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What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

What are ASP’s distinguishing features?

High level, versatile modeling language
High performance solvers
Qualitative and quantitative optimization

Any industrial impact?

ASP Tech companies: DLV Systems and Potassco Solutions
Increasing interest in (large) companies
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Evolution

Some (biased) moments in time

’80 Capturing incomplete information
Databases Closed world assumption
Logic programming Negation as failure
Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation
Logic programming semantics
Well-founded and stable models semantics
ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries
Growing dissemination — see last slides —
Constructive logics Equilibrium Logic

’10 Customization and integration
Complex reasoning modes APIs, multi-shot solving
Hybridization Constraint ASP, theory solving
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Usage

Two sides of a coin

ASP as High-level Language

Express problem instance as sets of facts
Encode problem class as a set of rules
Read off solutions from stable models of facts and rules

ASP as Low-level Language

Compile a problem into a set of facts and rules
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs
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Usage

Two and a half sides of a coin

ASP as High-level Language

Express problem instance as sets of facts
Encode problem class as a set of rules
Read off solutions from stable models of facts and rules

ASP as “Low-level” Language

Compile a problem instance into a set of facts
Encode problem class as a set of rules
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs
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Constraint-based characterization

Algorithmic characterization
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Vladimir Lifschitz, Thirteen Definitions of a Stable Model, [4, 5]
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Propositional Normal Logic Programs

A logic program P is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of P justifying each true atom by some rule in P
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Normal Logic Programs

A logic program P is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of P justifying each true atom by some rule in P

Disclaimer The following formalities apply to normal logic programs
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Reduct-based characterization

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T
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Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F
F F T F
F T F F
F T T T
T F F T
T F T T
T T F F
T T T T

We get four models: {b, c}, {a}, {a, c}, and {a, b, c}
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Reduct-based characterization

Stable model

A logic program P is a set of rules, r , of the form

a← b1, . . . , bm,¬c1, . . . ,¬cn

The reduct, PX , of a program P relative to a set X of atoms is

PX = {a← b1, . . . , bm | r ∈ P, {c1, . . . , cn} ∩ X = ∅}

Cn(P) stands for the smallest model of a positive program P

A set X of atoms is a stable model of a program P
if Cn(PX ) = X
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Axiomatic characterization

Logic Programs as Propositional Formulas

P =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (P)=

{
a← ¬b b ← ¬a x ← (a ∧ ¬c) ∨ y y ← x ∧ b

}
∪
{
c ↔ ⊥

}
LF (P) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (P) :

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms
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Axiomatic characterization

Logic Programs as Propositional Formulas

P =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (P)=

{
a↔

(∨
(a←B)∈PBF (B)

)
| a ∈ A(P)

}
BF (B)=

∧
b∈B∩A(P)b ∧

∧
¬c∈B¬c

LF (P) =
{(∨

a∈La
)
→
(∨

a∈L,(a←B)∈P,B∩L=∅BF (B)
)
| L ∈ loop(P)

}
Classical models of CF (P) ∪ LF (P) :

Theorem (Lin and Zhao)

Let P be a normal logic program and X ⊆ A(P).
Then, X is a stable model of P iff X |= CF (P) ∪ LF (P).

Size of CF (P) is linear in the size of P

Size of LF (P) may be exponential in the size of P
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Axiomatic characterization

ASP and SAT

SAT = ASP + Law of the excluded middle

ASP = SAT + Completion and Loop formulas

Note Checking whether a propositional formula has
a stable model is Σ2

P -complete
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Axiomatic characterization

ASP and SAT

SAT = ASP + Law of the excluded middle1

ASP = SAT + Completion and Loop formulas

Note Checking whether a propositional formula has
a stable model is Σ2

P -complete

1For instance, ‘{a}.’ stands for ‘a ∨ ¬a’.
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Logical characterization

The logic of Here-and-There (HT)

An interpretation is a pair 〈H,T 〉 of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note 〈H,T 〉 is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms
atoms not in T are false

Idea

〈H,T 〉 |= ϕ ∼ ϕ is provably true
〈T ,T 〉 |= ϕ ∼ ϕ is possibly true, that is, classically true
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Logical characterization

Satisfaction

〈H,T 〉 |= a if a ∈ H for any atom a

〈H,T 〉 |= ϕ ∧ ψ if 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ

〈H,T 〉 |= ϕ ∨ ψ if 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ

〈H,T 〉 |= ϕ→ ψ if 〈X ,T 〉 |= ϕ implies 〈X ,T 〉 |= ψ
for both X = H,T

Note 〈H,T 〉 |= ¬ϕ if 〈T ,T 〉 6|= ϕ since ¬ϕ = ϕ→ ⊥

An interpretation 〈H,T 〉 is a model of ϕ, if 〈H,T 〉 |= ϕ
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Logical characterization

Classical tautologies

H T a ¬a a ∨ ¬a ¬¬a a← ¬¬a
{a} {a} T F T T T
∅ {a} F F F T F
∅ ∅ F T T F T
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Logical characterization

Equilibrium models

A total interpretation 〈T ,T 〉 is an equilibrium model of
a formula ϕ, if

1 〈T ,T 〉 |= ϕ,
2 〈H,T 〉 6|= ϕ for all H ⊂ T

T is called a stable model of ϕ

Note 〈T ,T 〉 acts as a classical model

Note 〈H,T 〉 |= P iff H |= PT (PT is the reduct of P by T )
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Grounding: Overview

9 Ground instantiation

10 Stable models

11 Grounding safe programs
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Ground instantiation

Outline
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Ground instantiation

Ground instantiation

Let T be a set of (variable-free) terms

Let A be a set of (variable-free) atoms constructible from T

A variable-free atom is also called ground

Ground instances of a rule r are obtained by replacing all variables in
r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r and
θ is a (ground) substitution

Ground instantiation of logic program P

ground(P) =
⋃

r∈P ground(r)
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Ground instantiation

Let T be a set of

(
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)
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Ground instantiation

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y )← r(X ,Y ) }

T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


å Grounding aims at reducing the ground instantiation

by applying semantic principles
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Stable models

Outline

9 Ground instantiation

10 Stable models

11 Grounding safe programs
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Stable models

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if X is a stable model of ground(P)
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Grounding safe programs

Outline

9 Ground instantiation

10 Stable models

11 Grounding safe programs
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Grounding safe programs

Safety

A normal rule is safe, if all its variables occur in its positive body

Examples

p(a)←
p(X )←
p(X )← q(X )
p(X )← ¬q(X )
p(X )← ¬q(X ), r(X )

A normal program is safe, if all of its rules are safe
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Grounding safe programs

Safety

A normal rule is safe, if all its variables occur in its positive body

Examples

p(a)← 4
p(X )←
p(X )← q(X )
p(X )← ¬q(X )
p(X )← ¬q(X ), r(X )

A normal program is safe, if all of its rules are safe
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Grounding safe programs

Safety

A normal rule is safe, if all its variables occur in its positive body

Examples

p(a)← 4
p(X )← 8
p(X )← q(X )
p(X )← ¬q(X )
p(X )← ¬q(X ), r(X )

A normal program is safe, if all of its rules are safe
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Grounding safe programs

Grounding safe programs

P = { r(a, b)← , r(b, c)← , t(X ,Y )← r(X ,Y ) }

Grounding intuitively

0 Partition program along predicate dependencies

P1 = { r(a, b)← , r(b, c)← }
P2 = { t(X ,Y )← r(X ,Y ) }

1 Ground P1

Rules: { r(a, b)← , r(b, c)← }
Atoms: { r(a, b), r(b, c) }

2 Ground P2 relative to { r(a, b), r(b, c) }
Rules: { t(a, b)← r(a, b), t(b, c)← r(b, c) }
Atoms: { r(a, b), r(b, c), t(a, b), t(b, c) }

3 Resulting ground rules

{r(a, b)← , r(b, c)← } ∪ {t(a, b)← r(a, b), t(b, c)← r(b, c)}
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Solving: Overview

12 Conflict-driven constraint learning

13 Engine
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Reasoning modes

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Reasoning modes

Satisfiability

Enumeration†

Projection†

Intersection‡

Union‡

Optimization

and combinations of them

† without solution recording
‡ without solution enumeration
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Conflict-driven constraint learning

Outline

12 Conflict-driven constraint learning

13 Engine
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Conflict-driven constraint learning

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to

Traditional DPLL-style approach

(DPLL stands for ‘Davis-Putnam-Logemann-Loveland’)

Unit propagation
Backtracking

in ASP, eg smodels

Modern CDCL-style approach

(CDCL stands for ‘Conflict-Driven Constraint Learning’)

Unit propagation
Conflict analysis (via resolution)
Learning + Backjumping + Assertion

in ASP, eg clasp
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Conflict-driven constraint learning

DPLL-style solving

loop

propagate // deterministically assign literals

if no conflict then

if all variables assigned then return solution
else decide // non-deterministically assign some literal

else

if top-level conflict then return unsatisfiable
else

backtrack // unassign literals propagated after last decision
flip // assign complement of last decision literal
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Conflict-driven constraint learning

CDCL-style solving

loop

propagate // deterministically assign literals

if no conflict then

if all variables assigned then return solution
else decide // non-deterministically assign some literal

else

if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit
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Engine

Outline

12 Conflict-driven constraint learning

13 Engine
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Engine

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution
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Extended syntax

Problem

Logic Program

Solution

Stable Models
?
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Language constructs

Facts q(42).

Rules p(X) :- q(X), not r(X).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C@42]

#minimize { C@42 : q(X), p(X,C) }
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Modeling and Interpreting

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting
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Elaboration tolerance

Outline
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Elaboration tolerance

Guiding principle

Elaboration Tolerance (McCarthy, 1998)

“A formalism is elaboration tolerant [if] it is convenient
to modify a set of facts expressed in the formalism
to take into account new phenomena or changed circumstances.”

Uniform problem representation

For solving a problem instance I of a problem class C,

I is represented as a set of facts PI,
C is represented as a set of rules PC, and

PC can be used to solve all problem instances in C
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ASP solving process

ASP workflow: Problem
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ASP solving process

A case-study: Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2
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ASP solving process

A case-study: Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate color/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color
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ASP solving process

A case-study: Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate color/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color

In other words,

1 Each node has one color
2 Two connected nodes must not have the same color
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ASP solving process

ASP workflow: Problem representation
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ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182



ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182



ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182



ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182



ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182



ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182



ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182



ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182



ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding
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ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



graph.lp

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 color.lp
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ASP solving process

Graph coloring: Grounding
$ gringo --text graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).

edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).

edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

color(r). color(b). color(g).

{ assign(1,r); assign(1,b); assign(1,g) } = 1. { assign(4,r); assign(4,b); assign(4,g) } = 1.

{ assign(2,r); assign(2,b); assign(2,g) } = 1. { assign(5,r); assign(5,b); assign(5,g) } = 1.

{ assign(3,r); assign(3,b); assign(3,g) } = 1. { assign(6,r); assign(6,b); assign(6,g) } = 1.

:- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).

:- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). :- assign(6,b), assign(2,b).

:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,g).

:- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).

:- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). :- assign(6,b), assign(3,b).

:- assign(1,g), assign(3,g). :- assign(2,g), assign(5,g). :- assign(6,g), assign(3,g).

:- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). :- assign(6,r), assign(5,r).

:- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). :- assign(6,b), assign(5,b).

:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,g). :- assign(6,g), assign(5,g).
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ASP solving process

Graph coloring: Grounding
$ gringo --text graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).

edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).

edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

color(r). color(b). color(g).

{ assign(1,r); assign(1,b); assign(1,g) } = 1. { assign(4,r); assign(4,b); assign(4,g) } = 1.

{ assign(2,r); assign(2,b); assign(2,g) } = 1. { assign(5,r); assign(5,b); assign(5,g) } = 1.

{ assign(3,r); assign(3,b); assign(3,g) } = 1. { assign(6,r); assign(6,b); assign(6,g) } = 1.

:- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).

:- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). :- assign(6,b), assign(2,b).

:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,g).

:- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).

:- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). :- assign(6,b), assign(3,b).

:- assign(1,g), assign(3,g). :- assign(2,g), assign(5,g). :- assign(6,g), assign(3,g).

:- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). :- assign(6,r), assign(5,r).

:- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). :- assign(6,b), assign(5,b).

:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,g). :- assign(6,g), assign(5,g).
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ASP solving process

Graph coloring: Grounding
$ gringo --text graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).

edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).

edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

color(r). color(b). color(g).

{ assign(1,r); assign(1,b); assign(1,g) } = 1. { assign(4,r); assign(4,b); assign(4,g) } = 1.

{ assign(2,r); assign(2,b); assign(2,g) } = 1. { assign(5,r); assign(5,b); assign(5,g) } = 1.

{ assign(3,r); assign(3,b); assign(3,g) } = 1. { assign(6,r); assign(6,b); assign(6,g) } = 1.

:- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).

:- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). :- assign(6,b), assign(2,b).

:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,g).

:- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).

:- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). :- assign(6,b), assign(3,b).

:- assign(1,g), assign(3,g). :- assign(2,g), assign(5,g). :- assign(6,g), assign(3,g).

:- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). :- assign(6,r), assign(5,r).

:- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). :- assign(6,b), assign(5,b).

:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,g). :- assign(6,g), assign(5,g).
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ASP solving process

Graph coloring: Grounding
$ gringo --text graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).

edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).

edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

color(r). color(b). color(g).

{ assign(1,r); assign(1,b); assign(1,g) } = 1. { assign(4,r); assign(4,b); assign(4,g) } = 1.

{ assign(2,r); assign(2,b); assign(2,g) } = 1. { assign(5,r); assign(5,b); assign(5,g) } = 1.

{ assign(3,r); assign(3,b); assign(3,g) } = 1. { assign(6,r); assign(6,b); assign(6,g) } = 1.

:- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).

:- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). :- assign(6,b), assign(2,b).

:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,g).

:- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).

:- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). :- assign(6,b), assign(3,b).

:- assign(1,g), assign(3,g). :- assign(2,g), assign(5,g). :- assign(6,g), assign(3,g).

:- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). :- assign(6,r), assign(5,r).

:- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). :- assign(6,b), assign(5,b).

:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,g). :- assign(6,g), assign(5,g).
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ASP solving process

Graph coloring: Grounding
$ clingo --text graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).

edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).

edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

color(r). color(b). color(g).

{ assign(1,r); assign(1,b); assign(1,g) } = 1. { assign(4,r); assign(4,b); assign(4,g) } = 1.

{ assign(2,r); assign(2,b); assign(2,g) } = 1. { assign(5,r); assign(5,b); assign(5,g) } = 1.

{ assign(3,r); assign(3,b); assign(3,g) } = 1. { assign(6,r); assign(6,b); assign(6,g) } = 1.

:- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).

:- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). :- assign(6,b), assign(2,b).

:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,g).

:- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).

:- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). :- assign(6,b), assign(3,b).

:- assign(1,g), assign(3,g). :- assign(2,g), assign(5,g). :- assign(6,g), assign(3,g).

:- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). :- assign(6,r), assign(5,r).

:- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). :- assign(6,b), assign(5,b).

:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,g). :- assign(6,g), assign(5,g).
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ASP solving process

Graph coloring: Solving
$ gringo graph.lp color.lp | clasp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

node(1) [...] assign(6,b) assign(5,g) assign(4,b) assign(3,r) assign(2,r) assign(1,g)

Answer: 2

node(1) [...] assign(6,r) assign(5,g) assign(4,r) assign(3,b) assign(2,b) assign(1,g)

Answer: 3

node(1) [...] assign(6,g) assign(5,b) assign(4,g) assign(3,r) assign(2,r) assign(1,b)

Answer: 4

node(1) [...] assign(6,r) assign(5,b) assign(4,r) assign(3,g) assign(2,g) assign(1,b)

Answer: 5

node(1) [...] assign(6,g) assign(5,r) assign(4,g) assign(3,b) assign(2,b) assign(1,r)

Answer: 6

node(1) [...] assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
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ASP solving process

Graph coloring: Solving
$ gringo graph.lp color.lp | clasp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

node(1) [...] assign(6,b) assign(5,g) assign(4,b) assign(3,r) assign(2,r) assign(1,g)

Answer: 2

node(1) [...] assign(6,r) assign(5,g) assign(4,r) assign(3,b) assign(2,b) assign(1,g)

Answer: 3

node(1) [...] assign(6,g) assign(5,b) assign(4,g) assign(3,r) assign(2,r) assign(1,b)

Answer: 4

node(1) [...] assign(6,r) assign(5,b) assign(4,r) assign(3,g) assign(2,g) assign(1,b)

Answer: 5

node(1) [...] assign(6,g) assign(5,r) assign(4,g) assign(3,b) assign(2,b) assign(1,r)

Answer: 6

node(1) [...] assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
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ASP solving process

Graph coloring: Solving
$ clingo graph.lp color.lp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

node(1) [...] assign(6,b) assign(5,g) assign(4,b) assign(3,r) assign(2,r) assign(1,g)

Answer: 2

node(1) [...] assign(6,r) assign(5,g) assign(4,r) assign(3,b) assign(2,b) assign(1,g)

Answer: 3

node(1) [...] assign(6,g) assign(5,b) assign(4,g) assign(3,r) assign(2,r) assign(1,b)

Answer: 4

node(1) [...] assign(6,r) assign(5,b) assign(4,r) assign(3,g) assign(2,g) assign(1,b)

Answer: 5

node(1) [...] assign(6,g) assign(5,r) assign(4,g) assign(3,b) assign(2,b) assign(1,r)

Answer: 6

node(1) [...] assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
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ASP solving process

A coloring

Answer: 6

node(1) [...] \

assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)
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ASP solving process

A coloring

Answer: 6

node(1) [...] \

assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)
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ASP solving process

ASP workflow: Solutions
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Methodology

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester ( + Optimizer)
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Methodology

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester ( + Optimizer)
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Methodology

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding
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Methodology

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Data

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding
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Methodology

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Data

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Generator

Tester
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Case studies Satisfiability

Outline

14 Elaboration tolerance

15 ASP solving process

16 Methodology

17 Case studies
Satisfiability
Queens
Traveling salesperson
Reviewer Assignment
Planning
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Case studies Satisfiability

Satisfiability testing

Problem Instance A propositional formula φ in CNF

Problem Class Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program

Generator Tester Stable models

{a}.
{b}.

:- not a, b.

:- a, not b.

X1 = {a, b}
X2 = {}

Note The generator puts a and b under the open world assumption

The tester eliminates interpretations; it is expressed negatively
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Case studies Satisfiability

Satisfiability testing

Problem Instance A propositional formula φ in CNF

Problem Class Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example Consider formula

¬(¬a ∧ b) ∧ ¬(a ∧ ¬b)

Logic Program

Generator Tester Stable models

{a}.
{b}.

:- not a, b.

:- a, not b.

X1 = {a, b}
X2 = {}

Note The generator puts a and b under the open world assumption

The tester eliminates interpretations; it is expressed negatively
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Case studies Satisfiability

Satisfiability testing

Problem Instance A propositional formula φ in CNF

Problem Class Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example Consider formula

(¬a ∧ b → ⊥) ∧ (a ∧ ¬b → ⊥)

Logic Program

Generator Tester Stable models

{a}.
{b}.

:- not a, b.

:- a, not b.

X1 = {a, b}
X2 = {}

Note The generator puts a and b under the open world assumption

The tester eliminates interpretations; it is expressed negatively
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Case studies Queens

Outline

14 Elaboration tolerance

15 ASP solving process

16 Methodology

17 Case studies
Satisfiability
Queens
Traveling salesperson
Reviewer Assignment
Planning
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Case studies Queens

Defining the field

queens.lp

row (1..n).

col (1..n).

å Define the field

n rows
n columns
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Case studies Queens

Defining the field

Running . . .

$ clingo queens.lp --const n=5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

SATISFIABLE

Models : 1

Time : 0.000
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Case studies Queens

Placing some queens

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

å Guess a solution candidate

by placing some queens on the board
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Case studies Queens

Placing some queens

Running . . .

$ clingo queens.lp --const n=5 3

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(1,1)

Answer: 3

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(2,1)

SATISFIABLE

Models : 3+
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Case studies Queens

Placing some queens

Answer: 1

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

Answer: 1

row (1) row(2) row(3) row(4) row(5) \

col (1) col(2) col(3) col(4) col(5)
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Case studies Queens

Placing some queens

Answer: 2

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 L0Z0Z

1 2 3 4 5

Answer: 2

row (1) row(2) row(3) row(4) row(5) \

col (1) col(2) col(3) col(4) col(5) \

queen(1,1)
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Case studies Queens

Placing some queens

Answer: 3

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 QZ0Z0
1 Z0Z0Z

1 2 3 4 5

Answer: 3

row (1) row(2) row(3) row(4) row(5) \

col (1) col(2) col(3) col(4) col(5) \

queen(2,1)
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Case studies Queens

Placing n queens

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

å Place exactly n queens on the board
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Case studies Queens

Placing n queens

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.
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Case studies Queens

Placing n queens directly

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) } = n.

å Place exactly n queens on the board
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Case studies Queens

Placing n queens

Running . . .

$ clingo queens.lp --const n=5 2

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,1) queen(4,1) queen(3,1) queen(2,1) queen(1,1)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(1,2) queen(4,1) queen(3,1) queen(2,1) queen(1,1)
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Case studies Queens

Placing n queens

Answer: 1

5 L0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 L0Z0Z

1 2 3 4 5

Answer: 1

row (1) row(2) row(3) row(4) row(5) \

col (1) col(2) col(3) col(4) col(5) \

queen(5,1) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)
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Case studies Queens

Placing n queens

Answer: 2

5 Z0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 LQZ0Z

1 2 3 4 5

Answer: 2

row (1) row(2) row(3) row(4) row(5) \

col (1) col(2) col(3) col(4) col(5) \

queen(1,2) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

Potassco (KRR@UP) Answer Set Programming 86 / 182



Case studies Queens

Horizontal and vertical attack

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

å Forbid horizontal and vertical attacks

Potassco (KRR@UP) Answer Set Programming 87 / 182



Case studies Queens

Horizontal and vertical attack

queens.lp

row (1..n).

col (1..n).
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Case studies Queens

Horizontal and vertical attack

Running . . .

$ clingo queens.lp --const n=5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,5) queen(4,4) queen(3,3) queen(2,2) queen(1,1)
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Case studies Queens

Horizontal and vertical attack

Answer: 1

5 Z0Z0L
4 0Z0L0
3 Z0L0Z
2 0L0Z0
1 L0Z0Z

1 2 3 4 5

Answer: 1

row (1) row(2) row(3) row(4) row(5) \

col (1) col(2) col(3) col(4) col(5) \

queen(5,5) queen(4,4) queen(3,3) \

queen(2,2) queen(1,1)
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Case studies Queens

Diagonal attack

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I-J == I’-J’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I+J == I’+J’.

å Forbid diagonal attacks
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Case studies Queens

Diagonal attack

Running . . .

$ clingo queens.lp --const n=5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(4,5) queen(1,4) queen(3,3) queen(5,2) queen(2,1)

SATISFIABLE

Models : 1+

Time : 0.000
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Case studies Queens

Diagonal attack

Answer: 1

5 ZQZ0Z
4 0Z0ZQ
3 Z0L0Z
2 QZ0Z0
1 Z0ZQZ

1 2 3 4 5

Answer: 1

row (1) row(2) row(3) row(4) row(5) \

col (1) col(2) col(3) col(4) col(5) \

queen(4,5) queen(1,4) queen(3,3) \

queen(5,2) queen(2,1)
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Case studies Queens

Optimizing

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I-J == I’-J’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I+J == I’+J’.

Encoding can be optimized

Much faster to solve
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Case studies Queens

Optimizing

queens-opt.lp

{ queen(I,1..n) } = 1 :- I = 1..n.

{ queen (1..n,J) } = 1 :- J = 1..n.

:- { queen(D-J,J) } > 1, D = 2..2*n.

:- { queen(D+J,J) } > 1, D = 1-n..n-1.

Encoding can be optimized

Much faster to solve
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Case studies Queens

And sometimes it rocks
$ clingo -c n=5000 queens-opt-diag.lp --config=jumpy -q --stats=2

clingo version 4.1.0

Solving...

SATISFIABLE

Models : 1+

Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)

CPU Time : 3758.320s

Choices : 288594554

Conflicts : 3442 (Analyzed: 3442)

Restarts : 17 (Average: 202.47 Last: 3442)

Model-Level : 7594728.0

Problems : 1 (Average Length: 0.00 Splits: 0)

Lemmas : 3442 (Deleted: 0)

Binary : 0 (Ratio: 0.00%)

Ternary : 0 (Ratio: 0.00%)

Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)

Loop : 0 (Average Length: 0.0 Ratio: 0.00%)

Other : 0 (Average Length: 0.0 Ratio: 0.00%)

Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)

Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)

Bodies : 25090103

Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: 0 Other: 75020000)

Tight : Yes

Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)

Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)

Executed : 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)

Bounded : 0 (Average: 0.00 Max: 0 Sum: 0 Ratio: 0.00%)
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Tight : Yes
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Case studies Traveling salesperson

Outline

14 Elaboration tolerance

15 ASP solving process

16 Methodology

17 Case studies
Satisfiability
Queens
Traveling salesperson
Reviewer Assignment
Planning
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Case studies Traveling salesperson

The traveling salesperson problem (TSP)

Problem Instance A set of cities and distances among them,
or simply a weighted graph

Problem Class What is the shortest possible route visiting
each city once and returning to the city of origin?

Note

TSP extends the Hamiltonian cycle problem:
Is there a cycle in a graph visiting each node exactly once

TSP is relevant to applications in logistics, planning, chip design,
and the core of the vehicle routing problem
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Case studies Traveling salesperson

Traveling salesperson
Problem instance, cities.lp

start(a).

city(a). city(b). city(c). city(d).

road(a,b ,10). road(b,c ,20). road(c,d ,25). road(d,a ,40).

road(b,d ,30). road(d,c ,25). road(c,a ,35).
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Case studies Traveling salesperson

Traveling salesperson
Problem encoding, tsp.lp

{ travel(X,Y) } :- road(X,Y,_).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.

:- city(X), 2 { travel(Y,X) }.
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Case studies Traveling salesperson

Traveling salesperson
Problem encoding, tsp.lp

{ travel(X,Y) } :- road(X,Y,_).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.

:- city(X), 2 { travel(Y,X) }.

#minimize { D,X,Y : travel(X,Y), road(X,Y,D) }.
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Case studies Traveling salesperson

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s
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Case studies Traveling salesperson

Traveling salesperson
Alternative problem encoding

{ travel(X,Y) : road(X,Y,_) } = 1 :- city(X).

{ travel(X,Y) : road(X,Y,_) } = 1 :- city(Y).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

#minimize { D,X,Y : travel(X,Y), road(X,Y,D) }.
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Case studies Reviewer Assignment

Outline

14 Elaboration tolerance

15 ASP solving process

16 Methodology

17 Case studies
Satisfiability
Queens
Traveling salesperson
Reviewer Assignment
Planning
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Case studies Reviewer Assignment

Reviewer Assignment

Problem Instance A set of papers and a set of reviewers along with
their first and second choices of papers and conflict of interests

Problem Class A nice assignment of three reviewers to each paper
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Case studies Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).

[...]

{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.
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by Ilkka Niemelä
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paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).

[...]

#count { P,R : assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 <= #count { P,R : assigned(P,R), paper(P) } <= 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 <= #count { P,R : assignedB(P,R), paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Potassco (KRR@UP) Answer Set Programming 104 / 182



Case studies Planning

Outline

14 Elaboration tolerance

15 ASP solving process

16 Methodology

17 Case studies
Satisfiability
Queens
Traveling salesperson
Reviewer Assignment
Planning

Potassco (KRR@UP) Answer Set Programming 105 / 182



Case studies Planning

Simplified STRIPS1 Planning

Problem Instance
set of fluents
initial and goal state
set of actions, consisting of pre- and postconditions
number k of allowed actions

Problem Class Find a plan, that is, a sequence of k actions leading
from the initial state to the goal state

Example
fluents {p, q, r}
initial state {p,¬q,¬r}
goal state {r}
actions a = ({p}, {q,¬p}) and b = ({q}, {r ,¬q})
length 2

plan 〈a, b〉 {p,¬q,¬r} a−→ {¬p, q,¬r} b−→ {¬p,¬q, r}
1Stanford Research Institute Problem Solver, 1971
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Case studies Planning

Simplistic STRIPS Planning
Problem instance

time (1..k).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).
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Case studies Planning

Simplistic STRIPS Planning
Problem encoding

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).
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Case studies Planning

Simplistic STRIPS Planning
Solving

$ clingo planning-encoding.lp planning-instance.lp -c k=2 0

clingo version 5.5.0

Reading from planning-encoding.lp ...

Solving...

Answer: 1

[...] occ(a,1) occ(b,2)

SATISFIABLE

Models : 1

Time : 0.001s (Solving: 0.00s)

CPU Time : 0.001s
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Engineering: Overview

18 Meta programming

19 Controlling

20 Multi-shot solving

21 Theory solving

22 Heuristic-driven solving
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Do it yourself!

Roland Kaminski, Javier Romero, Torsten Schaub, Philipp Wanko:

How to build your own ASP-based system?!

CoRR abs/2008.06692 (2020)
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Meta programming

Outline
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Meta programming

Meta encoding, or ASP in ASP

conjunction(B) :- literal_tuple(B),

hold(L) : literal_tuple(B, L), L > 0;

not hold(L) : literal_tuple(B,-L), L > 0.

body(normal(B)) :- rule(_,normal(B)), conjunction(B).

body(sum(B,G)) :- rule(_,sum(B,G)),

#sum { W,L : hold(L), weighted_literal_tuple(B, L,W), L > 0 ;

W,L : not hold(L), weighted_literal_tuple(B,-L,W), L > 0 } >= G.

hold(A) : atom_tuple(H,A) :- rule(disjunction(H),B), body(B).

{ hold(A) : atom_tuple(H,A) } :- rule( choice(H),B), body(B).

#show.

#show T : output(T,B), conjunction(B).
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Meta programming

An example, running

Logic program ezy.lp

{a}.

b :- a.

c :- not a.

Running

$ clingo ezy.lp 0

clingo version 5.5.0

Reading from ezy.lp

Solving ...

Answer: 1

c

Answer: 2

a b

SATISFIABLE
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Meta programming

An example, running reified

Logic program ezy.lp

{a}.

b :- a.

c :- not a.

Running reified

$ clingo --output=reify ezy.lp | clingo - meta.lp 0

clingo version 5.5.0

Reading from - ...

Solving ...

Answer: 1

c

Answer: 2

a b

SATISFIABLE
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Controlling
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Controlling

Taming the ASP system, imperatively

Three alternative ways of combining ASP with other languages,
either via

embedded script
module import
application class

We use Python, although other choices exist
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Controlling

An example

Input program example.lp

num (3).

num (6).

div(N,@divisors(N)) :- num(N).

Resulting program

num (3).

num (6).

div (3 ,(1;3)).

div (6 ,(1;2;3;6)).
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Controlling

Embedded script (embedded.lp)

#script (python)

import clingo

def divisors(a):

a = a.number

for i in range(1, a+1):

if a % i == 0:

yield clingo.Number(i)

#end.
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Controlling

Embedded script, running

$ clingo example.lp embedded.lp

clingo version 5.5.0

Reading from example.lp ...

Solving ...

Answer: 1

num(3) num(6) div(3,1) div(3,3) \

div(6,1) div(6,2) div(6,3) div(6,6)

SATISFIABLE
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Controlling

Module import (module.py)

import clingo

class ExampleApp:

@staticmethod

def divisors(a):

a = a.number

for i in range(1, a+1):

if a % i == 0:

yield clingo.Number(i)

def run(self):

ctl = clingo.Control ()

ctl.load(" example.lp")

ctl.ground ([(" base", [])], context=self)

ctl.solve(on_model=print)

if __name__ == "__main__ ":

ExampleApp ().run()
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Controlling

Embedded script, running

$ python module.py

num(3) num(6) div(3,1) div(3,3) \

div(6,1) div(6,2) div(6,3) div(6,6)
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Controlling

Application class (app.py)

import sys

import clingo

class ExampleApp(clingo.Application ):

program_name = "example"

version = "1.0"

@staticmethod

def divisors(a):

a = a.number

for i in range(1, a+1):

if a % i == 0:

yield clingo.Number(i)

def main(self , ctl , files):

for path in files: ctl.load(path)

if not files:

ctl.load ("-")

ctl.ground ([(" base", [])], context=self)

ctl.solve()

if __name__ == "__main__ ":

clingo.clingo_main(ExampleApp (), sys.argv [1:])
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Controlling

Application class, running

$ python app.py example.lp

example version 1.0

Reading from example.lp

Solving ...

Answer: 1

num(3) num(6) div(3,1) div(3,3) \

div(6,1) div(6,2) div(6,3) div(6,6)

SATISFIABLE
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Controlling

What to use when. . . ?

embedded script

suitable for small amendments to the logic program,
anything on the term level during grounding
perform calculations that are hard or inconvenient to express in ASP

module import

convenient way to use clingo as part of a larger project
provides high level functions to control grounding and solving
surrounding application is in charge of the control flow and
ASP is used to perform specific computations

application class

aims at building custom systems based on clingo
similar to module import but with more customization capabilities

+ constitutes the cornerstone of recent clingo-based systems
such as clingcon, clingo[dl], eclingo, and telingo
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Multi-shot solving

Motivation

Multi-shot solving allows for solving continuously changing logic
programs in an operative way

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Idea clingo = ASP + Control

Extend ASP with dedicated directives

Provide powerful API (here: Python)
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Multi-shot solving

Structuring logic programs

Program directive

#program <name> [ (<parameters>) ]

where

<name> is a term
(<parameters>) is a tuple of terms

Example #program play(p,t).

Default #program base.
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Multi-shot solving

An example (chemistry.lp)

a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).
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Multi-shot solving

The example, processing
(control-base.py)

import clingo

ctl = clingo.Control ()

ctl.load("chemistry.lp")

ctl.ground ([("base", [])])

ctl.solve(on model=print)

a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

$ python control -base.py

a(1) a(2)
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Multi-shot solving

The example, processing
(control-acid.py)

import clingo

ctl = clingo.Control ()

ctl.load("chemistry.lp")

ctl.ground ([("acid",[42])])

ctl.solve(on model=print)

a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

$ python control -acid.py

b(42)
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#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

$ python control -acid.py

b(42)
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Multi-shot solving

External atoms

External directive

#external <atom> [ : <body> ]

where

<atom> [ : <body> ] is a (conditional) literal

Example #external mark(X,Y,p,t) : field(X,Y).

Note External atoms are

protected from program simplifications
assigned truth values via API (default: false)

and can be

overwritten by adding rules defining the atom
permanently set to false
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Multi-shot solving

An example (chemistry-external.lp)

a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

#program acid(k).

#external d(X,k) : c(X,k).

e(X,k) :- d(X,k).

Note Grounding both base and acid(42) yields two externals
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Multi-shot solving

The example, processing
(control-external.py)

ctl = clingo.Control ()

ctl.load("chemistry -external.lp")

ctl.ground ([("base", []),("acid",[42])])

ctl.solve(on model=print)

ctl.assign external(Function("d", [2,42]), True)

ctl.solve(on model=print)

$ python control -external.py

a(1) a(2) c(1,42) c(2,42) b(42)

a(1) a(2) c(1,42) c(2,42) b(42) d(2,42) e(2,42)
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Multi-shot solving

An example of incremental solving

#program base.

p(0).

#program step (t).

p(t) :- p(t-1).

#program check (t).

#external query(t). % added in python below

:- not p(42), query(t).
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Multi-shot solving

Incremental solving
’’’

Example implementing an iclingo -like application.

’’’

import sys

from typing import Optional, Any, Callable, Iterable, cast

from clingo import Application, ApplicationOptions, Control, SolveResult

from clingo import Function, Number, clingo main

class IncConfig:

’’’

Configuration object for incremental solving.

’’’

imin: int

imax: Optional[int]

istop: str

def init (self):

self.imin = 1

self.imax = None

self.istop = "SAT"

def parse int(conf: Any,

attr: str,

min value: Optional[int] = None,

optional: bool = False) -> Callable [[str], bool]:

’’’

Returns a parser for integers.

The parser stores its result in the ‘attr ‘ attribute (given as string) of

the ‘conf ‘ object. The parser can be configured to only accept integers

having a minimum value and also to treat value ‘"none"‘ as ‘None ‘.

’’’

def parse(sval: str) -> bool:

if optional and sval == "none":

value = None

else:

value = int(sval)

if min value is not None and value < min value:

raise RuntimeError("value too small")

setattr(conf, attr, value)

return True

return parse

def parse stop(conf: Any, attr: str) -> Callable [[str], bool]:

’’’

Returns a parser for ‘istop ‘ values.

’’’

def parse(sval: str) -> bool:

if sval not in ("SAT", "UNSAT", "UNKNOWN"):

raise RuntimeError("invalid value")

setattr(conf, attr, sval)

return True

return parse

class IncApp(Application ):

’’’

The example application implemeting incremental solving.

’’’

program name: str = "inc -example"

version: str = "1.0"

conf: IncConfig

def init (self):

self. conf = IncConfig ()

def register options(self, options: ApplicationOptions ):

’’’

Register program options.

’’’

group = "Inc -Example Options"

options.add(

group, "imin",

"Minimum number of steps [{}]".format(self. conf.imin),

parse int(self. conf, "imin", min value =0),

argument="<n>")

options.add(

group, "imax",

"Maximum number of steps [{}]".format(self. conf.imax),

parse int(self. conf, "imax", min value =0, optional=True),

argument="<n>")

options.add(

group, "istop",

"Stop criterion [{}]".format(self. conf.istop),

parse stop(self. conf, "istop"))

def main(self, ctl: Control, files: Iterable[str]):

’’’

The main function implementing incremental solving.

’’’

if not files:

files = ["-"]

for file in files:

ctl.load(file )

ctl.add("check", ["t"], "#external query(t).")

conf = self. conf

step = 0

ret: Optional[SolveResult] = None

while ((conf.imax is None or step < conf.imax) and

(ret is None or step < conf.imin or (

(conf.istop == "SAT" and not ret.satisfiable) or

(conf.istop == "UNSAT" and not ret.unsatisfiable) or

(conf.istop == "UNKNOWN" and not ret.unknown )))):

parts = []

parts.append (("check", [Number(step )]))

if step > 0:

ctl.release external(Function("query", [Number(step - 1)]))

parts.append (("step", [Number(step )]))

else:

parts.append (("base", []))

ctl.ground(parts)

ctl.assign external(Function("query", [Number(step )]), True)

ret, step = cast(SolveResult, ctl.solve ()), step + 1

clingo main(IncApp (), sys.argv [1:])
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Multi-shot solving

Incremental solving, zoom on
register options

def register options(self, options: ApplicationOptions ):

’’’

Register program options.

’’’

group = "Inc -Example Options"

options.add(

group, "imin",

"Minimum number of steps [{}]".format(self. conf.imin),

parse int(self. conf, "imin", min value =0),

argument="<n>")

options.add(

group, "imax",

"Maximum number of steps [{}]".format(self. conf.imax),

parse int(self. conf, "imax", min value =0, optional=True),

argument="<n>")

options.add(

group, "istop",

"Stop criterion [{}]".format(self. conf.istop),

parse stop(self. conf, "istop"))
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Multi-shot solving

Check it out!

UNIX > python inc.py --help

[...]

Inc -Example Options:

--imin=<n> : Minimum number of steps [1]

--imax=<n> : Maximum number of steps [None]

--istop=<arg > : Stop criterion [SAT]

[...]
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Multi-shot solving

Incremental solving, zoom on main

def main(self, ctl: Control, files: Iterable[str]):

’’’

The main function implementing incremental solving.

’’’

if not files:

files = ["-"]

for file in files:

ctl.load(file )

ctl.add("check", ["t"], "#external query(t).")

conf = self. conf

step = 0

ret: Optional[SolveResult] = None

while ((conf.imax is None or step < conf.imax) and

(ret is None or step < conf.imin or (

(conf.istop == "SAT" and not ret.satisfiable) or

(conf.istop == "UNSAT" and not ret.unsatisfiable) or

(conf.istop == "UNKNOWN" and not ret.unknown )))):

parts = []

parts.append (("check", [Number(step )]))

if step > 0:

ctl.release external(Function("query", [Number(step - 1)]))

parts.append (("step", [Number(step )]))

else:

parts.append (("base", []))

ctl.ground(parts)

ctl.assign external(Function("query", [Number(step )]), True)

ret, step = cast(SolveResult, ctl.solve ()), step + 1
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Multi-shot solving

Let’s run it!

UNIX > python inc.py tohE.lp tohI.lp

inc -example version 1.0

Reading from tohE.lp ...

Solving ...

[...]

Solving ...

Answer: 1

move(4,b,1) move(3,c,2) move(4,c,3) move(2,b,4) \

move(4,a,5) move(3,b,6) move(4,b,7) move(1,c,8) \

move(4,c,9) move(3,a,10) move(4,a,11) move(2,c,12) \

move(4,b,13) move(3,c,14) move(4,c,15)

SATISFIABLE

Models : 1+

Calls : 16
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Multi-shot solving

Optimization

Imagine some Blocksworld planning problem . . .

Code snippet

ngoal(T) :- not on(B,L,T), goal on(B,L), time(T).

:- ngoal(n).

where n is a fixed horizon

Optimization

_minimize (1,T) :- ngoal(T).
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Multi-shot solving

Optimization
’’’

Example to show branch and bound based optimization using multi -shot solving.

’’’

import sys

from typing import Optional, Iterable, cast

from clingo import Model, Control, SolveResult, SymbolType, Application, Number, clingo main

class OptApp(Application ):

’’’

Example application.

’’’

program name: str = "opt -example"

version: str = "1.0"

bound: Optional[int]

def init (self):

self. bound = None

def on model(self, model: Model ):

self. bound = 0

for atom in model.symbols(atoms=True):

if (atom.match(" minimize", 2) and

atom.arguments [0]. type is SymbolType.Number ):

self. bound += atom.arguments [0]. number

def main(self, ctl: Control, files: Iterable[str]):

’’’

Main function implementing branch and bound optimization.

’’’

if not files:

files = ["-"]

for file in files:

ctl.load(file )

ctl.add("bound", ["b"],

":- #sum { V,I: minimize(V,I) } >= b.")

ctl.ground ([("base", [])])

while cast(SolveResult, ctl.solve(on model=self. on model )). satisfiable:

print("Found new bound: {}".format(self. bound ))

ctl.ground ([("bound", [Number(cast(int, self. bound ))])])

if self. bound is not None:

print("Optimum found")

clingo main(OptApp (), sys.argv [1:])

Potassco (KRR@UP) Answer Set Programming 142 / 182



Multi-shot solving

Optimization, zoom on main

def main(self, ctl: Control, files: Iterable[str]):

’’’

Main function implementing branch and bound optimization.

’’’

if not files:

files = ["-"]

for file in files:

ctl.load(file )

ctl.add("bound", ["b"],

":- #sum { V,I: minimize(V,I) } >= b.")

ctl.ground ([("base", [])])

while cast(SolveResult, ctl.solve(on model=self. on model )). satisfiable:

print("Found new bound: {}".format(self. bound ))

ctl.ground ([("bound", [Number(cast(int, self. bound ))])])

if self. bound is not None:

print("Optimum found")
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Multi-shot solving

Optimization, zoom on on model

def on model(self, model: Model ):

self. bound = 0

for atom in model.symbols(atoms=True):

if (atom.match(" minimize", 2) and

atom.arguments [0]. type is SymbolType.Number ):

self. bound += atom.arguments [0]. number
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Multi-shot solving

Let’s run it!

UNIX > python opt.py tohB.lp tohI.lp -c n=17

opt -example version 1.0

Reading from tohB.lp ...

Solving ...

Answer: 1

move(4,b,1) move(3,c,2) move(4,a,3) move(4,c,4) move(2,b,5) \

move(4,a,6) move(3,b,7) move(4,c,8) move(4,b,9) move(1,c,10) \

move(4,c,11) move(3,a,12) move(4,a,13) move(2,c,14) move(4,b,15)

move(3,c,16) move(4,c,17)

Found new bound: 17

Solving ...

Answer: 1

move(4,b,1) move(3,c,2) move(4,c,3) move(2,b,4) move(4,a,5) \

move(3,b,6) move(4,c,7) move(4,b,8) move(1,c,9) move(4,c,10) \

move(3,a,11) move(4,a,12) move(2,c,13) move(4,b,14) move(3,c,15)

move(4,c,16)

Found new bound: 16

Solving ...

Answer: 1

move(4,b,1) move(3,c,2) move(4,c,3) move(2,b,4) move(4,a,5) \

move(3,b,6) move(4,b,7) move(1,c,8) move(4,c,9) move(3,a,10) \

move(4,a,11) move(2,c,12) move(4,b,13) move(3,c,14) move(4,c,15)

Found new bound: 15

Solving ...

Optimum found

UNSATISFIABLE
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Theory solving

Outline

18 Meta programming

19 Controlling

20 Multi-shot solving

21 Theory solving

22 Heuristic-driven solving
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Theory solving

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = DB+KRR+LP+S

ASP solving: ground | solve

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc
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Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = DB+KRR+LP+SMT — NO!

ASP solving: ground | solve

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Potassco (KRR@UP) Answer Set Programming 147 / 182



Theory solving

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving: ground | solve

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Potassco (KRR@UP) Answer Set Programming 147 / 182



Theory solving

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving: ground | solve

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Potassco (KRR@UP) Answer Set Programming 147 / 182



Theory solving

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving modulo theories: ground % theories | solve % theories

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Potassco (KRR@UP) Answer Set Programming 147 / 182



Theory solving

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving modulo theories: ground % theories | solve % theories

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Potassco (KRR@UP) Answer Set Programming 147 / 182



Theory solving

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving modulo theories: ground % theories | solve % theories

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Potassco (KRR@UP) Answer Set Programming 147 / 182



Theory solving

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving
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Theory solving

ASP solving process modulo theories
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Theory solving

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models
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Theory solving

clingo’s approach

T-ASP
Program

gringo clasp
T T

T-ASP
Solution

-- -

Theory T
Grammar
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Theory solving Theory language

Outline

18 Meta programming

19 Controlling

20 Multi-shot solving

21 Theory solving
Theory language
Theory propagation

22 Heuristic-driven solving
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Theory solving Theory language

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving
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Theory solving Theory language
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Theory solving Theory language

Linear constraints

#theory csp {

linear_term { show_term {

+ : 5, unary; / : 1, binary , left

- : 5, unary; };

* : 4, binary , left;

+ : 3, binary , left;

- : 3, binary , left minimize_term {

}; + : 5, unary;

- : 5, unary;

dom_term { * : 4, binary , left;

+ : 5, unary; + : 3, binary , left;

- : 5, unary; - : 3, binary , left;

.. : 1, binary , left @ : 0, binary , left

}; };

&dom/0 : dom_term , {=}, linear_term , any;

&sum/0 : linear_term , {<=,=,>=,<,>,!=}, linear_term , any;

&show/0 : show_term , directive;

&distinct /0 : linear_term , any;

&minimize /0 : minimize_term , directive

}.
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Theory solving Theory language

send+more=money

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The example has exactly
one solution

{ s 7→ 9, e 7→ 5, n 7→ 6, d 7→ 7,m 7→ 1, o 7→ 0, r 7→ 8, y 7→ 2 }
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Theory solving Theory language

send+more=money

digit(1,3,s). digit(2,3,m). digit(sum ,4,m).

digit(1,2,e). digit(2,2,o). digit(sum ,3,o).

digit(1,1,n). digit(2,1,r). digit(sum ,2,n).

digit(1,0,d). digit(2,0,e). digit(sum ,1,e).

digit(sum ,0,y).

base (10).

exp(E) :- digit(_,E,_).

power (1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.

number(N) :- digit(N,_,_), N!= sum.

high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), number(N);

-M*D : digit(sum ,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.
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Theory solving Theory language

send+more=money
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&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), number(N);

-M*D : digit(sum ,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.
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Theory solving Theory language

send+more=money
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exp(E) :- digit(_,E,_).

power (1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.
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high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), number(N);

-M*D : digit(sum ,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).
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Theory solving Theory language

send+more=money

digit(1,3,s). digit(2,3,m). digit(sum ,4,m).

digit(1,2,e). digit(2,2,o). digit(sum ,3,o).

digit(1,1,n). digit(2,1,r). digit(sum ,2,n).

digit(1,0,d). digit(2,0,e). digit(sum ,1,e).

digit(sum ,0,y).

base (10).

exp (0). exp (1). exp (2). exp (3). exp (4).

power (1,0).

power (10 ,1). power (100 ,2). power (1000 ,3). power (10000 ,4).

number (1). number (2).

high(s). high(m).

&dom {0..9}=s. &dom {0..9}=m. &dom {0..9}=e. [...] &dom {0..9}=y.

&sum{ 1000*s; 100*e; 10*n; 1*d;

1000*m; 100*o; 10*r; 1*e;

-10000*m; -1000*o; -100*n; -10*e; -1*y } = 0.

&sum{s} > 0. &sum{m} > 0.

&distinct{s; m; e; o; n; r; d; y}.

&show{s; m; e; o; n; r; d; y}.
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Theory solving Theory language

send+more=money

UNIX > clingcon sendmoremoney.lp 0

clingcon version 5.0.0

Reading from smm.clp

Solving ...

Answer: 1

base (10) exp (0) exp(1) exp(2) exp(3) exp (4) \

high(m) high(s) number (1) number (2) \

power (1,0) power (10 ,1) power (100 ,2) power (1000 ,3) power (10000 ,4) \

digit(1,0,d) digit(1,1,n) digit(1,2,e) digit(1,3,s) \

digit(2,0,e) digit(2,1,r) digit(2,2,o) digit(2,3,m) \

digit(sum ,0,y) digit(sum ,1,e) [...] digit(sum ,4,m)

Assignment:

d=7 e=5 m=1 n=6 o=0 r=8 s=9 y=2

SATISFIABLE

Models : 1

Calls : 1

Time : 0.001s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.001s
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Theory solving Theory propagation

Outline

18 Meta programming

19 Controlling

20 Multi-shot solving

21 Theory solving
Theory language
Theory propagation

22 Heuristic-driven solving
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Theory solving Theory propagation

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -
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Theory solving Theory propagation
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Theory solving Theory propagation

Conflict-driven constraint learning
modulo theories

(I) initialize // register theory propagators and initialize watches
loop

propagate completion, loop, and recorded nogoods // deterministically assign literals
if no conflict then

if all variables assigned then
(C) if some δ ∈ ∆T is violated for T ∈ T then record δ // theory propagator’s check

else return variable assignment // T-stable model found
else

(P) propagate theories T ∈ T // theory propagators may record theory nogoods
if no nogood recorded then decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // resolve conflict and record a conflict constraint
(U) backjump // undo assignments until conflict constraint is unit
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Theory solving Theory propagation

Propagator interface

clingo

SymbolicAtom

+ symbol
+ literal

TheoryAtom

+ name
+ elements
+ guard
+ literal

PropagateInit

+ num threads
+ symbolic atoms
+ theory atoms

+ add watch(lit)
+ solver literal(lit)

�interface�
Propagator

+ init(init)
+ propagate(control, changes)
+ undo(thread id, assignment, changes)
+ check(control)

PropagateControl

+ thread id
+ assignment

+ add nogood(nogood, tag, lock)
+ propagate()

Assignment

+ decision level
+ has conflict

+ value(lit)
+ level(lit)
+ ...
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Theory solving Theory propagation

The dot propagator

#script (python)

import sys

import time

class Propagator:

def init(self , init):

self.sleep = .1

for atom in init.symbolic_atoms:

init.add_watch(init.solver_literal(atom.literal ))

def propagate(self , ctl , changes ):

for l in changes:

sys.stdout.write (".")

sys.stdout.flush()

time.sleep(self.sleep)

return True

def undo(self , solver_id , assign , undo):

for l in undo:

sys.stdout.write ("\b \b")

sys.stdout.flush()

time.sleep(self.sleep)

def main(prg):

prg.register_propagator(Propagator ())

prg.ground ([(" base", [])])

prg.solve()

sys.stdout.write ("\n")

#end.
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Heuristic-driven solving

Outline

18 Meta programming

19 Controlling

20 Multi-shot solving

21 Theory solving
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Heuristic-driven solving

Motivation

Observation Sometimes it is advantageous to take a more
application-oriented approach by including domain-specific
information

domain-specific knowledge can be added
for improving propagation
domain-specific heuristics can be used
for making better choices

Idea Incorporation of domain-specific heuristics by extending

input language and/or solver options
for expressing domain-specific heuristics
solving capacities for integrating domain-specific heuristics
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Heuristic-driven solving

CDCL-style solving

loop

propagate // deterministically assign literals

if no conflict then

if all variables assigned then return solution
else decide // non-deterministically assign some literal

else

if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

Potassco (KRR@UP) Answer Set Programming 164 / 182



Heuristic-driven solving

Heuristic language

Heuristic directive

#heuristic a : l1, . . . , ln. [k@p,m]

where

a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier

Heuristic modifiers

init for initializing the heuristic value of a with k
factor for amplifying the heuristic value of a by factor k
level for ranking all atoms; the rank of a is k
sign for attributing the sign of k as truth value to a

Example

#heuristic occurs(A,T) : action(A), time(T). [T, factor]
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Heuristic directive

#heuristic a : l1, . . . , ln. [k@p,m]

where

a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier

Heuristic modifiers

init for initializing the heuristic value of a with k
factor for amplifying the heuristic value of a by factor k
level for ranking all atoms; the rank of a is k
sign for attributing the sign of k as truth value to a

true/false combine level and sign

Example

#heuristic occurs(A,T) : action(A), time(T). [T, factor]
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Heuristic-driven solving

Heuristic language

Heuristic directive

#heuristic a : l1, . . . , ln. [k@p,m]

where

a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier

Heuristic modifiers

init for initializing the heuristic value of a with k
factor for amplifying the heuristic value of a by factor k
level for ranking all atoms; the rank of a is k
sign for attributing the sign of k as truth value to a

Example

#heuristic occurs(mv,5) : action(mv), time(5). [5, factor]
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Heuristic-driven solving

Simple STRIPS planning

time(1..k).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).
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{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

#heuristic occurs(A,T) : action(A), time(T). [2, factor]
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Heuristic-driven solving

Simple STRIPS planning

time(1..k).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

#heuristic occurs(A,T) : action(A), time(T). [1, level]
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Heuristic-driven solving

Simple STRIPS planning

time(1..k).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

#heuristic holds(F,T-1) : holds(F,T). [t-T+1, true]

#heuristic holds(F,T-1) : not holds(F,T) [t-T+1, false]

fluent(F), time(T).

Potassco (KRR@UP) Answer Set Programming 166 / 182



Heuristic-driven solving

Heuristic options

Alternative for specifying structure-oriented heuristics in clasp

--dom-mod=<arg> : Default modification for

domain heuristic

<arg>: <mod>[,<pick>]

<mod> : Modifier

{1=level|2=pos|3=true|4=neg|

5=false|6=init|7=factor}

<pick> : Apply <mod> to

{0=all|1=scc|2=hcc|4=disj|

8=min|16=show} atoms

Engage heuristic modifications (in both settings!)

--heuristic=Domain
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Heuristic-driven solving

Inclusion-minimal stable models

Consider a logic program containing a mimimize statement of form

#minimize{a1, . . . , an}

Computing one inclusion-minimal stable model can be done either via

#heuristic ai [1,false]. for i = 1, . . . , n, or
--dom-mod=5,16

Computing all inclusion-minimal stable model can be done

by adding --enum-mod=domRec to the two options
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Applications: Overview

23 Train scheduling

24 Robotic intra-logistics
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Outline

23 Train scheduling
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Train scheduling

Motivation

Increasing railway traffic demands global and flexible ways for
scheduling trains in order to use railway networks to capacity

Difficulty arises from dependencies among trains induced by
connections and shared resources

Train scheduling combines three distinct tasks

Routing
Conflict detection and resolution
Scheduling

Solution operational at Swiss Federal Railway using clingo[dl]

ASP
Difference constraints
(Hybrid) Optimization
Heuristic directives
Multi-shot solving
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Train scheduling

Benchmark

We optimally solved the train scheduling problem on real-world railway
networks spanning about 150 km with up to 467 trains within 5 minutes
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Robotic intra-logistics

Motivation

Objective How to develop robust and scalable AI technology
for dealing with complex dynamic application scenarios?

What’s needed? — a fruit fly!

Robotic intra-logistics

Why?

rich multi-faceted, full of variations
scalable layout, objects, granularity
measurable makespan, energy, quality of service
integrative mapf, data, constraints, decisions
relevant industry 4.0

What for? — enabling research and teaching
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Robotic intra-logistics

Robotic intra-logistics

Robotics systems for logistics and warehouse
automation based on many

mobile robots
movable shelves

Main tasks: order fulfillment, i.e.

routing
order picking
replenishment

Many competing industry solutions:

Amazon, Dematic, Genzebach,
Gray Orange, Swisslog

https://youtu.be/TUx-ljgB-5Q
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Robotic intra-logistics

What’s (not) in the picture?

Objects
floor, robots, shelves, products, people, etc.

Relations
positions, carries/d, capacity, orientation, durations, etc.

Actions
move, pickup, putdown, pick, charge, restock, etc.

Objectives
deadlines, throughput, exploitation, energy management,
human machine interaction, etc.
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Robotic intra-logistics

Making robots dance
via temporal and dynamic ASP

Visit https://potassco.org/asprilo
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Potassco

Potassco

Potassco Systems — http://potassco.org

Academic branch

Freely available systems
Open source license (MIT)

Potassco Solutions — http://potassco.com

Service branch

Consulting
Engineering

Maintenance
Training

Sites Germany (HQ@Potsdam), Australia, Austria, China,

Cyprus, Finland, France, Japan, Portugal, Spain, Turkey
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Take home messages

The benefits of ASP

Knowledge

Solver

+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Effectiveness
+ Optimality
+ Availability

It’s yours!

ASP is a technology,
products emerge from co-operations
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Take home messages

Nutshell
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And it’s fun !
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