet Robots

6 Case-sketch: Preferences and optimization

7 Potassco

8 Summary

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 9 / 60

Modeling

Some language constructs

Variables

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) ; q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #sum { X : p(X,Y), q(Y) } 7

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 10 / 60

Modeling

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Peanutshell

Logic program = Data + Generator + Tester (+ Optimizer)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 11 / 60

Modeling

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Peanutshell

Logic program = Data + Generator + Tester (+ Optimizer)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 11 / 60

Modeling

Satisfiability testing

“(a 6↔ b)” +

(a↔ b) ∧ c

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

:~ a, b. [42@1]

:~ not a, not b. [69@2]

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 12 / 60

Modeling

Satisfiability testing

“(a 6↔ b)” +

(a↔ b) ∧ c

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

:~ a, b. [42@1]

:~ not a, not b. [69@2]

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 12 / 60

Modeling

Maximum satisfiability testing
“(a 6↔ b)” + (a↔ b) ∧ c

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

:~ a, b. [42@1]

:~ not a, not b. [69@2]

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 12 / 60

Modeling

n-queens
Basic encoding

{ queen (1..n,1..n) }.

:- { queen(I,J) } != n.

:- queen(I,J), queen(I,JJ), J != JJ.

:- queen(I,J), queen(II ,J), I != II.

:- queen(I,J), queen(II ,JJ), (I,J) != (II ,JJ), I-J = II -JJ.

:- queen(I,J), queen(II ,JJ), (I,J) != (II ,JJ), I+J = II+JJ.

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 13 / 60

Modeling

n-queens
Advanced encoding

{ queen(I,1..n) } = 1 :- I = 1..n.

{ queen (1..n,J) } = 1 :- J = 1..n.

:- { queen(D-J,J) } >= 2, D = 2..2*n.

:- { queen(D+J,J) } >= 2, D = 1-n..n-1.

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 14 / 60

Modeling

n-queens
(Experimental) constraint encoding

1 $<= $queen (1..n) $<= n.

#disjoint { X : $queen(X) $+ 0 : X=1..n }.

#disjoint { X : $queen(X) $+ X : X=1..n }.

#disjoint { X : $queen(X) $- X : X=1..n }.

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 15 / 60

Modeling

Traveling salesperson
Basic encoding (no instance)

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(X) :- X = #min { Y : node(Y) }.

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 16 / 60

Modeling

Company Controls

controls(X,Y) :-

#sum+ { S: owns(X,Y,S);

S,Z: controls(X,Z), owns(Z,Y,S) } > 50,

company(X), company(Y), X != Y.

company(c_1). owns(c_1 ,c_2 ,60).

owns(c_1 ,c_3 ,20).

company(c_2). owns(c_2 ,c_3 ,35).

company(c_3). owns(c_3 ,c_4 ,51).

company(c_4).

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 17 / 60

Modeling and Controlling

Outline

1 Introduction

2 Foundations

3 Modeling

4 Modeling and Controlling

5 Case-study: Ricochet Robots

6 Case-sketch: Preferences and optimization

7 Potassco

8 Summary

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 18 / 60

Modeling and Controlling

From One- to Multi-shot ASP solving

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4 — providing operative solving processes
dealing with continously changing logic programs

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 19 / 60

Modeling and Controlling

From One- to Multi-shot ASP solving

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4 — providing operative solving processes
dealing with continously changing logic programs

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 19 / 60

Modeling and Controlling

From One- to Multi-shot ASP solving

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4 — providing operative solving processes
dealing with continously changing logic programs

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 19 / 60

Modeling and Controlling

From One- to Multi-shot ASP solving

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4 — providing operative solving processes
dealing with continously changing logic programs

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 19 / 60

Modeling and Controlling

From One- to Multi-shot ASP solving

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: ground∗ | solve∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4 — providing operative solving processes
dealing with continously changing logic programs

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 19 / 60

Modeling and Controlling

From One- to Multi-shot ASP solving

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: (ground∗ | solve∗)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4 — providing operative solving processes
dealing with continously changing logic programs

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 19 / 60

Modeling and Controlling

From One- to Multi-shot ASP solving

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: (input | ground∗ | solve∗)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4 — providing operative solving processes
dealing with continously changing logic programs

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 19 / 60

Modeling and Controlling

From One- to Multi-shot ASP solving

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: (input | ground∗ | solve∗| theory)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4 — providing operative solving processes
dealing with continously changing logic programs

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 19 / 60

Modeling and Controlling

From One- to Multi-shot ASP solving

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4 — providing operative solving processes
dealing with continously changing logic programs

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 19 / 60

Modeling and Controlling

From One- to Multi-shot ASP solving

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4 — providing operative solving processes
dealing with continously changing logic programs

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 19 / 60

Modeling and Controlling

From One- to Multi-shot ASP solving

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4 — providing operative solving processes
dealing with continously changing logic programs

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 19 / 60

Modeling and Controlling

From One- to Multi-shot ASP solving

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4 — providing operative solving processes
dealing with continously changing logic programs

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 19 / 60

Modeling and Controlling

From One- to Multi-shot ASP solving

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve
Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4 — providing operative solving processes
dealing with continously changing logic programs

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 19 / 60

Modeling and Controlling

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 20 / 60

Modeling and Controlling

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 20 / 60

Modeling and Controlling

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 20 / 60

Modeling and Controlling

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 20 / 60

Modeling and Controlling

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 20 / 60

Modeling and Controlling

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 20 / 60

Modeling and Controlling

Vanilla Clingo

Emulating Clingo in Clingo 4

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 21 / 60

Modeling and Controlling

Vanilla Clingo

Emulating Clingo in Clingo 4

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 21 / 60

Modeling and Controlling

Vanilla Clingo

Emulating Clingo in Clingo 4

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 21 / 60

Modeling and Controlling

Towers of Hanoi Instance

Emulating iClingo (an incremental ASP solver) in Clingo 4

Incremental grounding

Incremental solving

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 22 / 60

Modeling and Controlling

Towers of Hanoi Instance

1

a

2

7

b

3

4

5

6

c

peg(a;b;c).

init_on(1,a).

init_on((2;7),b).

init_on((3;4;5;6),c).

disk(1..7).

goal_on((3;4),a).

goal_on((1;2;5;6;7),c).

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 23 / 60

Modeling and Controlling

Towers of Hanoi Encoding (base)

#program base.

on(D,P,0) :- init_on(D,P).

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 24 / 60

Modeling and Controlling

Towers of Hanoi Encoding (cumulative)

#program cumulative(t).

1 { move(D,P,t) : disk(D), peg(P) } 1.

moved(D,t) :- move(D,_,t).

blocked(D,P,t) :- on(D+1,P,t-1), disk(D).

blocked(D,P,t) :- blocked(D+1,P,t), disk(D).

:- move(D,P,t), blocked(D-1,P,t).

:- moved(D,t), on(D,P,t-1), blocked(D,P,t).

on(D,P,t) :- on(D,P,t-1), not moved(D,t).

on(D,P,t) :- move(D,P,t).

:- not 1 { on(D,P,t) : peg(P) } 1, disk(D).

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 25 / 60

Modeling and Controlling

Towers of Hanoi Encoding (volatile)

#program volatile(t).

#external query(t).

:- goal_on(D,P), not on(D,P,t), query(t).

Exercising control

An #external atom can be controlled from Python (or Lua) via

assign_external(self,atom,value)

where value is either True, False, or None

release_external(self,atom)

sets atom permanently to False

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 26 / 60

Modeling and Controlling

Towers of Hanoi Encoding (volatile)

#program volatile(t).

#external query(t).

:- goal_on(D,P), not on(D,P,t), query(t).

Exercising control

An #external atom can be controlled from Python (or Lua) via

assign_external(self,atom,value)

where value is either True, False, or None

release_external(self,atom)

sets atom permanently to False

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 26 / 60

Modeling and Controlling

Incremental Solving (embedded)

#script (python)

from gringo import SolveResult, Fun

def main(prg):

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("cumulative", [step]))

parts.append(("volatile", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
ret, parts, step = prg.solve(), [], step+1

#end.

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 27 / 60

Modeling and Controlling

Incremental Solving (library)

from sys import stdout

from gringo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("cumulative", [step]))

parts.append(("volatile", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 28 / 60

Case-study: Ricochet Robots

Outline

1 Introduction

2 Foundations

3 Modeling

4 Modeling and Controlling

5 Case-study: Ricochet Robots

6 Case-sketch: Preferences and optimization

7 Potassco

8 Summary

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 29 / 60

Case-study: Ricochet Robots

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 30 / 60

Case-study: Ricochet Robots

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 30 / 60

Case-study: Ricochet Robots

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 30 / 60

Case-study: Ricochet Robots

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 30 / 60

Case-study: Ricochet Robots

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 31 / 60

Case-study: Ricochet Robots

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 31 / 60

Case-study: Ricochet Robots

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 31 / 60

Case-study: Ricochet Robots

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 31 / 60

Case-study: Ricochet Robots

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 31 / 60

Case-study: Ricochet Robots

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 31 / 60

Case-study: Ricochet Robots

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 31 / 60

Case-study: Ricochet Robots

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 31 / 60

Case-study: Ricochet Robots

board.lp

dim (1..16).

barrier(2, 1, 1, 0). barrier (13,11, 1, 0). barrier(9, 7, 0, 1).

barrier (10, 1, 1, 0). barrier (11,12, 1, 0). barrier (11, 7, 0, 1).

barrier(4, 2, 1, 0). barrier (14,13, 1, 0). barrier (14, 7, 0, 1).

barrier (14, 2, 1, 0). barrier(6,14, 1, 0). barrier (16, 9, 0, 1).

barrier(2, 3, 1, 0). barrier(3,15, 1, 0). barrier(2,10, 0, 1).

barrier (11, 3, 1, 0). barrier (10,15, 1, 0). barrier(5,10, 0, 1).

barrier(7, 4, 1, 0). barrier(4,16, 1, 0). barrier(8,10, 0,-1).

barrier(3, 7, 1, 0). barrier (12,16, 1, 0). barrier(9,10, 0,-1).

barrier (14, 7, 1, 0). barrier(5, 1, 0, 1). barrier(9,10, 0, 1).

barrier(7, 8, 1, 0). barrier (15, 1, 0, 1). barrier (14,10, 0, 1).

barrier (10, 8,-1, 0). barrier(2, 2, 0, 1). barrier(1,12, 0, 1).

barrier (11, 8, 1, 0). barrier (12, 3, 0, 1). barrier (11,12, 0, 1).

barrier(7, 9, 1, 0). barrier(7, 4, 0, 1). barrier(7,13, 0, 1).

barrier (10, 9,-1, 0). barrier (16, 4, 0, 1). barrier (15,13, 0, 1).

barrier(4,10, 1, 0). barrier(1, 6, 0, 1). barrier (10,14, 0, 1).

barrier(2,11, 1, 0). barrier(4, 7, 0, 1). barrier(3,15, 0, 1).

barrier(8,11, 1, 0). barrier(8, 7, 0, 1).

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 32 / 60

Case-study: Ricochet Robots

targets.lp

#external goal (1..16).

target(red , 5, 2) :- goal (1).

target(red , 15, 2) :- goal (2).

target(green , 2, 3) :- goal (3).

target(blue , 12, 3) :- goal (4).

target(yellow , 7, 4) :- goal (5).

target(blue , 4, 7) :- goal (6).

target(green , 14, 7) :- goal (7).

target(yellow ,11, 8) :- goal (8).

target(yellow , 5,10) :- goal (9).

target(green , 2,11) :- goal (10).

target(red , 14,11) :- goal (11).

target(green , 11 ,12) :- goal (12).

target(yellow ,15 ,13) :- goal (13).

target(blue , 7,14) :- goal (14).

target(red , 3,15) :- goal (15).

target(blue , 10,15) :- goal (16).

robot(red;green;blue;yellow).

#external pos((red;green;blue;yellow) ,1..16 ,1..16).

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 33 / 60

Case-study: Ricochet Robots

ricochet.lp

time (1.. horizon).

dir(-1,0;1,0;0,-1;0,1).

stop(DX, DY,X, Y) :- barrier(X,Y,DX,DY).

stop(-DX,-DY ,X+DX ,Y+DY) :- stop(DX,DY ,X,Y).

pos(R,X,Y,0) :- pos(R,X,Y).

1 { move(R,DX,DY,T) : robot(R), dir(DX ,DY) } 1 :- time(T).

move(R,T) :- move(R,_,_,T).

halt(DX ,DY,X-DX,Y-DY,T) :- pos(_,X,Y,T), dir(DX,DY), dim(X-DX), dim(Y-DY),

not stop(-DX,-DY,X,Y), T < horizon.

goto(R,DX,DY ,X,Y,T) :- pos(R,X,Y,T), dir(DX,DY), T < horizon.

goto(R,DX,DY ,X+DX ,Y+DY,T) :- goto(R,DX,DY ,X,Y,T), dim(X+DX), dim(Y+DY),

not stop(DX,DY ,X,Y), not halt(DX,DY,X,Y,T).

pos(R,X,Y,T) :- move(R,DX,DY,T), goto(R,DX,DY,X,Y,T-1),

not goto(R,DX ,DY,X+DX,Y+DY,T-1).

pos(R,X,Y,T) :- pos(R,X,Y,T-1), time(T), not move(R,T).

:- target(R,X,Y), not pos(R,X,Y,horizon).

#show move /4.

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 34 / 60

Case-study: Ricochet Robots

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 35 / 60

Case-study: Ricochet Robots

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 35 / 60

Case-study: Ricochet Robots

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 35 / 60

Case-study: Ricochet Robots

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 35 / 60

Case-study: Ricochet Robots

optimization.lp

goon(T) :- target(R,X,Y), T = 0.. horizon , not pos(R,X,Y,T).

:- move(R,DX ,DY,T-1), time(T), not goon(T-1), not move(R,DX,DY,T).

#minimize{ 1,T : goon(T) }.

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 36 / 60

Case-study: Ricochet Robots

Solving goal(13) from cornered robots
$ clingo board.lp targets.lp ricochet.lp optimization.lp -c horizon=20 --quiet=1,0 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Optimization: 20

Optimization: 19

Optimization: 18

Optimization: 17

Optimization: 16

Optimization: 15

Optimization: 14

Optimization: 13

Optimization: 12

Optimization: 11

Optimization: 10

Optimization: 9

Answer: 12

move(blue,0,-1,1) move(blue,1,0,2) move(yellow,0,-1,3) move(blue,0,1,4) move(yellow,-1,0,5) \

move(blue,1,0,6) move(blue,0,-1,7) move(yellow,1,0,8) move(yellow,0,1,9) move(yellow,0,1,10) \

move(yellow,0,1,11) move(yellow,0,1,12) move(yellow,0,1,13) move(yellow,0,1,14) move(yellow,0,1,15) \

move(yellow,0,1,16) move(yellow,0,1,17) move(yellow,0,1,18) move(yellow,0,1,19) move(yellow,0,1,20)

OPTIMUM FOUND

Models : 12

Optimum : yes

Optimization : 9

Calls : 1

Time : 16.145s (Solving: 15.01s 1st Model: 3.35s Unsat: 2.02s)

CPU Time : 16.080s

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 37 / 60

Case-study: Ricochet Robots

Solving goal(13) from cornered robots
$ clingo board.lp targets.lp ricochet.lp optimization.lp -c horizon=20 --quiet=1,0 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Optimization: 20

Optimization: 19

Optimization: 18

Optimization: 17

Optimization: 16

Optimization: 15

Optimization: 14

Optimization: 13

Optimization: 12

Optimization: 11

Optimization: 10

Optimization: 9

Answer: 12

move(blue,0,-1,1) move(blue,1,0,2) move(yellow,0,-1,3) move(blue,0,1,4) move(yellow,-1,0,5) \

move(blue,1,0,6) move(blue,0,-1,7) move(yellow,1,0,8) move(yellow,0,1,9) move(yellow,0,1,10) \

move(yellow,0,1,11) move(yellow,0,1,12) move(yellow,0,1,13) move(yellow,0,1,14) move(yellow,0,1,15) \

move(yellow,0,1,16) move(yellow,0,1,17) move(yellow,0,1,18) move(yellow,0,1,19) move(yellow,0,1,20)

OPTIMUM FOUND

Models : 12

Optimum : yes

Optimization : 9

Calls : 1

Time : 16.145s (Solving: 15.01s 1st Model: 3.35s Unsat: 2.02s)

CPU Time : 16.080s

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 37 / 60

Case-study: Ricochet Robots

Playing in rounds

Round 1: goal(13)

Round 2: goal(4)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 38 / 60

Case-study: Ricochet Robots

Control loop

1 Create an operational clingo object

2 Load and ground the logic programs encoding Ricochet Robot
(relative to some fixed horizon) within the control object

3 While there is a goal, do the following

1 Enforce the initial robot positions
2 Enforce the current goal
3 Solve the logic program contained in the control object

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 39 / 60

Case-study: Ricochet Robots

Ricochet Robot Player
ricochet.py

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 40 / 60

Case-study: Ricochet Robots

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 41 / 60

Case-study: Ricochet Robots

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 41 / 60

Case-study: Ricochet Robots

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 41 / 60

Case-study: Ricochet Robots

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 41 / 60

Case-study: Ricochet Robots

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 41 / 60

Case-study: Ricochet Robots

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 41 / 60

Case-study: Ricochet Robots

Ricochet Robot Player
Setup and control loop

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 42 / 60

Case-study: Ricochet Robots

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 43 / 60

Case-study: Ricochet Robots

Setup and control loop

>> horizon = 15

>> encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

>> positions = [Fun("pos", [Fun("red"), 1, 1]),

>> Fun("pos", [Fun("blue"), 1, 16]),

>> Fun("pos", [Fun("green"), 16, 1]),

>> Fun("pos", [Fun("yellow"), 16, 16])]

>> sequence = [Fun("goal", [13]),

>> Fun("goal", [4]),

>> Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 43 / 60

Case-study: Ricochet Robots

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

>> player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 43 / 60

Case-study: Ricochet Robots

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

player = Player(horizon, positions, encodings)

>> for goal in sequence:

>> print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 43 / 60

Case-study: Ricochet Robots

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 43 / 60

Case-study: Ricochet Robots

Ricochet Robot Player
init

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 44 / 60

Case-study: Ricochet Robots

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 45 / 60

Case-study: Ricochet Robots

init

def __init__(self, horizon, positions, files):

>> self.last_positions = positions

>> self.last_solution = None

>> self.undo_external = []

>> self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 45 / 60

Case-study: Ricochet Robots

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

>> self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 45 / 60

Case-study: Ricochet Robots

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

>> for x in files:

>> self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 45 / 60

Case-study: Ricochet Robots

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

>> self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 45 / 60

Case-study: Ricochet Robots

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 45 / 60

Case-study: Ricochet Robots

Ricochet Robot Player
solve

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 46 / 60

Case-study: Ricochet Robots

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 47 / 60

Case-study: Ricochet Robots

solve

def solve(self, goal):

>> for x in self.undo_external:

>> self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 47 / 60

Case-study: Ricochet Robots

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

>> self.undo_external = []

>> for x in self.last_positions + [goal]:

>> self.ctl.assign_external(x, True)

>> self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 47 / 60

Case-study: Ricochet Robots

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

>> self.last_solution = None

>> self.ctl.solve(on_model=self.on_model)

>> return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 47 / 60

Case-study: Ricochet Robots

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 47 / 60

Case-study: Ricochet Robots

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 47 / 60

Case-study: Ricochet Robots

Ricochet Robot Player
on model

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 48 / 60

Case-study: Ricochet Robots

on model

def on_model(self, model):

self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 49 / 60

Case-study: Ricochet Robots

on model

def on_model(self, model):

>> self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 49 / 60

Case-study: Ricochet Robots

on model

def on_model(self, model):

self.last_solution = model.atoms()

>> self.last_positions = []

>> for atom in model.atoms(Model.ATOMS):

>> if (atom.name() == "pos" and

>> len(atom.args()) == 4 and

>> atom.args()[3] == self.horizon):

>> self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 49 / 60

Case-study: Ricochet Robots

on model

def on_model(self, model):

self.last_solution = model.atoms()

>> self.last_positions = []

>> for atom in model.atoms(Model.ATOMS):

>> if (atom.name() == "pos" and

>> len(atom.args()) == 4 and

>> atom.args()[3] == self.horizon):

>> self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 49 / 60

Case-study: Ricochet Robots

on model

def on_model(self, model):

self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 49 / 60

Case-study: Ricochet Robots

on model

def on_model(self, model):

self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 49 / 60

Case-study: Ricochet Robots

ricochet.py
from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 50 / 60

Case-study: Ricochet Robots

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$./visualize.py

http://potassco.sourceforge.net

+ gringo/clingo distribution ./examples/clingo/robots/

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 51 / 60

http://potassco.sourceforge.net

Case-study: Ricochet Robots

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$./visualize.py

http://potassco.sourceforge.net

+ gringo/clingo distribution ./examples/clingo/robots/

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 51 / 60

http://potassco.sourceforge.net

Case-study: Ricochet Robots

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$./visualize.py

http://potassco.sourceforge.net

+ gringo/clingo distribution ./examples/clingo/robots/

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 51 / 60

http://potassco.sourceforge.net

Case-study: Ricochet Robots

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$./visualize.py

http://potassco.sourceforge.net

+ gringo/clingo distribution ./examples/clingo/robots/

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 51 / 60

http://potassco.sourceforge.net

Case-sketch: Preferences and optimization

Outline

1 Introduction

2 Foundations

3 Modeling

4 Modeling and Controlling

5 Case-study: Ricochet Robots

6 Case-sketch: Preferences and optimization

7 Potassco

8 Summary

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 52 / 60

Case-sketch: Preferences and optimization

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 53 / 60

Case-sketch: Preferences and optimization

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 53 / 60

Case-sketch: Preferences and optimization

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 53 / 60

Case-sketch: Preferences and optimization

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 53 / 60

Case-sketch: Preferences and optimization

The asprin framework

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 54 / 60

Case-sketch: Preferences and optimization

The asprin framework

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 54 / 60

Case-sketch: Preferences and optimization

The asprin framework

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 54 / 60

Case-sketch: Preferences and optimization

The asprin framework

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 54 / 60

Case-sketch: Preferences and optimization

Example

#preference(costs, less(weight)){40 : sauna, 70 : dive}
#preference(fun, superset){sauna, dive, hike,∼bunji}
#preference(temps, aso){dive > sauna ‖ hot, sauna > dive ‖¬hot}
#preference(all , pareto){name(costs), name(fun), name(temps)}

#optimize(all)

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 55 / 60

Case-sketch: Preferences and optimization

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types

and http://potassco.sourceforge.net/labs.html#asprin

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 56 / 60

http://potassco.sourceforge.net/labs.html#asprin

Case-sketch: Preferences and optimization

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types

and http://potassco.sourceforge.net/labs.html#asprin

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 56 / 60

http://potassco.sourceforge.net/labs.html#asprin

Case-sketch: Preferences and optimization

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types

and http://potassco.sourceforge.net/labs.html#asprin

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 56 / 60

http://potassco.sourceforge.net/labs.html#asprin

Case-sketch: Preferences and optimization

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types

and http://potassco.sourceforge.net/labs.html#asprin

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 56 / 60

http://potassco.sourceforge.net/labs.html#asprin

Potassco

Outline

1 Introduction

2 Foundations

3 Modeling

4 Modeling and Controlling

5 Case-study: Ricochet Robots

6 Case-sketch: Preferences and optimization

7 Potassco

8 Summary

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 57 / 60

Potassco

potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam:

Grounder gringo, lingo

Solver clasp, claspfolio, claspar, aspeed

Grounder+Solver Clingo, Clingcon, ROSoClingo

Further Tools aspartame, aspcud, asprin, chasp, claspre, clavis, coala,
fimo, insight, metasp, plasp, piclasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 58 / 60

potassco.sourceforge.net
asparagus.cs.uni-potsdam.de

Potassco

potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam:

Grounder gringo, lingo

Solver clasp, claspfolio, claspar, aspeed

Grounder+Solver Clingo, Clingcon, ROSoClingo

Further Tools aspartame, aspcud, asprin, chasp, claspre, clavis, coala,
fimo, insight, metasp, plasp, piclasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 58 / 60

potassco.sourceforge.net
asparagus.cs.uni-potsdam.de

Potassco

potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam:

Grounder gringo, lingo

Solver clasp, claspfolio, claspar, aspeed

Grounder+Solver Clingo, Clingcon, ROSoClingo

Further Tools aspartame, aspcud, asprin, chasp, claspre, clavis, coala,
fimo, insight, metasp, plasp, piclasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 58 / 60

potassco.sourceforge.net
asparagus.cs.uni-potsdam.de

Potassco

potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam:

Grounder gringo, lingo

Solver clasp, claspfolio, claspar, aspeed

Grounder+Solver Clingo, Clingcon, ROSoClingo

Further Tools aspartame, aspcud, asprin, chasp, claspre, clavis, coala,
fimo, insight, metasp, plasp, piclasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
University of Potsdam

SYNTHESIS LECTURES ON SAMPLE SERIES #1

C
M
&

cLaypoolMorgan publishers&

Martin Gebser
Roland Kaminski
Benjamin Kaufmann
Marius Lindauer
Max Ostrowski
Javier Romero
Torsten Schaub
Sven Thiele

University of Potsdam

ar
X

iv
:1

50
7.

06
57

6v
1

 [c
s.

P
L]

 2
3

Ju
l 2

01
5

Under consideration for publication in Theory and Practiceof Logic Programming 1

Abstract Gringo

MARTIN GEBSER∗
Aalto University, HIIT, Finland

University of Potsdam, Germany
gebser@cs.uni-potsdam.de

AMELIA HARRISON†
Univeristy of Texas at Austin, USA

ameliaj@cs.utexas.edu

ROLAND KAMINSKI ∗
University of Potsdam, Germany

kaminski@cs.uni-potsdam.de

VLADIMIR LIFSCHITZ †
Univeristy of Texas at Austin, USA

vl@cs.utexas.edu

TORSTEN SCHAUB∗‡
University of Potsdam, Germany

INRIA Rennes, France
torsten@cs.uni-potsdam.de

submitted 1 January 2003; revised 1 January 2003; accepted 1January 2003

Abstract

This paper defines the syntax and semantics of the input language of the ASP grounderGRINGO.
The definition covers several constructs that were not discussed in earlier work on the semantics of
that language, including intervals, pools, division of integers, aggregates with non-numeric values,
and lparse-style aggregate expressions. The definition is abstract in the sense that it disregards some
details related to representing programs by strings of ASCII characters. It serves as a specification
for GRINGO from Version 4.5 on.

To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 2015.

∗ Supported by AoF (grant 251170) and DFG (grants SCHA 550/8 and 550/9).
† Partially supported by the National Science Foundation under Grant IIS-1422455.
‡ Affiliated with Simon Fraser University, Canada, and IIIS Griffith University, Australia.

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 58 / 60

potassco.sourceforge.net
asparagus.cs.uni-potsdam.de

Summary

Outline

1 Introduction

2 Foundations

3 Modeling

4 Modeling and Controlling

5 Case-study: Ricochet Robots

6 Case-sketch: Preferences and optimization

7 Potassco

8 Summary

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 59 / 60

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

rapid application development tool

ASP has a growing range of applications

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 60 / 60

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

rapid application development tool

ASP has a growing range of applications

ASP = DB+LP+KR+SAT

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 60 / 60

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

rapid application development tool

ASP has a growing range of applications

ASP = DB+LP+KR+SMTn

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 60 / 60

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

rapid application development tool

ASP has a growing range of applications

http://potassco.sourceforge.net

Torsten Schaub (KRR@UP) Towards embedded Answer Set Solving 60 / 60

http://potassco.sourceforge.net

	Introduction
	Foundations
	Modeling
	Modeling and Controlling
	Case-study: Ricochet Robots
	Case-sketch: Preferences and optimization
	Potassco
	Summary

