Answer Set Solving in Practice

Martin Gebser and Torsten Schaub
University of Potsdam
torsten@cs.uni-potsdam.de

(38 Potassco

0

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 1/ 429

Rough Roadmap

Motivation
Introduction
Modeling
Language
Grounding
[@ Foundations
Solving
B Systems
B Advanced modeling
M Summary
Bibliography

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 2 /429

m Course material

Resources

m http://potassco.sourceforge.net/teaching.html
m http://moodle.cs.uni-potsdam.de
m http://www.cs.uni-potsdam.de/wv/lehre

m Systems

clasp
dlv
smodels

gringo
Iparse
clingo
iclingo
oclingo

asparagus

M. Gebser and T. Schaub (KRR@UP)

http://potassco.sourceforge.net
http://www.dlvsystem.com
http://www.tcs.hut.fi/Software/smodels

http://potassco.sourceforge.net
http://www.tcs.hut.fi/Software/smodels

http://potassco.sourceforge.net
http://potassco.sourceforge.net
http://potassco.sourceforge.net

http://asparagus.cs.uni-potsdam.de
(8 Potassco
Answer Set Solving in Practice July 15, 2013 3/ 429

http://potassco.sourceforge.net/teaching.html
http://moodle.cs.uni-potsdam.de
http://www.cs.uni-potsdam.de/wv/lehre
http://potassco.sourceforge.net
http://www.dlvsystem.com
 http://www.tcs.hut.fi/Software/smodels
http://potassco.sourceforge.net
http://www.tcs.hut.fi/Software/smodels
http://potassco.sourceforge.net
http://potassco.sourceforge.net
http://potassco.sourceforge.net
 http://asparagus.cs.uni-potsdam.de

The Potassco Book

Motivation
Introduction

Basic modeling
Grounding
Characterizations
Solving

Systems

Advanced modeling
Conclusions

CONIIGA L WD =

Resources
m http://potassco.sourceforge.net/book.html
m http://potassco.sourceforge.net/teaching.html

=
(EEE Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 4 /429

http://potassco.sourceforge.net/book.html
http://potassco.sourceforge.net/teaching.html

Literature

Books [4], [29], [53]
Surveys [50], [2], [39], [21], [11]
Articles [41], [42], [6], [61], [54], [49], [40], etc.

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 5/ 429

Motivation: Overview

Motivation
Nutshell

Shifting paradigms
Rooting ASP

ASP solving

@ Using ASP

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 6 /429

Motivation

Outline

Motivation

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 7 /429

Motivation

Informatics
“What is the problem?” “How to solve the problem?”
Problem Solution
Computer Output
(EE\E’Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 8 /429

Motivation

Informatics

“What is the problem?” versus “How to solve the problem?”

Problem Solution

Computer Output

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 8 /429

Motivation

Traditional programming

“What is the problem?” versus “How to solve the problem?”

Problem Solution

Computer Output

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 8 /429

Motivation

Traditional programming

“How to solve the problem?”

Solution

Interpreting

“What is the problem?” versus
Problem
Programming
Program
Executing

M. Gebser and T. Schaub (KRR@UP)

Answer Set Solving in Practice

Output

(38 Potassco
July 15, 2013 8 /429

Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem Solution

Interpreting

Computer Output

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 8 /429

Motivation

Declarative problem solving

“How to solve the problem?”

Solution

Interpreting

“What is the problem?” versus
Problem
Modeling
Representation
Solving

M. Gebser and T. Schaub (KRR@UP)

Answer Set Solving in Practice

Output

(3 Potassco
July 15, 2013 8 /429

Problem

Modeling

Representation

Motivation

Declarative problem solving

Solution

Interpreting

M. Gebser and T. Schaub (KRR@UP)

Solving

Answer Set Solving in Practice

Output

@? Potassco
July 15, 2013 8 /429

Nutshell

Outline

Nutshell

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 9 /429

Nutshell

Answer Set Programming
ER

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with high-performance solving capacities
ASP has its roots in
(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)
ASP allows for solving all search problems in NP (and NP"P)

in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas
(& Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 10 / 429

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining
m a rich yet simple modeling language
m with high-performance solving capacities
ASP has its roots in
(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)
ASP allows for solving all search problems in NP (and NPP)

in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas
(& Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 10 / 429

Nutshell

Answer Set Programming
in a Nutshell

m ASP is an approach to declarative problem solving, combining
m a rich yet simple modeling language
m with high-performance solving capacities
m ASP has its roots in
(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 10 / 429

Nutshell

Answer Set Programming
in a Nutshell

m ASP is an approach to declarative problem solving, combining
m a rich yet simple modeling language
m with high-performance solving capacities

m ASP has its roots in

(deductive) databases

logic programming (with negation)

(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

m ASP allows for solving all search problems in NP (and NPP)
in a uniform way

(EEE Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 10 / 429

Nutshell

Answer Set Programming
in a Nutshell

m ASP is an approach to declarative problem solving, combining
m a rich yet simple modeling language
m with high-performance solving capacities

m ASP has its roots in

(deductive) databases

logic programming (with negation)

(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

m ASP allows for solving all search problems in NP (and NPP)
in a uniform way

m ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

(EEE Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 10 / 429

Nutshell

Answer Set Programming
in a Nutshell

m ASP is an approach to declarative problem solving, combining
m a rich yet simple modeling language
m with high-performance solving capacities

m ASP has its roots in

(deductive) databases

logic programming (with negation)

(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

m ASP allows for solving all search problems in NP (and NPP)
in a uniform way

m ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions
m ASP embraces many emerging application areas
(88 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 10 / 429

Nutshell

Answer Set Programming

in a Hazelnutshell

m ASP is an approach to declarative problem solving, combining

m a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 11 / 429

Nutshell

Answer Set Programming
in a Hazelnutshell

m ASP is an approach to declarative problem solving, combining

m a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

ASP = DB+LP+KR-+SAT

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 11 / 429

Shifting paradigms

Outline

Shifting paradigms

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 12 / 429

Shifting paradigms
KR's shift of paradigm

(eg. Prolog)
Provide a representation of the problem
A solution is given by a derivation of a query

(eg. SATisfiability testing)
Provide a representation of the problem
A solution is given by a model of the representation

Represent planning problems as propositional theories so that
models not proofs describe solutions

(EE\E Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 13 / 429

Shifting paradigms

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 13 / 429

Shifting paradigms

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem
A solution is given by a model of the representation

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 13 / 429

Shifting paradigms

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem
A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI'92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 13 / 429

Shifting paradigms

Model Generation based Problem Solving

Representation

Solution

M. Gebser and T. Schaub (KRR@UP)

constraint satisfaction problem
propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
first-order theories
auto-epistemic theories
default theories

Answer Set Solving in Practice

assignment
smallest model
models

minimal models
stable models
minimal models
supported models
stable models
models

minimal models
stable models
Herbrand models
expansions
extensions

Potassco
14 / 429

(g8

July 15, 2013

Shifting paradigms

Model Generation based Problem Solving

Representation

Solution

M. Gebser and T. Schaub (KRR@UP)

constraint satisfaction problem
propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
first-order theories
auto-epistemic theories
default theories

Answer Set Solving in Practice

assignment
smallest model
models

minimal models
stable models
minimal models
supported models
stable models
models

minimal models
stable models
Herbrand models
expansions
extensions

Potassco
14 / 429

(g8

July 15, 2013

Shifting paradigms

Model Generation based Problem Solving

Representation

Solution

M. Gebser and T. Schaub (KRR@UP)

constraint satisfaction problem
propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
first-order theories
auto-epistemic theories
default theories

Answer Set Solving in Practice

assignment
smallest model
models

minimal models
stable models
minimal models
supported models
stable models

SAT

models

minimal models
stable models
Herbrand models
expansions
extensions

Potassco
14 / 429

(g8

July 15, 2013

Shifting paradigms

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem
A solution is given by a model of the representation

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 15 / 429

Shifting paradigms

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 15 / 429

Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

[1 =}
(2 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 16 / 429

Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).
true.

[1 =}
(2 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 16 / 429

Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).
true.

?- above(c,a).
no.

[1 =}
(2 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 16 / 429

Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries (testing entailment)

?- above(a,c).
true.

?- above(c,a).
no.

[1 =}
(2 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 16 / 429

Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).
on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).
above(X,Y) :- on(X,Y).

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 17 / 429

Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).
on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries

?- above(a,c).

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 17 / 429

Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).
on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries (answered via fixed execution)

?- above(a,c).

Fatal Error: local stack overflow.

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 17 / 429

Shifting paradigms

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem
A solution is given by a model of the representation

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 18 / 429

Shifting paradigms

KR's shift of paradigm

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem
A solution is given by a model of the representation

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 18 / 429

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
A on(b,c)
A (on(X,Y) — above(X,Y))
A (on(X,Z) A above(Z,Y) — above(X, Y))

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 19 / 429

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
A on(b,c)
A (on(X,Y) — above(X,Y))
A (on(X,Z) A above(Z,Y) — above(X, Y))

Herbrand model

IEN)R on(b, c), on(a, c), on(b, b),
above(a, b), above(b,c), above(a,c), above(b,b), above(c,b)

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 19 / 429

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
A on(b,c)
A (on(X,Y) — above(X,Y))
A (on(X,Z) A above(Z,Y) — above(X, Y))

Herbrand model (among 426!)

IEN)R on(b, c), on(a, c), on(b, b),
above(a, b), above(b,c), above(a,c), above(b,b), above(c,b)

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 19 / 429

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
A on(b,c)
A (on(X,Y) — above(X,Y))
A (on(X,Z) A above(Z,Y) — above(X, Y))

Herbrand model (among 426!)

on(a, b), on(b, c), on(a, c), on(b, b),
above(a, b), above(b,c), above(a,c), above(b,b), above(c,b)

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 19 / 429

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
A on(b,c)
A (on(X,Y) — above(X,Y))
A (on(X,Z) A above(Z,Y) — above(X, Y))

Herbrand model (among 426!)

IEN)R on(b, c), on(a, c), on(b, b),
above(a, b), above(b,c), above(a,c), above(b,b), above(c,b)

)

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 19 / 429

Rooting ASP

Outline

Rooting ASP

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 20 / 429

Rooting ASP

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem
A solution is given by a model of the representation

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 21 / 429

Rooting ASP

KR's shift of paradigm

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem
A solution is given by a model of the representation

w Answer Set Programming (ASP)

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 21 / 429

Rooting ASP

Model Generation based Problem Solving

M. Gebser and T. Schaub (KRR@UP)

Representation Solution
constraint satisfaction problem | assignment
propositional horn theories smallest model
propositional theories models

propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
first-order theories
auto-epistemic theories
default theories

Answer Set Solving in Practice

minimal models
stable models
minimal models
supported models
stable models
models

minimal models
stable models
Herbrand models
expansions
extensions

Potassco
22 / 429

(g8

July 15, 2013

Rooting ASP

Answer Set Programming at large

Representation

Solution

propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
first-order theories
auto-epistemic theories
default theories

M. Gebser and T. Schaub (KRR@UP)

Answer Set Solving in Practice

smallest model
models

minimal models
stable models
minimal models
supported models
stable models
models

minimal models
stable models
Herbrand models
expansions
extensions

C: Potassco

July 15, 2013 22 / 429

Rooting ASP

Answer Set Programming commonly

Representation

Solution

M. Gebser and T. Schaub (KRR@UP)

constraint satisfaction problem
propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
first-order theories
auto-epistemic theories
default theories

Answer Set Solving in Practice

assignment
smallest model
models

minimal models
stable models
minimal models
supported models
stable models
models

minimal models
stable models
Herbrand models

expansions
extensions
(EE\‘:’Potassco
July 15, 2013 22 / 429

Rooting ASP

Answer Set Programming in practice

Representation

Solution

M. Gebser and T. Schaub (KRR@UP)

constraint satisfaction problem
propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
first-order theories
auto-epistemic theories
default theories

Answer Set Solving in Practice

assignment
smallest model
models

minimal models
stable models
minimal models
supported models
stable models
models

minimal models
stable models
Herbrand models

expansions
extensions
(EE\EPotassco
July 15, 2013 22 / 429

Rooting ASP

Answer Set Programming in practice

Representation

Solution

M. Gebser and T. Schaub (KRR@UP)

constraint satisfaction problem
propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
first-order theories
auto-epistemic theories
default theories

first-order programs

Answer Set Solving in Practice

assignment
smallest model
models

minimal models
stable models
minimal models
supported models
stable models
models

minimal models
stable models
Herbrand models

expansions

extensions

stable Herbrand models (EE\EPotassco
July 15, 2013 22 / 429

Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 23 / 429

Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) }

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 23 / 429

Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model (and no others)

{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) }

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 23 / 429

Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).
on(b,c).

above(X,Y) :- above(Z,Y), on(X,Z).
above(X,Y) :- on(X,Y).

Stable Herbrand model (and no others)

{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) }

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 23 / 429

Rooting ASP

ASP versus LP

ASP | Prolog
Model generation Query orientation
Bottom-up Top-down
Modeling language Programming language

Rule-based format

Instantiation Unification
Flat terms Nested terms
(Turing +) NP(NP) Turing

(EEE Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 24 / 429

Rooting ASP

ASP versus SAT
ASP \ SAT

Model generation

Bottom-up
Constructive Logic Classical Logic
Closed (and open) Open world reasoning
world reasoning
Modeling language =
Complex reasoning modes Satisfiability testing
Satisfiability Satisfiability
Enumeration /Projection =
Intersection /Union —
Optimization —
(Turing +) NP(NP) NP

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 25 / 429

ASP solving

Outline

ASP solving

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 26 / 429

Problem

Modeling

Logic

ASP solving

Program

M. Gebser and T. Schaub (KRR@UP)

Grounder

ASP solving

Solution

Interpreting

Solver

Stable
Models

Solving

Answer Set Solving in Practice

C: Potassco

July 15, 2013 27 / 429

ASP solving

SAT solving

Problem Solution
Programming Interpreting
Formula Solver Classical
(CNF) Models
Solving
(& Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 28 / 429

ASP solving

Rooting ASP solving

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 29 / 429

ASP solving

Rooting ASP solving

Problem Solution
Modeling | KR Interpreting
Logic Stable
Program Grounder Solver Models
LP DB Solving SAT DB+KR+LP
@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 29 / 429

Using ASP

Outline

@ Using ASP

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 30 / 429

Using ASP

Two sides of a coin

m ASP as High-level Language

m Express problem instance(s) as sets of facts
m Encode problem (class) as a set of rules
m Read off solutions from stable models of facts and rules

m ASP as Low-level Language

m Compile a problem into a logic program
m Solve the original problem by solving its compilation

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 31 /429

Using ASP

What is ASP good for?

m Combinatorial search problems in the realm of P, NP, and NPNP
(some with substantial amount of data), like
Automated Planning
Code Optimization
Composition of Renaissance Music
Database Integration
Decision Support for NASA shuttle controllers
Model Checking
Product Configuration
Robotics
Systems Biology
System Synthesis
(industrial) Team-building
and many many more

[1]=)
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 32 /429

Using ASP

What is ASP good for?

m Combinatorial search problems in the realm of P, NP, and N
(some with substantial amount of data), like

Automated Planning

Code Optimization

Composition of Renaissance Music
Database Integration

Decision Support for NASA shuttle controllers
Model Checking

Product Configuration

Robotics

Systems Biology

System Synthesis

(industrial) Team-building

and many many more

PNP

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 32 /429

Using ASP

What does ASP offer?

m Integration of DB, KR, and SAT techniques

m Succinct, elaboration-tolerant problem representations
m Rapid application development tool

m Easy handling of dynamic, knowledge intensive applications
m including: data, frame axioms, exceptions, defaults, closures, etc

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 33 /429

Using ASP

What does ASP offer?

m Integration of DB, KR, and SAT techniques

m Succinct, elaboration-tolerant problem representations
m Rapid application development tool

m Easy handling of dynamic, knowledge intensive applications
m including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SAT

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 33 /429

Using ASP

What does ASP offer?

m Integration of DB, KR, and SAT techniques

m Succinct, elaboration-tolerant problem representations
m Rapid application development tool

m Easy handling of dynamic, knowledge intensive applications
m including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SMT

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 33 / 429

Introduction: Overview

Syntax

B Semantics

Bl Examples

Variables

Language constructs

Reasoning modes

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 34 /429

Syntax

Outline

Syntax

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 35 / 429

Syntax

Problem solving in ASP: Syntax

Problem

Modeling

Logic Program

Solution

Interpreting

M. Gebser and T. Schaub (KRR@UP)

Solving

Answer Set Solving in Practice

Stable Models

(38 Potassco
July 15, 2013 36 / 429

Syntax

Normal logic programs

m A logic program, P, over a set A of atoms is a finite set of rules

m A (normal) rule, r, is of the form
ao < ai,---,dm, ~aAm+1,.--,~an

where 0 < m < n and each a; € Ais an atom for 0 < i <n

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 37 / 429

Syntax

Normal logic programs

m A logic program, P, over a set A of atoms is a finite set of rules

m A (normal) rule, r, is of the form
ao < ai,---,dm, ~aAm+1,.--,~an

where 0 < m < n and each a; € Ais an atom for 0 < i <n
m Notation

head(r) = ap

body(r) = {a1,...,am,~am+1,.--,~an}t
body(r)"™ = {a1,...,am}
body(r)” = {am+1,--.,an}

atom(P) = ,cp ({head(r)} U body(r)* U body(r)~)
body(P) = {body(r)|re€ P}

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 37 / 429

Syntax

Normal logic programs

m A logic program, P, over a set A of atoms is a finite set of rules

m A (normal) rule, r, is of the form

ao < ai,---,dm, ~aAm+1,.--,~an

where 0 < m < n and each a; € Ais an atom for 0 < i <n

m Notation
head(r)
body(r)
body/(r)"
body(r)” =
atom(P) =
body(P) =

m A program P is positive if body(r)” = forall r € P

M. Gebser and T. Schaub (KRR@UP)

ao
{a1,--.,am,~am+1,..-,~an}
{a1,...,am}

{am+1,---,an}

U,ep ({head(r)} U body(r)* U body(r)™)
{body(r) | r € P}

@? Potassco

Answer Set Solving in Practice July 15, 2013 37 / 429

Syntax

Rough notational convention

We sometimes use the following notation interchangeably
in order to stress the respective view:

default classical
true, false if and or iff negation negation
source code 3= I

, not =
logic program — , ; ~ =
formula 1, T - ANV ~ -

(EEE Potassco

M. Gebser and T. Schaub (KRR@UP) July 15, 2013 38 / 429

Answer Set Solving in Practice

Semantics

Outline

B Semantics

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 39 / 429

Semantics

Problem solving in ASP: Semantics

Problem

Modeling

Logic Program

Solution

Interpreting

M. Gebser and T. Schaub (KRR@UP)

Solving

Answer Set Solving in Practice

Stable Models

(3 Potassco
July 15, 2013 40 / 429

Semantics

Formal Definition

Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r € P, head(r) € X whenever body(r)* C X
X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the C-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

am0
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 41 / 429

Semantics

Formal Definition

Stable models of positive programs

m A set of atoms X is closed under a positive program P iff
for any r € P, head(r) € X whenever body(r)* C X
m X corresponds to a model of P (seen as a formula)

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 41 / 429

Semantics

Formal Definition

Stable models of positive programs

m A set of atoms X is closed under a positive program P iff
for any r € P, head(r) € X whenever body(r)* C X
m X corresponds to a model of P (seen as a formula)

m The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

m Cn(P) corresponds to the C-smallest model of P (ditto)

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 41 / 429

Semantics

Formal Definition

Stable models of positive programs

m A set of atoms X is closed under a positive program P iff
for any r € P, head(r) € X whenever body(r)* C X
m X corresponds to a model of P (seen as a formula)

m The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

m Cn(P) corresponds to the C-smallest model of P (ditto)

m The set Cn(P) of atoms is the stable model of a positive program P

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 41 / 429

Semantics

Some “logical” remarks

m Positive rules are also referred to as definite clauses
m Definite clauses are disjunctions with exactly one positive atom:

aV-a V---V-oa,
m A set of definite clauses has a (unique) smallest model

Horn clauses are clauses with at most one positive atom

Every definite clause is a Horn clause but not vice versa
Non-definite Horn clauses can be regarded as integrity constraints

A set of Horn clauses has a smallest model or none

This smallest model is the intended semantics of such sets of clauses
Given a positive program P, Cn(P) corresponds to the smallest model
of the set of definite clauses corresponding to P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 42 / 429

Potassco

Semantics

Some “logical” remarks
m Positive rules are also referred to as definite clauses
m Definite clauses are disjunctions with exactly one positive atom:
aV-aV---V-ay,

m A set of definite clauses has a (unique) smallest model

m Horn clauses are clauses with at most one positive atom

m Every definite clause is a Horn clause but not vice versa
m Non-definite Horn clauses can be regarded as integrity constraints

m A set of Horn clauses has a smallest model or none

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 42 / 429

Semantics

Some “logical” remarks

m Positive rules are also referred to as definite clauses
m Definite clauses are disjunctions with exactly one positive atom:

aV-aV---V-ay,
m A set of definite clauses has a (unique) smallest model

m Horn clauses are clauses with at most one positive atom

m Every definite clause is a Horn clause but not vice versa
m Non-definite Horn clauses can be regarded as integrity constraints

m A set of Horn clauses has a smallest model or none

m This smallest model is the intended semantics of such sets of clauses

m Given a positive program P, Cn(P) corresponds to the smallest model
of the set of definite clauses corresponding to P

C: Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 42 / 429

Semantics

Basic idea

Consider the logical formula and its three

(classical) models: ®[qg A (qgA-r—p)]

{p,q}.{q,r}, and {p,q,r}

Formula ® has one stable model,
often called answer set:

{p.q}

Pq;q(f
p < q,~r

Informally, a set X of atoms is a stable model of a logic program P
if X is a (classical) model of P and
if all atoms in X are justified by some rule in P
(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gddel, 1932))
(& Potassco

M. Gebser and T. Schaub (KRRQ@UP) Answer Set Solving in Practice July 15, 2013 43 / 429

Semantics

Basic idea

Consider the logical formula and its three
(classical) models:

{p,q}.{q,r}, and {p,q,r}

®lqg A (qA-r—p)]

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 43 / 429

Semantics

Basic idea

Consider the logical formula ¢ and its three
(classical) models:

{p,q}.{q,r}, and {p,q,r}

~C

®lqg A (qA-r—p)]

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 43 / 429

Semantics

Basic idea

Consider the logical formula ¢ and its three
(classical) models:

{p,q}.{q,r}, and {p,q,r}

®lqg A (qA-r—p)]

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 43 / 429

Semantics

Basic idea

Consider the logical formula ¢ and its three

(classical) models: ®[qg A (gA-r—p)]

{p,q}.{q,r}, and {p,q,r}

Formula ® has one stable model,
often called answer set:

{p,q}

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 43 / 429

Semantics

Basic idea

Consider the logical formula ¢ and its three

(classical) models: ®[qg A (gA-r—p)]

{p,q}.{q,r}, and {p,q,r}

Formula ® has one stable model,
often called answer set:

{p.q}

Po

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 43 / 429

Semantics

Basic idea

Consider the logical formula ¢ and its three

(classical) models: ®[qg A (gA-r—p)]

{p,q}.{q,r}, and {p,q,r}

Formula ® has one stable model,
often called answer set:

P¢q<—
P < q ~r

{p.q}

Informally, a set X of atoms is a stable model of a logic program P
m if X is a (classical) model of P and
m if all atoms in X are justified by some rule in P
(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gddel, 1932))
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 43 / 429

Semantics

Basic idea

Formula ® has one stable model,

often called answer set: Po

q <
p & g, ~r

{p.q}

Informally, a set X of atoms is a stable model of a logic program P

m if X is a (classical) model of P and
m if all atoms in X are justified by some rule in P
(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gddel, 1932))
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 43 / 429

Semantics

Formal Definition

Stable model of normal programs

m The reduct, PX, of a program P relative to a set X of atoms is
defined by

PX = {head(r) < body(r)* | r € P and body(r)” N X = ()}

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 44 / 429

Semantics

Formal Definition

Stable model of normal programs

m The reduct, PX, of a program P relative to a set X of atoms is
defined by

PX = {head(r) < body(r)* | r € P and body(r)” N X = ()}

m A set X of atoms is a stable model of a program P, if Cn(PX) = X

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 44 / 429

Semantics

Formal Definition

Stable model of normal programs

m The reduct, PX, of a program P relative to a set X of atoms is
defined by

PX = {head(r) < body(r)* | r € P and body(r)” N X = ()}

m A set X of atoms is a stable model of a program P, if Cn(PX) = X

m Note Cn(PX) is the C—smallest (classical) model of PX

m Note Every atom in X is justified by an “applying rule from P”

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 44 / 429

Semantics

A closer look at PX

m In other words, given a set X of atoms from P,

PX is obtained from P by deleting
each rule having ~a in its body with a € X
and then
all negative atoms of the form ~a
in the bodies of the remaining rules

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 45 / 429

Semantics

A closer look at PX

m In other words, given a set X of atoms from P,

PX is obtained from P by deleting

each rule having ~a in its body with a € X
and then

all negative atoms of the form ~a
in the bodies of the remaining rules

m Note Only negative body literals are evaluated wrt X

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 45 / 429

Examples

Outline

Bl Examples

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 46 / 429

Examples

A first example

P={p<+ p, g+ ~p}

X pX Cn(P*X)

{ p < p {q}
q <

{p } p <~ p 0

{ a} p < p {q}
q <

{p,q} p < p 0

am0
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 47 / 429

Examples

A first example

P={p<+ p, g+ ~p}

X pX Cn(P*)

{ p < p {q]
q <

{p } p < p 0

{ q} p < p {q}
q <

{p,q} p +— p 0

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 47 / 429

Examples

A first example

P={p+p, g« ~p}

X pX Cn(P*)

{ 1} p < p ch
qg <

{p } p < p 0

{ a} p < p ch
q <

{p,q} p < p 0

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 47 / 429

Examples

A first example

P={p+p, g« ~p}

X pX Cn(P*)

{ 1} p < p ch
qg <

{p } p < p 0

{ a} p < p ch
q <

{p,q} p < p 0

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 47 / 429

Examples

A first example

P={p+p, g« ~p}

X pX Cn(P*)

{ 1} p < p ch
qg <

{p } p < p 0

{ a} p < p ch
q <

{p,q} p < p 0

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 47 / 429

Examples

A first example

P={p+p, g« ~p}

X pX Cn(P*)

{ 1} p < p ch
qg <

{p } p < p 0

{ a} p < p {g} v
q <

{p,q} p < p 0

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 47 / 429

Examples

A first example

P={p+p, g« ~p}

X pX Cn(P*)

{ 1} p < p ch
qg <

{p } p < p 0

{ a} p < p {g} v
q <

{p,q} p < p 0

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 47 / 429

Examples

A first example

P={p< p, g« —p}

X pX Cn(P*)
{ 1} p < p ch
qg <
{p } p < p 0 v
{ a} p < p {g} v
q <
{p,q} p < p 0

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 47 / 429

Examples

A second example

P={p+ ~q, q < ~p}

X pX Cn(P*X)
{p.q}

{p}
{ q} {q}

Q
T T

am0
(& Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 48 / 429

Examples

A second example

P={p <« ~q, g+ ~p}

X pX Cn(P*X)
{p.q}

{p}
{ aq} {a}

s|a o
T T

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 48 / 429

Examples

A second example

P={p <« ~q, g+ ~p}

X pX Cn(P*X)
{p.q}

{p}
{ a} {q}

s|a o
T T

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 48 / 429

Examples

A second example

P={p <« ~q, g+ ~p}

X pX Cn(P*X)
{ } p {p,q}
q
{r } p < {pt v

{ q} {q}

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 48 / 429

Examples

A second example

P={p <« ~q, g+ ~p}

X pX Cn(P*X)
{ p < {p,q}
q
{p } p < {pt v
{ q} {a} v
q <
{p,q}]

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 48 / 429

Examples

A second example

P={p <« ~q, g+ ~p}

X pX Cn(P*X)
{ p < {p,q}
q
{p } p < {pt v
{ q} {a} v
q <
{p,q}]

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 48 / 429

Examples

A second example

X pX Cn(P*X)
{ p < {p,q}
qg <+
{p } p < {pt v
{ q} {a} v
q <
{p.q} 0 4

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 48 / 429

Examples

A third example

P={p ~p}

X px Cn(P*)
1} p {r}
ir} 0

[1]=)
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 49 / 429

Examples

A third example

P={p ~p}

X pX Cn(PX)
{} p {p}

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 49 / 429

Examples

A third example

P={p ~p}

X pX Cn(PX)
{} p {p}

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 49 / 429

Examples

A third example

P={p ~p}

X pX Cn(PX)
{} p {p}

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 49 / 429

Examples

A third example

P={p < —p}

X pX Cn(PX)
{} p {p}

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 49 / 429

Examples

Some properties

m A logic program may have zero, one, or multiple stable models!

If X is a stable model of a logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a normal program P,
then X £ Y

(EE\E’Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 50 / 429

Examples

Some properties

m A logic program may have zero, one, or multiple stable models!
m If X is a stable model of a logic program P,
then X is a model of P (seen as a formula)

m If X and Y are stable models of a normal program P,
then X Z Y

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 50 / 429

Variables

Outline

Variables

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 51 / 429

VELELIES

Programs with Variables

Let P be a logic program
m Let 7 be a set of (variable-free) terms

m Let A be a set of (variable-free) atoms constructable from T

Ground Instances of r € P: Set of variable-free rules obtained by
replacing all variables in r by elements from 7

ground(r) = {r6 | 0 : var(r) — T and var(rf) = 0}

where var(r) stands for the set of all variables occurring in r;
6 is a (ground) substitution

Ground Instantiation of P: ground(P) = |J,.p ground(r)

[1]=)
(3 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 52 / 429

Variables

Programs with Variables

Let P be a logic program
m Let 7 be a set of variable-free terms (also called Herbrand universe)

m Let A be a set of (variable-free) atoms constructable from T
(also called alphabet or Herbrand base)

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 52 / 429

Variables

Programs with Variables

Let P be a logic program
m Let 7 be a set of (variable-free) terms
m Let A be a set of (variable-free) atoms constructable from 7

m Ground Instances of r € P: Set of variable-free rules obtained by
replacing all variables in r by elements from 7:

ground(r) = {r6 | 0 : var(r) — T and var(rf) = 0}

where var(r) stands for the set of all variables occurring in r;
0 is a (ground) substitution

(EEE Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 52 / 429

Variables

Programs with Variables

Let P be a logic program
m Let 7 be a set of (variable-free) terms

m Let A be a set of (variable-free) atoms constructable from 7

m Ground Instances of r € P: Set of variable-free rules obtained by
replacing all variables in r by elements from 7:

ground(r) = {r6 | 0 : var(r) — T and var(rf) = 0}

where var(r) stands for the set of all variables occurring in r;
0 is a (ground) substitution

m Ground Instantiation of P: ground(P) = |J,cp ground(r)

(EEE Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 52 / 429

Variables

An example

P={ r(a,b) <, r(b,c) +, t(X,Y)+ r(X,Y)}
T={ab,c}

A: { r(a’ a)’ r(a7 b)’ r(a7 C)’ r(b’ a)’ r(b’ b)’ r(b7 C)7 r(C’ a)’ r(c’ b)’ r(c7 C)’ }
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 53 / 429

Variables

An example

P={ r(a,b) <, r(b,c) +, t(X,Y)+ r(X,Y)}
T={ab,c}

A: { r(a’ a)’ r(a7 b)’ r(a7 C)’ r(b’ a)’ r(b’ b)’ r(b7 C)7 r(C’ a)’ r(c’ b)’ r(c7 C)’ }
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)
r(a, b) « ,
r(b,c) + ,
ground(P) = { t(a,a) < r(a,a), t(b,a) « r(b,a), t(c,a) r(c, a),
t(a, b) < r(a,b), t(b, b) < r(b,b), t(c,b) < r(c,b),
t(a,c) « r(a,c), t(b,c) r(b,), t(c,c) r(c,c)

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 53 / 429

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice

Variables

An example

P={ r(a,b) <, r(b,c) +, t(X,Y)+ r(X,Y)}
T={ab,c}

A: r(a’ a)’ r(a7 b)’ r(a7 C)’ r(b’ a)’ r(b’ b)’ r(b7 C)7 r(C’ a)’ r(c’ b)’ r(c7 C)’
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)
r(a, b) « ,
r(b,c) + ,
ground(P) =
t(a, b))

t(b,c) +

m Intelligent Grounding aims at reducing the ground instantiation

@? Potassco

July 15, 2013 53 / 429

Variables

Stable models of programs with Variables

Let P be a normal logic program with variables

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 54 / 429

Variables

Stable models of programs with Variables
Let P be a normal logic program with variables

m A set X of (ground) atoms is a stable model of P,
if Cn(ground(P)X) = X

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 54 / 429

Language constructs

Outline

Language constructs

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 55 / 429

Language constructs

Problem solving in ASP: Extended Syntax

Problem

Modeling

Logic Program

Solution

Interpreting

M. Gebser and T. Schaub (KRR@UP)

Solving

Answer Set Solving in Practice

Stable Models

(3 Potassco
July 15, 2013 56 / 429

Language constructs

Language Constructs

Variables (over the Herbrand Universe)
p(X) :- q(X) over constants {a,b,c} stands for
p(a) :- q(a), p) :- q), plc) :- qlc)
Conditional Literals
p :- qX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a, q), qlc)
Disjunction
pX) | qX) :- r(X)
Integrity Constraints

- qX), pX)
Choice
2 {p&X,Y) : qX) } 7 :- r(Y)
Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd (&% Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 57 / 429

Language constructs

Language Constructs

m Variables (over the Herbrand Universe)

m p(X) :- q(X) over constants {a,b,c} stands for
p(a) :- q(a), p(b) :- q(b), plc) :- qlc)

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 57 / 429

Language constructs

Language Constructs

Variables (over the Herbrand Universe)
p(X) := q(X) over constants {a,b,c} stands for
p(a) :- q(a), p(b) :- q(b), plc) :- q(c)
m Conditional Literals
mp - qgiX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), qlc)
Disjunction
pX) | qX) - r(X)
Integrity Constraints

= q(X), pX)
Choice

2 {p&,Y) : qX) } 7 :- r(V)
Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd =
& (:;‘5 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 57 / 429

Language constructs

Language Constructs

Variables (over the Herbrand Universe)
p(X) :- gq(X) over constants {a,b,c} stands for
p(a) :- qa), pb) :- q®), plc) :- qlc)
Conditional Literals
p :- qX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), qlc)
m Disjunction
B pX) | gX) - r(X)
Integrity Constraints

= q(X), pX)
Choice

2 {p&X,Y) : qX) } 7 :- r(Y)
Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : qX) } 7

also: #sum, #avg, #min, #max, #even, #odd 2
. G:?Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 57 / 429

Language constructs

Language Constructs

Variables (over the Herbrand Universe)
p(X) :- q(X) over constants {a,b,c} stands for
p(a) :- qa), p(b) :- q(b), plc) :- q(c)
Conditional Literals
p :- qX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), qlc)
Disjunction
pX) | qX) :- r(X)
m Integrity Constraints
B - qX), pX)
Choice
2 { p&X,Y) : qX) } 7 :- x(Y)
Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : qX) } 7

also: #sum, #avg, #min, #max, #even, #odd 2
< G:?Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 57 / 429

Language constructs

Language Constructs

Variables (over the Herbrand Universe)
p(X) :- q(X) over constants {a,b,c} stands for
p(a) :- qa), pb) :- q®), plc) :- qlc)
Conditional Literals
p :- qX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), qlc)
Disjunction
pX) | qX) :- r(X)
Integrity Constraints

= q(X), pX)
m Choice
B2 {pX,Y) : qX) } 7 :- r(¥)
Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : qX) } 7

also: #sum, #avg, #min, #max, #even, #odd 2
< G:?Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 57 / 429

Language constructs

Language Constructs

Variables (over the Herbrand Universe)
p(X) := q(X) over constants {a,b,c} stands for
p(a) :- qa), p(b) :- q(b), plc) :- q(c)
Conditional Literals
p :- qX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(), qlc)
Disjunction
pX) | qX) :- r(X)
Integrity Constraints

= q(X), pX
Choice

2 {p&,Y) : qX) } 7 :- r(V)
Aggregates

ms(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

m also: #sum, #avg, #min, #max, #even, #odd 2
. (:;‘5 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 57 / 429

Language constructs

Language Constructs

Variables (over the Herbrand Universe)
m p(X) :- q(X) over constants {a,b,c} stands for
p(a) :- q(a), p(d) :- q®), p(c) :- qlc)
m Conditional Literals
Ep :- qX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a, q), qlc)

m Integrity Constraints
B - gX), pX)
m Choice

B2 { pX,Y) : q(X) } 7 :- r(V)
m Aggregates
ms(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

m also: #sum, #avg, #min, #max, #even, #odd 3
& @?Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 57 / 429

Reasoning modes

Outline

Reasoning modes

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 58 / 429

Reasoning modes

Problem solving in ASP: Reasoning Modes

Problem

Modeling

Logic Program

Solution

Interpreting

M. Gebser and T. Schaub (KRR@UP)

Solving

Answer Set Solving in Practice

Stable Models

(3 Potassco
July 15, 2013 59 / 429

Reasoning modes

Reasoning Modes

Satisfiability
Enumeration'
Projection'
Intersection?

Union?

Optimization

and combinations of them

 without solution recording

¥ without solution enumeration

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 60 / 429

Basic Modeling: Overview

ASP solving process

Methodology
m Satisfiability
m Queens
m Traveling Salesperson
m Reviewer Assignment
m Planning

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 61 / 429

Modeling and Interpreting

Problem Solution
Modeling Interpreting
Logic Program Stable Models
Solving

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 62 / 429

Modeling

m For solving a problem class C for a problem instance I,
encode
the problem instance | as a set P, of facts and
the problem class C as a set Pc of rules
such that the solutions to C for | can be (polynomially) extracted
from the stable models of P, U Pc

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 63 / 429

Modeling
m For solving a problem class C for a problem instance I,

encode

the problem instance | as a set P, of facts and
the problem class C as a set Pc of rules

such that the solutions to C for | can be (polynomially) extracted
from the stable models of P, U Pc

m P is (still) called problem instance

m Pc is often called the problem encoding

[1]=}
(88 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 63 / 429

Modeling

For solving a problem class C for a problem instance I,
encode

the problem instance | as a set P, of facts and
the problem class C as a set Pc of rules

such that the solutions to C for | can be (polynomially) extracted
from the stable models of P, U Pc

Py is (still) called problem instance

Pc is often called the problem encoding

An encoding Pc is uniform, if it can be used to solve all its
problem instances
That is, Pc encodes the solutions to C for any set P; of facts

(EEE Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 63 / 429

Attention!

All following examples are written
in the language of gringo 3 !

[1]=}
(88 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 64 / 429

ASP solving process

Outline

ASP solving process

Satisfiability

Queens

Traveling Salesperson
Reviewer Assignment
Planning

[1]=)
(3 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 65 / 429

ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
(88 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 66 / 429

ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
(88 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 66 / 429

ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
(& Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 66 / 429

ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
(&8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 66 / 429

ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 66 / 429

ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 66 / 429

ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
Elaborating
(88 Potassco

M. Gebser and T. Schaub (KRR@UP)

Answer Set Solving in Practice

July 15, 2013 66 / 429

ASP solving process

A case-study: Graph coloring

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
(& Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 67 / 429

ASP solving process

Graph coloring

A graph consisting of nodes and edges

[1]=)
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 68 / 429

ASP solving process

Graph coloring

m Problem instance A graph consisting of nodes and edges

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 68 / 429

ASP solving process

Graph coloring

m Problem instance A graph consisting of nodes and edges

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 68 / 429

ASP solving process

Graph coloring

m Problem instance A graph consisting of nodes and edges
m facts formed by predicates node/1 and edge/2

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 68 / 429

ASP solving process

Graph coloring

m Problem instance A graph consisting of nodes and edges

m facts formed by predicates node/1 and edge/2
m facts formed by predicate col/1

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 68 / 429

ASP solving process

Graph coloring

m Problem instance A graph consisting of nodes and edges
m facts formed by predicates node/1 and edge/2
m facts formed by predicate col/1
m Problem class Assign each node one color such that no two nodes
connected by an edge have the same color

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 68 / 429

ASP solving process

Graph coloring

m Problem instance A graph consisting of nodes and edges
m facts formed by predicates node/1 and edge/2
m facts formed by predicate col/1
m Problem class Assign each node one color such that no two nodes
connected by an edge have the same color
In other words,

Each node has a unique color
Two connected nodes must not have the same color

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 68 / 429

ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
(88 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 69 / 429

node(1..6).

edge(1,2).
edge(2,4) .
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2) .

col(r).

1 { color(X,C)

:— edge(X,Y), color(X,C), color(Y,C).

M. Gebser and T. Schaub (KRR@UP)

ASP solving process

Graph coloring

edge(1,3). edge(1,4).
edge(2,5). edge(2,6).
edge(3,4). edge(3,5).
edge(4,2).
edge(5,4). edge(5,6).
edge(6,3). edge(6,5).
col(b). col(g) .
: col(C) } 1

Answer Set Solving in Practice

:— node (X) .

Problem
instance

Problem
encoding
(& Potassco
July 15, 2013 70 / 429

node(1..6).

edge(1,2).
edge(2,4).
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2) .

col(r).

1 { color(X,C)

:— edge(X,Y), color(X,C), color(Y,C).

M. Gebser and T. Schaub (KRR@UP)

ASP solving process

Graph coloring

edge(1,3). edge(1,4).
edge(2,5). edge(2,6).
edge(3,4). edge(3,5).
edge(4,2).
edge(5,4). edge(5,6).
edge(6,3). edge(6,5).
col(b). col(g) .
: col(C) }+ 1

Answer Set Solving in Practice

:— node(X).

Problem
instance

Problem
encoding
@Potassco
July 15, 2013 70 / 429

node(1..6).

edge(1,2).
edge(2,4) .
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2).

M. Gebser and T. Schaub (KRR@UP)

ASP solving process

edge(1,3).
edge(2,5).
edge(3,4).
edge (4,2).
edge(5,4) .
edge (6,3) .

Graph coloring

edge(1,4).
edge(2,6) .
edge(3,5).

edge(5,6) .
edge(6,5) .

Answer Set Solving in Practice

@? Potassco

July 15, 2013 70 / 429

node(1..6).

edge(1,2).
edge(2,4) .
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2).

col(x).

M. Gebser and T. Schaub (KRR@UP)

ASP solving process

Graph coloring

edge(1,3). edge(1,4).

edge(2,5). edge(2,6).

edge(3,4). edge(3,5).

edge (4,2).

edge(5,4). edge(5,6).

edge(6,3). edge(6,5).
col(b). col(g).

Answer Set Solving in Practice

@? Potassco

July 15, 2013 70 / 429

node(1..6).

edge(1,2).
edge(2,4) .
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2).

col(x).

M. Gebser and T. Schaub (KRR@UP)

ASP solving process

Graph coloring

edge(1,3). edge(1,4).

edge(2,5). edge(2,6).

edge(3,4). edge(3,5).

edge (4,2).

edge(5,4). edge(5,6).

edge(6,3). edge(6,5).
col(b). col(g).

Answer Set Solving in Practice

Problem
instance

@? Potassco
July 15, 2013 70 / 429

node(1..6).

edge(1,2).
edge(2,4) .
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2).

col(x).

1 { color(X,C)

ASP solving process

Graph coloring

edge(1,3). edge(1,4).
edge(2,5). edge(2,6).
edge(3,4). edge(3,5).
edge (4,2).

edge(5,4). edge(5,6).
edge(6,3). edge(6,5).

col(b). col(g).
: col(C) } 1 :- node(X).

M. Gebser and T. Schaub (KRR@UP)

Answer Set Solving in Practice

(EEE Potassco

July 15, 2013 70 / 429

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

ASP solving process

Graph coloring

col(r). col(b). col(g).
1 { color(X,C) : col(C) } 1 :- node(X).

:— edge(X,Y), color(X,C), color(Y,C). @ Pot
&2z Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 70 / 429

ASP solving process

Graph coloring

node(1..6).
edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
col(r). col(b). col(g).
1 { color(X,C) : col(C) } 1 :- node(X).
Problem
:— edge(X,Y), color(X,C), color(Y,C). encgflng
(8 Potassco

M. Gebser and T. Schaub (KRR@UP)

Answer Set Solving in Practice

July 15, 2013 70 / 429

node(1..6).

edge(1,2).
edge(2,4) .
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2).

col(x).

1 { color(X,C)

:— edge(X,Y), color(X,C), color(Y,C).

M. Gebser and T. Schaub (KRR@UP)

ASP solving process

Graph coloring

edge(1,3). edge(1,4).
edge(2,5). edge(2,6).
edge(3,4). edge(3,5).
edge (4,2).
edge(5,4). edge(5,6).
edge(6,3). edge(6,5).
col(b). col(g).
: col(C) } 1

Answer Set Solving in Practice

:— node(X) .

Problem
instance

Problem
encoding
(EEE Potassco
July 15, 2013 70 / 429

ASP solving process

color.lp

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).
1 { color(X,C) : col(C) } 1 :- node(X).

:— edge(X,Y), color(X,C), color(Y,C). @ Pot
&2z Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 70 / 429

ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 71 / 429

ASP solving process

Graph coloring:

$ gringo --text color.lp

node(1). node(2). node(3). mnode(4). node(5). node(6).
edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5).
edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2).
edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).
col(r). col(b). col(g).
1 {color(1,r), color(1,b), color(i,g)} 1
1 {color(2,r), color(2,b), color(2,g)} 1
1 {color(3,r), color(3,b), color(3,g)} 1.
1 {color(4,r), color(4,b), color(4,g)} 1
1 {color(5,r), color(5,b), color(5,g)} 1
1 {color(6,r), color(6,b), color(6,g)} 1

:= color(1,r), color(2,r). :- color(2,g), color(5,g)

- color(1,b), color(2,b). :- color(2,r), color(6,r)

1= color(1,g), color(2,g). - color(2,b), color(6,b).

:- color(1,r), color(3,r). - color(2,g), color(6,g)

- color(1,b), color(3,b). - color(3,r), color(l,r)

- color(1l,g), color(3,g). - color(3,b), color(l,b)

:= color(1,r), color(4,r). - color(3,g), color(l,g).

- color(1,b), color(4,b). :- color(3,r), color(4,r)

:- color(l,g), color(4,g). - color(3,b), color(4,b)

:— color(2,r), color(4,r). - color(3,g), color(4,g)

:= color(2,b), color(4,b). - color(3,r), color(5,r)

:— color(2,g), color(4,g). - color(3,b), color(5,b)

M. Gebser and T. Schaub (KRR@UP)

edge(2,6) .
edge(5,3).

color(6,r),
color(6,b),
color(6,g),
color(6,r),
color(6,b),
color(6,g),
color(6,r),
color(6,b),
color(6,g),

Answer Set Solving in Practice

Grounding

color(2,r).
color(2,b).
color(2,g) .
color(3,r).
color(3,b).
color(3,g) .
color(5,r).
color(5,b).
color(5,g) .

July 15, 2013

Potassco
72 / 429

ASP solving process

Graph coloring:

$ gringo --text color.lp

node(1). node(2). node(3). mnode(4). node(5). node(6).
edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5).
edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2).
edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).
col(r). col(b). col(g).
1 {color(1,r), color(1,b), color(i,g)} 1
1 {color(2,r), color(2,b), color(2,g)} 1
1 {color(3,r), color(3,b), color(3,g)} 1.
1 {color(4,r), color(4,b), color(4,g)} 1.
1 {color(5,r), color(5,b), color(5,g)} 1
1 {color(6,r), color(6,b), color(6,g)} 1

:= color(1,r), color(2,r). :- color(2,g), color(5,g).

- color(1,b), color(2,b). - color(2,r), color(6,r).

- color(1,g), color(2,g). - color(2,b), color(6,b).

:- color(1,r), color(3,r). - color(2,g), color(6,g).

- color(1,b), color(3,b). - color(3,r), color(l,r).

- color(1,g), color(3,g). - color(3,b), color(1,b).

:- color(1,r), color(4,r). - color(3,g), color(l,g).

- color(1,b), color(4,b). - color(3,r), color(4,r).

- color(1,g), color(4,g). - color(3,b), color(4,b).

:= color(2,r), color(4,r). - color(3,g), color(4,g).

- color(2,b), color(4,b). - color(3,r), color(5,r).

- color(2,g), color(4,g). - color(3,b), color(5,b).

M. Gebser and T. Schaub (KRR@UP)

edge(2,6) .
edge(5,3) .

color(6,r),
color(6,b),
color(6,g),
color(6,r),
color(6,b),
color(6,g),
color(6,r),
color(6,b),
color(6,g),

Answer Set Solving in Practice

Grounding

color(2,r).
color(2,b).
color(2,g) .
color(3,r).
color(3,b).
color(3,g) .
color(5,r).
color(5,b).
color(5,g) .

July 15, 2013

Potassco
72 / 429

ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 73 / 429

ASP solving process

Graph coloring: Solving

$ gringo color.lp | clasp O

clasp version 2.1.0
Reading from stdin

Solving...

Answer: 1

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,g) color(4,b) color(3,r) color(2,r) color(l,g)
Answer: 2

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,g) color(4,r) color(3,b) color(2,b) color(l,g)
Answer: 3

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,b) color(4,g) color(3,r) color(2,r) color(l,b)
Answer: 4

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,b) color(4,r) color(3,g) color(2,g) color(l,b)
Answer: 5

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,r) color(4,g) color(3,b) color(2,b) color(l,r)
Answer: 6

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(l,r)
SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

&2z Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 74 / 429

ASP solving process

Graph coloring: Solving

$ gringo color.lp | clasp O

clasp version 2.1.0
Reading from stdin

Solving...

Answer: 1

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,g) color(4,b) color(3,r) color(2,r) color(l,g)
Answer: 2

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,g) color(4,r) color(3,b) color(2,b) color(l,g)
Answer: 3

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,b) color(4,g) color(3,r) color(2,r) color(1l,b)
Answer: 4

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,b) color(4,r) color(3,g) color(2,g) color(l,b)
Answer: 5

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,r) color(4,g) color(3,b) color(2,b) color(l,r)
Answer: 6

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(i,r)
SATISFIABLE

Models 6

Time 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 74 / 429

ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
(88 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 75 / 429

ASP solving process

A coloring

Answer: 6
edge(1,2) ... col(r) ... node(1) ... \
color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(l,r)

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 76 / 429

ASP solving process

A coloring

Answer: 6
edge(1,2) ... col(r) ... node(1) ... \
color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(l,r)

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 76 / 429

Methodology

Outline

Methodology
Satisfiability

m Queens

m Traveling Salesperson
m Reviewer Assignment
m Planning

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 77/ 429

Methodology

Basic methodology

Methodology
Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 78 / 429

Methodology

Basic methodology

Methodology
Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell
Logic program = Data + Generator + Tester (+ Optimizer)

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 78 / 429

Methodology Satisfiability

Outline
ASP solving process
Methodology
m Satisfiability

Queens

Traveling Salesperson

Reviewer Assignment

Planning

(88 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 79 / 429

Methodology Satisfiability
Satisfiability testing
m Problem Instance: A propositional formula ¢ in CNF

m Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula ¢ is true

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 80 / 429

Methodology Satisfiability
Satisfiability testing

m Problem Instance: A propositional formula ¢ in CNF

m Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula ¢ is true

m Example: Consider formula
(aV—b)A(—aVb)

m Logic Program:

Generator Tester Stable models
{a,b} <« — ~a,b X1 = {a, b}
< a, ~b X2 = {}
@?Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 80 / 429

Methodology Satisfiability
Satisfiability testing

m Problem Instance: A propositional formula ¢ in CNF

m Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula ¢ is true

m Example: Consider formula
(aV—b)A(—aVb)

m Logic Program:

Generator Tester Stable models
{a,b} « — ~a,b X1 = {a, b}
< a, ~b X2 = {}
@?Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 80 / 429

Methodology Satisfiability
Satisfiability testing

m Problem Instance: A propositional formula ¢ in CNF

m Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula ¢ is true

m Example: Consider formula
(aV —b)A(—aVb)

m Logic Program:

Generator Tester Stable models
{a,b} <« «— ~a,b X1 = {a, b}
< a, ~b X2 = {}
@?Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 80 / 429

Methodology Satisfiability
Satisfiability testing

m Problem Instance: A propositional formula ¢ in CNF

m Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula ¢ is true

m Example: Consider formula
(aV —b)A(—aVb)

m Logic Program:

Generator Tester Stable models
{a,b} <« — ~a,b X1 = {a, b}
< a, ~b X2 = {}
@?Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 80 / 429

Methodology ~ Queens

Outline

ASP solving process
Methodology

Satisfiability

m Queens

Traveling Salesperson

Reviewer Assignment

Planning

(88 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 81 / 429

Methodology Queens

The n-Queens Problem

chess board

another
T
L

m Place n queens on an n X n
m Queens must not attack one

B -
L
%////3
R .

n < oo N -

(3 Potassco

July 15, 2013

82 / 429

Answer Set Solving in Practice

nd T. Schaub (KRRQUP)

Gebser a

Methodology Queens

Defining the Field

queens.lp

row(l..n).
col(l..n).

m Create file queens.1p
m Define the field

B N rows
m n columns

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 83 / 429

Methodology Queens

Defining the Field

Running ...

$ gringo queens.lp --const n=5 | clasp
Answer: 1

row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5)

SATISFIABLE

Models 1

Time 0.000
Prepare 0.000
Prepro. 0.000
Solving 0.000

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 84 / 429

Methodology Queens

Placing some Queens

queens.lp
row(1l..n).
col(l..n).

{ queen(I,J) : row(I) : col(J) }.

m Guess a solution candidate

by placing some queens on the board

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 85 / 429

Running . ..

Methodology

Queens

Placing some Queens

$ gringo queens.lp --const n=5 | clasp 3

Answer:
row(1)
col(1)
Answer:
row(1)
col(1)
Answer:
row(1)
col(1)

1
row(2)
col(2)

2
row(2)
col(2)

3
row(2)
col(2)

SATISFIABLE

Models

row(3)
col(3)

row(3)
[INE))

row(3)
col(3)

: 3+

M. Gebser and T. Schaub (KRR@UP)

row(4)
col(4)

row(4)
col(4)

row(4)
col(4)

row(5)
col(5)

row(5)
col(5)

row(5)
col(5)

\

\
queen(1,1)

\
queen(2,1)

Answer Set Solving in Practice

= e O

July 15, 2013 86 / 429

Placing some Queens: Answer 1

Answer 1

27/ //%7 %V/

1 2

x&
\\x

M. Gebser and T. Schaub (KRR@UP)

Answer Set Solving in Practice

(3 Potassco

July 15, 2013 87 / 429

Placing some Queens: Answer 2

Answer 2
_ %

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 88 / 429

Placing some Queens: Answer 3

Answer 3

/
1%%%

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 89 / 429

Methodology Queens

Placing n Queens
queens.lp
row(l..n).
col(1l..n).

{ queen(I,J) : row(I) : col(J) }.
:- not n { queen(I,J) } n.

m Place exactly n queens on the board

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 90 / 429

Methodology Queens

Placing n Queens

Running . ..

$ gringo queens.lp --const n=5 | clasp 2
Answer: 1

row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,1) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(b) \
queen(1,2) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 91 / 429

Placing n Queens: Answer 1

Answer 1

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 92 / 429

Answer 2
@’/% _

» // _
2}%‘%/%
@’% _

3

&

M. Gebser and T. Schaub (KRR@UP)

Placing n Queens: Answer 2

Answer Set Solving in Practice

(3 Potassco

July 15, 2013 93 / 429

Methodology Queens

Horizontal and Vertical Attack

queens.lp
row(1l..n).
col(l..n).

{ queen(I,J) : row(I) : col(J) }.
:- not n { queen(I,J) } n.
:- queen(I,J), queen(I,JJ), J != JJ.

m Forbid horizontal attacks

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 94 / 429

Methodology Queens

Horizontal and Vertical Attack

queens.lp
row(1l..n).
col(l..n).

{ queen(I,J) : row(I) : col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,JJ), J !'= JJ.
:- queen(I,J), queen(II,J), I != II.

m Forbid horizontal attacks

m Forbid vertical attacks

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 94 / 429

Methodology Queens

Horizontal and Vertical Attack

Running ...

$ gringo queens.lp --const n=5 | clasp
Answer: 1

row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,5) queen(4,4) queen(3,3) \
queen(2,2) queen(1,1)

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 95 / 429

Methodology Queens

Horizontal and Vertical Attack: Answer 1

Answer 1

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 96 / 429

Methodology Queens

Diagonal Attack

queens.lp
row(1l..n).
col(l..n).

{ queen(I,J) : row(I) : col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,JJ), J !'= JJ.

:- queen(I,J), queen(II,J), I != II.

:- queen(I,J), queen(II,JJ), (I,J) !'= (II,JJ), I-J
:— queen(I,J), queen(II,JJ), (I,J) !'= (II,JJ), I+J

m Forbid diagonal attacks

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice

== JI-JJ.
== II+JJ.

(3 Potassco
July 15, 2013 97 / 429

Methodology Queens

Diagonal Attack

Running . ..

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(4,5) queen(1,4) queen(3,3) queen(5,2) queen(2,1)
SATISFIABLE

Models : 1+

Time : 0.000
Prepare : 0.000
Prepro. : 0.000

Solving : 0.000

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 98 / 429

Diagonal Attack: Answer 1

Answer 1

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 99 / 429

Methodology Queens

Optimizing
queens-opt.1lp
1 { queen(I,1..n) } 1 I=1..n.
queen(l..n,J) } 1 :- J = 1..n.
2 { queen(D-J,J) }, D = 2..2+*n.
2 { queen(D+J,J) }, D =1

-
-~

-n..n-1.

Encoding can be optimized

Much faster to solve

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 100 / 429

Methodology Queens

And sometimes it rocks

$ clingo -c n=5000 queens-opt-diag.lp --config=jumpy -q --stats=3
clingo version 4.1.0

Solving...
SATISFIABLE
Models 3 il
Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)
CPU Time : 3758.320s
Choices : 288594554
Conflicts : 3442 (Analyzed: 3442)
Restarts g il (Average: 202.47 Last: 3442)
Model-Level : 7594728.0
Problems g il (Average Length: 0.00 Splits: 0)
Lemmas : 3442 (Deleted: 0)
Binary : 0 (Ratio: 0.00%)
Ternary : 0 (Ratio: 0.00%)
Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)
Loop : 0 (Average Length: 0.0 Ratio: 0.00%)
Other : 0 (Average Length: 0.0 Ratio: 0.00%)
Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)
Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)
Bodies : 25090103
Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: O Other: 75020000)
Tight HICL
Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)

Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)
Executed 1 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)

M. Gebser and T. Schaub (KRR@UP) ~ Answer Set Solving in Practice

July 15, 2013

Potassco
101 / 429

Methodology ~ Traveling Salesperson

Outline

ASP solving process
Methodology

Satisfiability

Queens

m Traveling Salesperson
Reviewer Assignment
Planning
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 102 / 429

node(1..6).

edge(1,2;3;4).
edge(4,1;2).

cost(1,2,2).
cost(2,4,2).
cost(3,1,3).
cost(4,1,1).
cost(5,3,2).
cost(6,2,4).

M. Gebser and T. Schaub (KRR@UP)

Methodology

edge(2,4;5;6).

edge(5,3;4;6) .
cost(1,3,3). cost(1,4,1).
cost(2,5,2). cost(2,6,4).
cost(3,4,2). cost(3,5,2).
cost(4,2,2).
cost(5,4,2). cost(5,6,1).
cost(6,3,3). cost(6,5,1).

Traveling Salesperson

Answer Set Solving in Practice

Traveling Salesperson

edge(3,1;4;5).
edge(6,2;3;5).

(EE\E Potassco

Methodology Traveling Salesperson
Traveling Salesperson

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).
edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 103 / 429

Methodology Traveling Salesperson

Traveling Salesperson

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).
edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).
cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).

M. Gebser and T. Schaub (KRR@UP)

Answer Set Solving in Practice

@? Potassco

Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 104 / 429

Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 104 / 429

Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

:— node(Y), not reached(Y).

(38 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 104 / 429

Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

:— node(Y), not reached(Y).

#minimize [cycle(X,Y) = C : cost(X,Y,C) 1].

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 104 / 429

Methodology Reviewer Assignment

Outline

ASP solving process
Methodology

Satisfiability

Queens

Traveling Salesperson

m Reviewer Assignment
Planning
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 105 / 429

Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemel3

reviewer(rl). paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p3).
reviewer(r2). paper(p2). classA(rl,p3). classB(rl,p4). coi(rl,p6).

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 106 / 429

Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemel3

reviewer(rl). paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p3).
reviewer(r2). paper(p2). classA(rl,p3). classB(rl,p4). coi(rl,p6).

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 106 / 429

Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemel3

reviewer(rl). paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p3).
reviewer(r2). paper(p2). classA(rl,p3). classB(rl,p4). coi(rl,p6).

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).
:— assigned(P,R), coi(R,P).

:— assigned(P,R), not classA(R,P), not classB(R,P).
:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

(38 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 106 / 429

Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemel3

reviewer(rl). paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p3).
reviewer(r2). paper(p2). classA(rl,p3). classB(rl,p4). coi(rl,p6).

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).
:— assigned(P,R), coi(R,P).
:— assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).
:= 3 { assignedB(P,R) : paper(P) }, reviewer(R).

C: Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 106 / 429

Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemel3

reviewer(rl). paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p3).
reviewer(r2). paper(p2). classA(rl,p3). classB(rl,p4). coi(rl,p6).
3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:— assigned(P,R), coi(R,P).

:— assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).
:= 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.

C: Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 106 / 429

Methodology Planning

Outline

ASP solving process
Methodology

Satisfiability

Queens

Traveling Salesperson

Reviewer Assignment

m Planning
(88 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 107 / 429

Methodology Planning

Simplistic STRIPS Planning

time(1..k). lasttime(T) :- time(T), not time(T+1).

fluent (p) . action(a). action(b) . init(p).

fluent(q) . pre(a,p). pre(b,q) .

fluent(r) . add(a,q) . add(b,r) . query(r) .
del(a,p). del(b,q) .

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).
:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occ(A,T), add(A,F).
nolds(F,T) :- occ(A,T), del(A,F).

:- query(F), not holds(F,T), lasttime(T).
(& Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 108 / 429

time(1..k).

fluent (p) .
fluent(q) .
fluent(r) .

Methodology Planning

Simplistic STRIPS Planning

lasttime(T) :- time(T), not time(T+1).
action(a). action(b). init(p).
pre(a,p). pre(b,q).
add(a,q) . add(b,r) . query (r) .
del(a,p). del(b,q).

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 108 / 429

Methodology Planning

Simplistic STRIPS Planning

time(1..k). lasttime(T) :- time(T), not time(T+1).

fluent (p) . action(a). action(b). init(p).

fluent(q) . pre(a,p). pre(b,q).

fluent (r) . add(a,q) . add(b,r) . query (r) .
del(a,p). del(b,q).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).
:= occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occ(A,T), add(A,F).
nolds(F,T) :- occ(A,T), del(A,F).

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 108 / 429

Methodology Planning

Simplistic STRIPS Planning

time(1..k). lasttime(T) :- time(T), not time(T+1).

fluent (p) . action(a). action(b). init(p).

fluent(q) . pre(a,p). pre(b,q).

fluent (r) . add(a,q) . add(b,r) . query (r) .
del(a,p). del(b,q).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).
:= occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occ(A,T), add(A,F).
nolds(F,T) :- occ(A,T), del(A,F).

;= query(F), not holds(F,T), lasttime(T).

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 108 / 429

Language: Overview

Motivation

Core language
m Integrity constraint
m Choice rule
m Cardinality rule
m Weight rule

Extended language
m Conditional literal
m Optimization statement

smodels format

ASP language standard
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 109 / 429

Motivation

Outline
Motivation
Integrity constraint
Choice rule
Cardinality rule
Weight rule
Conditional literal
Optimization statement
(& Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 110 / 429

Motivation

Basic language extensions

m The expressiveness of a language can be enhanced by introducing
new constructs
m To this end, we must address the following issues:

m What is the syntax of the new language construct?
m What is the semantics of the new language construct?
m How to implement the new language construct?

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 111 / 429

Motivation

Basic language extensions

m The expressiveness of a language can be enhanced by introducing
new constructs
m To this end, we must address the following issues:

m What is the syntax of the new language construct?
m What is the semantics of the new language construct?
m How to implement the new language construct?

m A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

(EEE Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 111 / 429

Motivation

Basic language extensions

m The expressiveness of a language can be enhanced by introducing
new constructs
m To this end, we must address the following issues:

m What is the syntax of the new language construct?
m What is the semantics of the new language construct?
m How to implement the new language construct?

m A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

m This translation might also be used for implementing the language
extension

(EEE Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 111 / 429

Core language

Outline
Core language

m Integrity constraint
m Choice rule
m Cardinality rule
m Weight rule

Conditional literal

Optimization statement

(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 112 / 429

Core language Integrity constraint

Outline

Motivation

Core language
m Integrity constraint
Choice rule
Cardinality rule
Weight rule

Extended language
Conditional literal
Optimization statement

smodels format

ASP language standard
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 113 / 429

Core language Integrity constraint

Integrity constraint

m |ldea Eliminate unwanted solution candidates

m Syntax An integrity constraint is of the form
< a1,...,8m,~aAm41,---,~an

where 0 < m < n and each a; is an atom for 1 </ < n

m Example :— edge(3,7), color(3,red), color(7,red).

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 114 / 429

Core language Integrity constraint

Integrity constraint

m |ldea Eliminate unwanted solution candidates

m Syntax An integrity constraint is of the form
< a1,...,8m,~aAm41,---,~an

where 0 < m < n and each a; is an atom for 1 </ < n

m Example :— edge(3,7), color(3,red), color(7,red).
m Embedding The above integrity constraint can be turned into the
normal rule
X< al,...,a@m,~Am+1,---,~an, ~X

where x is a new symbol, that is, x € A.

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 114 / 429

Core language Integrity constraint

Integrity constraint

m |ldea Eliminate unwanted solution candidates

m Syntax An integrity constraint is of the form
< a1,...,8m,~aAm41,---,~an

where 0 < m < n and each a; is an atom for 1 </ < n

m Example :— edge(3,7), color(3,red), color(7,red).
m Embedding The above integrity constraint can be turned into the
normal rule
X< al,...,a@m,~Am+1,---,~an, ~X

where x is a new symbol, that is, x € A.

m Another example P = {a <+ ~b, b+ ~a}

; " _ ~
versus P’ = PU{< a} and P"=PU{+ ~a} (38 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 114 / 429

Core language Choice rule

Outline

Motivation

Core language
Integrity constraint
m Choice rule
Cardinality rule
Weight rule

Extended language
Conditional literal
Optimization statement

smodels format

ASP language standard

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 115 / 429

Core language Choice rule

Choice rule
m Idea Choices over subsets
m Syntax A choice rule is of the form
{a1,.-.,am} < am+1,---,3n, ~ant1, .- ., ~a0

where 0 < m < n < o and each a; is an atom for 1 </ < o

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 116 / 429

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013

Core language Choice rule

Choice rule
m Idea Choices over subsets
m Syntax A choice rule is of the form
{a1,.-.,am} < am+1,---,3n, ~ant1, .- ., ~a0

where 0 < m < n < o and each a; is an atom for 1 </ < o

m Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1,...,am} can be included in the stable model

@? Potassco
116 / 429

Core language Choice rule

Choice rule
m Idea Choices over subsets
m Syntax A choice rule is of the form
{a1,.-.,am} < am+1,---,3n, ~ant1, .- ., ~a0

where 0 < m < n < o and each a; is an atom for 1 </ < o

m Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1,...,am} can be included in the stable model

m Example { buy(pizza), buy(wine), buy(corn) } :- at(grocery).

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 116 / 429

Core language Choice rule

Choice rule
Idea Choices over subsets
Syntax A choice rule is of the form
{a1,.-.,am} < am+1,---,3n, ~ant1, .- ., ~a0

where 0 < m < n < o and each a; is an atom for 1 </ < o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1,...,am} can be included in the stable model

Example { buy(pizza), buy(wine), buy(corn) } :- at(grocery).

Another Example P = {{a} <~ b, b<} has two stable models:
{b} and {a, b}

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 116 / 429

Core language Choice rule

Embedding in normal rules
m A choice rule of form
{a1,.-.,am} < am+1,-- -, 3n, ~ant1, .- ., ~a0

can be translated into 2m + 1 normal rules

/

a < ami+l,---,8n,~aAny1l,--.,~ao

ap ¢+ a,~a am <+ a,~am,

a; — ~ap am $ ~am
by introducing new atoms a’,3at, ..., an.

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 117 / 429

Core language Choice rule

Embedding in normal rules
m A choice rule of form
{a1,.-.,am} < am+1,-- -, a3n, ~ant1, .-, ~a0

can be translated into 2m + 1 normal rules

/

d <~ am+ly---,dp,~ap+l,--.,~ao
ap ¢+ a,~a am <+ a,~am,
a; — ~ap am $ ~am

by introducing new atoms a’,3at, ..., an.

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 117 / 429

Core language Choice rule

Embedding in normal rules
m A choice rule of form
{a1,.-,am} < am+1, -+, 3n, ~ant1, .-, ~a0

can be translated into 2m + 1 normal rules

/

a < ami+l,---,8n,~aAny1l,--.,~ao

ap + a,~a am <+ a,~am,

a; — ~ap am $ ~am
by introducing new atoms a’,3at, ..., an.

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 117 / 429

Core language Cardinality rule

Outline

Motivation

Core language
Integrity constraint
Choice rule

m Cardinality rule
Weight rule

Extended language
Conditional literal
Optimization statement

smodels format

ASP language standard
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 118 / 429

Core language Cardinality rule

Cardinality rule

m Idea Control (lower) cardinality of subsets

m Syntax A cardinality rule is the form
a1 {a1,...,am,~amt+1,.-.,~an }

where 0 < m < n and each a; is an atom for 1 < j < n;
| is a non-negative integer.

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 119 / 429

Core language Cardinality rule

Cardinality rule

m Idea Control (lower) cardinality of subsets

m Syntax A cardinality rule is the form

a1 {a1,...,am,~amt+1,.-.,~an }

where 0 < m < n and each a; is an atom for 1 < j < n;
| is a non-negative integer.

m Informal meaning The head atom belongs to the stable model,
if at least / elements of the body are included in the stable model

m Note / acts as a lower bound on the body

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 119 / 429

Core language Cardinality rule

Cardinality rule

m Idea Control (lower) cardinality of subsets

m Syntax A cardinality rule is the form
a1 {a1,...,am,~amt+1,.-.,~an }

where 0 < m < n and each a; is an atom for 1 < j < n;
| is a non-negative integer.

m Informal meaning The head atom belongs to the stable model,
if at least / elements of the body are included in the stable model

m Note / acts as a lower bound on the body

m Example pass(c42) :- 2 { pass(al), pass(a2), pass(a3) }.

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 119 / 429

Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets

Syntax A cardinality rule is the form

a1 {a1,...,am,~amt+1,.-.,~an }

where 0 < m < n and each a; is an atom for 1 < j < n;
| is a non-negative integer.

Informal meaning The head atom belongs to the stable model,
if at least / elements of the body are included in the stable model

Note / acts as a lower bound on the body

Example pass(c42) :- 2 { pass(al), pass(a2), pass(a3) }.
Another Example P = {a < 1{b,c}, b<+} has stable model {a, b}

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 119 / 429

Core language Cardinality rule

Embedding in normal rules
m Replace each cardinality rule
ap <« I {a1,...,am,~amt+1,--.,~an }

by ag + ctr(1,/)

where atom ctr(i, j) represents the fact that at least j of the literals
having an equal or greater index than i/, are in a stable model

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 120 / 429

Core language Cardinality rule

Embedding in normal rules
m Replace each cardinality rule
ap <« I {a1,...,am,~amt+1,--.,~an }

by ag + ctr(1,/)
where atom ctr(i, j) represents the fact that at least j of the literals
having an equal or greater index than i/, are in a stable model

m The definition of ctr/2 is given for 0 < k </ by the rules

ctr(i, k+1) <« ctr(i+1,k), a;
ctr(i, k) <« ctr(i+1,k) for1<i<m
ctr(j, k+1) <« ctr(j+ 1, k), ~a;
ctr(j, k) « ctr(j+1,k) form+1<j<n
ctr(n+1,0) <«
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 120 / 429

Core language Cardinality rule

Embedding in normal rules
m Replace each cardinality rule
ap <« I{a1,...,am,~amt+1,--.,~an }

by ag « ctr(1,/)
where atom ctr(i, j) represents the fact that at least j of the literals
having an equal or greater index than i/, are in a stable model

m The definition of ctr/2 is given for 0 < k </ by the rules

ctr(i, k+1) <« ctr(i+1,k), a;
ctr(i, k) <« ctr(i+1,k) for1<i<m
ctr(j, k+1) <« ctr(j+ 1, k), ~a;
ctr(j, k) « ctr(j+1,k) form+1<j<n
ctr(n+1,0) <«
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 120 / 429

Core language Cardinality rule

Embedding in normal rules
m Replace each cardinality rule
ap <« I {a1,...,am,~amt+1,.-.,~an }

by ag « ctr(1,/)
where atom ctr(i, j) represents the fact that at least j of the literals
having an equal or greater index than i/, are in a stable model

m The definition of ctr/2 is given for 0 < k </ by the rules

ctr(i, k+1) <« ctr(i+1,k), a;
ctr(i, k) <« ctr(i+1,k) for1<i<m
ctr(j, k+1) <« ctr(j+ 1, k), ~a;
ctr(j, k) « ctr(j+1,k) form+1<j<n
ctr(n+1,0) <«
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 120 / 429

Core language Cardinality rule

Embedding in normal rules
m Replace each cardinality rule
ao < I{a1,...,am,~amt+1,--.,~an }

by ag + ctr(1,/)
where atom ctr(i, j) represents the fact that at least j of the literals
having an equal or greater index than i/, are in a stable model

m The definition of ctr/2 is given for 0 < k </ by the rules

ctr(i, k+1) <« ctr(i+1,k), a;
ctr(i, k) <« ctr(i+1,k) for1<i<m
ctr(j, k+1) <« ctr(j+ 1, k), ~a;
ctr(j, k) « ctr(j+1,k) form+1<j<n
ctr(n+1,0) <«
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 120 / 429

Core language Cardinality rule

Embedding in normal rules
m Replace each cardinality rule
a1 {a1,...,am,~amt+1,--.,~an }

by ag + ctr(1,/)
where atom ctr(i, j) represents the fact that at least j of the literals
having an equal or greater index than i/, are in a stable model

m The definition of ctr/2 is given for 0 < k </ by the rules

ctr(i, k+1) <« ctr(i+1,k), a;
ctr(i, k) <« ctr(i+1,k) for1<i<m
ctr(j, k+1) <« ctr(j+ 1, k), ~a;
ctr(j, k) « ctr(j+1,k) form+1<j<n
ctr(n+1,0) <«
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 120 / 429

Core language

Cardinality rule

Embedding in normal rules

m Replace each cardinality rule

ao<—l{al,...

by ag + ctr(1,/)

7am7

~am+1;---5,™~dn }

where atom ctr(i, j) represents the fact that at least j of the literals
having an equal or greater index than i/, are in a stable model

m The definition of ctr/2 is given for 0 < k </ by the rules

ctr(i, k+1)
ctr(i, k)
ctr(J, k—|—1)
)
ctr(n+1,0)

M. Gebser and T. Schaub (KRR@UP)

TTT T

ctr(i + 1, k), a;
ctr(i+1, k)
ctr(j + 1, k), ~a;
ctr(j+ 1, k)

Answer Set Solving in Practice

for1<i<m

form+1<;<n

@? Potassco

July 15, 2013 120 / 429

Core language Cardinality rule

An example

m Program {a <, ¢ < 1 {a, b}} has the stable model {a, c}
Translating the cardinality rule yields the rules

a c « ctr(1,1)
ctr(1,2) <« ctr(2, 1),a
ctr(1,1) «+ ctr(2,1)
ctr(2,2) «+ ctr(3,1),b
ctr(2,1) <« ctr(3,1)
ctr(1,1) <« ctr(2,0),a
ctr(1,0) <« ctr(2,0)
ctr(2,1) <« ctr(3,0),b
ctr(2,0) <« ctr(3,0)
ctr(3,0) <«

having stable model {a, ctr(3,0), ctr(2,0), ctr(1,0), ctr(1, 12,\CI}D
&= Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 121 / 429

Core language Cardinality rule

An example

m Program {a <, ¢ < 1 {a, b}} has the stable model {a, c}
m Translating the cardinality rule yields the rules

a <+ c « ctr(1,1)
ctr(1,2) <« ctr(2,1),a
ctr(1,1) <« ctr(2,1)
ctr(2,2) «+ ctr(3,1),b
ctr(2,1) <« ctr(3,1)
ctr(1,1) <« ctr(2,0),a
ctr(1,0) <« ctr(2,0)
ctr(2,1) <« ctr(3,0),b
ctr(2,0) <« ctr(3,0)
ctr(3,0) <«

having stable model {a, ctr(3,0), ctr(2,0), ctr(1,0), ctr(1,1 g%
222 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 121 / 429

Core language Cardinality rule

and vice versa

m A normal rule
ag <— at,.--,3dm,~aAm+1,---,~an,
can be represented by the cardinality rule

ag < n{a,...,am,~am+1,.--,~ant

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 122 / 429

Core language Cardinality rule

Cardinality rules with upper bounds

m A rule of the form
a1 {a1,...,am, ~am4+1,...,~an } U

where 0 < m < n and each a; is an atom for 1 < j < n;
| and u are non-negative integers

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 123 / 429

Core language Cardinality rule

Cardinality rules with upper bounds

m A rule of the form
a1 {a1,...,am, ~am4+1,...,~an } U

where 0 < m < n and each a; is an atom for 1 < j < n;
| and u are non-negative integers

stands for

ag <+ b,~c
b <« I{a1,...,3m, ~amt+1,---,~an }
c « utl{al,...,am, ~amt+1,--.,~an }

where b and ¢ are new symbols

C: Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 123 / 429

Core language Cardinality rule

Cardinality rules with upper bounds

m A rule of the form
a1 {a1,...,am, ~ams+1,...,~an } U

where 0 < m < n and each a; is an atom for 1 < j < n;
| and u are non-negative integers

stands for
ag <+ b,~c

b <« I{a1,...,3m, ~amt+1,---,~an }
c « utl{al,...,am, ~amt+1,--.,~an }

where b and ¢ are new symbols
m The single constraint in the body of the above cardinality rule is

referred to as a cardinality constraint .
(88 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 123 / 429

Core language Cardinality rule

Cardinality constraints
m Syntax A cardinality constraint is of the form
I{a1,...,am, ~am41,...,~an } U

where 0 < m < n and each a; is an atom for 1 < j < n;
| and u are non-negative integers

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 124 / 429

Core language Cardinality rule

Cardinality constraints

m Syntax A cardinality constraint is of the form
I{a1,...,am, ~am41,...,~an } U

where 0 < m < n and each a; is an atom for 1 < j < n;
| and u are non-negative integers

m Informal meaning A cardinality constraint is satisfied by a stable
model X, if the number of its contained literals satisfied by X is
between / and u (inclusive)

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 124 / 429

Core language Cardinality rule

Cardinality constraints

m Syntax A cardinality constraint is of the form

I{a1,...,am, ~am41,...,~an } U

where 0 < m < n and each a; is an atom for 1 < j < n;
| and u are non-negative integers

m Informal meaning A cardinality constraint is satisfied by a stable
model X, if the number of its contained literals satisfied by X is
between / and u (inclusive)

m In other words, if

I<|({a1,---,am} N X)U ({ams1,---sant \ X) | < u

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 124 / 429

Core language Cardinality rule

Cardinality constraints as heads

m A rule of the form

I{a1,...,am,~am41,...,~an} U4 anil,..., 30, ~Aot1;---,~ap

where 0 < m < n < o < p and each a; is an atom for 1 </ < p;
| and u are non-negative integers

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 125 / 429

Core language Cardinality rule

Cardinality constraints as heads
m A rule of the form
I{a1,...,am,~am41,...,~an} U4 anil,..., 30, ~Aot1;---,~ap

where 0 < m < n < o < p and each a; is an atom for 1 </ < p;
| and u are non-negative integers

stands for
b <+ apy1,...,380,~a041,...,~ap
{a1,...,am} < b
c « I{a1,...,am,,~am4+1,...,~an} U
+— b,~c

where b and ¢ are new symbols

C: Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 125 / 429

Core language Cardinality rule

Cardinality constraints as heads
m A rule of the form
I{a1,...,am,~am41,...,~an} U4 anil,..., 30, ~Aot1;---,~ap

where 0 < m < n < o < p and each a; is an atom for 1 </ < p;
| and u are non-negative integers

stands for
b <+ apy1,...,380,~a041,...,~ap
{a1,...,am} < b
c « I{a1,...,am,,~am4+1,...,~an} U
+— b,~c

where b and ¢ are new symbols

m Example 1 { color(v42,red),color(v42,green),color(v42,blue) } 1.
o

&2z Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 125 / 429

Core language Cardinality rule

Full-fledged cardinality rules

m A rule of the form
/0 50 UO%/l 51 U1,...7/n Sn Up

where for 0 </ < neach I; S; u;

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 126 / 429

Core language Cardinality rule

Full-fledged cardinality rules

m A rule of the form
/0 50 Uo%ll 51 U1,...,/n Sn Up

where for 0 </ < neach I; S; u;
stands for 0 < j <n

a < bi,...,bp,~c1,...,~Cy
So+ <— a
+— a,~by by <« I;'S;
<— a,q ¢G <+ u+ls;

where a, bj, ¢; are new symbols

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 126 / 429

Core language Cardinality rule

Full-fledged cardinality rules

m A rule of the form
/0 50 UO%II 51 U1,...,/n Sn Up

where for 0 </ < neach I; S; u;
stands for 0 < j <n

a < bi,...,bp,~c1,...,~Cy
So+ <— a
+— a,~by by <« I;'S;
<— a,q ¢ <+ u+ls;

where a, bj, ¢; are new symbols

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 126 / 429

Core language Cardinality rule

Full-fledged cardinality rules

m A rule of the form
/0 50 UO%/;[51 U1,...,/n Sn Up

where for 0 </ < neach I; S; u;
stands for 0 < j <n

a < bi,...,bp,~c1,...,~Cpy
So+ <— a
+— a,~by by <« I;'S;
<— a,q ¢ <+ u+ls;

where a, bj, ¢; are new symbols

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 126 / 429

Core language Cardinality rule

Full-fledged cardinality rules

m A rule of the form
/0 50 UO%II 51 U1,...,/n Sn Up

where for 0 </ < neach I; S; u;
stands for 0 < j <n

a < bi,...,bp,~c1,. .., ~Cy
So+ <— a
+— a,~by by <« I;'S;
<— a,q ¢G <+ u+ls;

where a, bj, ¢; are new symbols

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 126 / 429

Core language Cardinality rule

Full-fledged cardinality rules

m A rule of the form
/0 50 UO%/l 51 u1,...,/n Sn Up

where for 0 </ < neach I; S; u;
stands for 0 < j <n

a < bi,...,bp,~c1,...,~Cy
So+ <— a
<~ a, Nbo b,‘ — /,' 5,'
<— a, 0 ¢ <+ u+ls;

where a, bj, ¢; are new symbols

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 126 / 429

Core language Weight rule

Outline

Motivation

Core language
Integrity constraint
Choice rule
Cardinality rule

m Weight rule

Extended language
Conditional literal
Optimization statement

smodels format

ASP language standard
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 127 / 429

Core language Weight rule

Weight rule

m Syntax A weight rule is the form
ap < /{al =Wi,...,dm = Wm,~am+1 = Wmt1,...,~dn = Wn}

where 0 < m < n and each a; is an atom;
| and w; are integers for 1 < i <n

m A weighted literal, ¢; = w;, associates each literal ¢; with a weight w;

(38 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 128 / 429

Core language Weight rule

Weight rule
m Syntax A weight rule is the form
ap < /{al =Wi,...,dm = Wm,~am+1 = Wmt1,...,~dn = Wn}

where 0 < m < n and each a; is an atom;
| and w; are integers for 1 < i <n

m A weighted literal, ¢; = w;, associates each literal ¢; with a weight w;

m Note A cardinality rule is a weight rule where w; =1 for 0 </ <n

C: Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 128 / 429

Core language Weight rule

Weight constraints
m Syntax A weight constraint is of the form
I{ai=wi,...,3m = Wm, ~am41 = Wmt1,...,~ap = Wp } U

where 0 < m < n and each a; is an atom;
I, u and w; are integers for 1 < i <n

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 129 / 429

Core language Weight rule

Weight constraints
m Syntax A weight constraint is of the form
I{ai=wi,...,3m = Wm, ~am41 = Wmt1,...,~ap = Wp } U

where 0 < m < n and each a; is an atom;
I, u and w; are integers for 1 < i <n

m Meaning A weight constraint is satisfied by a stable model X, if

IS <Zl§i§m,a,€x Wi + Zm<i§n,3i¢X Wi) S Y

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 129 / 429

Core language Weight rule

Weight constraints

m Syntax A weight constraint is of the form
I{ai=wi,...,3m = Wm, ~am41 = Wmt1,...,~ap = Wp } U

where 0 < m < n and each a; is an atom;
I, u and w; are integers for 1 < i <n

m Meaning A weight constraint is satisfied by a stable model X, if

IS <Zl§i§m,a,€x Wi + Zm<i§n,3i¢X Wi) S Y

m Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 129 / 429

Core language Weight rule

Weight constraints
m Syntax A weight constraint is of the form
I{ai=wi,...,3m = Wm, ~am41 = Wmt1,...,~ap = Wp } U

where 0 < m < n and each a; is an atom;
I, u and w; are integers for 1 < i <n

m Meaning A weight constraint is satisfied by a stable model X, if

IS <Zl§i§m,a,€x Wi + Zm<i§n,3i¢X Wi) S Y

m Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

|] Example 10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 129 / 429

Extended language

Outline

Integrity constraint
Choice rule
Cardinality rule
Weight rule

Extended language
m Conditional literal
m Optimization statement

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 130 / 429

Extended language Conditional literal

Outline

Motivation

Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

Extended language
m Conditional literal
Optimization statement

smodels format

ASP language standard
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 131 / 429

Extended language Conditional literal

Conditional literals (in Iparse & gringo 3)
m Syntax A conditional literal is of the form
b:01:---: 4,

where ¢ and ¢; are literals for 0 < j <n

m Informal meaning A conditional literal can be regarded as the list of
elements in the set {¢ | {1,...,0,}

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 132 / 429

Extended language Conditional literal

Conditional literals (in Iparse & gringo 3)
m Syntax A conditional literal is of the form
b:01:---: 4,

where ¢ and ¢; are literals for 0 < j <n

m Informal meaning A conditional literal can be regarded as the list of
elements in the set {¢ | {1,...,0,}

m Note The expansion of conditional literals is context dependent

(38 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 132 / 429

Extended language Conditional literal

Conditional literals (in Iparse & gringo 3)

m Syntax A conditional literal is of the form
b:01:---: 4,

where ¢ and ¢; are literals for 0 < j <n

m Informal meaning A conditional literal can be regarded as the list of
elements in the set {¢ | {1,...,0,}

m Note The expansion of conditional literals is context dependent

m Example Given ‘p(1). p(2). p(3). q(2).’
r(X):p(X) :not q(X) :- r(X):p(X) :not qX), 1 {r(X):p(X):not q(X)}.
is instantiated to
r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 132 / 429

Extended language Conditional literal

Conditional literals (in Iparse & gringo 3)

m Syntax A conditional literal is of the form
b:01:---: 4,

where ¢ and ¢; are literals for 0 < j <n

m Informal meaning A conditional literal can be regarded as the list of
elements in the set {¢ | {1,...,0,}

m Note The expansion of conditional literals is context dependent

m Example Given ‘p(1). p(2). p(3). q(2).’
r(X):p(X) :not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.
is instantiated to
r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

(38 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 132 / 429

Extended language Conditional literal

Conditional literals (in Iparse & gringo 3)

m Syntax A conditional literal is of the form
b:01:---: 4,

where ¢ and ¢; are literals for 0 < j <n

m Informal meaning A conditional literal can be regarded as the list of
elements in the set {¢ | {1,...,0,}

m Note The expansion of conditional literals is context dependent

m Example Given ‘p(1). p(2). p(3). q(2).’
r(X) :p(X) ot q(X) :- r(X):pX) :not q(X), 1 {r(X):p(X):not q(X)}.
is instantiated to
r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 132 / 429

Extended language Conditional literal

Conditional literals (in Iparse & gringo 3)

m Syntax A conditional literal is of the form
b:01:---: 4,

where ¢ and ¢; are literals for 0 < j <n

m Informal meaning A conditional literal can be regarded as the list of
elements in the set {¢ | {1,...,0,}

m Note The expansion of conditional literals is context dependent

m Example Given ‘p(1). p(2). p(3). q(2).’
r(X):p(X) :not q(X) :- r(X):p(X) :not q(X), 1 {r(X):p(X):not q(X)}.
is instantiated to
r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 132 / 429

Extended language Conditional literal

Conditional literals (in Iparse & gringo 3)

m Syntax A conditional literal is of the form
b:01:---: 4,

where ¢ and ¢; are literals for 0 < j <n

m Informal meaning A conditional literal can be regarded as the list of
elements in the set {¢ | {1,...,0,}

m Note The expansion of conditional literals is context dependent

m Example Given ‘p(1). p(2). p(3). q(2).’
r(X):p(X) :not q(X) :- r(X):pX):not q(X), 1 {r(X):p(X):not q(X)}.
is instantiated to
r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 132 / 429

Extended language = Optimization statement

Outline

Motivation

Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

Extended language
Conditional literal
m Optimization statement

smodels format

ASP language standard
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 133 / 429

Extended language Optimization statement

Optimization statement

m |dea Express cost functions subject to minimization and/or
maximization

m Syntax A minimize statement is of the form
minimize{ {1 = w1@py, ..., ¢, = w,0p, }.

where each /; is a literal; and w; and p; are integers for 1 < i <n

(g8

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 134 / 429

Potassco

Extended language Optimization statement

Optimization statement

m |dea Express cost functions subject to minimization and/or
maximization

m Syntax A minimize statement is of the form
minimize{ {1 = w1@py, ..., ¢, = w,0p, }.

where each /; is a literal; and w; and p; are integers for 1 < i <n

Priority levels, p;, allow for representing lexicographically ordered
minimization objectives

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 134 / 429

Extended language Optimization statement

Optimization statement

m |dea Express cost functions subject to minimization and/or
maximization

m Syntax A minimize statement is of the form
minimize{ {1 = w1@py, ..., ¢, = w,0p, }.

where each /; is a literal; and w; and p; are integers for 1 < i <n

Priority levels, p;, allow for representing lexicographically ordered
minimization objectives

m Meaning A minimize statement is a directive that instructs the ASP
solver to compute optimal stable models by minimizing a weighted
sum of elements

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 134 / 429

Extended language ~ Optimization statement

Optimization statement

m A maximize statement of the form
maximize{ {1 = w1Qpy,..., ¢, = w,0p, }
stands for minimize{ {1 = —w1@ps, ..., ¢, = —w,0p, }

When configuring a computer, we may want to maximize
hard disk capacity, while minimizing price
#maximize[hd(1)=250@1, hd(2)=50001, hd(3)=7500@1, hd(4)=100001].
#minimize[hd(1)=3002, hd(2)=4002, hd(3)=600@2, hd(4)=8002].
The priority levels indicate that (minimizing) price is more important
than (maximizing) capacity

[1]=)
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 135 / 429

Extended language Optimization statement

Optimization statement

m A maximize statement of the form
maximize{ {1 = w1Qpy,..., ¢, = w,0p, }
stands for minimize{ ¢{; = —w1@ps,..., ¢, = —w,0p, }

m Example When configuring a computer, we may want to maximize
hard disk capacity, while minimizing price
#maximize[hd(1)=250@1, hd(2)=500@1, hd(3)=750@1, hd(4)=100001].
#minimize[hd(1)=30@2, hd(2)=40@2, hd(3)=6002, hd(4)=80@2].
The priority levels indicate that (minimizing) price is more important
than (maximizing) capacity

(EEE Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 135 / 429

smodels format

Outline

Integrity constraint
Choice rule
Cardinality rule
Weight rule

Conditional literal
Optimization statement

smodels format

(EE\? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 136 / 429

smodels format

smodels format

m Logic programs in smodels format consist of

normal rules

choice rules

cardinality rules

weight rules
optimization statements

m Such a format is obtained by grounders Iparse and gringo

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 137 / 429

ASP language standard

Outline

Integrity constraint
Choice rule
Cardinality rule
Weight rule

Conditional literal
Optimization statement

ASP language standard
(EE\‘:’Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 138 / 429

Problem

Modeling

Logic

ASP language standard

Solving

Grounder

Program

M. Gebser and T. Schaub (KRR@UP)

ASP-Core-2

Solution

Interpreting

Solver

Stable
Models

Answer Set Solving in Practice

@? Potassco
July 15, 2013 139 / 429

Problem

Modeling

Logic
Program

ASP language standard

Solving

Grounder

ASP-Core-2

Solution

Interpreting

Solver

smodels format

Stable
Models

m smodels format is a machine-oriented standard for ground programs

M. Gebser and T. Schaub (KRR@UP)

Answer Set Solving in Practice

@? Potassco

July 15, 2013 139 / 429

Problem

Modeling

Logic
Program

ASP language standard

Solving

Grounder

ASP-Core-2

Solution

Interpreting

ASP-Core-2

Solver

smodels format

Stable
Models

m smodels format is a machine-oriented standard for ground programs

m ASP-Core-2 is a user-oriented standard for (non-ground) programs

M. Gebser and T. Schaub (KRR@UP)

Answer Set Solving in Practice

@? Potassco

July 15, 2013 139 / 429

Problem

Modeling

Logic
Program

ASP language standard

Solving

Grounder

ASP-Core-2

Solution

Interpreting

ASP-Core-2

Solver

smodels format

Stable
Models

m smodels format is a machine-oriented standard for ground programs

m ASP-Core-2 is a user-oriented standard for (non-ground) programs,

extending the input languages of dlv and gringo series 3

M. Gebser and T. Schaub (KRR@UP)

Answer Set Solving in Practice

(EEE Potassco

July 15, 2013 139 / 429

ASP language standard

Aggregates

m Syntax ASP-Core-2 aggregates are of the form

t1 <1 #A{th,. ey tmy 2611,... ,6,,1} <92 t

where
m #A € {#count, #sum, #max, #min}
B <, < Ee{<, <=, 4,>,>)
B ty,,...,tm and t, to are terms
mly,,..., 0 are literals

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 140 / 429

ASP language standard

Aggregates

m Syntax ASP-Core-2 aggregates are of the form

t1 -<1#A{t11,...,1.'m12511,...,5,,1;...; tlk,...,tmkiglk,...,gnk} Y

where
m #A € {#count, #sum, #max, #min}
B <, <0 €{<, <, =,#,>, >}
Bty tmy, -5 ti, ..., tm,, and ti, & are terms
B0y, by, Oy, Ly, are literals

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 140 / 429

ASP language standard

Aggregates
m Syntax ASP-Core-2 aggregates are of the form
t1 <1 ##A{tll,...,tnn 2511,...,€n1;...; iy tmy :€1k7"~;€nk}‘<2 [5)
where

m #A € {#count, #sum, #max, #min}

B <1,<X2 € {<7§a:77é7>72}

Bty tmy, -5 ti, ..., tm,, and ti, & are terms
B0y, by, Oy, Ly, are literals

m Example Weight constraint

10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

(38 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 140 / 429

ASP language standard

Aggregates
m Syntax ASP-Core-2 aggregates are of the form
t1 <1 ##A{tll,...,tnu 2511,...,€n1;...; iy tmy :€1k7"~;€nk}‘<2 [5)
where

m #A € {#count, #sum, #max, #min}

B <1,<X2 € {<7§a:77é7>72}

Bty tmy, -5 ti, ..., tm,, and ti, & are terms
B0y, by, Oy, Ly, are literals

m Example Weight constraint
10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20
is written as an ASP-Core-2 aggregate as

10 < #sum{6,db:course(db); 6,ai:course(ai);
8,project:course(project); 3,xml:course(xml)} < 20

C: Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 140 / 429

ASP language standard

Weak constraints

m Syntax A weak constraint is of the form

~ a3l @my ~Amtd, - -, ~an. (WOP, 1, ...]

where
® aj,...,a, are atoms

W t,...,tn, W, and p are terms
ai,...,anp may contain ASP-Core-2 aggregates

w and p stand for a weight and priority level (p = 0 if ‘Qp’ is omitted)
Minimize statement

#minimize[hd(1)=3002, hd(2)=4002, hd(3)=6002, hd(4)=8002].

can be written in terms of weak constraints as

‘~hd(1). [3002,1] ~hd(3). [6002,3]
i~ hd(2) . [4002,2] i~ hd(4). [8002,4]

am0
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 141 / 429

ASP language standard

Weak constraints

m Syntax A weak constraint is of the form

i~ A1y ..oy @my ~Amaly - -y ~an. [WOP, t1, ..]

where
m a1,...,a, are atoms
W t,...,tn, W, and p are terms

m aj,...,a, may contain ASP-Core-2 aggregates
m w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 141 / 429

ASP language standard

Weak constraints

m Syntax A weak constraint is of the form

i~ A1y ..oy @my ~Amaly - -y ~an. [WOP, t1, ..]

where
m a1,...,a, are atoms
W t,...,tn, W, and p are terms

m aj,...,a, may contain ASP-Core-2 aggregates
m w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)
m Example Minimize statement

#minimize[hd(1)=3002, hd(2)=4002, hd(3)=6002, hd(4)=8002].

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 141 / 429

ASP language standard

Weak constraints

m Syntax A weak constraint is of the form

i~ A1y ..oy @my ~Amaly - -y ~an. [WOP, t1, ..]

where
m a1,...,a, are atoms
W t,...,tn, W, and p are terms

m aj,...,a, may contain ASP-Core-2 aggregates
m w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)
m Example Minimize statement

#minimize[hd(1)=3002, hd(2)=4002, hd(3)=6002, hd(4)=8002].

can be written in terms of weak constraints as

‘~hd(1). [3002,1] ~hd(3). [6002,3]
i~ hd(2). [4002,2] i~ hd(4). [8002,4]

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 141 / 429

ASP language standard

gringo 4

m The input language of gringo series 4 comprises

m ASP-Core-2
m concepts from gringo 3 (conditional literals, #show directives, ...)

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 142 / 429

ASP language standard

gringo 4

m The input language of gringo series 4 comprises

m ASP-Core-2
m concepts from gringo 3 (conditional literals, #show directives, ...)

m Example The gringo 3 rule
r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 142 / 429

ASP language standard

gringo 4

m The input language of gringo series 4 comprises

m ASP-Core-2
m concepts from gringo 3 (conditional literals, #show directives, ...)

m Example The gringo 3 rule
r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X) ,not q(X) :- r(X):p(X),not q(X);
1 <= #count{X:r(X),p(X),not q(X)}.

(38 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 142 / 429

ASP language standard

gringo 4

The input language of gringo series 4 comprises

m ASP-Core-2
m concepts from gringo 3 (conditional literals, #show directives, ...)

Example The gringo 3 rule
r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X) ,not q(X) :- r(X):p(X),not q(X);
1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
#show. #show hello. #show X : p(X). 1{p(earth);p(mars);p(venus)}1.

(EEE Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 142 / 429

ASP language standard

gringo 4

The input language of gringo series 4 comprises

m ASP-Core-2
m concepts from gringo 3 (conditional literals, #show directives, ...)

Example The gringo 3 rule
r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:
r(X):p(X) ,not q(X) :- r(X):p(X),not q(X);
1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
#show. #show hello. #show X : p(X). 1{p(earth);p(mars);p(venus)}1.

Attention The languages of gringo 3 and 4 are not fully compatible
m Many example programs given in this tutorial are written for gringo 3

(EEE Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 142 / 429

Language Extensions: Overview

Two kinds of negation

Disjunctive logic programs

Propositional theories

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 143 / 429

Two kinds of negation

Outline

Two kinds of negation

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 144 / 429

Two kinds of negation

Motivation

m Classical versus default negation

m Symbol — and ~

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 145 / 429

Two kinds of negation

Motivation
m Classical versus default negation
m Symbol — and ~
m ldea
ma~x ~acX
B~ax aéX
(8 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 145 / 429

Two kinds of negation

Motivation
m Classical versus default negation
m Symbol — and ~
m ldea
B a3~ aceX
m~ax agX
m Example
B Cross < —train
B Cross < ~train
(& Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 145 / 429

Two kinds of negation

Classical negation

m We consider logic programs in negation normal form
m That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {-a|a € A} such that
ANA=0

Given a program P over A, classical negation is encoded by adding

P"={a+ b-b|ac(AUA),bc A}

A set X of atoms is a stable model of a program P over AU A,
if X is a stable model of PU P~

(EE\?Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 146 / 429

Two kinds of negation

Classical negation

m We consider logic programs in negation normal form
m That is, classical negation is applied to atoms only

= Given an alphabet A of atoms, let A= {-a|a € A} such that
ANA=90

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 146 / 429

Two kinds of negation

Classical negation

m We consider logic programs in negation normal form
m That is, classical negation is applied to atoms only
m Given an alphabet A of atoms, let A = {-a| a € A} such that
ANA=10

m Given a program P over A, classical negation is encoded by adding

P"={a«+ b,~b|ac(AUA),bec A}

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 146 / 429

Two kinds of negation

Classical negation

= Given an alphabet A of atoms, let A= {-a|a € A} such that
ANA=90

m Given a program P over A, classical negation is encoded by adding

P"={a«+ b,~b|ac(AUA),bec A}

m A set X of atoms is a stable model of a program P over AU A,
if X is a stable model of PU P~

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 146 / 429

Two kinds of negation

An example

m The program

P = {a< ~b, b« ~a}U{c+ b, -c < b}

induces
a < a, —a a < b,—b a < c,—cC
—a <+ a,—a —a <+ b,=b —a +— c¢,—C
p_ b < a,—a b < b,—b b < c¢,—c
-b <+ a,—a -b < b,-b -b <+ «c¢,—c
c <« a,a c < b,—b c « c¢,cC
-Cc 4+ a,a -c <+ b,=b -c ¢+ c,—C

The stable models of P are given by the ones of P U P, viz {a}

am0
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 147 / 429

Two kinds of negation

An example

m The program

P = {a< ~b, b ~a}U{c+<+ b, -c <+ b}

induces
(a2 + a,a a + b,—b a « c¢,—c)
-a <+« a,—a —a <+ b,—b -a + c¢,—C
. b < a,—a b < b,—b b < c¢,—c

P~ =
-b +— a,—a -b <+ b,-b -b +— ¢,
c « a,a c < b,—b c « c¢,cC
-c + a,—a -c + b,7b -Cc + c¢,—C

@?Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 147 / 429

m The program

Two kinds of negation

An example

P = {a< ~b, b ~a}U{c+<+ b, -c <+ b}

induces

a
—a
b
—b
c
-c

P~ =

TTTTTT

a, a
a,a
a, a
a, a
a,a
a, —a

a
—a
b
-b
c
-c

TTTTTT

b,—b
b, b
b,—b
b, b
b, —b
b, b

a
—a
b
-b
c
—-C

TTTTTT

Cc,C
Cc,C
Cc,C
Cc,C
c,C
Cc,C

m The stable models of P are given by the ones of PU P, viz {a}

M. Gebser and T. Schaub (KRR@UP)

Answer Set Solving in Practice

(g8

Potassco

July 15, 2013 147 / 429

Two kinds of negation
Properties

m The only inconsistent stable “model” is X = AU A

Strictly speaking, an inconsistemt set like AU A is not a model

For a logic program P over A U A, exactly one of the following two
cases applies:

All stableﬂwodels of P are consistent or
X = AU A is the only stable model of P

am0
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 148 / 429

Two kinds of negation

Properties

m The only inconsistent stable “model” is X = AU A

m Note Strictly speaking, an inconsistemt set like A U A is not a model

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 148 / 429

Two kinds of negation

Properties

m The only inconsistent stable “model” is X = AU A

m Note Strictly speaking, an inconsistemt set like A U A is not a model

m For a logic program P over AU A, exactly one of the following two
cases applies:
All stable models of P are consistent or
X = AU A is the only stable model of P

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 148 / 429

Two kinds of negation

m Py = {cross < ~train}
m P, = {cross < —train}
m P3 = {cross < —train,
m Py = {cross < —train,
m Ps = {cross < —train,
m Ps = {cross < —train,

M. Gebser and T. Schaub (KRR@UP)

Train spotting

—train <}
—train <—, —cross <}
—train < ~train}

—train < ~train, —cross <}

[1]=}
(88 Potassco
Answer Set Solving in Practice July 15, 2013 149 / 429

Two kinds of negation

Train spotting

m Py = {cross < ~train}
m stable model: {cross}

P, = {cross < —train}
stable model: ()

P3 = {cross < —train, —train <}
stable model: {cross, —train}

Py = {cross < —train, —train <, —cross <}
stable model: {cross, —cross, train, —train}

Ps = {cross < —train, —train < ~train}
stable model: {cross, —train}

Pe = {cross < —train, —train <— ~train, —cross <}
no stable model

= Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 149 / 429

Two kinds of negation

Train spotting

P; = {cross < ~train}

stable model: {cross}
m P, = {cross + —train}

stable model:)

P3 = {cross < —train, —train <}
stable model: {cross, —train}

Py = {cross < —train, —train <, —cross <}
stable model: {cross, —cross, train, —train}

Ps = {cross < —train, —train < ~train}
stable model: {cross, —~train}

Pe = {cross < —train, —train < ~train, —cross <}
no stable model

= Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 149 / 429

Two kinds of negation

Train spotting

P; = {cross < ~train}
stable model: {cross}
m P, = {cross + —train}
m stable model: ()
P3 = {cross < —train, —train <}
stable model: {cross, —train}
Py = {cross < —train, —train <, —cross <}
stable model: {cross, —cross, train, —train}
Ps = {cross < —train, —train < ~train}
stable model: {cross, —train}
Pe = {cross < —train, —train <— ~train, —cross <}
no stable model

= Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 149 / 429

Two kinds of negation

Train spotting

P; = {cross < ~train}
stable model: {cross}

P, = {cross < —train}
stable model:

m P3 = {cross < —train, —train <}

stable model: {cross, —train}

Py = {cross < —train, —train <, —cross <}
stable model: {cross, —cross, train, —train}

Ps = {cross < —train, —train < ~train}
stable model: {cross, —train}

Pe = {cross <— —train, —train < ~train, —cross <}
no stable model

= Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 149 / 429

Two kinds of negation

Train spotting

Py = {cross < ~train}
stable model: {cross}

P, = {cross < —train}
stable model: ()

m P3 = {cross < —train, —train <}
m stable model: {cross, —train}

Py = {cross < —train, —train <, —cross <}
stable model: {cross, —cross, train, —train}

Ps = {cross < —train, —train < ~train}
stable model: {cross, —train}

Pe = {cross < —train, —train <— ~train, —cross <}
no stable model

= Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 149 / 429

Two kinds of negation

Train spotting

P; = {cross < ~train}
stable model: {cross}

P, = {cross < —train}
stable model: ()

P3 = {cross < —train, —train <}
stable model: {cross, —train}

m Py = {cross <— —train, —train <—, —cross <}

stable model: {cross, —cross, train, —train}

Ps = {cross < —train, —train < ~train}
stable model: {cross, —train}

Pe = {cross < —train, —train < ~train, —cross <}
no stable model

= Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 149 / 429

Two kinds of negation

Train spotting

m Py = {cross <— —train, —train <, —cross <}
m stable model: {cross, —cross, train, —train}

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 149 / 429

Two kinds of negation

Train spotting

P; = {cross < ~train}
stable model: {cross}

P, = {cross < —train}
stable model:

P3 = {cross < —train, —train <}
stable model: {cross, —train}

Py = {cross < —train, —train <, —cross <}
stable model: {cross, —cross, train, —train}

m Ps = {cross <— —train, —train < ~train}

stable model: {cross, —~train}

Pe = {cross < —train, —train < ~train, —cross <}
no stable model

= Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 149 / 429

Two kinds of negation

Train spotting

Py = {cross < ~train}
stable model: {cross}

P, = {cross < —train}
stable model:

P3 = {cross < —train, —train <}
stable model: {cross, —train}

P4y = {cross < —train, —train <—, —cross <}
stable model: {cross, —cross, train, —train}

m Ps = {cross <— —train, —train <— ~train}
m stable model: {cross, —train}

P = {cross < —train, —train < ~train, —cross <}

no stable model

= Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 149 / 429

Two kinds of negation

Train spotting

P; = {cross < ~train}
stable model: {cross}

P, = {cross < —train}
stable model:

P3 = {cross < —train, —train <}
stable model: {cross, —train}

Py = {cross < —train, —train <, —cross <}
stable model: {cross, —cross, train, —train}

Ps = {cross < —train, —train < ~train}
stable model: {cross, —train}

m Ps = {cross < —train, —train < ~train, —cross <}

no stable model

= Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 149 / 429

Two kinds of negation

Train spotting

Py = {cross < ~train}
stable model: {cross}

P, = {cross < —train}
stable model:

P3 = {cross < —train, —train <}
stable model: {cross, —train}

Py = {cross < —train, —train <, —cross <}
stable model: {cross, —cross, train, —train}

Ps = {cross < —train, —train < ~train}
stable model: {cross, —train}

m Ps = {cross < —train, —train < ~train, —cross <}
m no stable model

= Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 149 / 429

Two kinds of negation

Train spotting

P1 = {cross < ~train}
m stable model: {cross}

P, = {cross < —train}
m stable model: ()

P3 = {cross « —train, —train <}
m stable model: {cross, —train}

Py = {cross < —train, —train <—, —cross <}
m stable model: {cross, —cross, train, —train}

Ps = {cross < —train, —train < ~train}
m stable model: {cross, —train}

Pe¢ = {cross < —train, —train < ~train, —cross <}
m no stable model

[1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 149 / 429

Two kinds of negation

Default negation in rule heads

m We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let A={3]aec A} such that
ANA={
Given a program P over A, consider the program
P = {r € P | head(r) # ~a}
U {« body(r)U{~a} | r € P and head(r) = ~a}
U {3+« ~a|re P and head(r) = ~a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A, N B
if X =Y N A for some stable model Y of P over AU A

am0
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 150 / 429

Two kinds of negation

Default negation in rule heads

m We consider logic programs with default negation in rule heads

m Given an alphabet A of atoms, let A={3|ae A} such that
ANA=10

[1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 150 / 429

Two kinds of negation

Default negation in rule heads

m We consider logic programs with default negation in rule heads
m Given an alphabet A of atoms, let A={3|ae A} such that
ANA=0
m Given a program P over A, consider the program
P = {r € P | head(r) # ~a}
U {« body(r) U {~a} | r € P and head(r) = ~a}
U {3+« ~a|re P and head(r) = ~a}

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 150 / 429

Two kinds of negation

Default negation in rule heads

m Given an alphabet A of atoms, let A={3|ae A} such that
ANA=0
m Given a program P over A, consider the program
P = {r € P | head(r) # ~a}
U {« body(r) U {~a} | r € P and head(r) = ~a}
U {3+« ~a|re P and head(r) = ~a}

m A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A, N _
if X =Y N A for some stable model Y of P over AU A

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 150 / 429

Disjunctive logic programs

Outline

Disjunctive logic programs

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 151 / 429

Disjunctive logic programs

Disjunctive logic programs
m A disjunctive rule, r, is of the form
al ;... ;@m < @m+1,---538n,~aAnt+ly---,~do

where 0 < m < n < o0 and each a; is an atom for 0 </ < o

m A disjun