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Rough Roadmap

1 08:45-10:30 Motivation, Introduction, Basic modeling

2 11:00-12:45 Language, Characterizations, Solving, Systems

3 Lunchtime

4 13:45-15:30 Grounding, Multi-shot solving
(Python integration and control)

5 16:00-17:45 Applications of Multi-shot-shot solving
(Gaming in rounds, Interaction, Preference handling)
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Resources

Course material

http://potassco.sourceforge.net/teaching.html

http://moodle.cs.uni-potsdam.de

http://www.cs.uni-potsdam.de/wv/lehre

Systems

clasp http://potassco.sourceforge.net

clingo http://potassco.sourceforge.net

dlv http://www.dlvsystem.com

smodels http://www.tcs.hut.fi/Software/smodels

wasp https://www.mat.unical.it/ricca/wasp

gringo http://potassco.sourceforge.net

lparse http://www.tcs.hut.fi/Software/smodels

asparagus http://asparagus.cs.uni-potsdam.de
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Literature

Books [4], [31], [55]

Surveys [52], [2], [41], [23], [11]

Articles [43], [44], [6], [63], [56], [51], [42], etc.
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Motivation: Overview

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP
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Motivation

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms
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5 ASP solving

6 Using ASP
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Motivation

Informatics

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6
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Motivation

Traditional programming

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
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Motivation

Traditional programming

“What is the problem?” versus “How to solve the problem?”

Problem

Program

Solution

Output
?

-

6

Programming Interpreting

Executing
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Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Interpreting
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Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem
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Motivation

Declarative problem solving
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Nutshell

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP
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Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas
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Nutshell

Answer Set Programming
in a Hazelnutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

tailored to Knowledge Representation and Reasoning
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Nutshell

Answer Set Programming
in a Hazelnutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

ASP = DB+LP+KR+SAT
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Shifting paradigms

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP
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Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions
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Shifting paradigms

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models

SAT

propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...
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Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).

true.

?- above(c,a).

no.
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Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries (testing entailment)

?- above(a,c).

true.

?- above(c,a).

no.
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Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries

?- above(a,c).

Fatal Error: local stack overflow.
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Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries (answered via fixed execution)

?- above(a,c).

Fatal Error: local stack overflow.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 17 / 392



Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation
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Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y )→ above(X ,Y ))
∧ (on(X ,Z ) ∧ above(Z ,Y )→ above(X ,Y ))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}
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Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y )→ above(X ,Y ))
∧ (on(X ,Z ) ∧ above(Z ,Y )→ above(X ,Y ))

Herbrand model (among 426!){
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}
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Rooting ASP

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP
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Rooting ASP

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation
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Rooting ASP

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

å Answer Set Programming (ASP)
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Rooting ASP

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...
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Rooting ASP

Answer Set Programming at large

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...
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Rooting ASP

Answer Set Programming commonly

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 22 / 392



Rooting ASP

Answer Set Programming in practice

Representation Solution
constraint satisfaction problem assignment
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Rooting ASP

Answer Set Programming in practice

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

first-order programs stable Herbrand models
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Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }
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Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- above(Z,Y), on(X,Z).

above(X,Y) :- on(X,Y).

Stable Herbrand model (and no others)
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Rooting ASP

ASP versus LP

ASP Prolog

Model generation Query orientation

Bottom-up Top-down

Modeling language Programming language

Rule-based format

Instantiation Unification
Flat terms Nested terms

(Turing +) NP(NP) Turing
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Rooting ASP

ASP versus SAT

ASP SAT

Model generation

Bottom-up

Constructive Logic Classical Logic

Closed (and open) Open world reasoning
world reasoning

Modeling language —

Complex reasoning modes Satisfiability testing

Satisfiability Satisfiability
Enumeration/Projection —
Intersection/Union —
Optimization —

(Turing +) NP(NP) NP
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ASP solving

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms
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ASP solving
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ASP solving

Rooting ASP solving
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Using ASP

Two sides of a coin

ASP as High-level Language

Express problem instance(s) as sets of facts
Encode problem (class) as a set of rules
Read off solutions from stable models of facts and rules

ASP as Low-level Language

Compile a problem into a logic program
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs
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Express problem instance(s) as sets of facts
Encode problem (class) as a set of rules
Read off solutions from stable models of facts and rules

ASP as Low-level Language

Compile a problem into a logic program
Solve the original problem by solving its compilation
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Using ASP

What is ASP good for?

Combinatorial search problems in the realm of P, NP, and NPNP

(some with substantial amount of data), like

Automated planning
Code optimization
Database integration
Decision support for NASA shuttle controllers
Model checking
Music composition
Product configuration
Robotics
Systems biology
System design
Team building
and many many more
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Using ASP

What does ASP offer?

Integration of DB, KR, and SAT techniques

Succinct, elaboration-tolerant problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications

including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SAT

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 33 / 392



Using ASP

What does ASP offer?

Integration of DB, KR, and SAT techniques

Succinct, elaboration-tolerant problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications

including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SAT

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 33 / 392



Using ASP

What does ASP offer?

Integration of DB, KR, and SAT techniques

Succinct, elaboration-tolerant problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications

including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SMTn

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 33 / 392



Introduction: Overview

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 34 / 392



Syntax

Outline

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 35 / 392



Syntax

Problem solving in ASP: Syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

head(r) = a0

body(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}
atom(P) =

⋃
r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program P is positive if body(r)− = ∅ for all r ∈ P
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Syntax

Rough notational convention

We sometimes use the following notation interchangeably
in order to stress the respective view:

default classical
true, false if and or iff negation negation

source code :- , ; not -

logic program ← , ; ∼ ¬
formula ⊥,> → ∧ ∨ ↔ ∼ ¬
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Semantics

Problem solving in ASP: Semantics

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P
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Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))
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Semantics

Formal Definition
Stable model of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX ) = X

Note Cn(PX ) is the ⊆–smallest (classical) model of PX

Note Every atom in X is justified by an “applying rule from P”
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Semantics

A closer look at PX

In other words, given a set X of atoms from P,

PX is obtained from P by deleting

1 each rule having ∼a in its body with a ∈ X
and then

2 all negative atoms of the form ∼a
in the bodies of the remaining rules

Note Only negative body literals are evaluated wrt X
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Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅
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Examples

A first example

P = {p ← p, q ← ¬p}
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Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8
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Examples

A second example

P = {p ← ¬q, q ← ¬p}

X PX Cn(PX )
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A third example
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Examples

A third example

P = {p ← ¬p}

X PX Cn(PX )

{ } p ← {p} 8

{p} ∅ 4
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Examples

Some properties

A logic program may have zero, one, or multiple stable models!

If X is a stable model of a logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a normal program P,
then X 6⊂ Y
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Variables

Programs with Variables

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 51 / 392



Variables

Programs with Variables

Let P be a logic program

Let T be a set of

(

variable-free

)

terms (also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T
(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 51 / 392



Variables

Programs with Variables

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 51 / 392



Variables

Programs with Variables

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 51 / 392



Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y )← r(X ,Y ) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Intelligent Grounding aims at reducing the ground instantiation
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Variables

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X ) = X
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Language constructs

Problem solving in ASP: Extended Syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Language constructs

Language constructs

Variables (over the Herbrand universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) ; q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #sum { X : p(X,Y), q(X) } 7
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Reasoning modes

Problem solving in ASP: Reasoning Modes

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Reasoning modes

Reasoning Modes

Satisfiability

Enumeration†

Projection†

Intersection‡

Union‡

Optimization

and combinations of them

† without solution recording
‡ without solution enumeration
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Basic Modeling: Overview

13 ASP solving process

14 Methodology
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Modeling and Interpreting

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Modeling

For solving a problem class C for a problem instance I,
encode

1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

PI is (still) called problem instance

PC is often called the problem encoding

An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 62 / 392



Modeling

For solving a problem class C for a problem instance I,
encode

1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

PI is (still) called problem instance

PC is often called the problem encoding

An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 62 / 392



Modeling

For solving a problem class C for a problem instance I,
encode

1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

PI is (still) called problem instance

PC is often called the problem encoding

An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 62 / 392



ASP solving process

Outline

13 ASP solving process

14 Methodology

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 63 / 392



ASP solving process

ASP solving process
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Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 64 / 392



ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 64 / 392



ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 64 / 392



ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 64 / 392



ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 64 / 392



ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 64 / 392



ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving6

Elaborating
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ASP solving process

A case-study: Graph coloring

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving
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ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2
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ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate col/1
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ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate col/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color
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ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate col/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color

In other words,

1 Each node has one color
2 Two connected nodes must not have the same color
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ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable
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ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding
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ASP solving process

Graph coloring: Grounding

$ gringo --text color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(1,g)} 1.

1 {color(2,r), color(2,b), color(2,g)} 1.

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1.

1 {color(5,r), color(5,b), color(5,g)} 1.

1 {color(6,r), color(6,b), color(6,g)} 1.

:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).

:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).

:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).

:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).

:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).

:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).

:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).

:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).

:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).

:- color(2,r), color(4,r). :- color(3,g), color(4,g).

:- color(2,b), color(4,b). :- color(3,r), color(5,r).

:- color(2,g), color(4,g). :- color(3,b), color(5,b).

:- color(2,r), color(5,r). :- color(3,g), color(5,g).

:- color(2,b), color(5,b). :- color(4,r), color(1,r).
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ASP solving process

Graph coloring: Grounding

$ gringo --text color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(1,g)} 1.

1 {color(2,r), color(2,b), color(2,g)} 1.

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1.

1 {color(5,r), color(5,b), color(5,g)} 1.

1 {color(6,r), color(6,b), color(6,g)} 1.
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:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).

:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).

:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).

:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).

:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).

:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).

:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).

:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).

:- color(2,r), color(4,r). :- color(3,g), color(4,g).

:- color(2,b), color(4,b). :- color(3,r), color(5,r).

:- color(2,g), color(4,g). :- color(3,b), color(5,b).

:- color(2,r), color(5,r). :- color(3,g), color(5,g).

:- color(2,b), color(5,b). :- color(4,r), color(1,r).
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ASP solving process

Graph coloring: Solving

$ gringo color.lp | clasp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,g) color(4,b) color(3,r) color(2,r) color(1,g)

Answer: 2

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,g) color(4,r) color(3,b) color(2,b) color(1,g)

Answer: 3

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,b) color(4,g) color(3,r) color(2,r) color(1,b)

Answer: 4

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,b) color(4,r) color(3,g) color(2,g) color(1,b)

Answer: 5

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,r) color(4,g) color(3,b) color(2,b) color(1,r)

Answer: 6

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s
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ASP solving process

A coloring

Answer: 6

edge(1,2) ... col(r) ... node(1) ... \

color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

1 2

3

4

5

6
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ASP solving process

A coloring

Answer: 6

edge(1,2) ... col(r) ... node(1) ... \

color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

1 2

3

4

5

6

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 74 / 392



Methodology

Outline

13 ASP solving process

14 Methodology
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Methodology

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester ( + Optimizer)
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Methodology Satisfiability

Outline

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning
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Methodology Satisfiability

Satisfiability testing

Problem Instance: A propositional formula φ in CNF

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program:

Generator Tester Stable models
{ a } ←
{ b } ←

← ∼a, b
← a,∼b

X1 = {a, b}
X2 = {}
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Methodology Queens

The n-Queens Problem

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

Place n queens on an n × n
chess board

Queens must not attack one
another

Q Q Q

Q Q
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Methodology Queens

Defining the Field

queens.lp

row(1..n).

col(1..n).

Create file queens.lp

Define the field

n rows
n columns
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Methodology Queens

Defining the Field

Running . . .

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

SATISFIABLE

Models : 1

Time : 0.000

Prepare : 0.000

Prepro. : 0.000

Solving : 0.000
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Methodology Queens

Placing some Queens

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

Guess a solution candidate

by placing some queens on the board
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Methodology Queens

Placing some Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 3

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(1,1)

Answer: 3

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(2,1)

SATISFIABLE

Models : 3+

...
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Methodology Queens

Placing some Queens: Answer 1

Answer 1

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5
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Methodology Queens

Placing some Queens: Answer 2

Answer 2

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 L0Z0Z

1 2 3 4 5
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Methodology Queens

Placing some Queens: Answer 3

Answer 3

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 QZ0Z0
1 Z0Z0Z

1 2 3 4 5
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Methodology Queens

Placing n Queens

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

:- not n { queen(I,J) } n.

Place exactly n queens on the board
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Methodology Queens

Placing n Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 2

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,1) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(1,2) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

...
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Methodology Queens

Placing n Queens: Answer 1

Answer 1

5 L0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 L0Z0Z

1 2 3 4 5
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Methodology Queens

Placing n Queens: Answer 2

Answer 2

5 Z0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 LQZ0Z

1 2 3 4 5
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Methodology Queens

Horizontal and Vertical Attack

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

Forbid horizontal attacks

Forbid vertical attacks
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Methodology Queens

Horizontal and Vertical Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,5) queen(4,4) queen(3,3) \

queen(2,2) queen(1,1)

...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 93 / 392



Methodology Queens

Horizontal and Vertical Attack: Answer 1

Answer 1

5 Z0Z0L
4 0Z0L0
3 Z0L0Z
2 0L0Z0
1 L0Z0Z

1 2 3 4 5
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Methodology Queens

Diagonal Attack

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I-J == I’-J’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I+J == I’+J’.

Forbid diagonal attacks
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Methodology Queens

Diagonal Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(4,5) queen(1,4) queen(3,3) queen(5,2) queen(2,1)

SATISFIABLE

Models : 1+

Time : 0.000

Prepare : 0.000

Prepro. : 0.000

Solving : 0.000
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Methodology Queens

Diagonal Attack: Answer 1

Answer 1

5 ZQZ0Z
4 0Z0ZQ
3 Z0L0Z
2 QZ0Z0
1 Z0ZQZ

1 2 3 4 5
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Methodology Queens

Optimizing

queens-opt.lp

1 { queen(I,1..n) } 1 :- I = 1..n.

1 { queen(1..n,J) } 1 :- J = 1..n.

:- 2 { queen(D-J,J) }, D = 2..2*n.

:- 2 { queen(D+J,J) }, D = 1-n..n-1.

Encoding can be optimized

Much faster to solve
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Methodology Queens

And sometimes it rocks

$ clingo -c n=5000 queens-opt-diag.lp --config=jumpy -q --stats=2
clingo version 4.1.0
Solving...
SATISFIABLE

Models : 1+
Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)
CPU Time : 3758.320s

Choices : 288594554
Conflicts : 3442 (Analyzed: 3442)
Restarts : 17 (Average: 202.47 Last: 3442)
Model-Level : 7594728.0
Problems : 1 (Average Length: 0.00 Splits: 0)
Lemmas : 3442 (Deleted: 0)

Binary : 0 (Ratio: 0.00%)
Ternary : 0 (Ratio: 0.00%)
Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)
Loop : 0 (Average Length: 0.0 Ratio: 0.00%)
Other : 0 (Average Length: 0.0 Ratio: 0.00%)

Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)
Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)
Bodies : 25090103
Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: 0 Other: 75020000)
Tight : Yes
Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)
Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)
Executed : 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)
Bounded : 0 (Average: 0.00 Max: 0 Sum: 0 Ratio: 0.00%)
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Methodology Traveling Salesperson

Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).

cost(2,4,2). cost(2,5,2). cost(2,6,4).

cost(3,1,3). cost(3,4,2). cost(3,5,2).

cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).

cost(6,2,4). cost(6,3,3). cost(6,5,1).
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Methodology Traveling Salesperson

Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
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edge(X,Y) :- cost(X,Y,_).
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Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.
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Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.
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reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 104 / 392



Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä
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Methodology Planning

Simplistic STRIPS Planning

time(1..k).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occ(A,T), add(A,F).

nolds(F,T) :- occ(A,T), del(A,F).

:- query(F), not holds(F,k).
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Motivation

Basic language extensions

The expressiveness of a language can be enhanced by introducing
new constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension
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Core language Integrity constraint
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Core language Integrity constraint

Integrity constraint

Idea Eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

Example :- edge(3,7), color(3,red), color(7,red).

Embedding The above integrity constraint can be turned into the
normal rule

x ← a1, . . . , am,∼am+1, . . . ,∼an,∼x

where x is a new symbol, that is, x 6∈ A.

Another example P = {a← ∼b, b ← ∼a}
versus P ′ = P ∪ {← a} and P ′′ = P ∪ {← ∼a}
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where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

Example :- edge(3,7), color(3,red), color(7,red).

Embedding The above integrity constraint can be turned into the
normal rule

x ← a1, . . . , am,∼am+1, . . . ,∼an,∼x

where x is a new symbol, that is, x 6∈ A.
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Core language Choice rule

Outline

15 Motivation
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Choice rule
Cardinality rule
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Core language Choice rule

Choice rule

Idea Choices over subsets

Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

Example { buy(pizza); buy(wine); buy(corn) } :- at(grocery).

Another Example P = {{a} ← b, b ←} has two stable models:
{b} and {a, b}
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Core language Choice rule

Embedding in normal rules

A choice rule of form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

can be translated into 2m + 1 normal rules

b ← am+1, . . . , an,∼an+1, . . . ,∼ao
a1 ← b,∼a′1 . . . am ← b,∼a′m
a′1 ← ∼a1 . . . a′m ← ∼am

by introducing new atoms b, a′1, . . . , a
′
m.
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Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets

Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

Note l acts as a lower bound on the body

Example pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.
Another Example P = {a← 1{b, c}, b ←} has stable model {a, b}
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Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai
ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj
ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←
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Core language Cardinality rule

An example

Program {a←, c ← 1 {a, b}} has the stable model {a, c}
Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}
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Core language Cardinality rule

. . . and vice versa

A normal rule

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

can be represented by the cardinality rule

a0 ← n {a1, . . . , am,∼am+1, . . . ,∼an}
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Core language Cardinality rule

Cardinality rules with upper bounds

A rule of the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an } u (1)

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b,∼c
b ← l { a1, . . . , am,∼am+1, . . . ,∼an }
c ← u+1 { a1, . . . , am,∼am+1, . . . ,∼an }

where b and c are new symbols

Note The single constraint in the body of the cardinality rule (1) is
referred to as a cardinality constraint
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Core language Cardinality rule

Cardinality constraints

Syntax A cardinality constraint is of the form

l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

Informal meaning A cardinality constraint is satisfied by a stable
model X , if the number of its contained literals satisfied by X is
between l and u (inclusive)

In other words, if

l ≤ | ({a1, . . . , am} ∩ X ) ∪ ({am+1, . . . , an} \ X ) | ≤ u
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Core language Cardinality rule

Cardinality constraints as heads

A rule of the form

l {a1, . . . , am,∼am+1, . . . ,∼an} u ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, ,∼am+1, . . . ,∼an} u
← b,∼c

where b and c are new symbols

Example 1{ color(v42,red); color(v42,green); color(v42,blue) }1.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 124 / 392



Core language Cardinality rule

Cardinality constraints as heads

A rule of the form

l {a1, . . . , am,∼am+1, . . . ,∼an} u ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, ,∼am+1, . . . ,∼an} u
← b,∼c

where b and c are new symbols

Example 1{ color(v42,red); color(v42,green); color(v42,blue) }1.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 124 / 392



Core language Cardinality rule

Cardinality constraints as heads

A rule of the form

l {a1, . . . , am,∼am+1, . . . ,∼an} u ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, ,∼am+1, . . . ,∼an} u
← b,∼c

where b and c are new symbols

Example 1{ color(v42,red); color(v42,green); color(v42,blue) }1.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 124 / 392



Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where each li Si ui is a cardinality constraint for 0 ≤ i ≤ n

stands for

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si
← a, c0 ci ← ui+1 Si

where a, bi , ci are new symbols (and ·+ is defined as on Slide 37)
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Core language Weight rule

Weight rule

Syntax A weight rule is the form

a0 ← l { w1 : a1, . . . ,wm : am,wm+1 : ∼am+1, . . . ,wn : ∼an }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

A weighted literal wi : `i associates each literal `i with a weight wi

Note A cardinality rule is a weight rule where wi = 1 for 0 ≤ i ≤ n
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Core language Weight rule

Weight constraints

Syntax A weight constraint is of the form

l { w1 : a1, . . . ,wm : am,wm+1 : ∼am+1, . . . ,wn : ∼an } u

where 0 ≤ m ≤ n and each ai is an atom;
l , u and wi are integers for 1 ≤ i ≤ n

Meaning A weight constraint is satisfied by a stable model X , if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

Example
10 { 4:course(db); 6:course(ai); 8:course(project); 3:course(xml) } 20
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Extended language Conditional literal

Conditional literals

Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1..3). q(2).’

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X); 1 { r(X) : p(X), not q(X) }.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1), r(3) }.
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Extended language Optimization statement

Optimization statement

Idea Express (multiple) cost functions subject to minimization
and/or maximization

Syntax A minimize statement is of the form

minimize { w1@p1 : `1, . . . ,wn@pn : `n }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi , allow for representing lexicographically ordered
minimization objectives

Meaning A minimize statement is a directive that instructs the ASP
solver to compute optimal stable models by minimizing a weighted
sum of elements
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Extended language Optimization statement

Optimization statement

A maximize statement of the form

maximize { w1@p1 : `1, . . . ,wn@pn : `n }

stands for minimize { −w1@p1 : `1, . . . ,−wn@pn : `n }

Example When configuring a computer, we may want to maximize
hard disk capacity, while minimizing price

#maximize { 250@1:hd(1), 500@1:hd(2), 750@1:hd(3), 1000@1:hd(4) }.

#minimize { 30@2:hd(1), 40@2:hd(2), 60@2:hd(3), 80@2:hd(4) }.

The priority levels indicate that (minimizing) price is more important
than (maximizing) capacity
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Gringo 4 language

Gringo 4 language

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

smodels formatGringo 4 format

smodels format is a machine-oriented standard for ground programs

gringo 4 format is a user-oriented language for (non-ground)
programs extending the ASP language standard ASP-Core-2
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Gringo 4 language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals
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Gringo 4 language

Terms and literals

Terms t are formed from
constant symbols, eg c, d, . . .
function symbols, eg f, g, . . .
numeric symbols, eg 1, 2, . . .
variable symbols, eg X, Y, . . . ,
parentheses (, )
tuple delimiters 〈, 〉 (omitted whenever possible)

Tuples t
Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals
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numerics, eg 1, 2, . . .
variables, eg X, Y, . . . ,
parentheses (, )
tuple delimiters 〈, 〉

eg f(3,c,Z), g(42, , ), or f((3,c),X)
Tuples t
Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 137 / 392



Gringo 4 language

Terms and literals

Terms t

Tuples t of terms

Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 137 / 392



Gringo 4 language

Terms and literals

Terms t

Tuples t
(Negated) Atoms a, ¬a are formed from

predicate symbols, eg p, q, . . .
parentheses (, )
tuples of terms

Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2
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Literals
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Gringo 4 language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a are formed from

predicates, eg p, q, . . .
parentheses (, )
tuples of terms

eg -p(f(3,c,Z),g(42, , )) or q() written as q

Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
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Gringo 4 language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
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Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
viz #false and #true

Symbolic literals a, ∼a, ∼∼a
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Gringo 4 language
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Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
eg p(a,X), ‘not p(a,X)’, ‘not not p(a,X)’
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Gringo 4 language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2 where

t1 and t2 are terms
≺ is a comparison symbol

Conditional literals ` : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2
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Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2 where
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≺ is a comparison symbol
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Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L where

` is a symbolic or arithmetic literal
L is a tuple of symbol or arithmetic literals
` : L is written as ` whenever L is empty
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Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L where

` is a symbolic or arithmetic literal
L is a tuple of symbol or arithmetic literals

eg ‘p(X,Y):q(X),r(Y)’ or p(42) or ‘#false:q’
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Gringo 4 language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 137 / 392



Gringo 4 language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms
one (or both) of ‘s1 ≺1’ and ‘≺2 s2’ can be omitted

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 137 / 392



Gringo 4 language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms
omitting ≺1 or ≺2 defaults to ≤

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 137 / 392



Gringo 4 language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms

eg 10 <= #sum {6,C:course(C); 3,S:seminar(S)} <= 20

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 137 / 392



Gringo 4 language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms

eg 10 #sum {6,C:course(C); 3,S:seminar(S)} 20
Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 137 / 392



Gringo 4 language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a where

a is an aggregate atom

Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 137 / 392



Gringo 4 language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a where

a is an aggregate atom

eg not 10 #sum {6,C:course(C); 3,S:seminar(S)} 20
Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 137 / 392



Gringo 4 language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 137 / 392



Gringo 4 language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals ` : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

For a detailed account please consult the user’s guide!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 137 / 392



Gringo 4 language

Rules

Rules are of the form

`1 ; . . . ; `m ← `m+1, . . . , `n (2)

where

`i is a conditional literal for 1 ≤ i ≤ m and
`i is a literal for m + 1 ≤ i ≤ n

Note Semicolons ‘;’ must be used in (2) instead of commas ‘,’
whenever some `i is a (genuine) conditional literal for 1 ≤ i ≤ n

Example a(X) :- b(X) : c(X), d(X); e(x).
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Gringo 4 language

Shortcuts

A rule of the form

s1 ≺1 α{t1 : `1 : L1; . . . ; tk : `k : Lk} ≺2 s2 ← `m+1, . . . , `n

where

α, ≺i , si , t j are as given above for i = 1, 2 and 1 ≤ j ≤ k
`j : Lj is a conditional literal for 1 ≤ j ≤ k
`i is a literal for m + 1 ≤ i ≤ n (as in (2))

is a shorthand for the following k + 1 rules

{`j} ← `m+1, . . . , `n,Lj for 1 ≤ j ≤ k

← `m+1, . . . , `n,∼ s1 ≺1 α{t1 : `1,L1; . . . ; tk : `k ,Lk} ≺2 s2

Example 10 < #sum { C,X,Y : edge(X,Y) : cost(X,Y,C) }.
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Gringo 4 language

Shortcuts

The expression

s1 {`1 : L1; . . . ; `k : Lk} s2

is a shortcut for

s1 ≤ count{t1 : `1 : L1; . . . ; tk : `k : Lk} ≤ s2

if it appears in the head of a rule and

s1 ≤ count{t1 : `1,L1; . . . ; tk : `k ,Lk} ≤ s2

if it appears in the body of a rule

where ti 6= tj whenever Li 6= Lj for i 6= j and 1 ≤ i , j ≤ k

Note one (or both) of s1 and s2 can be omitted
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Gringo 4 language

Examples

{a; b}

$ gringo --text <(echo "{a;b}.")

#count{1,0,a:a;1,0,b:b}.

gringo generates two distinct term tuples 1,0,a and 1,0,b

1 { q(X,Y): p(X), p(Y), X < Y; q(X,X): p(X) }
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Gringo 4 language

Weak constraints

Syntax A weak constraint is of the form

� `1, . . . , `n. [w@p, t1, . . . , tm]

where
`1, . . . , `n are literals
t1, . . . , tm, w , and p are terms

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example The weak constraints

� hd(1). [30@2,1]

� hd(2). [40@2,2]

� hd(3). [60@2,3]

amount to the minimize statement

#minimize{ 30@2,1:hd(1), 40@2,2:hd(2), 60@2,3:hd(3) }.
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Gringo 4 language

Aspects of gringo 4

Term-based #show directives as in

#show.

#show p(X,Y) : q(X).

#show X : p(X).
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Gringo 4 language

gringo 3 versus 4

The input language of gringo series 4 comprises

ASP-Core-2
concepts from lparse and gringo 3

Example The gringo 3 rule

r(X) : p(X) : not q(X) :- r(X) : p(X) : not q(X),

1 { r(X) : p(X) : not q(X) }.

can be written as follows in the language of gringo 4:

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X);

Note Directives #compute, #domain, and #hide are discontinued

Attention

The languages of gringo 3 and 4 are not fully compatible
Many example programs in the literature are written for gringo 3
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Grounding: Overview

19 Background

20 Bottom Up Grounding

21 Semi-naive Evaluation Based Grounding

22 On-the-fly Simplifications
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Outline
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Background

Introduction

Problem

Logic
Program

Stable
Models

Solution

Grounder Solver

Modeling

Grounding and Solving

Interpreting

some grounders (in chronological order)

lparse (grounding using domain predicates)
dlv (semi-naive evaluation based grounding)
gringo (semi-naive evaluation based since version 3)
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Background

Hamiltonian Cycle Instance

% vertices

node(a). node(b).

node(c). node(d).

% edges

edge(a,b). edge(a,c).

edge(b,c). edge(b,d).

edge(c,a). edge(c,d).

edge(d,a).

% starting point (for presentation purposes)

start(a).

c d

a b
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Background

Hamiltonian Cycle Encoding

% generate path

path(X,Y) :- not omit(X,Y), edge(X,Y).

omit(X,Y) :- not path(X,Y), edge(X,Y).

% at most one incoming/outgoing edge

:- path(X,Y), path(X’,Y), X < X’.

:- path(X,Y), path(X,Y’), Y < Y’.

% at least one incoming/outgoing edge

on_path(Y) :- path(X,Y), path(Y,Z).

:- node(X), not on_path(X).

% connectedness

reach(X) :- start(X).

reach(Y) :- reach(X), path(X,Y).

:- node(X), not reach(X).
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Background

Grounding

Safety

each variable has to occur in a positive body element
consider: p(X) :- not q(X).

Herbrand universe

all constants in program and
all functions over function symbols in program

Herbrand base

all atoms over predicates in program
with terms from Herbrand universe

Instance of a rule

all variables replaced with elements from Herbrand universe

Grounding of a program

ground(P) is the union of all instances of rules in P
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Background

Example: Size of Grounding

% Herbrand Universe: {a,b,c,d}

12 facts from instance

% path(X,Y) :- not omit(X,Y), edge(X,Y).

% omit(X,Y) :- not path(X,Y), edge(X,Y).

% reach(Y) :- reach(X), path(X,Y).

16 rules + 16 rules + 16 rules

% on_path(Y) :- path(X,Y), path(Y,Z).

% :- path(X,Y), path(X’,Y), X < X’.

% :- path(X,Y), path(X,Y’), Y < Y’.

64 rules + 64 rules + 64 rules

% reach(X) :- start(X).

% :- node(X), not on_path(X).

% :- node(X), not reach(X).

4 rules + 4 rules + 4 rules
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Background

Example: Unnecessary Rules I

% path(X,Y) :- not omit(X,Y), edge(X,Y).

path(a,a) :- not omit(a,a), edge(a,a).

path(a,b) :- not omit(a,b), edge(a,b).

path(a,c) :- not omit(a,c), edge(a,c).

path(a,d) :- not omit(a,d), edge(a,d).
...

path(d,a) :- not omit(d,a), edge(d,a).

path(d,b) :- not omit(d,b), edge(d,b).

path(d,c) :- not omit(d,c), edge(d,d).

path(d,d) :- not omit(d,d), edge(d,d).

c d

a b
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Background

Example: Unnecessary Rules II

% :- path(X,Y), path(X’,Y), X < X’.

:- path(a,a), path(a,a), a < a.

:- path(a,b), path(a,b), a < a.

:- path(a,c), path(a,c), a < a.

:- path(a,d), path(a,d), a < a.

:- path(a,a), path(b,a), a < b.

:- path(a,b), path(b,b), a < b.

:- path(a,c), path(b,c), a < b.

:- path(a,d), path(b,d), a < b.
...

:- path(d,d), path(d,d), d < d.

c d

a b
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Bottom Up Grounding

Outline

19 Background

20 Bottom Up Grounding

21 Semi-naive Evaluation Based Grounding

22 On-the-fly Simplifications
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Bottom Up Grounding

Bottom Up Grounding

ground relevant rules by incrementally extending the Herbrand base

groundD(P) = {r ∈ ground(P) | body(r)+ ⊆ D,

all comparison literals

in body(r) are satisfied}

function ground bottom up(P,D)
G ← groundD(P)
if head(G ) 6⊆ D then

return ground bottom up(P,D ∪ head(G ))

return G

given safe program P and set of ground facts I (typically corresponds
to encoding and instance), P ∪ I is equivalent to
ground bottom up(P, head(I )) ∪ I
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Bottom Up Grounding

Example: Bottom Up Grounding Step 1

% Step 1

path(a,b) :- not omit(a,b), edge(a,b).
... % 7 rules total

path(d,a) :- not omit(d,a), edge(d,a).

omit(a,b) :- not path(a,b), edge(a,b).
... % 7 rules total

omit(d,a) :- not path(d,a), edge(d,a).

:- node(a), not on_path(a). :- node(b), not on_path(b).

:- node(c), not on_path(c). :- node(d), not on_path(d).

:- node(a), not reach(a). :- node(b), not reach(b).

:- node(c), not reach(c). :- node(d), not reach(d).

reach(a) :- start(a).
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Bottom Up Grounding

Example: Bottom Up Grounding Step 2

% Step 2 and rules of Step 1

:- path(a,c), path(b,c), a < b.

:- path(b,d), path(c,d), b < c.

:- path(c,a), path(d,a), c < d.

:- path(a,b), path(a,c), b < c.

:- path(c,a), path(c,d), a < d.

:- path(b,c), path(b,d), c < d.

on_path(a) :- path(a,b), path(c,a).
... % 12 rules total

on_path(d) :- path(d,a), path(c,d).

reach(b) :- reach(a), path(a,b).

reach(c) :- reach(a), path(a,c).
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Bottom Up Grounding

Example: Bottom Up Grounding Step 3 and 4

% Step 3 and rules of Step 2

reach(c) :- reach(b), path(b,c).

reach(d) :- reach(b), path(b,d).

reach(a) :- reach(c), path(c,a).

reach(d) :- reach(c), path(c,d).

% Step 4 and rules of Step 3

reach(a) :- reach(d), path(d,a).
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Bottom Up Grounding

Properties of Bottom Up Grounding

grounds only relevant rules

each positive body literal has a non-cyclic derivation
(ignoring negative literals)

regrounds rules from previous steps

function ground bottom up(P,D)
G ← groundD(P)
if head(G ) 6⊆ D then

return ground bottom up(P,D ∪ head(G ))

return G

does not perform simplifications
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Bottom Up Grounding

Improving Bottom Up Grounding

use dependencies to focus grounding

begin with partial Herbrand base given by facts
use rule dependency graph of program to obtain components that can
be grounded successively

adapt semi-naive evaluation put forward in the database field

avoids redundancies when grounding

perform simplifications during grounding

remove literals from rule bodies if possible
omit rules if body cannot be satisfied
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Bottom Up Grounding

Program Dependencies

dependency graph of program P

rule r2 depends on rule r1
if b ∈ body(r2)+ ∪ body(r2)− unifies with h ∈ head(r1)
GP = (P,E ) where E = {(r1, r2) | r2 depends on r1}

positive dependency graph of program P

rule r2 positively depends on rule r1
if b ∈ body(r2)+ unifies with h ∈ head(r1)
G+
P = (P,E ) where E = {(r1, r2) | r2 positively depends on r1}

let LP = (C1,1, . . . ,C1,m1 , . . . ,Cn,1, . . . ,Cn,mn) where

(C1, . . . ,Cn) is a topological ordering of GP

(Ci,1, . . . ,Ci,mi ) is a topological ordering of each G+
Ci
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Bottom Up Grounding

Example: Dependencies

omit(X,Y) :- not path(X,Y), edge(X,Y).Component1,1:

path(X,Y) :- not omit(X,Y), edge(X,Y).Component1,2:

:- path(X,Y), path(X’,Y), X < X’.Component2,1:

:- path(X,Y), path(X,Y’), Y < Y’.Component3,1:

on path(Y) :- path(X,Y), path(Y,Z).Component4,1:

:- node(X), not on path(X).Component5,1:

reach(X) :- start(X).Component6,1:

reach(Y) :- reach(X), path(X,Y).Component7,1:

:- node(X), not reach(X).Component8,1:

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 163 / 392



Bottom Up Grounding

Grounding With Dependencies

function ground with dependencies(P,D)
G ← ∅
foreach C in LP do

G ′ ← ground bottom up(C ,D)
(G ,D)← (G ∪ G ′,D ∪ head(G ′))

return G

given safe program P and set of facts I , P ∪ I is equivalent to
ground with dependencies(P, head(I )) ∪ I
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Bottom Up Grounding

Example: Grounding with Dependencies

% Component1,1

omit(a,b) :- not path(a,b), edge(a,b).
... % 7 rules total

omit(d,a) :- not path(d,a), edge(d,a).

% Component1,2

path(a,b) :- not omit(a,b), edge(a,b).
... % 7 rules total

path(d,a) :- not omit(d,a), edge(d,a).

...

no regrounding if there is no positive recursion in a component
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Bottom Up Grounding

Example: Grounding Component7,1

% Step 1

reach(b) :- reach(a), path(a,b).

reach(c) :- reach(a), path(a,c).

% Step 2 and rules of Step 1

reach(c) :- reach(b), path(b,c).

reach(d) :- reach(b), path(b,d).

reach(a) :- reach(c), path(c,a).

reach(d) :- reach(c), path(c,d).

% Step 3 and rules of Step 2

reach(a) :- reach(d), path(d,a).

% less regrounding but still...
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Semi-naive Evaluation Based Grounding

Outline

19 Background

20 Bottom Up Grounding

21 Semi-naive Evaluation Based Grounding
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Semi-naive Evaluation Based Grounding

Recursive Atoms

given LP = (C1, . . . ,Cn), an atom a1 is recursive in component Ci if
a1 unifies a2 such that

r1 ∈ Ci and r2 ∈ Cj with i ≤ j ,

a1 ∈ body(r1)+ ∪ body(r1)−, and
a2 ∈ head(r2)
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Semi-naive Evaluation Based Grounding

Example: Recursive Atoms

omit(X,Y) :- not path(X,Y), edge(X,Y).Component1,1:

path(X,Y) :- not omit(X,Y), edge(X,Y).Component1,2:

:- path(X,Y), path(X’,Y), X < X’.Component2,1:

:- path(X,Y), path(X,Y’), Y < Y’.Component3,1:

on path(Y) :- path(X,Y), path(Y,Z).Component4,1:

:- node(X), not on path(X).Component5,1:

reach(X) :- start(X).Component6,1:

reach(Y) :- reach(X), path(X,Y).Component7,1:

:- node(X), not reach(X).Component8,1:

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 169 / 392



Semi-naive Evaluation Based Grounding

Preparing Components

the set of prepared rules for r ∈ C is

h :- n(b1), a(b2), a(b3), . . . , a(bi−2), a(bi−1), a(bi ), B
h :- o(b1), n(b2), a(b3), . . . , a(bi−2), a(bi−1), a(bi ), B
...

...
. . .

...
...

h :- o(b1), o(b2), o(b3), . . . , o(bi−2), n(bi−1), a(bi ), B
h :- o(b1), o(b2), o(b3), . . . , o(bi−2), o(bi−1), n(bi ), B


or {h :- n(bi+1), . . . , n(bj), bj+1, . . . , bn} if i = 0

where body(r) = {b1, . . . , bi , bi+1 . . . , bj , bj+1, . . . , bn},
bk ∈ body(r)+ for 1 ≤ k ≤ i is recursive,
bk ∈ body(r)+ for i < k ≤ j is not recursive, and
B = a(bi+1), . . . , a(bj), bj+1, . . . , bn

a prepared component is the union of all its prepared rules
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Semi-naive Evaluation Based Grounding

Example: Preparing Components

% prepared Component1,1

omit(X,Y) :- n(edge(X,Y)), not path(X,Y).

% prepared Component1,2

path(X,Y) :- n(edge(X,Y)), not omit(X,Y).

% prepared Component2,1

:- n(path(X,Y)), n(path(X’,Y)), X < X’.

...

% prepared Component7,1

reach(Y) :- n(reach(X)), a(path(X,Y)).

...
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Semi-naive Evaluation Based Grounding

Semi-naive Evaluation-based Grounding

function ground semi naive(P,A)
G ← ∅
foreach C in LP do

(O,N)← (∅,A)
repeat

let Dp = {p(a) | a ∈ D} for set D of atoms
G ′ ← groundOo∪Nn∪Aa

(prepared C )
N ← head(G ′) \ A
(G ,O,A)← (G ∪ G ′,A,N ∪ A)

until N = ∅
return G with o/1, n/1, a/1 stripped from positive bodies

given safe program P and set of facts I , P ∪ I is equivalent to
ground semi naive(P, head(I )) ∪ I
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Semi-naive Evaluation Based Grounding

Example: Grounding Component7,1

% grounding of

% reach(Y) :- n(reach(X)), a(path(X,Y)).

% Step 1 with N = A from previous step (reach(a) ∈ A)

reach(b) :- n(reach(a)), a(path(a,b)).

reach(c) :- n(reach(a)), a(path(a,c)).

% Step 2 with N = { reach(b), reach(c) }

reach(c) :- n(reach(b)), a(path(b,c)).

reach(d) :- n(reach(b)), a(path(b,d)).

reach(a) :- n(reach(c)), a(path(c,a)).

reach(d) :- n(reach(c)), a(path(c,d)).

% Step 3 with N = { reach(d) }

reach(a) :- n(reach(d)), a(path(d,a)).
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Semi-naive Evaluation Based Grounding

Example: Grounding Component7,1

% grounding of

% reach(Y) :- n(reach(X)), a(path(X,Y)).

% Step 1 with N = A from previous step (reach(a) ∈ A)

reach(b) :- reach(a), path(a,b).

reach(c) :- reach(a), path(a,c).

% Step 2 with N = { reach(b), reach(c) }

reach(c) :- reach(b), path(b,c).

reach(d) :- reach(b), path(b,d).

reach(a) :- reach(c), path(c,a).

reach(d) :- reach(c), path(c,d).

% Step 3 with N = { reach(d) }

reach(a) :- reach(d), path(d,a).

% without n/1 and a/1 of course
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Semi-naive Evaluation Based Grounding

Example: Nonlinear Programs

trans(U,V) :- edge(U,V).

trans(U,W) :- trans(U,V), trans(V,W).

% prepared Component 1:

trans(U,V) :- n(edge(U,V)).

% prepared Component 2:

trans(U,W) :- n(trans(U,V)), a(trans(V,W)).

trans(U,W) :- o(trans(U,V)), n(trans(V,W)).
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Semi-naive Evaluation Based Grounding

Example: Nonlinear Programs

trans(U,V) :- edge(U,V).

% trans(U,W) :- trans(U,V), trans(V,W).

% better written as:

trans(U,W) :- trans(U,V), edge(V,W).

% prepared Component 1:

trans(U,V) :- n(edge(U,V)).

% prepared Component 2:

trans(U,W) :- n(trans(U,V)), a(edge(V,W)).

trans(U,W) :- o(trans(U,V)), n(trans(V,W)).
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On-the-fly Simplifications

Outline
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On-the-fly Simplifications

Propagation of Facts

simplifications are performed on-the-fly
(rules are printed immediately but not stored in gringo)

maintain a set of fact atoms

remove facts from positive body

discard rules with negative literals over a fact

discard rules whenever the head is a fact

gather new facts whenever a rule body is empty
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On-the-fly Simplifications

Example: Propagation of Facts

...

path(a,b) :- not omit(a,b), edge(a,b).

...

reach(a) :- start(a).

...

:- node(a), not reach(a).

...
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On-the-fly Simplifications

Example: Propagation of Facts

...

path(a,b) :- not omit(a,b).

...

reach(a). % reach(a) is added as fact

...

:- node(a), not reach(a).

...
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On-the-fly Simplifications

Example: Propagation of Facts

...

path(a,b) :- not omit(a,b).

...

reach(a). % reach(a) is added as fact

...

:- node(a), not reach(a).

...
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On-the-fly Simplifications

Example: Propagation of Facts

...

path(a,b) :- not omit(a,b).

...

reach(a). % reach(a) is added as fact

...

:- node(a), not reach(a). % rule is discarded

...
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On-the-fly Simplifications

Propagation of Negative Literals

non-recursive negative literals not in the current base A can be
removed from rule bodies

stratified logic programs are completely evaluated during grounding

consider the instance where node d is not reachable

c d

a b
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On-the-fly Simplifications

Example: Propagation of Negative Literals

path(a,b) :- not omit(a,b).

path(a,c) :- not omit(a,c).

path(b,c) :- not omit(b,c).

path(c,a) :- not omit(c,a).

path(d,a) :- not omit(d,a).

...

reach(a).

reach(b) :- path(a,b).

reach(c) :- path(a,c).

reach(c) :- path(b,c), reach(b).

...

% reach(X) is not recursive and reach(d) 6∈ A
:- not reach(b).

:- not reach(c).

:- not reach(d). % remove not reach(d) from body

c d

a b
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On-the-fly Simplifications

Example: Propagation of Negative Literals

path(a,b) :- not omit(a,b).

path(a,c) :- not omit(a,c).

path(b,c) :- not omit(b,c).

path(c,a) :- not omit(c,a).

path(d,a) :- not omit(d,a).

...

reach(a).

reach(b) :- path(a,b).

reach(c) :- path(a,c).

reach(c) :- path(b,c), reach(b).

...

% reach(X) is not recursive and reach(d) 6∈ A
:- not reach(b).

:- not reach(c).

:- . % inconsistency detected during grounding

c d

a b
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On-the-fly Simplifications

Conclusion/Summary

grounding algorithms for normal logic programs
(with integrity constraints)

language features not covered here

(recursive) aggregates
conditional literals
optimization statements
disjunctions
arithmetic functions
syntactic sugar to write more compact encodings
safety of = relation (for aggregates and terms)
python/lua integration

external functions
control over grounding and solving
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Axiomatic Characterization: Overview

23 Completion

24 Tightness

25 Loops and Loop Formulas
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Completion

Outline

23 Completion

24 Tightness

25 Loops and Loop Formulas
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Completion

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Although each atom is defined through a set of rules,
each such rule provides only a sufficient condition for its head atom

Idea The idea of program completion is to turn such implications into
a definition by adding the corresponding necessary counterpart
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Completion

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Although each atom is defined through a set of rules,
each such rule provides only a sufficient condition for its head atom

Idea The idea of program completion is to turn such implications into
a definition by adding the corresponding necessary counterpart
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Completion

Program completion

Let P be a normal logic program

The completion CF (P) of P is defined as follows

CF (P) =
{
a↔

∨
r∈P,head(r)=aBF (body(r)) | a ∈ atom(P)

}
where

BF (body(r)) =
∧

a∈body(r)+a ∧
∧

a∈body(r)−¬a
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Completion

An example

P =



a←
b ← ∼a
c ← a,∼d
d ← ∼c,∼e
e ← b,∼f
e ← e


CF (P) =



a↔ >
b ↔ ¬a
c ↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e ↔ (b ∧ ¬f ) ∨ e
f ↔ ⊥


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Completion

An example

P =
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CF (P) =
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a↔ >
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Completion

A closer look

CF (P) is logically equivalent to
←−
CF (P) ∪

−→
CF (P), where

←−
CF (P) =

{
a←

∨
B∈bodyP(a)BF (B) | a ∈ atom(P)

}
−→
CF (P) =

{
a→

∨
B∈bodyP(a)BF (B) | a ∈ atom(P)

}
bodyP(a) = {body(r) | r ∈ P and head(r) = a}

←−
CF (P) characterizes the classical models of P
−→
CF (P) completes P by adding necessary conditions for all atoms
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A closer look
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Completion

Supported models

Every stable model of P is a model of CF (P), but not vice versa

Models of CF (P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P
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Completion

An example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has 21 models, including {a, c}, {a, d}, but also {a, b, c , d , e, f }
P has 3 supported models, namely {a, c}, {a, d}, and {a, c , e}
P has 2 stable models, namely {a, c} and {a, d}
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Tightness

Outline

23 Completion

24 Tightness

25 Loops and Loop Formulas
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Tightness

The mismatch

Question What causes the mismatch between supported
and stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer The mismatch between supported and stable models
is caused by cyclic derivations

Atoms in a stable model can be “derived” from a program in a finite
number of steps

Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps

Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model
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Tightness

Non-cyclic derivations

Let X be a stable model of normal logic program P

For every atom a ∈ X , there is a finite sequence of positive rules

〈r1, . . . , rn〉

such that

1 head(r1) = a
2 body(ri )

+ ⊆ {head(rj) | i < j ≤ n} for 1 ≤ i ≤ n
3 ri ∈ PX for 1 ≤ i ≤ n

That is, each atom of X has a non-cyclic derivation from PX

Example There is no finite sequence of rules providing a derivation
for e from P{a,c,e}
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Tightness

Positive atom dependency graph

The origin of (potential) circular derivations can be read off the
positive atom dependency graph G (P) of a logic program P given by

(atom(P), {(a, b) | r ∈ P, a ∈ body(r)+, head(r) = b})

A logic program P is called tight, if G (P) is acyclic
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Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e, f }, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}
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Tightness

Tight programs

A logic program P is called tight, if G (P) is acyclic

For tight programs, stable and supported models coincide:

Fages’ Theorem

Let P be a tight normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 195 / 392



Tightness

Tight programs

A logic program P is called tight, if G (P) is acyclic

For tight programs, stable and supported models coincide:

Fages’ Theorem

Let P be a tight normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 195 / 392



Tightness

Tight programs

A logic program P is called tight, if G (P) is acyclic

For tight programs, stable and supported models coincide:

Fages’ Theorem

Let P be a tight normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 195 / 392



Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}
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Loops and Loop Formulas

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Idea Add formulas prohibiting circular support of sets of atoms

Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph
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Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (atom(P),E ) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅
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Loops and Loop Formulas

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}
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Loops and Loop Formulas

Loop formulas

Let P be a normal logic program

For L ⊆ atom(P), define the external supports of L for P as

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

Define the external bodies of L in P as EBP(L) = body(ESP(L))

The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP(L)BF (B)
)

↔
(∧

B∈EBP(L)¬BF (B)
)
→
(∧

a∈L¬a
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Define LF (P) = {LFP(L) | L ∈ loop(P)}
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Another example
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Loops and Loop Formulas

Lin-Zhao Theorem

Theorem

Let P be a normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P) ∪ LF (P)
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Loops and Loop Formulas

Loops and loop formulas: Properties

Result If P 6⊆ NC1/poly ,1 then there is no translation T from logic
programs to propositional formulas such that, for each normal logic
program P, both of the following conditions hold:

1 The propositional variables in T [P] are a subset of atom(P)
2 The size of T [P] is polynomial in the size of P

Note Every vocabulary-preserving translation from normal logic
programs to propositional formulas must be exponential
(in the worst case)

Observations

Translation CF (P) ∪ LF (P) preserves the vocabulary of P
The number of loops in loop(P) may be exponential in |atom(P)|

1A conjecture from complexity theory that is believed to be true
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Conflict-driven ASP Solving: Overview

26 Motivation

27 Boolean constraints

28 Nogoods from logic programs

29 Conflict-driven nogood learning
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Motivation

Motivation

Goal Approach to computing stable models of logic programs,
based on concepts from

Constraint Processing (CP) and
Satisfiability Testing (SAT)

Idea View inferences in ASP as unit propagation on nogoods

Benefits

A uniform constraint-based framework for different
kinds of inferences in ASP
Advanced techniques from the areas of CP and SAT
Highly competitive implementation
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Boolean constraints

Outline

26 Motivation

27 Boolean constraints
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Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and
Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk ] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}
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Boolean constraints

Nogoods, solutions, and unit propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆
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Nogoods from logic programs

Outline
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Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The completion of a logic program P can be defined as follows:

{vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an |
B ∈ body(P) and B = {a1, . . . , am,∼am+1, . . . ,∼an}}

∪ {a↔ vB1 ∨ · · · ∨ vBk
|

a ∈ atom(P) and bodyP(a) = {B1, . . . ,Bk}} ,

where bodyP(a) = {body(r) | r ∈ P and head(r) = a}
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Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:
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Nogoods from logic programs
via program completion

The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

1 vB → a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an
is equivalent to the conjunction of

¬vB ∨ a1, . . . , ¬vB ∨ am, ¬vB ∨ ¬am+1, . . . , ¬vB ∨ ¬an

and induces the set of nogoods

∆(B) = { {TB,Fa1}, . . . , {TB,Fam}, {TB,Tam+1}, . . . , {TB,Tan} }
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Nogoods from logic programs
via program completion

The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

2 a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an → vB

gives rise to the nogood

δ(B) = {FB,Ta1, . . . ,Tam,Fam+1, . . . ,Fan}
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Nogoods from logic programs
via program completion

Analogously, the (atom-oriented) equivalence

a↔ vB1 ∨ · · · ∨ vBk

yields the nogoods

1 ∆(a) = { {Fa,TB1}, . . . , {Fa,TBk} } and

2 δ(a) = {Ta,FB1, . . . ,FBk}
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Nogoods from logic programs
atom-oriented nogoods

For an atom a where bodyP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})
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Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
body-oriented nogoods

For a body B = {a1, . . . , am,∼am+1, . . . ,∼an}, we get

{FB,Ta1, . . . ,Tam,Fam+1, . . . ,Fan}
{ {TB,Fa1}, . . . , {TB,Fam}, {TB,Tam+1}, . . . , {TB,Tan} }

Example Given Body {x ,∼y}, we obtain

. . .← x ,∼y...

. . .← x ,∼y

{F{x ,∼y},Tx ,Fy}
{ {T{x ,∼y},Fx}, {T{x ,∼y},Ty} }

For nogood δ({x ,∼y}) = {F{x ,∼y},Tx ,Fy}, the signed literal

T{x ,∼y} is unit-resulting wrt assignment (Tx ,Fy) and
Ty is unit-resulting wrt assignment (F{x ,∼y},Tx)
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Nogoods from logic programs Nogoods from program completion

Characterization of stable models
for tight logic programs

Let P be a logic program and

∆P = {δ(a) | a ∈ atom(P)} ∪ {δ ∈ ∆(a) | a ∈ atom(P)}
∪ {δ(B) | B ∈ body(P)} ∪ {δ ∈ ∆(B) | B ∈ body(P)}

Theorem

Let P be a tight logic program. Then,
X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P
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Nogoods from logic programs Nogoods from program completion

Characterization of stable models
for tight logic programs, ie. free of positive recursion

Let P be a logic program and

∆P = {δ(a) | a ∈ atom(P)} ∪ {δ ∈ ∆(a) | a ∈ atom(P)}
∪ {δ(B) | B ∈ body(P)} ∪ {δ ∈ ∆(B) | B ∈ body(P)}

Theorem

Let P be a tight logic program. Then,
X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P
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Nogoods from logic programs Nogoods from loop formulas

Outline

26 Motivation

27 Boolean constraints

28 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

29 Conflict-driven nogood learning
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Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:

For L ⊆ atom(P), the external supports of L for P are

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}
The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

A∈LA
)
→
(∨

r∈ESP(L)body(r)
)

↔
(∧

r∈ESP(L)¬body(r)
)
→
(∧

A∈L¬A
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

The external bodies of L for P are

EBP(L) = {body(r) | r ∈ ESP(L)}
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Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
loop nogoods

For a logic program P and some ∅ ⊂ U ⊆ atom(P),
define the loop nogood of an atom a ∈ U as

λ(a,U) = {Ta,FB1, . . . ,FBk}
where EBP(U) = {B1, . . . ,Bk}

We get the following set of loop nogoods for P:

ΛP =
⋃
∅⊂U⊆atom(P){λ(a,U) | a ∈ U}

The set ΛP of loop nogoods denies cyclic support among true atoms
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Nogoods from logic programs Nogoods from loop formulas

Example

Consider the program x ← ∼y
y ← ∼x

u ← x
u ← v
v ← u, y


For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu,F{x}}
Similarly for v in {u, v}, we get:

λ(v , {u, v}) = {Tv ,F{x}}
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Nogoods from logic programs Nogoods from loop formulas

Characterization of stable models

Theorem

Let P be a logic program. Then,
X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P ∪ ΛP

Some remarks

Nogoods in ΛP augment ∆P with conditions checking
for unfounded sets, in particular, those being loops
While |∆P | is linear in the size of P, ΛP may contain
exponentially many (non-redundant) loop nogoods
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Conflict-driven nogood learning

Outline

26 Motivation

27 Boolean constraints

28 Nogoods from logic programs

29 Conflict-driven nogood learning
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Conflict-driven nogood learning

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

Traditional DPLL-style approach
(DPLL stands for ‘Davis-Putnam-Logemann-Loveland’)

(Unit) propagation
(Chronological) backtracking

in ASP, eg smodels

Modern CDCL-style approach
(CDCL stands for ‘Conflict-Driven Constraint Learning’)

(Unit) propagation
Conflict analysis (via resolution)
Learning + Backjumping + Assertion

in ASP, eg clasp
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Conflict-driven nogood learning

DPLL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

backtrack // unassign literals propagated after last decision
flip // assign complement of last decision literal
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Conflict-driven nogood learning

CDCL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit
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Conflict-driven nogood learning CDNL-ASP Algorithm

Outline

26 Motivation

27 Boolean constraints

28 Nogoods from logic programs

29 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 232 / 392



Conflict-driven nogood learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

Keep track of deterministic consequences by unit propagation on:

Program completion [∆P ]
Loop nogoods, determined and recorded on demand [ΛP ]
Dynamic nogoods, derived from conflicts and unfounded sets [∇]

When a nogood in ∆P ∪∇ becomes violated:

Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
Learn the derived conflict nogood δ
Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for δ
Assert the complement of the UIP and proceed
(by unit propagation)

Terminate when either:

Finding a stable model (a solution for ∆P ∪ ΛP)
Deriving a conflict independently of (heuristic) choices
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Conflict-driven nogood learning CDNL-ASP Algorithm

Algorithm 1: CDNL-ASP

Input : A normal program P
Output : A stable model of P or “no stable model”

A := ∅ // assignment over atom(P) ∪ body(P)
∇ := ∅ // set of recorded nogoods
dl := 0 // decision level

loop
(A,∇) := NogoodPropagation(P,∇,A)
if ε ⊆ A for some ε ∈ ∆P ∪∇ then // conflict

if max({dlevel(σ) | σ ∈ ε} ∪ {0}) = 0 then return no stable model

(δ, dl) := ConflictAnalysis(ε,P,∇,A)
∇ := ∇∪ {δ} // (temporarily) record conflict nogood
A := A \ {σ ∈ A | dl < dlevel(σ)} // backjumping

else if AT ∪ AF = atom(P) ∪ body(P) then // stable model
return AT ∩ atom(P)

else
σd := Select(P,∇,A) // decision
dl := dl + 1
dlevel(σd ) := dl
A := A ◦ σd
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Conflict-driven nogood learning CDNL-ASP Algorithm

Observations

Decision level dl , initially set to 0, is used to count the number of
heuristically chosen literals in assignment A

For a heuristically chosen literal σd = Ta or σd = Fa, respectively, we
require a ∈ (atom(P) ∪ body(P)) \ (AT ∪ AF )

For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the
value dl had when σ was assigned

A conflict is detected from violation of a nogood ε ⊆ ∆P ∪∇
A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of stable models

A nogood δ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for δ at a decision level k < dl

After learning δ and backjumping to decision level k,
at least one literal is newly derivable by unit propagation
No explicit flipping of heuristically chosen literals !
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Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8
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Conflict-driven nogood learning Nogood Propagation
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Conflict-driven nogood learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:
Unit propagation on ∆P and ∇;
Unfounded sets U ⊆ atom(P)

Note that U is unfounded if EBP(U) ⊆ AF

Note For any a ∈ U, we have (λ(a,U) \ {Ta}) ⊆ A

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(P) \ AF )

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P

Note Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some a ∈ U, adding λ(a,U) to ∇
triggers a conflict or further derivations by unit propagation

Note Add loop nogoods atom by atom to eventually falsify all a ∈ U
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Conflict-driven nogood learning Nogood Propagation

Algorithm 2: NogoodPropagation

Input : A normal program P, a set ∇ of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

U := ∅ // unfounded set

loop
repeat

if δ ⊆ A for some δ ∈ ∆P ∪∇ then return (A,∇) // conflict

Σ := {δ ∈ ∆P ∪∇ | δ \ A = {σ}, σ /∈ A} // unit-resulting nogoods
if Σ 6= ∅ then let σ ∈ δ \ A for some
δ ∈ Σdlevel(σ) := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
A := A ◦ σ

until Σ = ∅
if loop(P) = ∅ then return (A,∇)

U := U \ AF

if U = ∅ then U := UnfoundedSet(P,A)

if U = ∅ then return (A,∇) // no unfounded set ∅ ⊂ U ⊆ atom(P) \ AF

let a ∈ U∇ := ∇∪ {{Ta} ∪ {FB | B ∈ EBP(U)}} // record loop nogood
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Conflict-driven nogood learning Nogood Propagation

Requirements for UnfoundedSet

Implementations of UnfoundedSet must guarantee the following
for a result U

1 U ⊆ (atom(P) \ AF )
2 EBP(U) ⊆ AF

3 U = ∅ iff there is no nonempty unfounded subset of (atom(P) \ AF )

Beyond that, there are various alternatives, such as:

Calculating the greatest unfounded set
Calculating unfounded sets within strongly connected components of
the positive atom dependency graph of P

Usually, the latter option is implemented in ASP solvers
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Conflict-driven nogood learning Nogood Propagation

Example: NogoodPropagation

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8
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Conflict-driven nogood learning Conflict Analysis

Outline

26 Motivation
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28 Nogoods from logic programs

29 Conflict-driven nogood learning
CDNL-ASP Algorithm
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Conflict-driven nogood learning Conflict Analysis

Outline of ConflictAnalysis

Conflict analysis is triggered whenever some nogood δ ∈ ∆P ∪∇
becomes violated, viz. δ ⊆ A, at a decision level dl > 0

Note that all but the first literal assigned at dl have been unit-resulting
for nogoods ε ∈ ∆P ∪∇
If σ ∈ δ has been unit-resulting for ε, we obtain a new violated nogood
by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ})

Resolution is directed by resolving first over the literal σ ∈ δ derived
last, viz. (δ \ A[σ]) = {σ}

Iterated resolution progresses in inverse order of assignment

Iterated resolution stops as soon as it generates a nogood δ
containing exactly one literal σ assigned at decision level dl

This literal σ is called First Unique Implication Point (First-UIP)
All literals in (δ \ {σ}) are assigned at decision levels smaller than dl
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Conflict-driven nogood learning Conflict Analysis

Algorithm 3: ConflictAnalysis

Input : A non-empty violated nogood δ, a normal program P, a set ∇ of
nogoods, and an assignment A.

Output : A derived nogood and a decision level.

loop
let σ ∈ δ such that
δ \ A[σ] = {σ}k := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
if k = dlevel(σ) then

let ε ∈ ∆P ∪∇ such that ε \ A[σ] = {σ}δ := (δ \ {σ}) ∪ (ε \ {σ})
// resolution

else return (δ, k)
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Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8
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Conflict-driven nogood learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates

In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl

After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !
Such a nogood δ is called asserting

Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !
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Multi-shot ASP Solving: Overview

30 Motivation

31 #program and #external declaration

32 Module composition

33 States and operations

34 Incremental reasoning

35 Boardgaming
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Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4
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Motivation

Clingo = ASP + Control

ASP
#program <name> [ (<parameters>) ]

Example #program play(t).

#external <atom> [ : <body> ]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)
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Motivation

Vanilla clingo

Emulating clingo in clingo 4

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.
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Motivation

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s
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#program and #external declaration

#program declaration

A program declaration is of form

#program n (p1, . . . , pk)

where n, p1, . . . , pk are non-integer constants

We call n the name of the declaration and p1, . . . , pk its parameters

Convention Different occurrences of program declarations with the
same name share the same parameters

Example #program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).
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#program and #external declaration

Scope of #program declarations

The scope of an occurrence of a program declaration in a list of rules
and declarations consists of the set of all rules and non-program
declarations appearing between the occurrence and the next
occurrence of a program declaration or the end of the list

Rules and non-program declarations outside the scope of any program
declaration are implicitly preceded by a base program declaration

Example a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).
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#program and #external declaration

Scope of #program declarations

Given a list R of (non-ground) rules and declarations and a name n,
we define R(n) as the set of all rules and non-program declarations in
the scope of all occurrences of program declarations with name n

We often refer to R(n) as a subprogram of R

Example

R(base) = {a(1), a(2)}
R(acid) = {b(k), c(X , k)← a(X )}

Given a name n with associated parameters (p1, . . . , pk), the
instantiation of R(n) with a term tuple (t1, . . . , tk) results in the set

R(n)[p1/t1, . . . , pk/tk ]

obtained by replacing in R(n) each occurrence of pi by ti
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#program and #external declaration

Contextual grounding

Rules are grounded relative to a set of atoms, called atom base

Given a set R of (non-ground) rules and two sets C ,D of ground
atoms, we define an instantiation of R relative to C as a ground
program groundC (R) over D subject to the following conditions:

C ⊆ D ⊆ C ∪ head(groundC (R))

groundC (R) ⊆ {head(r)← body(r)+ ∪ {∼a | a ∈ body(r)− ∩ D}
| r ∈ ground(R), body(r)+ ⊆ D}

Example Given R = { a(X )← f (X ), e(X ); b(X )← f (X ),∼e(X ) }
and C = {f (1), f (2), e(1)}, we obtain

groundC (R) =

{
a(1)← f (1), e(1); b(1)← f (1),∼e(1)

b(2)← f (2)

}
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#program and #external declaration

#external declaration

An external declaration is of form

#external a : B

where a is an atom and B a rule body

A logic program with external declarations is said to be extensible

Example #external e(X) : f(X), X < 2.

f(1..2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).
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#program and #external declaration

Grounding extensible logic programs

Given an extensible program R, we define

Q = {a← B, ε | (#external a : B) ∈ R}
R ′ = {a← B ∈ R}

Note An external declaration is treated as a rule a← B, ε
where ε is a ground marking atom

Given an atom base C , the ground instantiation of an extensible logic
program R is defined as a (ground) logic program P with externals E
where

P = {r ∈ groundC∪{ε}(R
′ ∪ Q) | ε /∈ body(r)}

E = {head(r) | r ∈ groundC∪{ε}(R
′ ∪ Q), ε ∈ body(r)}

Note The marking atom ε appears neither in P nor E , respectively,
and P is a logic program over C ∪ E ∪ head(P)
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#program and #external declaration

Example

Extensible program

#external e(X) : f(X), g(X).

f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}
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Module composition

Module

The assembly of subprograms can be characterized
by means of modules:

A module P is a triple (P, I ,O) consisting of

a (ground) program P over ground(A) and
sets I ,O ⊆ ground(A) such that

I ∩ O = ∅,
atom(P) ⊆ I ∪ O, and
head(P) ⊆ O

The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)
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The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)
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Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

( P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q) )

provided that P and Q are compositional
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Module composition

Composing logic programs with externals

Idea Each ground instruction induces a module to be joined
with the module representing the current program state

Given an atom base C , a (non-ground) extensible program R
induces the module

R(C ) = (P, (C ∪ E ) \ head(P), head(P))

via the ground program P with externals E obtained from R and C

Note E \ head(P) consists of atoms stemming from non-overwritten
external declarations
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Module composition

Example

Atom base C = {g(1)}
Extensible program R

#external e(X) : f(X), g(X)

f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Module R(C ) = (P, (C ∪ E ) \ head(P), head(P))

=




f (1), f (2),
a(1)← f (1), e(1),
b(1)← f (1),∼e(1),
b(2)← f (2)

 ,

{
g(1),
e(1)

}
,


f (1), f (2),
a(1),
b(1), b(2)



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Module composition

Capturing program states by modules

Each program state is captured by a module

The input and output atoms of each module provide the atom base

The initial program state is given by the empty module

P0 = (∅, ∅, ∅)

The program state succeeding Pi is captured by the module

Pi+1 = Pi t Ri+1(I (Pi ) ∪ O(Pi ))

where Ri+1(I (Pi ) ∪ O(Pi )) captures the result of grounding an
extensible program R relative to atom base I (Pi ) ∪ O(Pi )

Note The join leading to Pi+1 can be undefined in case the
constituent modules are non-compositional
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Module composition

Capturing program states by modules

Let (Ri )i>0 be a sequence of (non-ground) extensible programs, and
let Pi+1 be the ground program with externals Ei+1 obtained from
Ri+1 and I (Pi ) ∪ O(Pi )

If
⊔

i≥0 Pi is compositional, then

1 P(
⊔

i≥0 Pi ) =
⋃

i>0 Pi

2 I (
⊔

i≥0 Pi ) =
⋃

i>0 Ei \
⋃

i>0 head(Pi )

3 O(
⊔

i≥0 Pi ) =
⋃

i>0 head(Pi )
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States and operations
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States and operations

Clingo state

A clingo state is a triple

(R,P,V )

where

R is a collection of extensible (non-ground) logic programs

P is a module

V is a three-valued assignment over I (P)
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programs where C is the set of all non-integer constants

P is a module

V is a three-valued assignment over I (P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 270 / 392



States and operations

Clingo state

A clingo state is a triple

(R,P,V )

where

R = (Rc)c∈C is a collection of extensible (non-ground) logic
programs where C is the set of all non-integer constants

P is a module

V = (V t ,V u) is a three-valued assignment over I (P)
where V f = I (P) \ (V t ∪ V u)
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States and operations

Clingo state

A clingo state is a triple

(R,P,V )

where

R = (Rc)c∈C is a collection of extensible (non-ground) logic
programs where C is the set of all non-integer constants

P is a module

V = (V t ,V u) is a three-valued assignment over I (P)
where V f = I (P) \ (V t ∪ V u)

Note Input atoms in I (P) are taken to be false by default
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States and operations

create

create(R) : 7→ (R,P,V )

for a list R of (non-ground) rules and declarations where

R = (R(c))c∈C
P = (∅, ∅, ∅)
V = (∅, ∅)
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States and operations

add

add(R) : (R1,P,V ) 7→ (R2,P,V )

for a list R of (non-ground) rules and declarations where

R1 = (Rc)c∈C and R2 = (Rc ∪ R(c))c∈C
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States and operations

ground

ground((n,pn)n∈N) : (R,P1,V1) 7→ (R,P2,V2)

for a collection (n,pn)n∈N such that N ⊆ C and pn ∈ T k for some k
where

P2 = P1 t R(I (P1) ∪ O(P1))

and R(I (P1) ∪ O(P1)) is the module obtained from

extensible program
⋃

n∈N Rn[p/pn] and
atom base I (P1) ∪ O(P1)

for (Rc)c∈C = R
V t

2 = {a ∈ I (P2) | V1(a) = t }
V u

2 = {a ∈ I (P2) | V1(a) = u}
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States and operations

ground

Notes

The external status of an atom is eliminated once it becomes
defined by a rule in some added program
This is accomplished by module composition, namely, the
elimination of output atoms from input atoms

Jointly grounded subprograms are treated as a single subprogram

ground((n,p), (n,p))(s) = ground((n,p))(s) while
ground((n,p))(ground((n,p))(s)) leads to two
non-compositional modules whenever head(Rn) 6= ∅
Inputs stemming from added external declarations are set to false
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States and operations

assignExternal

assignExternal(a, v) : (R,P,V1) 7→ (R,P,V2)

for a ground atom a and v ∈ {t, u, f } where

if v = t

V t
2 = V t

1 ∪ {a} if a ∈ I (P), and V t
2 = V t

1 otherwise
V u

2 = V u
1 \ {a}

if v = u

V t
2 = V t

1 \ {a}
V u

2 = V u
1 ∪ {a} if a ∈ I (P), and V u

2 = V u
1 otherwise

if v = f

V t
2 = V t

1 \ {a}
V u

2 = V u
1 \ {a}

Note Only input atoms, that is, non-overwritten externals are affected
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States and operations

releaseExternal

releaseExternal(a) : (R,P1,V1) 7→ (R,P2,V2)

for a ground atom a where

P2 = (P(P1), I (P1) \ {a},O(P1) ∪ {a}) if a ∈ I (P1), and
P2 = P1 otherwise
V t

2 = V t
1 \ {a}

V u
2 = V u

1 \ {a}
Notes

releaseExternal only affects input atoms; defined atoms remain
unaffected
A released atom can never be re-defined, neither by a rule nor an
external declaration
A released (input) atom is made permanently false, since it is neither
defined by any rule nor part of the input atoms
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States and operations

solve

solve((At ,Af )) : (R,P,V ) 7→ (R,P,V ) prints the set

{X | X is a stable model of P wrt V st At ⊆ X and Af ∩X = ∅}

where the stable models of a module P wrt an assignment V
are given by the stable models of the program

P(P) ∪ {a← | a ∈ V t} ∪ {{a} ← | a ∈ V u}
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States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Example

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.
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States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 279 / 392



States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 279 / 392



States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 279 / 392



States and operations

Extensible programs

Initial clingo state

(R0,P0,V0) = ((R(base),R(succ)), (∅, ∅, ∅), (∅, ∅))

where

R(base) =


#external p(1) p(0)← p(3)
#external p(2) p(0)← ∼p(0)
#external p(3)


R(succ) =


#external p(n + 3)
p(n)← p(n + 3)
p(n)← ∼p(n + 1),∼p(n + 2)


Initial atom base I (P0) ∪ O(P0) = ∅
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States and operations

Extensible programs

Initial clingo state, or more precisely, state of clingo object ‘prg’

create(R) = ((R(base),R(succ)), (∅, ∅, ∅), (∅, ∅))

where R is the list of rules and declarations in Line 1-8 and
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p(n)← ∼p(n + 1),∼p(n + 2)


Initial atom base I (P0) ∪ O(P0) = ∅
Note create(R) is invoked implicitly to create clingo object ‘prg’
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States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.
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States and operations

prg.ground([("base", [])])

Global clingo state (R0,P0,V0), including atom base ∅
Input Extensible program R(base)

Output Module

R1(∅) = (P1,E1, {p(0)}) where

P1 = {p(0)← p(3); p(0)← ∼p(0)}
E1 = {p(1), p(2), p(3)}

Result clingo state

(R1,P1,V1) = (R0,P0 t R1(∅),V0)

where

P1 = P0 t R1(∅) = (∅, ∅, ∅) t (P1,E1, {p(0)})
= ({p(0)← p(3); p(0)← ∼p(0)}, {p(1), p(2), p(3)}, {p(0)})
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States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

>> prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.
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States and operations

prg.assign external(Fun("p",[3]),True)

Global clingo state (R1,P1,V1)

Input assignment p(3) 7→ t

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))
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States and operations

prg.solve()

Global clingo state (R2,P2,V2)

Input empty assignment

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))

Print stable model {p(0), p(3)} of P2 wrt V2
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States and operations

prg.assign external(Fun("p",[3]),False)

Global clingo state (R2,P2,V2)

Input assignment p(3) 7→ f

Result clingo state

(R3,P3,V3) = (R0,P1, (∅, ∅))
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States and operations

prg.solve()

Global clingo state (R3,P3,V3)

Input empty assignment

Result clingo state

(R3,P3,V3) = (R0,P1, (∅, ∅))

Print no stable model of P3 wrt V3
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States and operations

prg.ground([("succ",[1]),("succ",[2])])

Global clingo state (R3,P3,V3), including atom base
I (P3) ∪ O(P3) = {p(0), p(1), p(2), p(3)}

Input Extensible program R(succ)[n/1] ∪ R(succ)[n/2]

Output Module

R4(I (P3) ∪ O(P3)) =

(
P4,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})
where

P4 =

{
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
E4 = {p(4), p(5)}

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)
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States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

>> prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.
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States and operations

prg.solve()

Global clingo state (R4,P4,V4)

Input empty assignment

Result clingo state

(R4,P4,V4) = (R0,P4,V3)

Print no stable model of P4 wrt V4
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States and operations

prg.ground([("succ", [3])])

Global clingo state (R4,P4,V4), including atom base
I (P4) ∪ O(P4) = {p(0), p(1), p(2), p(3), p(4), p(5)}

Input Extensible program R(succ)[n/3]

Output Module

R5(I (P4) ∪ O(P4)) =

(
P5,

{
p(0), p(1), p(2),
p(4), p(5), p(6)

}
, {p(3)}

)
where P5 = {p(3)← p(6); p(3)← ∼p(4),∼p(5)}

E5 = {p(6)}

Result clingo state

(R5,P5,V5) = (R0,P4 t R5(I (P4) ∪ O(P4)),V3)
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States and operations

prg.ground([("succ", [3])])

Result clingo state

(R5,P5,V5) = (R0,P4 t R5(I (P4) ∪ O(P4)),V3)

where

R5 = (R(base),R(succ))

P(P5) =


p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4);

p(3)← p(6); p(3)← ∼p(4),∼p(5)


I (P5) = {p(4), p(5), p(6)}
O(P5) = {p(0), p(1), p(2), p(3)}

V5 = (∅, ∅)
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States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

>> prg.ground([("succ", [3])])

prg.solve()

#end.
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States and operations

prg.solve()

Global clingo state (R5,P5,V5)

Input empty assignment

Result clingo state

(R5,P5,V5) = (R0,P5,V3)

Print stable model {p(0), p(3)} of P5 wrt V5
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States and operations

simple.lp
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.
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States and operations

Clingo on the run

$ clingo simple.lp

clingo version 4.5.0

Reading from simple.lp

Solving...

Answer: 1

p(3) p(0)

Solving...

Solving...

Solving...

Answer: 1

p(3) p(0)

SATISFIABLE

Models : 2+

Calls : 4

Time : 0.019s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.010s
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Incremental reasoning

Outline

30 Motivation

31 #program and #external declaration

32 Module composition

33 States and operations

34 Incremental reasoning

35 Boardgaming
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Incremental reasoning

Towers of Hanoi Instance

1

a

2

7

b

3

4

5

6

c

peg(a;b;c). disk(1..7).

init_on(1,a). init_on((2;7),b). init_on((3;4;5;6),c).

goal_on((3;4),a). goal_on((1;2;5;6;7),c).
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Incremental reasoning

Towers of Hanoi Encoding

#program base.

on(D,P,0) :- init_on(D,P).
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Incremental reasoning

Towers of Hanoi Encoding

#program step(t).

1 { move(D,P,t) : disk(D), peg(P) } 1.

moved(D,t) :- move(D,_,t).

blocked(D,P,t) :- on(D+1,P,t-1), disk(D+1).

blocked(D,P,t) :- blocked(D+1,P,t), disk(D+1).

:- move(D,P,t), blocked(D-1,P,t).

:- moved(D,t), on(D,P,t-1), blocked(D,P,t).

on(D,P,t) :- on(D,P,t-1), not moved(D,t).

on(D,P,t) :- move(D,P,t).

:- not 1 { on(D,P,t) : peg(P) } 1, disk(D).
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Incremental reasoning

Towers of Hanoi Encoding

#program check(t).

#external query(t).

:- goal_on(D,P), not on(D,P,t), query(t).
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Incremental reasoning

Incremental Solving (ASP)

#script (python)

from gringo import SolveResult, Fun

def main(prg):

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
ret, parts, step = prg.solve(), [], step+1

#end.
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Incremental reasoning

Incremental Solving (tohCtrl.lp)
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Incremental reasoning

Incremental Solving

$ clingo toh.lp tohCtrl.lp

clingo version 4.5.0

Reading from toh.lp ...

Solving...

Solving...

[...]

Solving...

Answer: 1

move(7,a,1) move(6,b,2) move(7,b,3) move(5,a,4) move(7,c,5) move(6,a,6) \

move(7,a,7) move(4,b,8) move(7,b,9) move(6,c,10) move(7,c,11) move(5,b,12) \

move(1,c,13) move(7,a,14) move(6,b,15) move(7,b,16) move(3,a,17) move(7,c,18) \

move(6,a,19) move(7,a,20) move(5,c,21) move(7,b,22) move(6,c,23) move(7,c,24) \

move(4,a,25) move(7,a,26) move(6,b,27) move(7,b,28) move(5,a,29) move(7,c,30) \

move(6,a,31) move(7,a,32) move(2,c,33) move(7,c,34) move(6,b,35) move(7,b,36) \

move(5,c,37) move(7,a,38) move(6,c,39) move(7,c,40)

SATISFIABLE

Models : 1+

Calls : 40

Time : 0.312s (Solving: 0.22s 1st Model: 0.01s Unsat: 0.21s)

CPU Time : 0.300s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 309 / 392



Incremental reasoning

Incremental Solving

$ clingo toh.lp tohCtrl.lp

clingo version 4.5.0

Reading from toh.lp ...

Solving...

Solving...

[...]

Solving...

Answer: 1

move(7,a,1) move(6,b,2) move(7,b,3) move(5,a,4) move(7,c,5) move(6,a,6) \

move(7,a,7) move(4,b,8) move(7,b,9) move(6,c,10) move(7,c,11) move(5,b,12) \

move(1,c,13) move(7,a,14) move(6,b,15) move(7,b,16) move(3,a,17) move(7,c,18) \

move(6,a,19) move(7,a,20) move(5,c,21) move(7,b,22) move(6,c,23) move(7,c,24) \

move(4,a,25) move(7,a,26) move(6,b,27) move(7,b,28) move(5,a,29) move(7,c,30) \

move(6,a,31) move(7,a,32) move(2,c,33) move(7,c,34) move(6,b,35) move(7,b,36) \

move(5,c,37) move(7,a,38) move(6,c,39) move(7,c,40)

SATISFIABLE

Models : 1+

Calls : 40

Time : 0.312s (Solving: 0.22s 1st Model: 0.01s Unsat: 0.21s)

CPU Time : 0.300s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 309 / 392



Incremental reasoning

Incremental Solving (Python)

from sys import stdout

from gringo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1
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Incremental reasoning

Incremental Solving (Python)

$ python tohCtrl.py

move(7,c,40) move(7,a,20) move(7,c,18) move(6,a,31) move(6,b,15) move(7,b,36) \

move(7,c,24) move(7,c,11) move(3,a,17) move(6,a,19) move(7,b,3) move(7,c,5) \

move(7,a,1) move(6,b,35) move(6,c,10) move(6,a,6) move(6,b,2) move(7,b,9) \

move(7,a,7) move(4,b,8) move(7,a,38) move(7,b,16) move(5,a,29) move(7,b,22) \

move(6,c,39) move(6,c,23) move(5,b,12) move(4,a,25) move(1,c,13) move(5,a,4) \

move(7,a,14) move(7,a,26) move(6,b,27) move(7,a,32) move(7,b,28) move(7,c,30) \

move(2,c,33) move(5,c,21) move(7,c,34) move(5,c,37)
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Boardgaming

Outline

30 Motivation

31 #program and #external declaration

32 Module composition

33 States and operations

34 Incremental reasoning

35 Boardgaming
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Boardgaming

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)
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Boardgaming

Solving goal(13) from cornered robots (ctd)
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Boardgaming

board.lp

dim(1..16).

barrier( 2, 1, 1, 0). barrier(13,11, 1, 0). barrier( 9, 7, 0, 1).

barrier(10, 1, 1, 0). barrier(11,12, 1, 0). barrier(11, 7, 0, 1).

barrier( 4, 2, 1, 0). barrier(14,13, 1, 0). barrier(14, 7, 0, 1).

barrier(14, 2, 1, 0). barrier( 6,14, 1, 0). barrier(16, 9, 0, 1).

barrier( 2, 3, 1, 0). barrier( 3,15, 1, 0). barrier( 2,10, 0, 1).

barrier(11, 3, 1, 0). barrier(10,15, 1, 0). barrier( 5,10, 0, 1).

barrier( 7, 4, 1, 0). barrier( 4,16, 1, 0). barrier( 8,10, 0,-1).

barrier( 3, 7, 1, 0). barrier(12,16, 1, 0). barrier( 9,10, 0,-1).

barrier(14, 7, 1, 0). barrier( 5, 1, 0, 1). barrier( 9,10, 0, 1).

barrier( 7, 8, 1, 0). barrier(15, 1, 0, 1). barrier(14,10, 0, 1).

barrier(10, 8,-1, 0). barrier( 2, 2, 0, 1). barrier( 1,12, 0, 1).

barrier(11, 8, 1, 0). barrier(12, 3, 0, 1). barrier(11,12, 0, 1).

barrier( 7, 9, 1, 0). barrier( 7, 4, 0, 1). barrier( 7,13, 0, 1).

barrier(10, 9,-1, 0). barrier(16, 4, 0, 1). barrier(15,13, 0, 1).

barrier( 4,10, 1, 0). barrier( 1, 6, 0, 1). barrier(10,14, 0, 1).

barrier( 2,11, 1, 0). barrier( 4, 7, 0, 1). barrier( 3,15, 0, 1).

barrier( 8,11, 1, 0). barrier( 8, 7, 0, 1).
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Boardgaming

targets.lp

#external goal(1..16).

target(red, 5, 2) :- goal(1).

target(red, 15, 2) :- goal(2).

target(green, 2, 3) :- goal(3).

target(blue, 12, 3) :- goal(4).

target(yellow, 7, 4) :- goal(5).

target(blue, 4, 7) :- goal(6).

target(green, 14, 7) :- goal(7).

target(yellow,11, 8) :- goal(8).

target(yellow, 5,10) :- goal(9).

target(green, 2,11) :- goal(10).

target(red, 14,11) :- goal(11).

target(green, 11,12) :- goal(12).

target(yellow,15,13) :- goal(13).

target(blue, 7,14) :- goal(14).

target(red, 3,15) :- goal(15).

target(blue, 10,15) :- goal(16).

robot(red;green;blue;yellow).

#external pos((red;green;blue;yellow),1..16,1..16).
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Boardgaming

ricochet.lp

time(1..horizon).

dir(-1,0;1,0;0,-1;0,1).

stop( DX, DY,X, Y ) :- barrier(X,Y,DX,DY).

stop(-DX,-DY,X+DX,Y+DY) :- stop(DX,DY,X,Y).

pos(R,X,Y,0) :- pos(R,X,Y).

1 { move(R,DX,DY,T) : robot(R), dir(DX,DY) } 1 :- time(T).

move(R,T) :- move(R,_,_,T).

halt(DX,DY,X-DX,Y-DY,T) :- pos(_,X,Y,T), dir(DX,DY), dim(X-DX), dim(Y-DY),

not stop(-DX,-DY,X,Y), T < horizon.

goto(R,DX,DY,X,Y,T) :- pos(R,X,Y,T), dir(DX,DY), T < horizon.

goto(R,DX,DY,X+DX,Y+DY,T) :- goto(R,DX,DY,X,Y,T), dim(X+DX), dim(Y+DY),

not stop(DX,DY,X,Y), not halt(DX,DY,X,Y,T).

pos(R,X,Y,T) :- move(R,DX,DY,T), goto(R,DX,DY,X,Y,T-1),

not goto(R,DX,DY,X+DX,Y+DY,T-1).

pos(R,X,Y,T) :- pos(R,X,Y,T-1), time(T), not move(R,T).

:- target(R,X,Y), not pos(R,X,Y,horizon).

#show move/4.
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Boardgaming

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s
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Boardgaming

Solving goal(13) from cornered robots
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Boardgaming

optimization.lp

goon(T) :- target(R,X,Y), T = 0..horizon, not pos(R,X,Y,T).

:- move(R,DX,DY,T-1), time(T), not goon(T-1), not move(R,DX,DY,T).

#minimize{ 1,T : goon(T) }.
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Boardgaming

Solving goal(13) from cornered robots
$ clingo board.lp targets.lp ricochet.lp optimization.lp -c horizon=20 --quiet=1,0 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Optimization: 20

Optimization: 19

Optimization: 18

Optimization: 17

Optimization: 16

Optimization: 15

Optimization: 14

Optimization: 13

Optimization: 12

Optimization: 11

Optimization: 10

Optimization: 9

Answer: 12

move(blue,0,-1,1) move(blue,1,0,2) move(yellow,0,-1,3) move(blue,0,1,4) move(yellow,-1,0,5) \

move(blue,1,0,6) move(blue,0,-1,7) move(yellow,1,0,8) move(yellow,0,1,9) move(yellow,0,1,10) \

move(yellow,0,1,11) move(yellow,0,1,12) move(yellow,0,1,13) move(yellow,0,1,14) move(yellow,0,1,15) \

move(yellow,0,1,16) move(yellow,0,1,17) move(yellow,0,1,18) move(yellow,0,1,19) move(yellow,0,1,20)

OPTIMUM FOUND

Models : 12

Optimum : yes

Optimization : 9

Calls : 1

Time : 16.145s (Solving: 15.01s 1st Model: 3.35s Unsat: 2.02s)

CPU Time : 16.080s
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Boardgaming

Solving goal(13) from cornered robots
$ clingo board.lp targets.lp ricochet.lp optimization.lp -c horizon=20 --quiet=1,0 \
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clingo version 4.5.0
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Solving...
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Optimization: 18

Optimization: 17

Optimization: 16

Optimization: 15

Optimization: 14

Optimization: 13

Optimization: 12

Optimization: 11

Optimization: 10

Optimization: 9

Answer: 12

move(blue,0,-1,1) move(blue,1,0,2) move(yellow,0,-1,3) move(blue,0,1,4) move(yellow,-1,0,5) \

move(blue,1,0,6) move(blue,0,-1,7) move(yellow,1,0,8) move(yellow,0,1,9) move(yellow,0,1,10) \

move(yellow,0,1,11) move(yellow,0,1,12) move(yellow,0,1,13) move(yellow,0,1,14) move(yellow,0,1,15) \

move(yellow,0,1,16) move(yellow,0,1,17) move(yellow,0,1,18) move(yellow,0,1,19) move(yellow,0,1,20)

OPTIMUM FOUND

Models : 12

Optimum : yes

Optimization : 9

Calls : 1

Time : 16.145s (Solving: 15.01s 1st Model: 3.35s Unsat: 2.02s)

CPU Time : 16.080s
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Boardgaming

Playing in rounds

Round 1: goal(13)

Round 2: goal(4)
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Boardgaming

Control loop

1 Create an operational clingo object

2 Load and ground the logic programs encoding Ricochet Robot
(relative to some fixed horizon) within the control object

3 While there is a goal, do the following

1 Enforce the initial robot positions
2 Enforce the current goal
3 Solve the logic program contained in the control object
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Boardgaming

Ricochet Robot Player
ricochet.py

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)
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Boardgaming

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving
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Boardgaming
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Boardgaming

Ricochet Robot Player
Setup and control loop

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)
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Boardgaming

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds
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Boardgaming

Setup and control loop

>> horizon = 15

>> encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
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>> Fun("pos", [Fun("yellow"), 16, 16])]

>> sequence = [Fun("goal", [13]),

>> Fun("goal", [4]),

>> Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)
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Boardgaming

Setup and control loop
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player = Player(horizon, positions, encodings)
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>> print player.solve(goal)
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Boardgaming

Ricochet Robot Player
init

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)
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Boardgaming

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance
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Boardgaming

Ricochet Robot Player
solve

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)
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Boardgaming

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method
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Boardgaming

Ricochet Robot Player
on model

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 331 / 392



Boardgaming

on model

def on_model(self, model):

self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)
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Boardgaming

ricochet.py
from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)
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Boardgaming

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$ python robotviz
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Boardgaming

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),
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move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]
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Boardgaming

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$ python robotviz
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Systems: Overview

36 Potassco

37 gringo

38 clasp

39 clingo
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Potassco

potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam,
for instance:

Grounder gringo, lingo,

Solver clasp, claspfolio, claspar, aspeed

Grounder+Solver Clingo, Clingcon, ROSoClingo

Further Tools aspartame, aspcud, aspic, claspre, clavis, coala, fimo,
insight, metasp, plasp, piclasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Teaching material potassco.sourceforge.net/teaching.html
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gringo

Outline

36 Potassco

37 gringo

38 clasp

39 clingo
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gringo

gringo

Accepts safe programs with aggregates

Tolerates unrestricted use of function symbols
(as long as it yields a finite ground instantiation :)

Expressive power of a Turing machine

Basic architecture of gringo:

Parser Preprocessor Grounder Output

--lparse
--text
--reify

--ground
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Outline

36 Potassco

37 gringo
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39 clingo

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 340 / 392



clasp Features

Outline

36 Potassco

37 gringo

38 clasp
Features
Parallel solving
Configuration
Domain heuristics

39 clingo
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clasp Features

clasp

clasp is a native ASP solver combining conflict-driven search with
sophisticated reasoning techniques:

advanced preprocessing, including equivalence reasoning
lookback-based decision heuristics
restart policies
nogood deletion
progress saving
dedicated data structures for binary and ternary nogoods
lazy data structures (watched literals) for long nogoods
dedicated data structures for cardinality and weight constraints
lazy unfounded set checking based on “source pointers”
tight integration of unit propagation and unfounded set checking
various reasoning modes
parallel search
. . .
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clasp Features

Reasoning modes of clasp

Beyond deciding (stable) model existence, clasp allows for:

Optimization
Enumeration (without solution recording)
Projective enumeration (without solution recording)
Intersection and Union (linear solution computation)
and combinations thereof

clasp allows for

ASP solving (smodels format)
MaxSAT and SAT solving (extended dimacs format)
PB solving (opb and wbo format)
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clasp Parallel solving

Outline

36 Potassco

37 gringo

38 clasp
Features
Parallel solving
Configuration
Domain heuristics

39 clingo
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clasp Parallel solving

Parallel search in clasp

clasp

pursues a coarse-grained, task-parallel approach to parallel search
via shared memory multi-threading

up to 64 configurable (non-hierarchic) threads

allows for parallel solving via search space splitting
and/or competing strategies

both supported by solver portfolios

features different nogood exchange policies
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clasp Parallel solving

Sequential CDCL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit
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clasp Parallel solving

Parallel CDCL-style solving in clasp

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)
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clasp Parallel solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 348 / 392



clasp Parallel solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 348 / 392



clasp Parallel solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 348 / 392



clasp Parallel solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 348 / 392



clasp Parallel solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 348 / 392



clasp Parallel solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 348 / 392



clasp Parallel solving

clasp in context

Compare clasp (2.0.5) to the multi-threaded SAT solvers

cryptominisat (2.9.2)
manysat (1.1)
miraxt (2009)
plingeling (587f)

all run with four and eight threads in their default settings

160/300 benchmarks from crafted category at SAT’11

all solvable by ppfolio in 1000 seconds
crafted SAT benchmarks are closest to ASP benchmarks
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clasp Parallel solving

clasp in context
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clasp Configuration

Outline

36 Potassco

37 gringo

38 clasp
Features
Parallel solving
Configuration
Domain heuristics

39 clingo
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clasp Configuration

Using clasp

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

"-t 4": Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit
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clasp Configuration

Comparing configurations
on queensA.lp

n frumpy jumpy handy crafty trendy -t 4

50 0.063 0.023 3.416 0.030 1.805 0.061
100 20.364 0.099 7.891 0.136 7.321 0.121
150 60.000 0.212 14.522 0.271 19.883 0.347
200 60.000 0.415 15.026 0.667 32.476 0.753
500 60.000 3.199 60.000 7.471 60.000 6.104

(times in seconds, cut-off at 60 seconds)
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clasp Configuration

clasp’s default portfolio for parallel solving
via clasp --print-portfolio

[solver.0]: --heuristic=Vsids,92 --restarts=L,60 --deletion=basic,50,0 --del-max=2000000 --del-estimate=1 --del-cfl=+,2000,100,20 --del-grow=0 --del-glue=2,0 --strengthen=recursive,0 --otfs=2 --init-moms --score-other=2 --update-lbd=1 --save-progress=160 --init-watches=2 --local-restarts --loops=shared --opt-strat=bb,1

[solver.1]: --heuristic=Vsids --restarts=D,100,0.7 --deletion=basic,50,0 --del-init=3.0,500,19500 --del-grow=1.1,20.0,x,100,1.5 --del-cfl=+,10000,2000 --del-glue=2 --strengthen=recursive --update-lbd --otfs=2 --save-p=75 --counter-restarts=3 --counter-bump=1023 --reverse-arcs=2 --contraction=250 --loops=common --opt-heu=1 --opt-strat=usc,1

[solver.2]: --heuristic=Berkmin --restarts=x,100,1.5 --deletion=basic,75 --del-init=3.0,200,40000 --del-max=400000 --contraction=250 --loops=common --save-p=180 --del-grow=1.1 --strengthen=local --sign-def=4 --restart-on-model --opt-heu=2

[solver.3]: --restarts=x,128,1.5 --deletion=basic,75,0 --del-init=10.0,1000,9000 --del-grow=1.1,20.0 --del-cfl=+,10000,1000 --del-glue=2 --otfs=2 --reverse-arcs=1 --counter-restarts=3 --contraction=250 --heuristic=domain --dom-mod=4,8 --opt-strat=bb,1

[solver.4]: --heuristic=Vsids --restarts=L,100 --deletion=basic,75,2 --del-init=3.0,1000,20000 --del-grow=1.1,25,x,100,1.5 --del-cfl=x,10000,1.1 --del-glue=2 --update-lbd=3 --strengthen=recursive --otfs=2 --save-p=70 --restart-on-model --opt-heu=3 --opt-strat=bb,2

[solver.5]: --heuristic=Vsids --restarts=D,100,0.7 --deletion=sort,50,2 --del-max=200000 --del-init=20.0,1000,14000 --del-cfl=+,4000,600 --del-glue=2 --update-lbd --strengthen=recursive --otfs=2 --save-p=20 --contraction=600 --loops=distinct --counter-restarts=7 --counter-bump=1023 --reverse-arcs=2

[solver.6]: --heuristic=Berkmin,512 --restarts=x,100,1.5 --deletion=basic,75 --del-init=3.0,200,40000 --del-max=400000 --contraction=250 --loops=common --del-grow=1.1,25 --otfs=2 --reverse-arcs=2 --strengthen=recursive --init-w=2 --lookahead=atom,10

[solver.7]: --heuristic=Vsids --reverse-arcs=1 --otfs=1 --local-restarts --save-progress=0 --contraction=250 --counter-restart=7 --counter-bump=200 --restarts=x,100,1.5 --del-init=3.0,800,-1 --deletion=basic,60,0 --strengthen=local --del-grow=1.0,1.0 --del-glue=4 --del-cfl=+,4000,300,100

[solver.8]: --heuristic=Vsids --restarts=L,256 --counter-restart=3 --strengthen=recursive --update-lbd --del-glue=2 --otfs=2 --deletion=ipSort,75,2 --del-init=20.0,1000,19000

[solver.9]: --heuristic=Berkmin,512 --restarts=F,16000 --lookahead=atom,50

[solver.10]: --heuristic=Vmtf --strengthen=no --contr=0 --restarts=x,100,1.3 --del-init=3.0,800,9200

[solver.11]: --heuristic=Vsids --strengthen=recursive --restarts=x,100,1.5,15 --contraction=0

[solver.12]: --heuristic=Vsids --restarts=L,128 --save-p --otfs=1 --init-w=2 --contr=0 --opt-heu=3

[solver.13]: --heuristic=Berkmin,512 --restarts=x,100,1.5,6 --local-restarts --init-w=2 --contr=0

[solver.14]: --no-lookback --heuristic=Unit --lookahead=atom --deletion=no --restarts=no

clasp’s portfolio is fully customizable

configurations are assigned in a round-robin fashion to threads

during parallel solving

-t 4 uses four threads with crafty, trendy, frumpy, and jumpy
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clasp Configuration

clasp’s default portfolio for parallel solving
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[solver.8]: --heuristic=Vsids --restarts=L,256 --counter-restart=3 --strengthen=recursive --update-lbd --del-glue=2 --otfs=2 --deletion=ipSort,75,2 --del-init=20.0,1000,19000

[solver.9]: --heuristic=Berkmin,512 --restarts=F,16000 --lookahead=atom,50

[solver.10]: --heuristic=Vmtf --strengthen=no --contr=0 --restarts=x,100,1.3 --del-init=3.0,800,9200

[solver.11]: --heuristic=Vsids --strengthen=recursive --restarts=x,100,1.5,15 --contraction=0

[solver.12]: --heuristic=Vsids --restarts=L,128 --save-p --otfs=1 --init-w=2 --contr=0 --opt-heu=3

[solver.13]: --heuristic=Berkmin,512 --restarts=x,100,1.5,6 --local-restarts --init-w=2 --contr=0

[solver.14]: --no-lookback --heuristic=Unit --lookahead=atom --deletion=no --restarts=no

clasp’s portfolio is fully customizable

configurations are assigned in a round-robin fashion to threads

during parallel solving

-t 4 uses four threads with crafty, trendy, frumpy, and jumpy
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clasp Domain heuristics
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clasp Domain heuristics

Domain heuristics

clasp allows for incorporating domain-specific heuristics
into ASP solving

input language for expressing domain-specific heuristics
solving capacities for integrating domain-specific heuristics

Example

_heuristics(occ(A,T),factor,T) :- action(A), time(T).
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clasp Domain heuristics

Basic CDCL decision algorithm

loop

propagate // compute deterministic consequences

if no conflict then
if all variables assigned then return variable assignment
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add a conflict constraint
backjump // undo assignments until conflict constraint is unit
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clasp Domain heuristics

Inside decide

Heuristic functions

h : A → [0,+∞) and s : A → {T ,F}

Algorithmic scheme

1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := A \ (AT ∪ AF )
3 C := argmaxa∈Uh(a)
4 a := τ(C )
5 A := A ∪ {a 7→ s(a)}
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clasp Domain heuristics

Heuristic language elements

Heuristic predicate heuristic

Heuristic modifiers (atom, a, and integer, v)

init for initializing the heuristic value of a with v
factor for amplifying the heuristic value of a by factor v
level for ranking all atoms; the rank of a is v
sign for attributing the sign of v as truth value to a

Heuristic atoms

_heuristic(occurs(A,T),factor,T) :- action(A), time(T).
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clasp Domain heuristics

Simple STRIPS planner

time(1..t).

holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).

:- occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occurs(A,T), add(A,F).

nolds(F,T) :- occurs(A,T), del(A,F).

:- query(F), not holds(F,t).
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clasp Domain heuristics

Simple STRIPS planner

time(1..t).

holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).
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holds(F,T) :- occurs(A,T), add(A,F).

nolds(F,T) :- occurs(A,T), del(A,F).

:- query(F), not holds(F,t).

_heuristic(holds(F,T-1),true, t-T+1) :- holds(F,T).

_heuristic(holds(F,T-1),false,t-T+1) :-

fluent(F), time(T), not holds(F,T).
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clasp Domain heuristics

Heuristic modifications to functions h and s

ν(Va,m(A)) — “value for modifier m on atom a wrt assignment A”

init and factor

d0(a) = ν(Va,init(A0)) + h0(a)

di (a) =

{
ν(Va,factor(Ai ))× hi (a) if Va,factor(Ai ) 6= ∅

hi (a) otherwise

sign

ti (a) =


T if ν(Va,sign(Ai )) > 0
F if ν(Va,sign(Ai )) < 0

si (a) otherwise

level `Ai
(A′) = argmaxa∈A′ν(Va,level(Ai )) A′ ⊆ A
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clasp Domain heuristics

Inside decide, heuristically modified

0 h(a) := d(a) for each a ∈ A
1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := `A(A \ (AT ∪ AF ))

3 C := argmaxa∈Ud(a)

4 a := τ(C )

5 A := A ∪ {a 7→ t(a)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 362 / 392



clasp Domain heuristics

Inside decide, heuristically modified

0 h(a) := d(a) for each a ∈ A
1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := `A(A \ (AT ∪ AF ))

3 C := argmaxa∈Ud(a)

4 a := τ(C )

5 A := A ∪ {a 7→ t(a)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 362 / 392



clasp Domain heuristics

Inside decide, heuristically modified

0 h(a) := d(a) for each a ∈ A
1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := `A(A \ (AT ∪ AF ))

3 C := argmaxa∈Ud(a)

4 a := τ(C )

5 A := A ∪ {a 7→ t(a)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice July 27, 2015 362 / 392



clasp Domain heuristics

Selected high scores from
systematic experiments

Setting Labyrinth Sokoban Hanoi Tower

base configuration 9,108s (14) 2,844s (3) 9,137s (11)
24,545,667 19,371,267 41,016,235

a, init, 2 95% (12) 94% 91% (1) 84% 85% (9) 89%
a, factor, 4 78% (8) 30% 120% (1) 107% 109% (11) 110%

a, factor, 16 78% (10) 23% 120% (1) 107% 109% (11) 110%
a, level, 1 90% (12) 5% 119% (2) 91% 126% (15) 120%
f , init, 2 103% (14) 123% 74% (2) 71% 97% (10) 109%

f , factor, 2 98% (12) 49% 116% (3) 134% 55% (6) 70%
f , sign, -1 94% (13) 89% 105% (1) 100% 92% (12) 92%

base configuration versus 38 (static) heuristic modifications
(action, a, and fluent, f)
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f , sign, -1 94% (13) 89% 105% (1) 100% 92% (12) 92%

base configuration versus 38 (static) heuristic modifications
(action, a, and fluent, f)
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clasp Domain heuristics

Abductive problems with optimization

Setting Diagnosis Expansion Repair (H) Repair (S)

base configuration 111.1s (115) 161.5s (100) 101.3s (113) 33.3s (27)

sign,-1 324.5s (407) 7.6s (3) 8.4s (5) 3.1s (0)
sign,-1 factor,2 310.1s (387) 7.4s (2) 3.5s (0) 3.2s (1)
sign,-1 factor,8 305.9s (376) 7.7s (2) 3.1s (0) 2.9s (0)
sign,-1 level,1 76.1s (83) 6.6s (2) 0.8s (0) 2.2s (1)

level,1 77.3s (86) 12.9s (5) 3.4s (0) 2.1s (0)

(abducibles subject to optimization)
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clasp Domain heuristics

Planning Competition Benchmarks

_heuristic(holds(F,T-1),true, t-T+1) :- holds(F,T).

_heuristic(holds(F,T-1),false,t-T+1) :-

fluent(F), time(T), not holds(F,T).

Problem base configuration heuristic base c. (SAT) heur. (SAT)
Blocks’00 134.4s (180/61) 9.2s (239/3) 163.2s (59) 2.6s (0)

Elevator’00 3.1s (279/0) 0.0s (279/0) 3.4s (0) 0.0s (0)
Freecell’00 288.7s (147/115) 184.2s (194/74) 226.4s (47) 52.0s (0)

Logistics’00 145.8s (148/61) 115.3s (168/52) 113.9s (23) 15.5s (3)
Depots’02 400.3s (51/184) 297.4s (115/135) 389.0s (64) 61.6s (0)

Driverlog’02 308.3s (108/143) 189.6s (169/92) 245.8s (61) 6.1s (0)
Rovers’02 245.8s (138/112) 165.7s (179/79) 162.9s (41) 5.7s (0)

Satellite’02 398.4s (73/186) 229.9s (155/106) 364.6s (82) 30.8s (0)
Zenotravel’02 350.7s (101/169) 239.0s (154/116) 224.5s (53) 6.3s (0)

Total 252.8s (1225/1031) 158.9s (1652/657) 187.2s (430) 17.1s (3)
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Outline

36 Potassco

37 gringo

38 clasp

39 clingo
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clingo

Clingo species

Before Clingo = gringo | clasp
Clingo — easy solving
iClingo — incremental solving
oClingo — reactive solving

After

Clingo = gringo | clasp

Clingo — easy solving
+ incremental solving
+ reactive solving
+ complex solving

Clingo series 4 = ASP + Control

Multi-shot ASP solving deals with continously changing programs

See Multi-shot ASP Solving for details
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Preferences and optimization: Overview

40 Motivation

41 The asprin framework

42 Preliminaries

43 Language

44 Implementation

45 Summary
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Motivation

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}
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The asprin framework

Outline

40 Motivation
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The asprin framework

Approach

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings
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The asprin framework

Example

#preference(costs, less(weight)){40 : sauna, 70 : dive}
#preference(fun, superset){sauna, dive, hike,∼bunji}
#preference(temps, aso){dive > sauna ‖ hot, sauna > dive ‖¬hot}
#preference(all , pareto){name(costs), name(fun), name(temps)}

#optimize(all)
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Preliminaries

Preference

A strict partial order � on the stable models of a logic program

That is, X � Y means that X is preferred to Y

A stable model X is �-preferred, if there is no other stable model Y
such that Y � X

A preference type is a (parametric) class of preference relations
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Language

Language

weighted formula w1, . . . ,wl : φ
where each wi is a term and φ is a Boolean formula

naming atom name(s)
where s is the name of a preference

preference element Φ1 > · · · > Φm ‖ Φ
where each Φr is a set of weighted formulas and Φ is a non-weighted formula

preference statement #preference(s, t){e1, . . . , en}
where s and t represent the preference statement and its type

and each ej is a preference element

optimization directive #optimize(s)
where s is the name of a preference

preference specification is a set S of preference statements and a directive

#optimize(s) such that S is an acyclic, closed, and s ∈ S
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Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E ), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y ) ∈ less(cardinality)(E )
if |{` ∈ E | X |= `}| < |{` ∈ E | Y |= `}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X ) denotes the power set of X )
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Language

More examples

more(weight) is defined as

(X ,Y ) ∈ more(weight)(E) if
∑

(w :`)∈E ,X |=` w >
∑

(w :`)∈E ,Y |=` w

dom(more(weight)) = P({w : a,w : ¬a | w ∈ Z, a ∈ A}); and

subset is defined as

(X ,Y ) ∈ subset(E) if {` ∈ E | X |= `} ⊂ {` ∈ E | Y |= `}
dom(less(cardinality)) = P({a,¬a | a ∈ A}).

pareto is defined as

(X ,Y ) ∈ pareto(E) if
∧

name(s)∈E (X �s Y ) ∧
∨

name(s)∈E (X �s Y )

dom(pareto) = P({n | n ∈ N});

lexico is defined as

(X ,Y ) ∈ lexico(E) if
∨

w :name(s)∈E
(
(X �s Y ) ∧

∧
v :name(s′)∈E ,v<w (X =s′ Y )

)
dom(lexico) = P({w : n | w ∈ Z, n ∈ N}).
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Language

Preference relation

A preference relation is obtained by applying a preference type to an
admissible set of preference elements

#preference(s, t)E declares preference relation t(E ) denoted by �s

Example #preference(1, less(cardinality)){a,¬b, c}) declares

X �1 Y as |{` ∈ {a,¬b, c} | X |= `}| < |{` ∈ {a,¬b, c} | Y |= `}|

where �1 stands for less(cardinality)({a,¬b, c})
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X �1 Y as |{` ∈ {a,¬b, c} | X |= `}| < |{` ∈ {a,¬b, c} | Y |= `}|
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Implementation

Preference program

Reification HX = {holds(a) | a ∈ X} and H ′X = {holds ′(a) | a ∈ X}

Preference program Let s be a preference statement declaring �s

and let Ps be a logic program

We define Ps as a preference program for s, if for all sets X ,Y ⊆ A,
we have

X �s Y iff Ps ∪ HX ∪ H ′Y is satisfiable

Note Ps usually consists of an encoding Ets of ts , facts Fs
representing the preference statement, and auxiliary rules A

Note Dynamic versions of HX and HY must be used for optimization
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Implementation

#preference(3, subset){a,¬b, c}

Esubset=

 better(P) :- preference(P,subset),

holds’(X) : preference(P,_,_,for(X),_), holds(X);

1 #sum { 1,X : not holds(X), holds’(X),

preference(P,_,_,for(X),_) }.


F3 =

{
preference(3,subset). preference(3,1,1,for(a),()).

preference(3,2,1,for(neg(b)),()).

preference(3,3,1,for(c),()).

}
A =

{
holds(neg(A)) :- not holds(A), preference(_,_,_,for(neg(A)),_).

holds’(neg(A)) :- not holds’(A),preference(_,_,_,for(neg(A)),_).

}
H{a,b}=

{
holds(a). holds(b).

}
H ′{a} =

{
holds’(a).

}
We get a stable model containing better(3) indicating that
{a, b} �3 {a}, or {a} ⊂ {a,¬b}
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Implementation

Basic algorithm solveOpt(P , s)

Input : A program P over A and preference statement s
Output : A �s -preferred stable model of P, if P is satisfiable, and ⊥

otherwise

Y ← solve(P)
if Y = ⊥ then return ⊥

repeat
X ← Y
Y ← solve(P ∪ Ets ∪ Fs ∪ RA ∪ H ′X ) ∩ A

until Y = ⊥
return X

where RX = {holds(a)← a | a ∈ X}
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Implementation

Sketched Python Implementation

#script (python)

from gringo import *

holds = []

def getHolds():

global holds

return holds

def onModel(model):

global holds

holds = []

for a in model.atoms():

if (a.name() == "_holds"): holds.append(a.args()[0])

def main(prg):

step = 1

prg.ground([("base", [])])

while True:

if step > 1: prg.ground([("doholds",[step-1]),("preference",[0,step-1])]

ret = prg.solve(on_model=onModel)

if ret == SolveResult.UNSAT: break

step = step+1

#end.

#program base. #program doholds(m).

#show _holds(X,0) : _holds(X,0). _holds(X,m) :- X = @getHolds().
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Implementation

Vanilla minimize statements

Emulating the minimize statement

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

in asprin amounts to

#preference(myminimize,less(weight))

{ C,(X,Y) :: cycle(X,Y) : cost(X,Y,C) }.

#optimize(myminimize).

Note asprin separates the declaration of preferences from the actual
optimization directive
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Implementation

Example
in asprin’s input language

#preference(costs,less(weight)){

C :: sauna : cost(sauna,C);

C :: dive : cost(dive,C)

}.

#preference(fun,superset){ sauna; dive; hike; not bunji }.

#preference(temps,aso){

dive > sauna || hot;

sauna > dive || not hot

}.

#preference(all,pareto){name(costs); name(fun); name(temps)}.

#optimize(all).
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Implementation

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types
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Summary

Summary

asprin stands for “ASP for Preference handling”

asprin is a general, flexible, and extendable framework for
preference handling in ASP

asprin caters to

off-the-shelf users using the preference relations in asprin’s library
preference engineers customizing their own preference relations
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Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

Rapid application development tool

ASP has a growing range of applications
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ASP offers an expanding functionality and ease of use

Rapid application development tool

ASP has a growing range of applications

ASP = DB+LP+KR+SAT
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Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

Rapid application development tool

ASP has a growing range of applications

http://potassco.sourceforge.net
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