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Motivation

Informatics
“What is the problem?” “How to solve the problem?”
Problem Solution
Computer Output
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Motivation

Informatics
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Motivation

Traditional programming

“What is the problem?”  versus “How to solve the problem?”

Problem Solution

Computer Output
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Motivation

Traditional programming

“How to solve the problem?”

Solution

Interpreting

“What is the problem?”  versus
Problem
Programming
Program
Executing
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Motivation

Declarative problem solving

“What is the problem?”  versus “How to solve the problem?”

Problem Solution

Interpreting

Computer Output
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Motivation

Declarative problem solving

“How to solve the problem?”

Solution

Interpreting

“What is the problem?”  versus
Problem
Modeling
Representation
Solving
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Motivation

Declarative problem solving

Solution

Interpreting
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Nutshell
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Nutshell

Answer Set Programming
ER

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with high-performance solving capacities
ASP has its roots in
(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)
ASP allows for solving all search problems in NP (and NP"P)

in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas
(& Potassco
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Nutshell

Answer Set Programming

in a Hazelnutshell

m ASP is an approach to declarative problem solving, combining

m a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning
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Nutshell

Answer Set Programming
in a Hazelnutshell

m ASP is an approach to declarative problem solving, combining

m a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

ASP = DB+LP+KR-+SAT
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Shifting paradigms
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Shifting paradigms
KR's shift of paradigm

(eg. Prolog)
Provide a representation of the problem
A solution is given by a derivation of a query

(eg. SATisfiability testing)
Provide a representation of the problem
A solution is given by a model of the representation

Represent planning problems as propositional theories so that
models not proofs describe solutions
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Shifting paradigms

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query
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Shifting paradigms

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem
A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI'92)

Represent planning problems as propositional theories so that
models not proofs describe solutions
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Shifting paradigms

Model Generation based Problem Solving

Representation

Solution
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constraint satisfaction problem
propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
first-order theories
auto-epistemic theories
default theories
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assignment
smallest model
models

minimal models
stable models
minimal models
supported models
stable models
models

minimal models
stable models
Herbrand models
expansions
extensions
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Model Generation based Problem Solving

Representation

Solution
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Shifting paradigms

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem
A solution is given by a model of the representation
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KR's shift of paradigm
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Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).
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Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).
true.
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LP-style playing with blocks

Prolog program

on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries
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true.
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no.
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Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries (testing entailment)

?- above(a,c).
true.

?- above(c,a).
no.
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Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).
on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).
above(X,Y) :- on(X,Y).
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Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).
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Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).
on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries (answered via fixed execution)

?- above(a,c).

Fatal Error: local stack overflow.
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Shifting paradigms

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query
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A solution is given by a model of the representation
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Shifting paradigms

KR's shift of paradigm

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem
A solution is given by a model of the representation
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Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
A on(b,c)
A (on(X,Y) — above(X,Y))
A (on(X,Z) A above(Z,Y) — above(X, Y))
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SAT-style playing with blocks

Formula
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A on(b,c)
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Herbrand model
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SAT-style playing with blocks

Formula

on(a, b)
A on(b,c)
A (on(X,Y) — above(X,Y))
A (on(X,Z) A above(Z,Y) — above(X, Y))

Herbrand model (among 426!)

on(a, b), on(b, c), on(a, c), on(b, b),
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[ 1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 19 / 429



Shifting paradigms

SAT-style playing with blocks

Formula
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A on(b,c)
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Rooting ASP
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Rooting ASP
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Rooting ASP

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem
A solution is given by a model of the representation
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Rooting ASP

KR's shift of paradigm

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem
A solution is given by a model of the representation

w Answer Set Programming (ASP)
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Rooting ASP

Model Generation based Problem Solving

M. Gebser and T. Schaub (KRR@UP)

Representation Solution
constraint satisfaction problem | assignment
propositional horn theories smallest model
propositional theories models

propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
first-order theories
auto-epistemic theories
default theories
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Rooting ASP

Answer Set Programming at large

Representation

Solution

propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
first-order theories
auto-epistemic theories
default theories
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smallest model
models

minimal models
stable models
minimal models
supported models
stable models
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minimal models
stable models
Herbrand models
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Rooting ASP

Answer Set Programming commonly

Representation

Solution
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Rooting ASP

Answer Set Programming in practice

Representation

Solution
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Rooting ASP

Answer Set Programming in practice

Representation

Solution
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propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
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first-order programs
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Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 23 / 429



Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) }
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Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).
on(b,c).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model (and no others)

{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) }
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Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).
on(b,c).

above(X,Y) :- above(Z,Y), on(X,Z).
above(X,Y) :- on(X,Y).

Stable Herbrand model (and no others)

{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) }
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Rooting ASP

ASP versus LP

ASP | Prolog
Model generation Query orientation
Bottom-up Top-down
Modeling language Programming language

Rule-based format

Instantiation Unification
Flat terms Nested terms
(Turing +) NP(NP) Turing
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Rooting ASP

ASP versus SAT
ASP \ SAT

Model generation

Bottom-up
Constructive Logic Classical Logic
Closed (and open) Open world reasoning
world reasoning
Modeling language =
Complex reasoning modes Satisfiability testing
Satisfiability Satisfiability
Enumeration /Projection =
Intersection /Union —
Optimization —
(Turing +) NP(NP) NP
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Problem

Modeling

Logic

ASP solving

Program

M. Gebser and T. Schaub (KRR@UP)

Grounder

ASP solving

Solution

Interpreting

Solver

Stable
Models

Solving
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ASP solving

SAT solving

Problem Solution
Programming Interpreting
Formula Solver Classical
(CNF) Models
Solving
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ASP solving

Rooting ASP solving

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
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ASP solving

Rooting ASP solving

Problem Solution
Modeling | KR Interpreting
Logic Stable
Program Grounder Solver Models
LP DB  Solving SAT DB+KR+LP
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@ Using ASP
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Using ASP

Two sides of a coin

m ASP as High-level Language

m Express problem instance(s) as sets of facts
m Encode problem (class) as a set of rules
m Read off solutions from stable models of facts and rules

m ASP as Low-level Language

m Compile a problem into a logic program
m Solve the original problem by solving its compilation
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Using ASP

What is ASP good for?

m Combinatorial search problems in the realm of P, NP, and NPNP
(some with substantial amount of data), like
Automated Planning
Code Optimization
Composition of Renaissance Music
Database Integration
Decision Support for NASA shuttle controllers
Model Checking
Product Configuration
Robotics
Systems Biology
System Synthesis
(industrial) Team-building
and many many more
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Using ASP

What is ASP good for?

m Combinatorial search problems in the realm of P, NP, and N
(some with substantial amount of data), like

Automated Planning

Code Optimization

Composition of Renaissance Music
Database Integration

Decision Support for NASA shuttle controllers
Model Checking

Product Configuration

Robotics

Systems Biology

System Synthesis

(industrial) Team-building

and many many more

PNP
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Using ASP

What does ASP offer?

m Integration of DB, KR, and SAT techniques

m Succinct, elaboration-tolerant problem representations
m Rapid application development tool

m Easy handling of dynamic, knowledge intensive applications
m including: data, frame axioms, exceptions, defaults, closures, etc
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m Integration of DB, KR, and SAT techniques
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m Rapid application development tool

m Easy handling of dynamic, knowledge intensive applications
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Introduction: Overview

Syntax

B Semantics

Bl Examples

Variables

Language constructs

Reasoning modes
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Syntax

Problem solving in ASP: Syntax

Problem

Modeling

Logic Program

Solution

Interpreting

M. Gebser and T. Schaub (KRR@UP)

Solving
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Syntax

Normal logic programs

m A logic program, P, over a set A of atoms is a finite set of rules

m A (normal) rule, r, is of the form
ao < ai,---,dm, ~aAm+1,.--,~an

where 0 < m < n and each a; € Ais an atom for 0 < i <n
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m A logic program, P, over a set A of atoms is a finite set of rules

m A (normal) rule, r, is of the form
ao < ai,---,dm, ~aAm+1,.--,~an

where 0 < m < n and each a; € Ais an atom for 0 < i <n
m Notation

head(r) = ap

body(r) = {a1,...,am,~am+1,.--,~an}t
body(r)"™ = {a1,...,am}
body(r)” = {am+1,--.,an}

atom(P) = ,cp ({head(r)} U body(r)* U body(r)~)
body(P) = {body(r)|re€ P}
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Syntax

Normal logic programs

m A logic program, P, over a set A of atoms is a finite set of rules

m A (normal) rule, r, is of the form

ao < ai,---,dm, ~aAm+1,.--,~an

where 0 < m < n and each a; € Ais an atom for 0 < i <n

m Notation
head(r)
body(r)
body/(r)"
body(r)” =
atom(P) =
body(P) =

m A program P is positive if body(r)” = forall r € P

M. Gebser and T. Schaub (KRR@UP)

ao
{a1,--.,am,~am+1,..-,~an}
{a1,...,am}

{am+1,---,an}

U,ep ({head(r)} U body(r)* U body(r)™)
{body(r) | r € P}
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Syntax

Rough notational convention

We sometimes use the following notation interchangeably
in order to stress the respective view:

default  classical
true, false if and or iff negation negation
source code 3= I

, not =
logic program — , ; ~ =
formula 1, T - ANV ~ -
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Semantics

Problem solving in ASP: Semantics

Problem

Modeling

Logic Program

Solution

Interpreting

M. Gebser and T. Schaub (KRR@UP)

Solving
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Semantics

Formal Definition

Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r € P, head(r) € X whenever body(r)* C X
X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the C-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P
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for any r € P, head(r) € X whenever body(r)* C X
m X corresponds to a model of P (seen as a formula)

m The smallest set of atoms which is closed under a positive program P
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Semantics

Some “logical” remarks

m Positive rules are also referred to as definite clauses
m Definite clauses are disjunctions with exactly one positive atom:

aV-a V---V-oa,
m A set of definite clauses has a (unique) smallest model

Horn clauses are clauses with at most one positive atom

Every definite clause is a Horn clause but not vice versa
Non-definite Horn clauses can be regarded as integrity constraints

A set of Horn clauses has a smallest model or none

This smallest model is the intended semantics of such sets of clauses
Given a positive program P, Cn(P) corresponds to the smallest model
of the set of definite clauses corresponding to P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 42 / 429
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Some “logical” remarks
m Positive rules are also referred to as definite clauses
m Definite clauses are disjunctions with exactly one positive atom:
aV-aV---V-ay,

m A set of definite clauses has a (unique) smallest model

m Horn clauses are clauses with at most one positive atom

m Every definite clause is a Horn clause but not vice versa
m Non-definite Horn clauses can be regarded as integrity constraints

m A set of Horn clauses has a smallest model or none
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Semantics

Some “logical” remarks

m Positive rules are also referred to as definite clauses
m Definite clauses are disjunctions with exactly one positive atom:

aV-aV---V-ay,
m A set of definite clauses has a (unique) smallest model

m Horn clauses are clauses with at most one positive atom

m Every definite clause is a Horn clause but not vice versa
m Non-definite Horn clauses can be regarded as integrity constraints

m A set of Horn clauses has a smallest model or none

m This smallest model is the intended semantics of such sets of clauses

m Given a positive program P, Cn(P) corresponds to the smallest model
of the set of definite clauses corresponding to P
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Semantics

Basic idea

Consider the logical formula  and its three

(classical) models: ®[qg A (qgA-r—p)]

{p,q}.{q,r}, and {p,q,r}

Formula ® has one stable model,
often called answer set:

{p.q}

Pq;q(f
p < q,~r

Informally, a set X of atoms is a stable model of a logic program P
if X is a (classical) model of P and
if all atoms in X are justified by some rule in P
(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gddel, 1932))
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Basic idea
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Semantics

Formal Definition

Stable model of normal programs

m The reduct, PX, of a program P relative to a set X of atoms is
defined by

PX = {head(r) < body(r)* | r € P and body(r)” N X = ()}
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Formal Definition

Stable model of normal programs

m The reduct, PX, of a program P relative to a set X of atoms is
defined by

PX = {head(r) < body(r)* | r € P and body(r)” N X = ()}

m A set X of atoms is a stable model of a program P, if Cn(PX) = X
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Semantics

Formal Definition

Stable model of normal programs

m The reduct, PX, of a program P relative to a set X of atoms is
defined by

PX = {head(r) < body(r)* | r € P and body(r)” N X = ()}

m A set X of atoms is a stable model of a program P, if Cn(PX) = X

m Note Cn(PX) is the C—smallest (classical) model of PX

m Note Every atom in X is justified by an “applying rule from P”
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Semantics

A closer look at PX

m In other words, given a set X of atoms from P,

PX is obtained from P by deleting
each rule having ~a in its body with a € X
and then
all negative atoms of the form ~a
in the bodies of the remaining rules
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Semantics

A closer look at PX

m In other words, given a set X of atoms from P,

PX is obtained from P by deleting

each rule having ~a in its body with a € X
and then

all negative atoms of the form ~a
in the bodies of the remaining rules

m Note Only negative body literals are evaluated wrt X
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Examples

A first example

P={p<+ p, g+ ~p}

X pX Cn(P*X)

{ p < p {q}
q <

{p } p <~ p 0

{ a} p < p {q}
q <

{p,q} p < p 0
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Examples

A second example

P={p+ ~q, q < ~p}

X pX Cn(P*X)
{p.q}

{p}
{ q} {q}

Q
T T
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Examples

A second example
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Examples

A third example

P={p  ~p}

X px Cn(P*)
1} p {r}
ir} 0
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A third example

P={p  ~p}

X pX Cn(PX)
{} p {p}

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 49 / 429



Examples

A third example

P={p  ~p}

X pX Cn(PX)
{} p {p}

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 49 / 429



Examples

A third example

P={p  ~p}

X pX Cn(PX)
{} p {p}

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 49 / 429



Examples

A third example
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Examples

Some properties

m A logic program may have zero, one, or multiple stable models!

If X is a stable model of a logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a normal program P,
then X £ Y
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Examples

Some properties

m A logic program may have zero, one, or multiple stable models!
m If X is a stable model of a logic program P,
then X is a model of P (seen as a formula)

m If X and Y are stable models of a normal program P,
then X Z Y
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VELELIES

Programs with Variables

Let P be a logic program
m Let 7 be a set of (variable-free) terms

m Let A be a set of (variable-free) atoms constructable from T

Ground Instances of r € P: Set of variable-free rules obtained by
replacing all variables in r by elements from 7

ground(r) = {r6 | 0 : var(r) — T and var(rf) = 0}

where var(r) stands for the set of all variables occurring in r;
6 is a (ground) substitution

Ground Instantiation of P:  ground(P) = |J,.p ground(r)
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Variables

Programs with Variables

Let P be a logic program
m Let 7 be a set of variable-free terms (also called Herbrand universe)

m Let A be a set of (variable-free) atoms constructable from T
(also called alphabet or Herbrand base)
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Variables

Programs with Variables

Let P be a logic program
m Let 7 be a set of (variable-free) terms
m Let A be a set of (variable-free) atoms constructable from 7

m Ground Instances of r € P: Set of variable-free rules obtained by
replacing all variables in r by elements from 7:

ground(r) = {r6 | 0 : var(r) — T and var(rf) = 0}

where var(r) stands for the set of all variables occurring in r;
0 is a (ground) substitution
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Variables

Programs with Variables

Let P be a logic program
m Let 7 be a set of (variable-free) terms

m Let A be a set of (variable-free) atoms constructable from 7

m Ground Instances of r € P: Set of variable-free rules obtained by
replacing all variables in r by elements from 7:

ground(r) = {r6 | 0 : var(r) — T and var(rf) = 0}

where var(r) stands for the set of all variables occurring in r;
0 is a (ground) substitution

m Ground Instantiation of P:  ground(P) = |J,cp ground(r)
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Variables

An example

P={ r(a,b) <, r(b,c) +, t(X,Y)+ r(X,Y)}
T={ab,c}

A: { r(a’ a)’ r(a7 b)’ r(a7 C)’ r(b’ a)’ r(b’ b)’ r(b7 C)7 r(C’ a)’ r(c’ b)’ r(c7 C)’ }
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)
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Variables

An example

P={ r(a,b) <, r(b,c) +, t(X,Y)+ r(X,Y)}
T={ab,c}

A: { r(a’ a)’ r(a7 b)’ r(a7 C)’ r(b’ a)’ r(b’ b)’ r(b7 C)7 r(C’ a)’ r(c’ b)’ r(c7 C)’ }
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)
r(a, b) « ,
r(b,c) + ,
ground(P) = { t(a,a) < r(a,a), t(b,a) « r(b,a), t(c,a) r(c, a),
t(a, b) < r(a,b), t(b, b) < r(b,b), t(c,b) < r(c,b),
t(a,c) « r(a,c), t(b,c) r(b, ), t(c,c) r(c,c)
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Variables

An example

P={ r(a,b) <, r(b,c) +, t(X,Y)+ r(X,Y)}
T={ab,c}

A: r(a’ a)’ r(a7 b)’ r(a7 C)’ r(b’ a)’ r(b’ b)’ r(b7 C)7 r(C’ a)’ r(c’ b)’ r(c7 C)’
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)
r(a, b) « ,
r(b,c) + ,
ground(P) =
t(a, b) )

t(b,c) +

m Intelligent Grounding aims at reducing the ground instantiation
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Variables

Stable models of programs with Variables

Let P be a normal logic program with variables
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Variables

Stable models of programs with Variables
Let P be a normal logic program with variables

m A set X of (ground) atoms is a stable model of P,
if Cn(ground(P)X) = X

[ 1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 54 / 429



Language constructs

Outline

Language constructs
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Language constructs

Problem solving in ASP: Extended Syntax

Problem

Modeling

Logic Program

Solution

Interpreting

M. Gebser and T. Schaub (KRR@UP)

Solving

Answer Set Solving in Practice

Stable Models
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Language constructs

Language Constructs

Variables (over the Herbrand Universe)
p(X) :- q(X) over constants {a,b,c} stands for
p(a) :- q(a), p) :- q), plc) :- qlc)
Conditional Literals
p :- qX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a, q), qlc)
Disjunction
pX) | qX) :- r(X)
Integrity Constraints

- qX), pX)
Choice
2 {p&X,Y) : qX) } 7 :- r(Y)
Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd (&% Potassco
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Language constructs

Language Constructs

m Variables (over the Herbrand Universe)

m p(X) :- q(X) over constants {a,b,c} stands for
p(a) :- q(a), p(b) :- q(b), plc) :- qlc)
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Language constructs

Language Constructs

Variables (over the Herbrand Universe)
p(X) := q(X) over constants {a,b,c} stands for
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m Conditional Literals
mp - qgiX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), qlc)
Disjunction
pX) | qX) - r(X)
Integrity Constraints
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Choice
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Disjunction
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m Integrity Constraints
B - qX), pX)
Choice
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Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : qX) } 7
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Language Constructs
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Language constructs

Language Constructs

Variables (over the Herbrand Universe)
m p(X) :- q(X) over constants {a,b,c} stands for
p(a) :- q(a), p(d) :- q®), p(c) :- qlc)
m Conditional Literals
Ep :- qX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a, q), qlc)

m Integrity Constraints
B - gX), pX)
m Choice

B2 { pX,Y) : q(X) } 7 :- r(V)
m Aggregates
ms(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

m also: #sum, #avg, #min, #max, #even, #odd 3
& @?Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 57 / 429



Reasoning modes

Outline

Reasoning modes
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Reasoning modes

Problem solving in ASP: Reasoning Modes

Problem

Modeling

Logic Program

Solution

Interpreting

M. Gebser and T. Schaub (KRR@UP)

Solving

Answer Set Solving in Practice

Stable Models
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Reasoning modes

Reasoning Modes

Satisfiability
Enumeration'
Projection'
Intersection?

Union?

Optimization

and combinations of them

 without solution recording

¥ without solution enumeration
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Basic Modeling: Overview

ASP solving process

Methodology
m Satisfiability
m Queens
m Traveling Salesperson
m Reviewer Assignment
m Planning
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Modeling and Interpreting

Problem Solution
Modeling Interpreting
Logic Program Stable Models
Solving
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Modeling

m For solving a problem class C for a problem instance I,
encode
the problem instance | as a set P, of facts and
the problem class C as a set Pc of rules
such that the solutions to C for | can be (polynomially) extracted
from the stable models of P, U Pc
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Modeling
m For solving a problem class C for a problem instance I,

encode

the problem instance | as a set P, of facts and
the problem class C as a set Pc of rules

such that the solutions to C for | can be (polynomially) extracted
from the stable models of P, U Pc

m P is (still) called problem instance

m Pc is often called the problem encoding
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Modeling

For solving a problem class C for a problem instance I,
encode

the problem instance | as a set P, of facts and
the problem class C as a set Pc of rules

such that the solutions to C for | can be (polynomially) extracted
from the stable models of P, U Pc

Py is (still) called problem instance

Pc is often called the problem encoding

An encoding Pc is uniform, if it can be used to solve all its
problem instances
That is, Pc encodes the solutions to C for any set P; of facts
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Attention!

All following examples are written
in the language of gringo 3 !
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ASP solving process

Outline

ASP solving process

Satisfiability

Queens

Traveling Salesperson
Reviewer Assignment
Planning
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ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
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ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
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ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
Elaborating
(88 Potassco

M. Gebser and T. Schaub (KRR@UP)
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ASP solving process

A case-study: Graph coloring

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
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ASP solving process

Graph coloring

A graph consisting of nodes and edges
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ASP solving process

Graph coloring

m Problem instance A graph consisting of nodes and edges
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ASP solving process

Graph coloring

m Problem instance A graph consisting of nodes and edges
m facts formed by predicates node/1 and edge/2
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ASP solving process

Graph coloring

m Problem instance A graph consisting of nodes and edges

m facts formed by predicates node/1 and edge/2
m facts formed by predicate col/1
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ASP solving process

Graph coloring

m Problem instance A graph consisting of nodes and edges
m facts formed by predicates node/1 and edge/2
m facts formed by predicate col/1
m Problem class Assign each node one color such that no two nodes
connected by an edge have the same color
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ASP solving process

Graph coloring

m Problem instance A graph consisting of nodes and edges
m facts formed by predicates node/1 and edge/2
m facts formed by predicate col/1
m Problem class Assign each node one color such that no two nodes
connected by an edge have the same color
In other words,

Each node has a unique color
Two connected nodes must not have the same color
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ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
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node(1..6).

edge(1,2).
edge(2,4) .
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2) .

col(r).

1 { color(X,C)

:— edge(X,Y), color(X,C), color(Y,C).

M. Gebser and T. Schaub (KRR@UP)

ASP solving process

Graph coloring

edge(1,3). edge(1,4).
edge(2,5). edge(2,6).
edge(3,4). edge(3,5).
edge(4,2).
edge(5,4). edge(5,6).
edge(6,3). edge(6,5).
col(b). col(g) .
: col(C) } 1

Answer Set Solving in Practice

:— node (X) .

Problem
instance

Problem
encoding
(& Potassco
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node(1..6).

edge(1,2).
edge(2,4).
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2) .

col(r).

1 { color(X,C)

:— edge(X,Y), color(X,C), color(Y,C).

M. Gebser and T. Schaub (KRR@UP)

ASP solving process

Graph coloring

edge(1,3). edge(1,4).
edge(2,5). edge(2,6).
edge(3,4). edge(3,5).
edge(4,2).
edge(5,4). edge(5,6).
edge(6,3). edge(6,5).
col(b). col(g) .
: col(C) }+ 1

Answer Set Solving in Practice

:— node(X).

Problem
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Problem
encoding
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node(1..6).

edge(1,2).
edge(2,4) .
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2).

M. Gebser and T. Schaub (KRR@UP)

ASP solving process

edge(1,3).
edge(2,5).
edge(3,4).
edge (4,2).
edge(5,4) .
edge (6,3) .

Graph coloring

edge(1,4).
edge(2,6) .
edge(3,5).

edge(5,6) .
edge(6,5) .
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node(1..6).

edge(1,2).
edge(2,4) .
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2).

col(x).

M. Gebser and T. Schaub (KRR@UP)

ASP solving process

Graph coloring

edge(1,3). edge(1,4).

edge(2,5). edge(2,6).

edge(3,4). edge(3,5).

edge (4,2).

edge(5,4). edge(5,6).

edge(6,3). edge(6,5).
col(b). col(g).
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node(1..6).

edge(1,2).
edge(2,4) .
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2).

col(x).

M. Gebser and T. Schaub (KRR@UP)

ASP solving process

Graph coloring

edge(1,3). edge(1,4).

edge(2,5). edge(2,6).

edge(3,4). edge(3,5).

edge (4,2).

edge(5,4). edge(5,6).

edge(6,3). edge(6,5).
col(b). col(g).
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node(1..6).

edge(1,2).
edge(2,4) .
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2).

col(x).

1 { color(X,C)

ASP solving process

Graph coloring

edge(1,3). edge(1,4).
edge(2,5). edge(2,6).
edge(3,4). edge(3,5).
edge (4,2).

edge(5,4). edge(5,6).
edge(6,3). edge(6,5).

col(b). col(g).
: col(C) } 1 :- node(X).
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node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

ASP solving process

Graph coloring

col(r). col(b). col(g).
1 { color(X,C) : col(C) } 1 :- node(X).

:— edge(X,Y), color(X,C), color(Y,C). @ Pot
&2z Potassco
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ASP solving process

Graph coloring

node(1..6).
edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
col(r). col(b). col(g).
1 { color(X,C) : col(C) } 1 :- node(X).
Problem
:— edge(X,Y), color(X,C), color(Y,C). encgflng
(8 Potassco
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node(1..6).

edge(1,2).
edge(2,4) .
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2).

col(x).

1 { color(X,C)

:— edge(X,Y), color(X,C), color(Y,C).

M. Gebser and T. Schaub (KRR@UP)

ASP solving process

Graph coloring

edge(1,3). edge(1,4).
edge(2,5). edge(2,6).
edge(3,4). edge(3,5).
edge (4,2).
edge(5,4). edge(5,6).
edge(6,3). edge(6,5).
col(b). col(g).
: col(C) } 1
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ASP solving process

color.lp

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).
1 { color(X,C) : col(C) } 1 :- node(X).

:— edge(X,Y), color(X,C), color(Y,C). @ Pot
&2z Potassco
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ASP solving process

ASP solving process

Problem Solution
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ASP solving process

Graph coloring:

$ gringo --text color.lp

node(1). node(2). node(3). mnode(4). node(5). node(6).
edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5).
edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2).
edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).
col(r). col(b). col(g).
1 {color(1,r), color(1,b), color(i,g)} 1
1 {color(2,r), color(2,b), color(2,g)} 1
1 {color(3,r), color(3,b), color(3,g)} 1.
1 {color(4,r), color(4,b), color(4,g)} 1
1 {color(5,r), color(5,b), color(5,g)} 1
1 {color(6,r), color(6,b), color(6,g)} 1

:= color(1,r), color(2,r). :- color(2,g), color(5,g)

- color(1,b), color(2,b). :- color(2,r), color(6,r)

1= color(1,g), color(2,g). - color(2,b), color(6,b).

:- color(1,r), color(3,r). - color(2,g), color(6,g)

- color(1,b), color(3,b). - color(3,r), color(l,r)

- color(1l,g), color(3,g). - color(3,b), color(l,b)

:= color(1,r), color(4,r). - color(3,g), color(l,g).

- color(1,b), color(4,b). :- color(3,r), color(4,r)

:- color(l,g), color(4,g). - color(3,b), color(4,b)

:— color(2,r), color(4,r). - color(3,g), color(4,g)

:= color(2,b), color(4,b). - color(3,r), color(5,r)

:— color(2,g), color(4,g). - color(3,b), color(5,b)

M. Gebser and T. Schaub (KRR@UP)

edge(2,6) .
edge(5,3).

color(6,r),
color(6,b),
color(6,g),
color(6,r),
color(6,b),
color(6,g),
color(6,r),
color(6,b),
color(6,g),
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Grounding

color(2,r).
color(2,b).
color(2,g) .
color(3,r).
color(3,b).
color(3,g) .
color(5,r).
color(5,b).
color(5,g) .
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ASP solving process

Graph coloring:

$ gringo --text color.lp

node(1). node(2). node(3). mnode(4). node(5). node(6).
edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5).
edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2).
edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).
col(r). col(b). col(g).
1 {color(1,r), color(1,b), color(i,g)} 1
1 {color(2,r), color(2,b), color(2,g)} 1
1 {color(3,r), color(3,b), color(3,g)} 1.
1 {color(4,r), color(4,b), color(4,g)} 1.
1 {color(5,r), color(5,b), color(5,g)} 1
1 {color(6,r), color(6,b), color(6,g)} 1

:= color(1,r), color(2,r). :- color(2,g), color(5,g).

- color(1,b), color(2,b). - color(2,r), color(6,r).

- color(1,g), color(2,g). - color(2,b), color(6,b).

:- color(1,r), color(3,r). - color(2,g), color(6,g).

- color(1,b), color(3,b). - color(3,r), color(l,r).

- color(1,g), color(3,g). - color(3,b), color(1,b).

:- color(1,r), color(4,r). - color(3,g), color(l,g).

- color(1,b), color(4,b). - color(3,r), color(4,r).

- color(1,g), color(4,g). - color(3,b), color(4,b).

:= color(2,r), color(4,r). - color(3,g), color(4,g).

- color(2,b), color(4,b). - color(3,r), color(5,r).

- color(2,g), color(4,g). - color(3,b), color(5,b).

M. Gebser and T. Schaub (KRR@UP)

edge(2,6) .
edge(5,3) .

color(6,r),
color(6,b),
color(6,g),
color(6,r),
color(6,b),
color(6,g),
color(6,r),
color(6,b),
color(6,g),
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Grounding

color(2,r).
color(2,b).
color(2,g) .
color(3,r).
color(3,b).
color(3,g) .
color(5,r).
color(5,b).
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ASP solving process

Graph coloring: Solving

$ gringo color.lp | clasp O

clasp version 2.1.0
Reading from stdin

Solving...

Answer: 1

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,g) color(4,b) color(3,r) color(2,r) color(l,g)
Answer: 2

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,g) color(4,r) color(3,b) color(2,b) color(l,g)
Answer: 3

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,b) color(4,g) color(3,r) color(2,r) color(l,b)
Answer: 4

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,b) color(4,r) color(3,g) color(2,g) color(l,b)
Answer: 5

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,r) color(4,g) color(3,b) color(2,b) color(l,r)
Answer: 6

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(l,r)
SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s
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ASP solving process

Graph coloring: Solving

$ gringo color.lp | clasp O

clasp version 2.1.0
Reading from stdin

Solving...

Answer: 1

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,g) color(4,b) color(3,r) color(2,r) color(l,g)
Answer: 2

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,g) color(4,r) color(3,b) color(2,b) color(l,g)
Answer: 3

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,b) color(4,g) color(3,r) color(2,r) color(1l,b)
Answer: 4

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,b) color(4,r) color(3,g) color(2,g) color(l,b)
Answer: 5

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,r) color(4,g) color(3,b) color(2,b) color(l,r)
Answer: 6

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(i,r)
SATISFIABLE

Models 6

Time 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 74 / 429



ASP solving process

ASP solving process

Problem Solution
Modeling Interpreting
Logic Stable
Program Grounder Solver Models
Solving
(88 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 75 / 429



ASP solving process

A coloring

Answer: 6
edge(1,2) ... col(r) ... node(1) ... \
color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(l,r)

(3 Potassco
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ASP solving process

A coloring

Answer: 6
edge(1,2) ... col(r) ... node(1) ... \
color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(l,r)

(3 Potassco
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Outline
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m Queens

m Traveling Salesperson
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m Planning
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Methodology

Basic methodology

Methodology
Generate and Test  (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

[ 1 1=}
(8 Potassco
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Methodology

Basic methodology

Methodology
Generate and Test  (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell
Logic program = Data + Generator + Tester (+ Optimizer)

[ 1 1=}
(8 Potassco
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Methodology  Satisfiability

Outline
ASP solving process
Methodology
m Satisfiability

Queens

Traveling Salesperson

Reviewer Assignment

Planning
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Methodology  Satisfiability
Satisfiability testing
m Problem Instance: A propositional formula ¢ in CNF

m Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula ¢ is true

(3 Potassco
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Methodology  Satisfiability
Satisfiability testing

m Problem Instance: A propositional formula ¢ in CNF

m Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula ¢ is true

m Example: Consider formula
(aV—b)A(—aVb)

m Logic Program:

Generator Tester Stable models
{a,b} <« — ~a,b X1 = {a, b}
< a, ~b X2 = {}
@?Potassco
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Methodology  Satisfiability
Satisfiability testing

m Problem Instance: A propositional formula ¢ in CNF

m Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula ¢ is true

m Example: Consider formula
(aV—b)A(—aVb)

m Logic Program:

Generator Tester Stable models
{a,b} « — ~a,b X1 = {a, b}
< a, ~b X2 = {}
@?Potassco
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Methodology  Satisfiability
Satisfiability testing

m Problem Instance: A propositional formula ¢ in CNF

m Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula ¢ is true

m Example: Consider formula
(aV —b)A(—aVb)

m Logic Program:

Generator Tester Stable models
{a,b} <« «— ~a,b X1 = {a, b}
< a, ~b X2 = {}
@?Potassco
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Methodology  Satisfiability
Satisfiability testing

m Problem Instance: A propositional formula ¢ in CNF

m Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula ¢ is true

m Example: Consider formula
(aV —b)A(—aVb)

m Logic Program:

Generator Tester Stable models
{a,b} <« — ~a,b X1 = {a, b}
< a, ~b X2 = {}
@?Potassco
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Methodology ~ Queens

Outline
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Methodology
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m Queens
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Methodology Queens

The n-Queens Problem

chess board

another
T
L

m Place n queens on an n X n
m Queens must not attack one

B -
L
%////3
R .

n < oo N -

(3 Potassco

July 15, 2013

82 / 429

Answer Set Solving in Practice

nd T. Schaub (KRRQUP)

Gebser a



Methodology Queens

Defining the Field

queens.lp

row(l..n).
col(l..n).

m Create file queens.1p
m Define the field

B N rows
m n columns

[ 1 1=}
(3% Potassco
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Methodology Queens

Defining the Field

Running ...

$ gringo queens.lp --const n=5 | clasp
Answer: 1

row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5)

SATISFIABLE

Models 1

Time 0.000
Prepare 0.000
Prepro. 0.000
Solving 0.000

(3 Potassco
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Methodology Queens

Placing some Queens

queens.lp
row(1l..n).
col(l..n).

{ queen(I,J) : row(I) : col(J) }.

m Guess a solution candidate

by placing some queens on the board

[ 1 1=}
(3% Potassco
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Running . ..

Methodology

Queens

Placing some Queens

$ gringo queens.lp --const n=5 | clasp 3

Answer:
row(1)
col(1)
Answer:
row(1)
col(1)
Answer:
row(1)
col(1)

1
row(2)
col(2)

2
row(2)
col(2)

3
row(2)
col(2)

SATISFIABLE

Models

row(3)
col(3)

row(3)
[ INE))

row(3)
col(3)

: 3+

M. Gebser and T. Schaub (KRR@UP)

row(4)
col(4)

row(4)
col(4)

row(4)
col(4)

row(5)
col(5)

row(5)
col(5)

row(5)
col(5)

\

\
queen(1,1)

\
queen(2,1)
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Placing some Queens: Answer 1

Answer 1

27/ //%7 %V/

1 2

x&
\\x

M. Gebser and T. Schaub (KRR@UP)
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Placing some Queens: Answer 2

Answer 2
_ %

(3 Potassco
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Placing some Queens: Answer 3

Answer 3

/
1%%%
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Methodology Queens

Placing n Queens
queens.lp
row(l..n).
col(1l..n).

{ queen(I,J) : row(I) : col(J) }.
:- not n { queen(I,J) } n.

m Place exactly n queens on the board

[ 1 1=}
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Methodology Queens

Placing n Queens

Running . ..

$ gringo queens.lp --const n=5 | clasp 2
Answer: 1

row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,1) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(b) \
queen(1,2) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)

(3 Potassco
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Placing n Queens: Answer 1

Answer 1

[ 1 1=}
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Answer 2
@’/% _

» // _
2}%‘%/%
@’% _

3

&

M. Gebser and T. Schaub (KRR@UP)

Placing n Queens: Answer 2
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Methodology Queens

Horizontal and Vertical Attack

queens.lp
row(1l..n).
col(l..n).

{ queen(I,J) : row(I) : col(J) }.
:- not n { queen(I,J) } n.
:- queen(I,J), queen(I,JJ), J != JJ.

m Forbid horizontal attacks

[ 1 1=}
(3% Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 94 / 429



Methodology Queens

Horizontal and Vertical Attack

queens.lp
row(1l..n).
col(l..n).

{ queen(I,J) : row(I) : col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,JJ), J !'= JJ.
:- queen(I,J), queen(II,J), I != II.

m Forbid horizontal attacks

m Forbid vertical attacks

[ 1 1=}
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Methodology Queens

Horizontal and Vertical Attack

Running ...

$ gringo queens.lp --const n=5 | clasp
Answer: 1

row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,5) queen(4,4) queen(3,3) \
queen(2,2) queen(1,1)

(3 Potassco
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Methodology Queens

Horizontal and Vertical Attack: Answer 1

Answer 1

[ 1 1=}
(3% Potassco
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Methodology Queens

Diagonal Attack

queens.lp
row(1l..n).
col(l..n).

{ queen(I,J) : row(I) : col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,JJ), J !'= JJ.

:- queen(I,J), queen(II,J), I != II.

:- queen(I,J), queen(II,JJ), (I,J) !'= (II,JJ), I-J
:— queen(I,J), queen(II,JJ), (I,J) !'= (II,JJ), I+J

m Forbid diagonal attacks

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice

== JI-JJ.
== II+JJ.
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Methodology Queens

Diagonal Attack

Running . ..

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(4,5) queen(1,4) queen(3,3) queen(5,2) queen(2,1)
SATISFIABLE

Models : 1+

Time : 0.000
Prepare : 0.000
Prepro. : 0.000

Solving : 0.000

(3 Potassco
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Diagonal Attack: Answer 1

Answer 1

(3 Potassco
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Methodology Queens

Optimizing
queens-opt.1lp
1 { queen(I,1..n) } 1 I=1..n.
queen(l..n,J) } 1 :- J = 1..n.
2 { queen(D-J,J) }, D = 2..2+*n.
2 { queen(D+J,J) }, D =1

-
-~

-n..n-1.

Encoding can be optimized

Much faster to solve

[ 1 1=}
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Methodology Queens

And sometimes it rocks

$ clingo -c n=5000 queens-opt-diag.lp --config=jumpy -q --stats=3
clingo version 4.1.0

Solving...
SATISFIABLE
Models 3 il
Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)
CPU Time : 3758.320s
Choices : 288594554
Conflicts : 3442  (Analyzed: 3442)
Restarts g il (Average: 202.47 Last: 3442)
Model-Level : 7594728.0
Problems g il (Average Length: 0.00 Splits: 0)
Lemmas : 3442  (Deleted: 0)
Binary : 0 (Ratio:  0.00%)
Ternary : 0 (Ratio:  0.00%)
Conflict : 3442  (Average Length: 229056.5 Ratio: 100.00%)
Loop : 0 (Average Length: 0.0 Ratio:  0.00%)
Other : 0 (Average Length: 0.0 Ratio:  0.00%)
Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)
Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)
Bodies : 25090103
Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: O Other: 75020000)
Tight HICL
Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)

Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442  (Average: 681.19 Max: 169512 Sum: 2344658)
Executed 1 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)

M. Gebser and T. Schaub (KRR@UP) ~ Answer Set Solving in Practice
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Methodology ~ Traveling Salesperson

Outline

ASP solving process
Methodology

Satisfiability

Queens

m Traveling Salesperson
Reviewer Assignment
Planning
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node(1..6).

edge(1,2;3;4).
edge(4,1;2).

cost(1,2,2).
cost(2,4,2).
cost(3,1,3).
cost(4,1,1).
cost(5,3,2).
cost(6,2,4).

M. Gebser and T. Schaub (KRR@UP)

Methodology

edge(2,4;5;6).

edge(5,3;4;6) .
cost(1,3,3). cost(1,4,1).
cost(2,5,2). cost(2,6,4).
cost(3,4,2). cost(3,5,2).
cost(4,2,2).
cost(5,4,2). cost(5,6,1).
cost(6,3,3). cost(6,5,1).

Traveling Salesperson

Answer Set Solving in Practice

Traveling Salesperson

edge(3,1;4;5).
edge(6,2;3;5).

(EE\E Potassco



Methodology Traveling Salesperson
Traveling Salesperson

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).
edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

[ 1 1=}
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Methodology Traveling Salesperson

Traveling Salesperson

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).
edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).
cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).

M. Gebser and T. Schaub (KRR@UP)
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Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).
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Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).
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Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

:— node(Y), not reached(Y).
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Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

:— node(Y), not reached(Y).

#minimize [ cycle(X,Y) = C : cost(X,Y,C) 1].
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Methodology Reviewer Assignment

Outline

ASP solving process
Methodology

Satisfiability

Queens

Traveling Salesperson

m Reviewer Assignment
Planning
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Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemel3

reviewer(rl). paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p3).
reviewer(r2). paper(p2). classA(rl,p3). classB(rl,p4). coi(rl,p6).
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Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemel3

reviewer(rl). paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p3).
reviewer(r2). paper(p2). classA(rl,p3). classB(rl,p4). coi(rl,p6).

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).
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Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemel3

reviewer(rl). paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p3).
reviewer(r2). paper(p2). classA(rl,p3). classB(rl,p4). coi(rl,p6).

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).
:— assigned(P,R), coi(R,P).

:— assigned(P,R), not classA(R,P), not classB(R,P).
:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).
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Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemel3

reviewer(rl). paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p3).
reviewer(r2). paper(p2). classA(rl,p3). classB(rl,p4). coi(rl,p6).

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).
:— assigned(P,R), coi(R,P).
:— assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).
:= 3 { assignedB(P,R) : paper(P) }, reviewer(R).
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Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemel3

reviewer(rl). paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p3).
reviewer(r2). paper(p2). classA(rl,p3). classB(rl,p4). coi(rl,p6).
3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:— assigned(P,R), coi(R,P).

:— assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).
:= 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.
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Methodology Planning

Outline

ASP solving process
Methodology

Satisfiability

Queens

Traveling Salesperson

Reviewer Assignment

m Planning
(88 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 107 / 429



Methodology Planning

Simplistic STRIPS Planning

time(1..k). lasttime(T) :- time(T), not time(T+1).

fluent (p) . action(a). action(b) . init(p).

fluent(q) . pre(a,p). pre(b,q) .

fluent(r) . add(a,q) . add(b,r) . query(r) .
del(a,p). del(b,q) .

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).
:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occ(A,T), add(A,F).
nolds(F,T) :- occ(A,T), del(A,F).

:- query(F), not holds(F,T), lasttime(T).
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time(1..k).

fluent (p) .
fluent(q) .
fluent(r) .

Methodology Planning

Simplistic STRIPS Planning

lasttime(T) :- time(T), not time(T+1).
action(a). action(b). init(p).
pre(a,p). pre(b,q).
add(a,q) . add(b,r) . query (r) .
del(a,p). del(b,q).
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Methodology Planning

Simplistic STRIPS Planning

time(1..k). lasttime(T) :- time(T), not time(T+1).

fluent (p) . action(a). action(b). init(p).

fluent(q) . pre(a,p). pre(b,q).

fluent (r) . add(a,q) . add(b,r) . query (r) .
del(a,p). del(b,q).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).
:= occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occ(A,T), add(A,F).
nolds(F,T) :- occ(A,T), del(A,F).
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Methodology Planning

Simplistic STRIPS Planning

time(1..k). lasttime(T) :- time(T), not time(T+1).

fluent (p) . action(a). action(b). init(p).

fluent(q) . pre(a,p). pre(b,q).

fluent (r) . add(a,q) . add(b,r) . query (r) .
del(a,p). del(b,q).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).
:= occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occ(A,T), add(A,F).
nolds(F,T) :- occ(A,T), del(A,F).

;= query(F), not holds(F,T), lasttime(T).
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Language: Overview

Motivation

Core language
m Integrity constraint
m Choice rule
m Cardinality rule
m Weight rule

Extended language
m Conditional literal
m Optimization statement

smodels format

ASP language standard
(8 Potassco
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Motivation

Outline
Motivation
Integrity constraint
Choice rule
Cardinality rule
Weight rule
Conditional literal
Optimization statement
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Motivation

Basic language extensions

m The expressiveness of a language can be enhanced by introducing
new constructs
m To this end, we must address the following issues:

m What is the syntax of the new language construct?
m What is the semantics of the new language construct?
m How to implement the new language construct?
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Motivation

Basic language extensions

m The expressiveness of a language can be enhanced by introducing
new constructs
m To this end, we must address the following issues:

m What is the syntax of the new language construct?
m What is the semantics of the new language construct?
m How to implement the new language construct?

m A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation
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Motivation

Basic language extensions

m The expressiveness of a language can be enhanced by introducing
new constructs
m To this end, we must address the following issues:

m What is the syntax of the new language construct?
m What is the semantics of the new language construct?
m How to implement the new language construct?

m A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

m This translation might also be used for implementing the language
extension
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Core language

Outline
Core language

m Integrity constraint
m Choice rule
m Cardinality rule
m Weight rule

Conditional literal

Optimization statement
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Core language Integrity constraint

Outline

Motivation

Core language
m Integrity constraint
Choice rule
Cardinality rule
Weight rule

Extended language
Conditional literal
Optimization statement

smodels format

ASP language standard
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Core language Integrity constraint

Integrity constraint

m |ldea Eliminate unwanted solution candidates

m Syntax An integrity constraint is of the form
< a1,...,8m,~aAm41,---,~an

where 0 < m < n and each a; is an atom for 1 </ < n

m Example :— edge(3,7), color(3,red), color(7,red).
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Core language Integrity constraint

Integrity constraint

m |ldea Eliminate unwanted solution candidates

m Syntax An integrity constraint is of the form
< a1,...,8m,~aAm41,---,~an

where 0 < m < n and each a; is an atom for 1 </ < n

m Example :— edge(3,7), color(3,red), color(7,red).
m Embedding The above integrity constraint can be turned into the
normal rule
X< al,...,a@m,~Am+1,---,~an, ~X

where x is a new symbol, that is, x € A.

[ 1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 114 / 429



Core language Integrity constraint

Integrity constraint

m |ldea Eliminate unwanted solution candidates

m Syntax An integrity constraint is of the form
< a1,...,8m,~aAm41,---,~an

where 0 < m < n and each a; is an atom for 1 </ < n

m Example :— edge(3,7), color(3,red), color(7,red).
m Embedding The above integrity constraint can be turned into the
normal rule
X< al,...,a@m,~Am+1,---,~an, ~X

where x is a new symbol, that is, x € A.

m Another example P = {a <+ ~b, b+ ~a}

; " _ ~
versus P’ = PU{< a} and P"=PU{+ ~a} (38 Potassco
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Core language Choice rule

Outline

Motivation

Core language
Integrity constraint
m Choice rule
Cardinality rule
Weight rule

Extended language
Conditional literal
Optimization statement

smodels format

ASP language standard
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Core language Choice rule

Choice rule
m Idea Choices over subsets
m Syntax A choice rule is of the form
{a1,.-.,am} < am+1,---,3n, ~ant1, .- ., ~a0

where 0 < m < n < o and each a; is an atom for 1 </ < o
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Core language Choice rule

Choice rule
m Idea Choices over subsets
m Syntax A choice rule is of the form
{a1,.-.,am} < am+1,---,3n, ~ant1, .- ., ~a0

where 0 < m < n < o and each a; is an atom for 1 </ < o

m Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1,...,am} can be included in the stable model
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Core language Choice rule

Choice rule
m Idea Choices over subsets
m Syntax A choice rule is of the form
{a1,.-.,am} < am+1,---,3n, ~ant1, .- ., ~a0

where 0 < m < n < o and each a; is an atom for 1 </ < o

m Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1,...,am} can be included in the stable model

m Example { buy(pizza), buy(wine), buy(corn) } :- at(grocery).
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Core language Choice rule

Choice rule
Idea Choices over subsets
Syntax A choice rule is of the form
{a1,.-.,am} < am+1,---,3n, ~ant1, .- ., ~a0

where 0 < m < n < o and each a; is an atom for 1 </ < o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1,...,am} can be included in the stable model

Example { buy(pizza), buy(wine), buy(corn) } :- at(grocery).

Another Example P = {{a} <~ b, b<} has two stable models:
{b} and {a, b}
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Core language Choice rule

Embedding in normal rules
m A choice rule of form
{a1,.-.,am} < am+1,-- -, 3n, ~ant1, .- ., ~a0

can be translated into 2m + 1 normal rules

/

a < ami+l,---,8n,~aAny1l,--.,~ao

ap ¢+ a,~a am <+ a,~am,

a; — ~ap am $ ~am
by introducing new atoms a’,3at, ..., an.
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Core language Choice rule

Embedding in normal rules
m A choice rule of form
{a1,.-.,am} < am+1,-- -, a3n, ~ant1, .-, ~a0

can be translated into 2m + 1 normal rules

/

d <~ am+ly---,dp,~ap+l,--.,~ao
ap ¢+ a,~a am <+ a,~am,
a; — ~ap am $ ~am

by introducing new atoms a’,3at, ..., an.
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Core language Choice rule

Embedding in normal rules
m A choice rule of form
{a1,.-,am} < am+1, -+, 3n, ~ant1, .-, ~a0

can be translated into 2m + 1 normal rules

/

a < ami+l,---,8n,~aAny1l,--.,~ao

ap + a,~a am <+ a,~am,

a; — ~ap am $ ~am
by introducing new atoms a’,3at, ..., an.
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Core language Cardinality rule

Outline

Motivation

Core language
Integrity constraint
Choice rule

m Cardinality rule
Weight rule

Extended language
Conditional literal
Optimization statement

smodels format

ASP language standard
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Core language Cardinality rule

Cardinality rule

m Idea Control (lower) cardinality of subsets

m Syntax A cardinality rule is the form
a1 {a1,...,am,~amt+1,.-.,~an }

where 0 < m < n and each a; is an atom for 1 < j < n;
| is a non-negative integer.
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Core language Cardinality rule

Cardinality rule

m Idea Control (lower) cardinality of subsets

m Syntax A cardinality rule is the form

a1 {a1,...,am,~amt+1,.-.,~an }

where 0 < m < n and each a; is an atom for 1 < j < n;
| is a non-negative integer.

m Informal meaning The head atom belongs to the stable model,
if at least / elements of the body are included in the stable model

m Note / acts as a lower bound on the body
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Core language Cardinality rule

Cardinality rule

m Idea Control (lower) cardinality of subsets

m Syntax A cardinality rule is the form
a1 {a1,...,am,~amt+1,.-.,~an }

where 0 < m < n and each a; is an atom for 1 < j < n;
| is a non-negative integer.

m Informal meaning The head atom belongs to the stable model,
if at least / elements of the body are included in the stable model

m Note / acts as a lower bound on the body

m Example pass(c42) :- 2 { pass(al), pass(a2), pass(a3) }.
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Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets

Syntax A cardinality rule is the form

a1 {a1,...,am,~amt+1,.-.,~an }

where 0 < m < n and each a; is an atom for 1 < j < n;
| is a non-negative integer.

Informal meaning The head atom belongs to the stable model,
if at least / elements of the body are included in the stable model

Note / acts as a lower bound on the body

Example pass(c42) :- 2 { pass(al), pass(a2), pass(a3) }.
Another Example P = {a < 1{b,c}, b<+} has stable model {a, b}
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Core language Cardinality rule

Embedding in normal rules
m Replace each cardinality rule
ap <« I {a1,...,am,~amt+1,--.,~an }

by ag + ctr(1,/)

where atom ctr(i, j) represents the fact that at least j of the literals
having an equal or greater index than i/, are in a stable model
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Core language Cardinality rule

Embedding in normal rules
m Replace each cardinality rule
ap <« I {a1,...,am,~amt+1,--.,~an }

by ag + ctr(1,/)
where atom ctr(i, j) represents the fact that at least j of the literals
having an equal or greater index than i/, are in a stable model

m The definition of ctr/2 is given for 0 < k </ by the rules

ctr(i, k+1) <« ctr(i+1,k), a;
ctr(i, k) <« ctr(i+1,k) for1<i<m
ctr(j, k+1) <« ctr(j+ 1, k), ~a;
ctr(j, k) « ctr(j+1,k) form+1<j<n
ctr(n+1,0) <«
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Core language Cardinality rule

Embedding in normal rules
m Replace each cardinality rule
ao < I{a1,...,am,~amt+1,--.,~an }

by ag + ctr(1,/)
where atom ctr(i, j) represents the fact that at least j of the literals
having an equal or greater index than i/, are in a stable model
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Core language Cardinality rule

Embedding in normal rules
m Replace each cardinality rule
a1 {a1,...,am,~amt+1,--.,~an }

by ag + ctr(1,/)
where atom ctr(i, j) represents the fact that at least j of the literals
having an equal or greater index than i/, are in a stable model

m The definition of ctr/2 is given for 0 < k </ by the rules

ctr(i, k+1) <« ctr(i+1,k), a;
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Core language

Cardinality rule

Embedding in normal rules

m Replace each cardinality rule

ao<—l{al,...

by ag + ctr(1,/)

7am7

~am+1;---5,™~dn }

where atom ctr(i, j) represents the fact that at least j of the literals
having an equal or greater index than i/, are in a stable model

m The definition of ctr/2 is given for 0 < k </ by the rules

ctr(i, k+1)
ctr(i, k)
ctr(J, k—|—1)
)
ctr(n+1,0)

M. Gebser and T. Schaub (KRR@UP)

TTT T

ctr(i + 1, k), a;
ctr(i+1, k)
ctr(j + 1, k), ~a;
ctr(j+ 1, k)
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Core language Cardinality rule

An example

m Program {a <, ¢ < 1 {a, b}} has the stable model {a, c}
Translating the cardinality rule yields the rules

a c « ctr(1,1)
ctr(1,2) <« ctr(2, 1),a
ctr(1,1) «+ ctr(2,1)
ctr(2,2) «+ ctr(3,1),b
ctr(2,1) <« ctr(3,1)
ctr(1,1) <« ctr(2,0),a
ctr(1,0) <« ctr(2,0)
ctr(2,1) <« ctr(3,0),b
ctr(2,0) <« ctr(3,0)
ctr(3,0) <«

having stable model {a, ctr(3,0), ctr(2,0), ctr(1,0), ctr(1, 12,\CI}D
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Core language Cardinality rule

An example

m Program {a <, ¢ < 1 {a, b}} has the stable model {a, c}
m Translating the cardinality rule yields the rules

a <+ c « ctr(1,1)
ctr(1,2) <« ctr(2,1),a
ctr(1,1) <« ctr(2,1)
ctr(2,2) «+ ctr(3,1),b
ctr(2,1) <« ctr(3,1)
ctr(1,1) <« ctr(2,0),a
ctr(1,0) <« ctr(2,0)
ctr(2,1) <« ctr(3,0),b
ctr(2,0) <« ctr(3,0)
ctr(3,0) <«

having stable model {a, ctr(3,0), ctr(2,0), ctr(1,0), ctr(1,1 g%
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Core language Cardinality rule

and vice versa

m A normal rule
ag <— at,.--,3dm,~aAm+1,---,~an,
can be represented by the cardinality rule

ag < n{a,...,am,~am+1,.--,~ant

[ 1 1=}
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Core language Cardinality rule

Cardinality rules with upper bounds

m A rule of the form
a1 {a1,...,am, ~am4+1,...,~an } U

where 0 < m < n and each a; is an atom for 1 < j < n;
| and u are non-negative integers
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Core language Cardinality rule

Cardinality rules with upper bounds

m A rule of the form
a1 {a1,...,am, ~am4+1,...,~an } U

where 0 < m < n and each a; is an atom for 1 < j < n;
| and u are non-negative integers

stands for

ag <+ b,~c
b <« I{a1,...,3m, ~amt+1,---,~an }
c « utl{al,...,am, ~amt+1,--.,~an }

where b and ¢ are new symbols
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Core language Cardinality rule

Cardinality rules with upper bounds

m A rule of the form
a1 {a1,...,am, ~ams+1,...,~an } U

where 0 < m < n and each a; is an atom for 1 < j < n;
| and u are non-negative integers

stands for
ag <+ b,~c

b <« I{a1,...,3m, ~amt+1,---,~an }
c « utl{al,...,am, ~amt+1,--.,~an }

where b and ¢ are new symbols
m The single constraint in the body of the above cardinality rule is

referred to as a cardinality constraint .
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Core language Cardinality rule

Cardinality constraints
m Syntax A cardinality constraint is of the form
I{a1,...,am, ~am41,...,~an } U

where 0 < m < n and each a; is an atom for 1 < j < n;
| and u are non-negative integers
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Core language Cardinality rule

Cardinality constraints

m Syntax A cardinality constraint is of the form
I{a1,...,am, ~am41,...,~an } U

where 0 < m < n and each a; is an atom for 1 < j < n;
| and u are non-negative integers

m Informal meaning A cardinality constraint is satisfied by a stable
model X, if the number of its contained literals satisfied by X is
between / and u (inclusive)
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Core language Cardinality rule

Cardinality constraints

m Syntax A cardinality constraint is of the form

I{a1,...,am, ~am41,...,~an } U

where 0 < m < n and each a; is an atom for 1 < j < n;
| and u are non-negative integers

m Informal meaning A cardinality constraint is satisfied by a stable
model X, if the number of its contained literals satisfied by X is
between / and u (inclusive)

m In other words, if

I<|({a1,---,am} N X)U ({ams1,---sant \ X) | < u
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Core language Cardinality rule

Cardinality constraints as heads

m A rule of the form

I{a1,...,am,~am41,...,~an} U4 anil,..., 30, ~Aot1;---,~ap

where 0 < m < n < o < p and each a; is an atom for 1 </ < p;
| and u are non-negative integers
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Core language Cardinality rule

Cardinality constraints as heads
m A rule of the form
I{a1,...,am,~am41,...,~an} U4 anil,..., 30, ~Aot1;---,~ap

where 0 < m < n < o < p and each a; is an atom for 1 </ < p;
| and u are non-negative integers

stands for
b <+ apy1,...,380,~a041,...,~ap
{a1,...,am} < b
c « I{a1,...,am,,~am4+1,...,~an} U
+— b,~c

where b and ¢ are new symbols
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Core language Cardinality rule

Cardinality constraints as heads
m A rule of the form
I{a1,...,am,~am41,...,~an} U4 anil,..., 30, ~Aot1;---,~ap

where 0 < m < n < o < p and each a; is an atom for 1 </ < p;
| and u are non-negative integers

stands for
b <+ apy1,...,380,~a041,...,~ap
{a1,...,am} < b
c « I{a1,...,am,,~am4+1,...,~an} U
+— b,~c

where b and ¢ are new symbols

m Example 1 { color(v42,red),color(v42,green),color(v42,blue) } 1.
o
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Core language Cardinality rule

Full-fledged cardinality rules

m A rule of the form
/0 50 UO%/l 51 U1,...7/n Sn Up

where for 0 </ < neach I; S; u;
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Core language Cardinality rule

Full-fledged cardinality rules

m A rule of the form
/0 50 Uo%ll 51 U1,...,/n Sn Up

where for 0 </ < neach I; S; u;
stands for 0 < j <n

a < bi,...,bp,~c1,...,~Cy
So+ <— a
+— a,~by by <« I;'S;
<— a,q ¢G <+ u+ls;

where a, bj, ¢; are new symbols
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where for 0 </ < neach I; S; u;
stands for 0 < j <n

a < bi,...,bp,~c1,...,~Cy
So+ <— a
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Full-fledged cardinality rules
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where for 0 </ < neach I; S; u;
stands for 0 < j <n

a < bi,...,bp,~c1,...,~Cpy
So+ <— a
+— a,~by by <« I;'S;
<— a,q ¢ <+ u+ls;

where a, bj, ¢; are new symbols
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Core language Cardinality rule

Full-fledged cardinality rules

m A rule of the form
/0 50 UO%II 51 U1,...,/n Sn Up

where for 0 </ < neach I; S; u;
stands for 0 < j <n

a < bi,...,bp,~c1,. .., ~Cy
So+ <— a
+— a,~by by <« I;'S;
<— a,q ¢G <+ u+ls;
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Core language Cardinality rule

Full-fledged cardinality rules

m A rule of the form
/0 50 UO%/l 51 u1,...,/n Sn Up

where for 0 </ < neach I; S; u;
stands for 0 < j <n

a < bi,...,bp,~c1,...,~Cy
So+ <— a
<~ a, Nbo b,‘ — /,' 5,'
<— a, 0 ¢ <+ u+ls;

where a, bj, ¢; are new symbols
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Outline

Motivation

Core language
Integrity constraint
Choice rule
Cardinality rule
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Extended language
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Core language Weight rule

Weight rule

m Syntax A weight rule is the form
ap < /{al =Wi,...,dm = Wm,~am+1 = Wmt1,...,~dn = Wn}

where 0 < m < n and each a; is an atom;
| and w; are integers for 1 < i <n

m A weighted literal, ¢; = w;, associates each literal ¢; with a weight w;
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Core language Weight rule

Weight rule
m Syntax A weight rule is the form
ap < /{al =Wi,...,dm = Wm,~am+1 = Wmt1,...,~dn = Wn}

where 0 < m < n and each a; is an atom;
| and w; are integers for 1 < i <n

m A weighted literal, ¢; = w;, associates each literal ¢; with a weight w;

m Note A cardinality rule is a weight rule where w; =1 for 0 </ <n

C: Potassco
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Core language Weight rule

Weight constraints
m Syntax A weight constraint is of the form
I{ai=wi,...,3m = Wm, ~am41 = Wmt1,...,~ap = Wp } U

where 0 < m < n and each a; is an atom;
I, u and w; are integers for 1 < i <n
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Core language Weight rule

Weight constraints
m Syntax A weight constraint is of the form
I{ai=wi,...,3m = Wm, ~am41 = Wmt1,...,~ap = Wp } U

where 0 < m < n and each a; is an atom;
I, u and w; are integers for 1 < i <n

m Meaning A weight constraint is satisfied by a stable model X, if

IS <Zl§i§m,a,€x Wi + Zm<i§n,3i¢X Wi) S Y
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Core language Weight rule

Weight constraints

m Syntax A weight constraint is of the form
I{ai=wi,...,3m = Wm, ~am41 = Wmt1,...,~ap = Wp } U

where 0 < m < n and each a; is an atom;
I, u and w; are integers for 1 < i <n

m Meaning A weight constraint is satisfied by a stable model X, if

IS <Zl§i§m,a,€x Wi + Zm<i§n,3i¢X Wi) S Y

m Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions
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Core language Weight rule

Weight constraints
m Syntax A weight constraint is of the form
I{ai=wi,...,3m = Wm, ~am41 = Wmt1,...,~ap = Wp } U

where 0 < m < n and each a; is an atom;
I, u and w; are integers for 1 < i <n

m Meaning A weight constraint is satisfied by a stable model X, if

IS <Zl§i§m,a,€x Wi + Zm<i§n,3i¢X Wi) S Y

m Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

| ] Example 10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20
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Extended language

Outline
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Choice rule
Cardinality rule
Weight rule

Extended language
m Conditional literal
m Optimization statement

(3 Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 130 / 429



Extended language Conditional literal

Outline

Motivation
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Choice rule
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Extended language Conditional literal

Conditional literals (in Iparse & gringo 3)
m Syntax A conditional literal is of the form
b:01:---: 4,

where ¢ and ¢; are literals for 0 < j <n

m Informal meaning A conditional literal can be regarded as the list of
elements in the set {¢ | {1,...,0,}
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Extended language Conditional literal

Conditional literals (in Iparse & gringo 3)
m Syntax A conditional literal is of the form
b:01:---: 4,

where ¢ and ¢; are literals for 0 < j <n

m Informal meaning A conditional literal can be regarded as the list of
elements in the set {¢ | {1,...,0,}

m Note The expansion of conditional literals is context dependent
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Extended language Conditional literal

Conditional literals (in Iparse & gringo 3)

m Syntax A conditional literal is of the form
b:01:---: 4,

where ¢ and ¢; are literals for 0 < j <n

m Informal meaning A conditional literal can be regarded as the list of
elements in the set {¢ | {1,...,0,}

m Note The expansion of conditional literals is context dependent

m Example Given ‘p(1). p(2). p(3). q(2).’
r(X):p(X) :not q(X) :- r(X):p(X) :not qX), 1 {r(X):p(X):not q(X)}.
is instantiated to
r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.
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Extended language Conditional literal

Conditional literals (in Iparse & gringo 3)

m Syntax A conditional literal is of the form
b:01:---: 4,

where ¢ and ¢; are literals for 0 < j <n

m Informal meaning A conditional literal can be regarded as the list of
elements in the set {¢ | {1,...,0,}

m Note The expansion of conditional literals is context dependent

m Example Given ‘p(1). p(2). p(3). q(2).’
r(X):p(X) :not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.
is instantiated to
r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.
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Extended language Conditional literal

Conditional literals (in Iparse & gringo 3)

m Syntax A conditional literal is of the form
b:01:---: 4,

where ¢ and ¢; are literals for 0 < j <n

m Informal meaning A conditional literal can be regarded as the list of
elements in the set {¢ | {1,...,0,}

m Note The expansion of conditional literals is context dependent

m Example Given ‘p(1). p(2). p(3). q(2).’
r(X) :p(X) ot q(X) :- r(X):pX) :not q(X), 1 {r(X):p(X):not q(X)}.
is instantiated to
r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.
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Extended language Conditional literal

Conditional literals (in Iparse & gringo 3)

m Syntax A conditional literal is of the form
b:01:---: 4,

where ¢ and ¢; are literals for 0 < j <n

m Informal meaning A conditional literal can be regarded as the list of
elements in the set {¢ | {1,...,0,}

m Note The expansion of conditional literals is context dependent

m Example Given ‘p(1). p(2). p(3). q(2).’
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Extended language Conditional literal

Conditional literals (in Iparse & gringo 3)

m Syntax A conditional literal is of the form
b:01:---: 4,

where ¢ and ¢; are literals for 0 < j <n

m Informal meaning A conditional literal can be regarded as the list of
elements in the set {¢ | {1,...,0,}

m Note The expansion of conditional literals is context dependent

m Example Given ‘p(1). p(2). p(3). q(2).’
r(X):p(X) :not q(X) :- r(X):pX):not q(X), 1 {r(X):p(X):not q(X)}.
is instantiated to
r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.
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Extended language Optimization statement

Optimization statement

m |dea Express cost functions subject to minimization and/or
maximization

m Syntax A minimize statement is of the form
minimize{ {1 = w1@py, ..., ¢, = w,0p, }.

where each /; is a literal; and w; and p; are integers for 1 < i <n

(g8
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Extended language Optimization statement

Optimization statement

m |dea Express cost functions subject to minimization and/or
maximization

m Syntax A minimize statement is of the form
minimize{ {1 = w1@py, ..., ¢, = w,0p, }.

where each /; is a literal; and w; and p; are integers for 1 < i <n

Priority levels, p;, allow for representing lexicographically ordered
minimization objectives
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Extended language Optimization statement

Optimization statement

m |dea Express cost functions subject to minimization and/or
maximization

m Syntax A minimize statement is of the form
minimize{ {1 = w1@py, ..., ¢, = w,0p, }.

where each /; is a literal; and w; and p; are integers for 1 < i <n

Priority levels, p;, allow for representing lexicographically ordered
minimization objectives

m Meaning A minimize statement is a directive that instructs the ASP
solver to compute optimal stable models by minimizing a weighted
sum of elements
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Extended language ~ Optimization statement

Optimization statement

m A maximize statement of the form
maximize{ {1 = w1Qpy,..., ¢, = w,0p, }
stands for minimize{ {1 = —w1@ps, ..., ¢, = —w,0p, }

When configuring a computer, we may want to maximize
hard disk capacity, while minimizing price
#maximize[ hd(1)=250@1, hd(2)=50001, hd(3)=7500@1, hd(4)=100001 ].
#minimize[ hd(1)=3002, hd(2)=4002, hd(3)=600@2, hd(4)=8002 ].
The priority levels indicate that (minimizing) price is more important
than (maximizing) capacity
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Extended language Optimization statement

Optimization statement

m A maximize statement of the form
maximize{ {1 = w1Qpy,..., ¢, = w,0p, }
stands for minimize{ ¢{; = —w1@ps,..., ¢, = —w,0p, }

m Example When configuring a computer, we may want to maximize
hard disk capacity, while minimizing price
#maximize[ hd(1)=250@1, hd(2)=500@1, hd(3)=750@1, hd(4)=100001 ].
#minimize[ hd(1)=30@2, hd(2)=40@2, hd(3)=6002, hd(4)=80@2 ].
The priority levels indicate that (minimizing) price is more important
than (maximizing) capacity
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smodels format

smodels format

m Logic programs in smodels format consist of

normal rules

choice rules

cardinality rules

weight rules
optimization statements

m Such a format is obtained by grounders Iparse and gringo
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ASP language standard
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m smodels format is a machine-oriented standard for ground programs
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m ASP-Core-2 is a user-oriented standard for (non-ground) programs
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Problem

Modeling

Logic
Program

ASP language standard

Solving

Grounder

ASP-Core-2

Solution

Interpreting

ASP-Core-2

Solver

smodels format

Stable
Models

m smodels format is a machine-oriented standard for ground programs

m ASP-Core-2 is a user-oriented standard for (non-ground) programs,

extending the input languages of dlv and gringo series 3
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ASP language standard

Aggregates

m Syntax ASP-Core-2 aggregates are of the form

t1 <1 #A{th,. ey tmy 2611,... ,6,,1} <92 t

where
m #A € {#count, #sum, #max, #min}
B <, < Ee{<, <=, 4,>,>)
B ty,,...,tm and t, to are terms
mly,,..., 0 are literals
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ASP language standard

Aggregates

m Syntax ASP-Core-2 aggregates are of the form

t1 -<1#A{t11,...,1.'m12511,...,5,,1;...; tlk,...,tmkiglk,...,gnk} Y
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Aggregates
m Syntax ASP-Core-2 aggregates are of the form
t1 <1 ##A{tll,...,tnu 2511,...,€n1;...; iy tmy :€1k7"~;€nk}‘<2 [5)
where

m #A € {#count, #sum, #max, #min}

B <1,<X2 € {<7§a:77é7>72}

Bty tmy, -5 ti, ..., tm,, and ti, & are terms
B0y, by, Oy, Ly, are literals

m Example Weight constraint
10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20
is written as an ASP-Core-2 aggregate as

10 < #sum{6,db:course(db); 6,ai:course(ai);
8,project:course(project); 3,xml:course(xml)} < 20
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ASP language standard

Weak constraints

m Syntax A weak constraint is of the form

~ a3l @my ~Amtd, - -, ~an. (WOP, 1, ... ]

where
® aj,...,a, are atoms

W t,...,tn, W, and p are terms
ai,...,anp may contain ASP-Core-2 aggregates

w and p stand for a weight and priority level (p = 0 if ‘Qp’ is omitted)
Minimize statement

#minimize[ hd(1)=3002, hd(2)=4002, hd(3)=6002, hd(4)=8002 ].

can be written in terms of weak constraints as

‘~hd(1). [3002,1] ~hd(3). [6002,3]
i~ hd(2) . [4002,2] i~ hd(4). [8002,4]

am0
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 141 / 429



ASP language standard

Weak constraints

m Syntax A weak constraint is of the form

i~ A1y ..oy @my ~Amaly - -y ~an. [WOP, t1, .. ]

where
m a1,...,a, are atoms
W t,...,tn, W, and p are terms

m aj,...,a, may contain ASP-Core-2 aggregates
m w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

[ 1 1=}
(8 Potassco
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 141 / 429



ASP language standard

Weak constraints

m Syntax A weak constraint is of the form

i~ A1y ..oy @my ~Amaly - -y ~an. [WOP, t1, .. ]

where
m a1,...,a, are atoms
W t,...,tn, W, and p are terms

m aj,...,a, may contain ASP-Core-2 aggregates
m w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)
m Example Minimize statement

#minimize[ hd(1)=3002, hd(2)=4002, hd(3)=6002, hd(4)=8002 ].

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 141 / 429



ASP language standard

Weak constraints

m Syntax A weak constraint is of the form

i~ A1y ..oy @my ~Amaly - -y ~an. [WOP, t1, .. ]

where
m a1,...,a, are atoms
W t,...,tn, W, and p are terms

m aj,...,a, may contain ASP-Core-2 aggregates
m w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)
m Example Minimize statement

#minimize[ hd(1)=3002, hd(2)=4002, hd(3)=6002, hd(4)=8002 ].

can be written in terms of weak constraints as

‘~hd(1). [3002,1] ~hd(3). [6002,3]
i~ hd(2). [4002,2] i~ hd(4). [8002,4]

@? Potassco

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 15, 2013 141 / 429



ASP language standard

gringo 4

m The input language of gringo series 4 comprises

m ASP-Core-2
m concepts from gringo 3 (conditional literals, #show directives, ...)
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m The input language of gringo series 4 comprises

m ASP-Core-2
m concepts from gringo 3 (conditional literals, #show directives, ...)

m Example The gringo 3 rule
r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X) ,not q(X) :- r(X):p(X),not q(X);
1 <= #count{X:r(X),p(X),not q(X)}.
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r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X) ,not q(X) :- r(X):p(X),not q(X);
1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
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The input language of gringo series 4 comprises

m ASP-Core-2
m concepts from gringo 3 (conditional literals, #show directives, ...)

Example The gringo 3 rule
r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:
r(X):p(X) ,not q(X) :- r(X):p(X),not q(X);
1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
#show. #show hello. #show X : p(X). 1{p(earth);p(mars);p(venus)}1.

Attention The languages of gringo 3 and 4 are not fully compatible
m Many example programs given in this tutorial are written for gringo 3
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Language Extensions: Overview

Two kinds of negation

Disjunctive logic programs

Propositional theories
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Two kinds of negation

Outline

Two kinds of negation
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Two kinds of negation

Motivation

m Classical versus default negation

m Symbol — and ~
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Two kinds of negation

Motivation
m Classical versus default negation
m Symbol — and ~
m ldea
B a3~ aceX
m~ax agX
m Example
B Cross < —train
B Cross < ~train
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Two kinds of negation

Classical negation

m We consider logic programs in negation normal form
m That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {-a|a € A} such that
ANA=0

Given a program P over A, classical negation is encoded by adding

P"={a+ b-b|ac(AUA),bc A}

A set X of atoms is a stable model of a program P over AU A,
if X is a stable model of PU P~
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Two kinds of negation

An example

m The program

P = {a< ~b, b« ~a}U{c+ b, -c < b}

induces
a < a, —a a < b,—b a < c,—cC
—a <+ a,—a —a <+ b,=b —a +— c¢,—C
p_ b < a,—a b < b,—b b < c¢,—c
-b <+ a,—a -b < b,-b -b <+ «c¢,—c
c <« a,a c < b,—b c « c¢,cC
-Cc 4+ a,a -c <+ b,=b -c ¢+ c,—C

The stable models of P are given by the ones of P U P, viz {a}
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Two kinds of negation

An example

m The program

P = {a< ~b, b ~a}U{c+<+ b, -c <+ b}

induces
(a2 + a,a a + b,—b a « c¢,—c )
-a <+« a,—a —a <+ b,—b -a + c¢,—C
. b < a,—a b < b,—b b < c¢,—c

P~ =
-b +— a,—a -b <+ b,-b -b +— ¢,
c « a,a c < b,—b c « c¢,cC
-c + a,—a -c + b,7b -Cc + c¢,—C
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m The program

Two kinds of negation

An example

P = {a< ~b, b ~a}U{c+<+ b, -c <+ b}

induces

a
—a
b
—b
c
-c

P~ =

TTTTTT

a, a
a,a
a, a
a, a
a,a
a, —a

a
—a
b
-b
c
-c

TTTTTT

b,—b
b, b
b,—b
b, b
b, —b
b, b

a
—a
b
-b
c
—-C

TTTTTT

Cc,C
Cc,C
Cc,C
Cc,C
c,C
Cc,C

m The stable models of P are given by the ones of PU P, viz {a}

M. Gebser and T. Schaub (KRR@UP)
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Two kinds of negation
Properties

m The only inconsistent stable “model” is X = AU A

Strictly speaking, an inconsistemt set like AU A is not a model

For a logic program P over A U A, exactly one of the following two
cases applies:

All stableﬂwodels of P are consistent or
X = AU A is the only stable model of P
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m The only inconsistent stable “model” is X = AU A

m Note Strictly speaking, an inconsistemt set like A U A is not a model
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X = AU A is the only stable model of P
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Two kinds of negation

m Py = {cross < ~train}
m P, = {cross < —train}
m P3 = {cross < —train,
m Py = {cross < —train,
m Ps = {cross < —train,
m Ps = {cross < —train,

M. Gebser and T. Schaub (KRR@UP)

Train spotting

—train <}
—train <—, —cross <}
—train < ~train}

—train < ~train, —cross <}
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Two kinds of negation

Train spotting

m Py = {cross < ~train}
m stable model: {cross}

P, = {cross < —train}
stable model: ()

P3 = {cross < —train, —train <}
stable model: {cross, —train}

Py = {cross < —train, —train <, —cross <}
stable model: {cross, —cross, train, —train}

Ps = {cross < —train, —train < ~train}
stable model: {cross, —train}

Pe = {cross < —train, —train <— ~train, —cross <}
no stable model
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Two kinds of negation

Train spotting

m Py = {cross <— —train, —train <, —cross <}
m stable model: {cross, —cross, train, —train}
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Two kinds of negation

Train spotting

P1 = {cross < ~train}
m stable model: {cross}

P, = {cross < —train}
m stable model: ()

P3 = {cross « —train, —train <}
m stable model: {cross, —train}

Py = {cross < —train, —train <—, —cross <}
m stable model: {cross, —cross, train, —train}
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Two kinds of negation

Default negation in rule heads

m We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let A={3]aec A} such that
ANA={
Given a program P over A, consider the program
P = {r € P | head(r) # ~a}
U {« body(r)U{~a} | r € P and head(r) = ~a}
U {3+« ~a|re P and head(r) = ~a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A, N B
if X =Y N A for some stable model Y of P over AU A
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Disjunctive logic programs

Outline

Disjunctive logic programs
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Disjunctive logic programs

Disjunctive logic programs
m A disjunctive rule, r, is of the form
al ;... ;@m < @m+1,---538n,~aAnt+ly---,~do

where 0 < m < n < o0 and each a; is an atom for 0 </ < o

m A disjun