
Answer Set Programming: From Theory to Practice

Roland Kaminski Javier Romero Torsten Schaub Philipp Wanko

University of Potsdam

Potassco (KRR@UP) Answer Set Programming 1 / 182

Outline

1 Introduction

2 Foundations

3 Grounding

4 Solving

5 Modeling

6 Engineering

7 Applications

Full version https://teaching.potassco.org

Potassco (KRR@UP) Answer Set Programming 2 / 182

https://teaching.potassco.org

Introduction: Overview

1 Motivation

2 Nutshell

3 Evolution

4 Workflow

5 Usage

Potassco (KRR@UP) Answer Set Programming 3 / 182

Motivation

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Workflow

5 Usage

Potassco (KRR@UP) Answer Set Programming 4 / 182

Motivation

Traditional Software

��
��

User

Program

Computer

?

P
ro
b
lem

S
o
lvin

g

��
��

User

Knowledge

Solver

Potassco (KRR@UP) Answer Set Programming 5 / 182

Motivation

Traditional Software

��
��

User

Program

Computer

?

P
ro
b
lem

S
o
lvin

g

��
��

User

Knowledge

Solver

Potassco (KRR@UP) Answer Set Programming 5 / 182

Motivation

Traditional Software

��
��

User

Program

Computer

?

P
ro
b
lem

S
o
lvin

g

��
��

User

Knowledge

Solver

Potassco (KRR@UP) Answer Set Programming 5 / 182

Motivation

Traditional Software

��
��

User

Program

Computer

?

P
ro
b
lem

S
o
lvin

g

Programmer

��
��

User

Knowledge

Solver

Potassco (KRR@UP) Answer Set Programming 5 / 182

Motivation

Traditional Software

��
��

User

How?

Computer

?

P
ro
b
lem

S
o
lvin

g

Programmer

��
��

User

Knowledge

Solver

Potassco (KRR@UP) Answer Set Programming 5 / 182

Motivation

Traditional Software

��
��

User

How?

How!

?

P
ro
b
lem

S
o
lvin

g

��
��

User

Knowledge

Solver

Potassco (KRR@UP) Answer Set Programming 5 / 182

Motivation

Declarative Software

��
��

User

Program

Computer

?

P
ro
b
lem

S
o
lvin

g

��
��

User

Knowledge

Solver

Potassco (KRR@UP) Answer Set Programming 5 / 182

Motivation

Knowledge-driven Software

��
��

User

Program

Computer

?

P
ro
b
lem

S
o
lvin

g

��
��

User

Knowledge

Solver

Potassco (KRR@UP) Answer Set Programming 5 / 182

Motivation

Knowledge-driven Software

��
��

User

How?

Computer

?

P
ro
b
lem

S
o
lvin

g

��
��

User

Knowledge

Solver

Potassco (KRR@UP) Answer Set Programming 5 / 182

Motivation

Knowledge-driven Software

��
��

User

How?

Computer

?

P
ro
b
lem

S
o
lvin

g

��
��

User

What?

How!

Potassco (KRR@UP) Answer Set Programming 5 / 182

Motivation

Knowledge-driven Software

��
��

User

How?

How!

?

P
ro
b
lem

S
o
lvin

g

��
��

User

What?

How!

Potassco (KRR@UP) Answer Set Programming 5 / 182

Motivation

Knowledge-driven Software

��
��

User

Program

Computer

?

P
ro
b
lem

S
o
lvin

g

Programmer

��
��

User

Knowledge

Solver

Expert

Potassco (KRR@UP) Answer Set Programming 5 / 182

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Potassco (KRR@UP) Answer Set Programming 6 / 182

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Potassco (KRR@UP) Answer Set Programming 6 / 182

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Potassco (KRR@UP) Answer Set Programming 6 / 182

Motivation

What is the benefit?

Natural
Language

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Potassco (KRR@UP) Answer Set Programming 6 / 182

Motivation

What is the benefit?

Natural
Language

Solver

Layperson
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Potassco (KRR@UP) Answer Set Programming 6 / 182

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Potassco (KRR@UP) Answer Set Programming 6 / 182

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Potassco (KRR@UP) Answer Set Programming 6 / 182

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Potassco (KRR@UP) Answer Set Programming 6 / 182

Nutshell

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Workflow

5 Usage

Potassco (KRR@UP) Answer Set Programming 7 / 182

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

Potassco (KRR@UP) Answer Set Programming 8 / 182

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

Where is ASP from?

Databases
Logic programming
Knowledge representation and reasoning
Satisfiability solving

Potassco (KRR@UP) Answer Set Programming 8 / 182

Nutshell

Answer Set Programming (ASP)

What is ASP? ASP = DB+LP+KR+SAT !
ASP is an approach for declarative problem solving

Where is ASP from?

Databases
Logic programming
Knowledge representation and reasoning
Satisfiability solving

Potassco (KRR@UP) Answer Set Programming 8 / 182

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

Potassco (KRR@UP) Answer Set Programming 8 / 182

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

Potassco (KRR@UP) Answer Set Programming 8 / 182

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

Examples Sudoku, Configuration, Diagnosis, Music composition,
Planning, System design, Time tabling, etc.

Potassco (KRR@UP) Answer Set Programming 8 / 182

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?
Problems consisting of (many) decisions and constraints

Examples Sudoku, Configuration, Diagnosis, Music composition,
Planning, System design, Time tabling, etc.

Potassco (KRR@UP) Answer Set Programming 8 / 182

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?
Debian, Ubuntu: Linux package configuration
Exeura: Call routing
Fcc: Radio frequency auction
Gioia Tauro: Workforce management
Nasa: Decision support for Space Shuttle
Siemens: Partner units configuration
Variantum: Product configuration
US Navy: risk assessment

Potassco (KRR@UP) Answer Set Programming 8 / 182

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?
Debian, Ubuntu: Linux package configuration
Exeura: Call routing
Fcc: Radio frequency auction
Gioia Tauro: Workforce management
Nasa: Decision support for Space Shuttle
Siemens: Partner units configuration
Variantum: Product configuration
US Navy: risk assessment

Potassco (KRR@UP) Answer Set Programming 8 / 182

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?
Debian, Ubuntu: Linux package configuration
Exeura: Call routing
Fcc: Radio frequency auction ��

Gioia Tauro: Workforce management
Nasa: Decision support for Space Shuttle
Siemens: Partner units configuration
Variantum: Product configuration
US Navy: risk assessment

Potassco (KRR@UP) Answer Set Programming 8 / 182

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

What are ASP’s distinguishing features?

High level, versatile modeling language
High performance solvers
Qualitative and quantitative optimization

Potassco (KRR@UP) Answer Set Programming 8 / 182

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

What are ASP’s distinguishing features?

High level, versatile modeling language
High performance solvers
Qualitative and quantitative optimization

Any industrial impact?

ASP Tech companies: DLV Systems and Potassco Solutions
Increasing interest in (large) companies

Potassco (KRR@UP) Answer Set Programming 8 / 182

Evolution

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Workflow

5 Usage

Potassco (KRR@UP) Answer Set Programming 9 / 182

Evolution

Some (biased) moments in time

’80 Capturing incomplete information

’90 Amalgamation and computation

’00 Applications and semantic rediscoveries

’10 Customization and integration

Potassco (KRR@UP) Answer Set Programming 10 / 182

Evolution

Some (biased) moments in time

’80 Capturing incomplete information

Databases Closed world assumption
Logic programming Negation as failure
Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

’00 Applications and semantic rediscoveries

’10 Customization and integration

Potassco (KRR@UP) Answer Set Programming 10 / 182

Evolution

Some (biased) moments in time

’80 Capturing incomplete information

Databases Closed world assumption
Logic programming Negation as failure
Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics
ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries

’10 Customization and integration

Potassco (KRR@UP) Answer Set Programming 10 / 182

Evolution

Some (biased) moments in time

’80 Capturing incomplete information

Databases Closed world assumption
Logic programming Negation as failure
Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics
ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries

Growing dissemination — see last slides —
Constructive logics Equilibrium Logic

’10 Customization and integration

Potassco (KRR@UP) Answer Set Programming 10 / 182

Evolution

Some (biased) moments in time

’80 Capturing incomplete information
Databases Closed world assumption
Logic programming Negation as failure
Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation
Logic programming semantics
Well-founded and stable models semantics
ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries
Growing dissemination — see last slides —
Constructive logics Equilibrium Logic

’10 Customization and integration
Complex reasoning modes APIs, multi-shot solving
Hybridization Constraint ASP, theory solving

Potassco (KRR@UP) Answer Set Programming 10 / 182

Workflow

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Workflow

5 Usage

Potassco (KRR@UP) Answer Set Programming 11 / 182

Workflow

Modeling, grounding, and solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 12 / 182

Workflow

Rooting ASP

Problem

Logic
Program

LP

Grounder

DB

Solver

SAT

Stable
Models

DB+KR+LP

Solution

- - -

?

6

Modeling KR Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 12 / 182

Usage

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Workflow

5 Usage

Potassco (KRR@UP) Answer Set Programming 13 / 182

Usage

Two sides of a coin

ASP as High-level Language

Express problem instance as sets of facts
Encode problem class as a set of rules
Read off solutions from stable models of facts and rules

ASP as Low-level Language

Compile a problem into a set of facts and rules
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs

Potassco (KRR@UP) Answer Set Programming 14 / 182

Usage

Two sides of a coin

ASP as High-level Language

Express problem instance as sets of facts
Encode problem class as a set of rules
Read off solutions from stable models of facts and rules

ASP as Low-level Language

Compile a problem into a set of facts and rules
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs

Potassco (KRR@UP) Answer Set Programming 14 / 182

Usage

Two sides of a coin

ASP as High-level Language

Express problem instance as sets of facts
Encode problem class as a set of rules
Read off solutions from stable models of facts and rules

ASP as Low-level Language

Compile a problem into a set of facts and rules
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs

Potassco (KRR@UP) Answer Set Programming 14 / 182

Usage

Two sides of a coin

ASP as High-level Language

Express problem instance as sets of facts
Encode problem class as a set of rules
Read off solutions from stable models of facts and rules

ASP as “Low-level” Language

Compile a problem instance into a set of facts
Encode problem class as a set of rules
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs

Potassco (KRR@UP) Answer Set Programming 14 / 182

Usage

Two and a half sides of a coin

ASP as High-level Language

Express problem instance as sets of facts
Encode problem class as a set of rules
Read off solutions from stable models of facts and rules

ASP as “Low-level” Language

Compile a problem instance into a set of facts
Encode problem class as a set of rules
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs

Potassco (KRR@UP) Answer Set Programming 14 / 182

Foundations: Overview

6 Reduct-based characterization

7 Axiomatic characterization

8 Logical characterization

Potassco (KRR@UP) Answer Set Programming 15 / 182

What is a stable model?

Reduct-based characterization

Logical characterization

Axiomatic characterization

Operational characterization

Proof-theoretic characterization

Constraint-based characterization

Algorithmic characterization

C++-based characterization

Vladimir Lifschitz, Thirteen Definitions of a Stable Model, [4, 5]

Potassco (KRR@UP) Answer Set Programming 16 / 182

What is a stable model?

Reduct-based characterization

Logical characterization

Axiomatic characterization

Operational characterization

Proof-theoretic characterization

Constraint-based characterization

Algorithmic characterization

C++-based characterization

Vladimir Lifschitz, Thirteen Definitions of a Stable Model, [4, 5]

Potassco (KRR@UP) Answer Set Programming 16 / 182

What is a stable model?

Reduct-based characterization

Logical characterization

Axiomatic characterization

Operational characterization

Proof-theoretic characterization

Constraint-based characterization

Algorithmic characterization

C++-based characterization

Vladimir Lifschitz, Thirteen Definitions of a Stable Model, [4, 5]

Potassco (KRR@UP) Answer Set Programming 16 / 182

What is a stable model?

Reduct-based characterization

Logical characterization

Axiomatic characterization

Operational characterization

Proof-theoretic characterization

Constraint-based characterization

Algorithmic characterization

C++-based characterization

Vladimir Lifschitz, Thirteen Definitions of a Stable Model, [4, 5]

Potassco (KRR@UP) Answer Set Programming 16 / 182

Propositional Normal Logic Programs

A logic program P is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of P justifying each true atom by some rule in P

Potassco (KRR@UP) Answer Set Programming 17 / 182

Logic Programs

A logic program P is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of P justifying each true atom by some rule in P

Potassco (KRR@UP) Answer Set Programming 17 / 182

Logic Programs

A logic program P is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of P justifying each true atom by some rule in P

Potassco (KRR@UP) Answer Set Programming 17 / 182

Normal Logic Programs

A logic program P is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of P justifying each true atom by some rule in P

Disclaimer The following formalities apply to normal logic programs

Potassco (KRR@UP) Answer Set Programming 17 / 182

Reduct-based characterization

Outline

6 Reduct-based characterization

7 Axiomatic characterization

8 Logical characterization

Potassco (KRR@UP) Answer Set Programming 18 / 182

Reduct-based characterization

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

Potassco (KRR@UP) Answer Set Programming 19 / 182

Reduct-based characterization

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F (¬F → F) ∧ (F → F)
F F T (¬F → F) ∧ (F → T)
F T F (¬T → F) ∧ (T → F)
F T T (¬T → F) ∧ (T → T)
T F F (¬F → T) ∧ (F → F)
T F T (¬F → T) ∧ (F → T)
T T F (¬T → T) ∧ (T → F)
T T T (¬T → T) ∧ (T → T)

Potassco (KRR@UP) Answer Set Programming 19 / 182

Reduct-based characterization

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F (T → F) ∧ (F → F)
F F T (T → F) ∧ (F → T)
F T F (F → F) ∧ (T → F)
F T T (F → F) ∧ (T → T)
T F F (T → T) ∧ (F → F)
T F T (T → T) ∧ (F → T)
T T F (F → T) ∧ (T → F)
T T T (F → T) ∧ (T → T)

Potassco (KRR@UP) Answer Set Programming 19 / 182

Reduct-based characterization

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F (T → F) ∧ (F → F)
F F T (T → F) ∧ (F → T)
F T F (F → F) ∧ (T → F)
F T T (F → F) ∧ (T → T)
T F F (T → T) ∧ (F → F)
T F T (T → T) ∧ (F → T)
T T F (F → T) ∧ (T → F)
T T T (F → T) ∧ (T → T)

Potassco (KRR@UP) Answer Set Programming 19 / 182

Reduct-based characterization

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F ∧ (F → F)
F F T F ∧ (F → T)
F T F (F → F) ∧ F
F T T (F → F) ∧ (T → T)
T F F (T → T) ∧ (F → F)
T F T (T → T) ∧ (F → T)
T T F (F → T) ∧ F
T T T (F → T) ∧ (T → T)

Potassco (KRR@UP) Answer Set Programming 19 / 182

Reduct-based characterization

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F ∧ (F → F)
F F T F ∧ (F → T)
F T F (F → F) ∧ F
F T T (F → F) ∧ (T → T)
T F F (T → T) ∧ (F → F)
T F T (T → T) ∧ (F → T)
T T F (F → T) ∧ F
T T T (F → T) ∧ (T → T)

Potassco (KRR@UP) Answer Set Programming 19 / 182

Reduct-based characterization

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F ∧ T
F F T F ∧ T
F T F T ∧ F
F T T T ∧ T
T F F T ∧ T
T F T T ∧ T
T T F T ∧ F
T T T T ∧ T

Potassco (KRR@UP) Answer Set Programming 19 / 182

Reduct-based characterization

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F
F F T F
F T F F
F T T T
T F F T
T F T T
T T F F
T T T T

Potassco (KRR@UP) Answer Set Programming 19 / 182

Reduct-based characterization

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F
F F T F
F T F F
F T T T
T F F T
T F T T
T T F F
T T T T

We get four models: {b, c}, {a}, {a, c}, and {a, b, c}

Potassco (KRR@UP) Answer Set Programming 19 / 182

Reduct-based characterization

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

Potassco (KRR@UP) Answer Set Programming 20 / 182

Reduct-based characterization

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F (¬F → a) ∧ (b → c)
F F T (¬F → a) ∧ (b → c)
F T F (¬T → a) ∧ (b → c)
F T T (¬T → a) ∧ (b → c)
T F F (¬F → a) ∧ (b → c)
T F T (¬F → a) ∧ (b → c)
T T F (¬T → a) ∧ (b → c)
T T T (¬T → a) ∧ (b → c)

Potassco (KRR@UP) Answer Set Programming 20 / 182

Reduct-based characterization

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F (T → a) ∧ (b → c)
F F T (T → a) ∧ (b → c)
F T F (F → a) ∧ (b → c)
F T T (F → a) ∧ (b → c)
T F F (T → a) ∧ (b → c)
T F T (T → a) ∧ (b → c)
T T F (F → a) ∧ (b → c)
T T T (F → a) ∧ (b → c)

Potassco (KRR@UP) Answer Set Programming 20 / 182

Reduct-based characterization

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (F → a) ∧ (b → c)
F T T (F → a) ∧ (b → c)
T F F a ∧ (b → c)
T F T a ∧ (b → c)
T T F (F → a) ∧ (b → c)
T T T (F → a) ∧ (b → c)

Potassco (KRR@UP) Answer Set Programming 20 / 182

Reduct-based characterization

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (F → a) ∧ (b → c)
F T T (F → a) ∧ (b → c)
T F F a ∧ (b → c)
T F T a ∧ (b → c)
T T F (F → a) ∧ (b → c)
T T T (F → a) ∧ (b → c)

Potassco (KRR@UP) Answer Set Programming 20 / 182

Reduct-based characterization

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F T ∧ (b → c)
F T T T ∧ (b → c)
T F F a ∧ (b → c)
T F T a ∧ (b → c)
T T F T ∧ (b → c)
T T T T ∧ (b → c)

Potassco (KRR@UP) Answer Set Programming 20 / 182

Reduct-based characterization

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c)
T F F a ∧ (b → c)
T F T a ∧ (b → c)
T T F (b → c)
T T T (b → c)

Reduct

Potassco (KRR@UP) Answer Set Programming 20 / 182

Reduct-based characterization

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c)
T F F a ∧ (b → c)
T F T a ∧ (b → c)
T T F (b → c)
T T T (b → c)

Reduct

Potassco (KRR@UP) Answer Set Programming 20 / 182

Reduct-based characterization

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c) |=
T F F a ∧ (b → c) |= a
T F T a ∧ (b → c) |= a
T T F (b → c)
T T T (b → c) |=

Reduct

Potassco (KRR@UP) Answer Set Programming 20 / 182

Reduct-based characterization

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c) |=
T F F a ∧ (b → c) |= a
T F T a ∧ (b → c) |= a
T T F (b → c)
T T T (b → c) |=

Reduct

Potassco (KRR@UP) Answer Set Programming 20 / 182

Reduct-based characterization

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c) |= a
F F T a ∧ (b → c) |= a
F T F (b → c) |=
F T T (b → c) |=
T F F a ∧ (b → c) |= a
T F T a ∧ (b → c) |= a
T T F (b → c) |=
T T T (b → c) |=

Reduct

Potassco (KRR@UP) Answer Set Programming 20 / 182

Reduct-based characterization

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c)
T F F a ∧ (b → c) |= a Stable model
T F T a ∧ (b → c)
T T F (b → c)
T T T (b → c)

Reduct

We get one stable model: {a}

Potassco (KRR@UP) Answer Set Programming 20 / 182

Reduct-based characterization

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c)
T F F a ∧ (b → c) |= a Stable model
T F T a ∧ (b → c)
T T F (b → c)
T T T (b → c)

Reduct

We get one stable model: {a}
Stable models = Smallest models of (respective) reducts

Potassco (KRR@UP) Answer Set Programming 20 / 182

Reduct-based characterization

Stable model

A logic program P is a set of rules, r , of the form

a← b1, . . . , bm,¬c1, . . . ,¬cn

The reduct, PX , of a program P relative to a set X of atoms is

PX = {a← b1, . . . , bm | r ∈ P, {c1, . . . , cn} ∩ X = ∅}

Cn(P) stands for the smallest model of a positive program P

A set X of atoms is a stable model of a program P
if Cn(PX) = X

Potassco (KRR@UP) Answer Set Programming 21 / 182

Reduct-based characterization

Stable model

A logic program P is a set of rules, r , of the form

a← b1, . . . , bm,¬c1, . . . ,¬cn

The reduct, PX , of a program P relative to a set X of atoms is

PX = {a← b1, . . . , bm | r ∈ P, {c1, . . . , cn} ∩ X = ∅}

Cn(P) stands for the smallest model of a positive program P

A set X of atoms is a stable model of a program P
if Cn(PX) = X

Potassco (KRR@UP) Answer Set Programming 21 / 182

Reduct-based characterization

Stable model

A logic program P is a set of rules, r , of the form

a← b1, . . . , bm,¬c1, . . . ,¬cn

The reduct, PX , of a program P relative to a set X of atoms is

PX = {a← b1, . . . , bm | r ∈ P, {c1, . . . , cn} ∩ X = ∅}

Cn(P) stands for the smallest model of a positive program P

A set X of atoms is a stable model of a program P
if Cn(PX) = X

Potassco (KRR@UP) Answer Set Programming 21 / 182

Axiomatic characterization

Outline

6 Reduct-based characterization

7 Axiomatic characterization

8 Logical characterization

Potassco (KRR@UP) Answer Set Programming 22 / 182

Axiomatic characterization

Logic Programs as Propositional Formulas

P =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (P)=

{
a← ¬b b ← ¬a x ← (a ∧ ¬c) ∨ y y ← x ∧ b

}
∪
{
c ↔ ⊥

}
LF (P) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (P) :

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Potassco (KRR@UP) Answer Set Programming 23 / 182

Axiomatic characterization

Logic Programs as Propositional Formulas

P =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
RF (P)=

{
a← ¬b b ← ¬a x ← (a ∧ ¬c) ∨ y y ← x ∧ b

}
∪
{
c ↔ ⊥

}
LF (P) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of RF (P) : (only true atoms shown)

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Potassco (KRR@UP) Answer Set Programming 23 / 182

Axiomatic characterization

Logic Programs as Propositional Formulas

P =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
RF (P)=

{
a← ¬b b ← ¬a x ← (a ∧ ¬c) ∨ y y ← x ∧ b

}
∪
{
c ↔ ⊥

}
LF (P) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of RF (P) :

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Potassco (KRR@UP) Answer Set Programming 23 / 182

Axiomatic characterization

Logic Programs as Propositional Formulas

P =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (P)=

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (P) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of RF (P) :

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Potassco (KRR@UP) Answer Set Programming 23 / 182

Axiomatic characterization

Logic Programs as Propositional Formulas

P =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (P)=

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (P) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (P) :

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Potassco (KRR@UP) Answer Set Programming 23 / 182

Axiomatic characterization

Logic Programs as Propositional Formulas

P =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (P)=

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (P) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (P) :

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Potassco (KRR@UP) Answer Set Programming 23 / 182

Axiomatic characterization

Logic Programs as Propositional Formulas

P =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (P)=

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (P) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (P) ∪ LF (P) :

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Potassco (KRR@UP) Answer Set Programming 23 / 182

Axiomatic characterization

Logic Programs as Propositional Formulas

P =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (P)=

{
a↔

(∨
(a←B)∈PBF (B)

)
| a ∈ A(P)

}
BF (B)=

∧
b∈B∩A(P)b ∧

∧
¬c∈B¬c

LF (P) =
{(∨

a∈La
)
→
(∨

a∈L,(a←B)∈P,B∩L=∅BF (B)
)
| L ∈ loop(P)

}
Classical models of CF (P) ∪ LF (P) :

Theorem (Lin and Zhao)

Let P be a normal logic program and X ⊆ A(P).
Then, X is a stable model of P iff X |= CF (P) ∪ LF (P).

Size of CF (P) is linear in the size of P

Size of LF (P) may be exponential in the size of P

Potassco (KRR@UP) Answer Set Programming 23 / 182

Axiomatic characterization

ASP and SAT

SAT = ASP + Law of the excluded middle

ASP = SAT + Completion and Loop formulas

Note Checking whether a propositional formula has
a stable model is Σ2

P -complete

Potassco (KRR@UP) Answer Set Programming 24 / 182

Axiomatic characterization

ASP and SAT

SAT = ASP + Law of the excluded middle

ASP = SAT + Completion and Loop formulas

Note Checking whether a propositional formula has
a stable model is Σ2

P -complete

Potassco (KRR@UP) Answer Set Programming 24 / 182

Axiomatic characterization

ASP and SAT

SAT = ASP + Law of the excluded middle1

ASP = SAT + Completion and Loop formulas

Note Checking whether a propositional formula has
a stable model is Σ2

P -complete

1For instance, ‘{a}.’ stands for ‘a ∨ ¬a’.
Potassco (KRR@UP) Answer Set Programming 24 / 182

Axiomatic characterization

ASP and SAT

SAT = ASP + Law of the excluded middle

ASP = SAT + Completion and Loop formulas

Note Checking whether a propositional formula has
a stable model is Σ2

P -complete

Potassco (KRR@UP) Answer Set Programming 24 / 182

Logical characterization

Outline

6 Reduct-based characterization

7 Axiomatic characterization

8 Logical characterization

Potassco (KRR@UP) Answer Set Programming 25 / 182

Logical characterization

The logic of Here-and-There (HT)

An interpretation is a pair 〈H,T 〉 of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note 〈H,T 〉 is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms
atoms not in T are false

Idea

〈H,T 〉 |= ϕ ∼ ϕ is provably true
〈T ,T 〉 |= ϕ ∼ ϕ is possibly true, that is, classically true

Potassco (KRR@UP) Answer Set Programming 26 / 182

Logical characterization

The logic of Here-and-There (HT)

An interpretation is a pair 〈H,T 〉 of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note 〈H,T 〉 is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms
atoms not in T are false

Idea

〈H,T 〉 |= ϕ ∼ ϕ is provably true
〈T ,T 〉 |= ϕ ∼ ϕ is possibly true, that is, classically true

Potassco (KRR@UP) Answer Set Programming 26 / 182

Logical characterization

The logic of Here-and-There (HT)

An interpretation is a pair 〈H,T 〉 of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note 〈H,T 〉 is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms
atoms not in T are false

Idea

〈H,T 〉 |= ϕ ∼ ϕ is provably true
〈T ,T 〉 |= ϕ ∼ ϕ is possibly true, that is, classically true

Potassco (KRR@UP) Answer Set Programming 26 / 182

Logical characterization

The logic of Here-and-There (HT)

An interpretation is a pair 〈H,T 〉 of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note 〈H,T 〉 is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms
atoms not in T are false

Idea

〈H,T 〉 |= ϕ ∼ ϕ is provably true
〈T ,T 〉 |= ϕ ∼ ϕ is possibly true, that is, classically true

Potassco (KRR@UP) Answer Set Programming 26 / 182

Logical characterization

The logic of Here-and-There (HT)

An interpretation is a pair 〈H,T 〉 of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note 〈H,T 〉 is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms
atoms not in T are false

Idea

〈H,T 〉 |= ϕ ∼ ϕ is provably true
〈T ,T 〉 |= ϕ ∼ ϕ is possibly true, that is, classically true

Potassco (KRR@UP) Answer Set Programming 26 / 182

Logical characterization

Satisfaction

〈H,T 〉 |= a if a ∈ H for any atom a

〈H,T 〉 |= ϕ ∧ ψ if 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ

〈H,T 〉 |= ϕ ∨ ψ if 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ

〈H,T 〉 |= ϕ→ ψ if 〈X ,T 〉 |= ϕ implies 〈X ,T 〉 |= ψ
for both X = H,T

Note 〈H,T 〉 |= ¬ϕ if 〈T ,T 〉 6|= ϕ since ¬ϕ = ϕ→ ⊥

An interpretation 〈H,T 〉 is a model of ϕ, if 〈H,T 〉 |= ϕ

Potassco (KRR@UP) Answer Set Programming 27 / 182

Logical characterization

Satisfaction

〈H,T 〉 |= a if a ∈ H for any atom a

〈H,T 〉 |= ϕ ∧ ψ if 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ

〈H,T 〉 |= ϕ ∨ ψ if 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ

〈H,T 〉 |= ϕ→ ψ if 〈X ,T 〉 |= ϕ implies 〈X ,T 〉 |= ψ
for both X = H,T

Note 〈H,T 〉 |= ¬ϕ if 〈T ,T 〉 6|= ϕ since ¬ϕ = ϕ→ ⊥

An interpretation 〈H,T 〉 is a model of ϕ, if 〈H,T 〉 |= ϕ

Potassco (KRR@UP) Answer Set Programming 27 / 182

Logical characterization

Satisfaction

〈H,T 〉 |= a if a ∈ H for any atom a

〈H,T 〉 |= ϕ ∧ ψ if 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ

〈H,T 〉 |= ϕ ∨ ψ if 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ

〈H,T 〉 |= ϕ→ ψ if 〈X ,T 〉 |= ϕ implies 〈X ,T 〉 |= ψ
for both X = H,T

Note 〈H,T 〉 |= ¬ϕ if 〈T ,T 〉 6|= ϕ since ¬ϕ = ϕ→ ⊥

An interpretation 〈H,T 〉 is a model of ϕ, if 〈H,T 〉 |= ϕ

Potassco (KRR@UP) Answer Set Programming 27 / 182

Logical characterization

Classical tautologies

H T a ¬a a ∨ ¬a ¬¬a a← ¬¬a
{a} {a} T F T T T
∅ {a} F F F T F
∅ ∅ F T T F T

Potassco (KRR@UP) Answer Set Programming 28 / 182

Logical characterization

Equilibrium models

A total interpretation 〈T ,T 〉 is an equilibrium model of
a formula ϕ, if

1 〈T ,T 〉 |= ϕ,
2 〈H,T 〉 6|= ϕ for all H ⊂ T

T is called a stable model of ϕ

Note 〈T ,T 〉 acts as a classical model

Note 〈H,T 〉 |= P iff H |= PT (PT is the reduct of P by T)

Potassco (KRR@UP) Answer Set Programming 29 / 182

Logical characterization

Equilibrium models

A total interpretation 〈T ,T 〉 is an equilibrium model of
a formula ϕ, if

1 〈T ,T 〉 |= ϕ,
2 〈H,T 〉 6|= ϕ for all H ⊂ T

T is called a stable model of ϕ

Note 〈T ,T 〉 acts as a classical model

Note 〈H,T 〉 |= P iff H |= PT (PT is the reduct of P by T)

Potassco (KRR@UP) Answer Set Programming 29 / 182

Logical characterization

Equilibrium models

A total interpretation 〈T ,T 〉 is an equilibrium model of
a formula ϕ, if

1 〈T ,T 〉 |= ϕ,
2 〈H,T 〉 6|= ϕ for all H ⊂ T

T is called a stable model of ϕ

Note 〈T ,T 〉 acts as a classical model

Note 〈H,T 〉 |= P iff H |= PT (PT is the reduct of P by T)

Potassco (KRR@UP) Answer Set Programming 29 / 182

Logical characterization

Equilibrium models

A total interpretation 〈T ,T 〉 is an equilibrium model of
a formula ϕ, if

1 〈T ,T 〉 |= ϕ,
2 〈H,T 〉 6|= ϕ for all H ⊂ T

T is called a stable model of ϕ

Note 〈T ,T 〉 acts as a classical model

Note 〈H,T 〉 |= P iff H |= PT (PT is the reduct of P by T)

Potassco (KRR@UP) Answer Set Programming 29 / 182

Grounding: Overview

9 Ground instantiation

10 Stable models

11 Grounding safe programs

Potassco (KRR@UP) Answer Set Programming 30 / 182

Ground instantiation

Outline

9 Ground instantiation

10 Stable models

11 Grounding safe programs

Potassco (KRR@UP) Answer Set Programming 31 / 182

Ground instantiation

Ground instantiation

Let T be a set of (variable-free) terms

Let A be a set of (variable-free) atoms constructible from T

A variable-free atom is also called ground

Ground instances of a rule r are obtained by replacing all variables in
r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r and
θ is a (ground) substitution

Ground instantiation of logic program P

ground(P) =
⋃

r∈P ground(r)

Potassco (KRR@UP) Answer Set Programming 32 / 182

Ground instantiation

Ground instantiation

Let T be a set of (variable-free) terms

Let A be a set of (variable-free) atoms constructible from T

A variable-free atom is also called ground

Ground instances of a rule r are obtained by replacing all variables in
r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r and
θ is a (ground) substitution

Ground instantiation of logic program P

ground(P) =
⋃

r∈P ground(r)

Potassco (KRR@UP) Answer Set Programming 32 / 182

Ground instantiation

Ground instantiation

Let T be a set of (variable-free) terms

Examples 42, “coucou”, Zorro, grandfather(leon), 3 + X

Let A be a set of (variable-free) atoms constructible from T
Examples q(42), married(grandfather(leon)), prime(3 + X)

A variable-free atom is also called ground

Ground instances of a rule r are obtained by replacing all variables in
r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}
where var(r) stands for the set of all variables occurring in r and
θ is a (ground) substitution

Ground instantiation of logic program P

ground(P) =
⋃

r∈P ground(r)

Potassco (KRR@UP) Answer Set Programming 32 / 182

Ground instantiation

Ground instantiation

Let T be a set of (variable-free) terms

Examples 42, “coucou”, Zorro, grandfather(leon), 3 + X

Let A be a set of (variable-free) atoms constructible from T
Examples q(42), married(grandfather(X)), prime(3 + X)

A variable-free atom is also called ground

Ground instances of a rule r are obtained by replacing all variables in
r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}
where var(r) stands for the set of all variables occurring in r and
θ is a (ground) substitution

Ground instantiation of logic program P

ground(P) =
⋃

r∈P ground(r)

Potassco (KRR@UP) Answer Set Programming 32 / 182

Ground instantiation

Ground instantiation

Let T be a set of (variable-free) terms

Examples 42, “coucou”, Zorro, grandfather(leon), 3 + X

Let A be a set of (variable-free) atoms constructible from T
Examples q(42), married(X), prime(3 + X)

A variable-free atom is also called ground

Ground instances of a rule r are obtained by replacing all variables in
r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}
where var(r) stands for the set of all variables occurring in r and
θ is a (ground) substitution

Ground instantiation of logic program P

ground(P) =
⋃

r∈P ground(r)

Potassco (KRR@UP) Answer Set Programming 32 / 182

Ground instantiation

Ground instantiation

Let T be a set of

(

variable-free

)

terms

(also called Herbrand universe)

Let A be a set of

(

variable-free

)

atoms constructible from T
(also called Herbrand base)

A variable-free atom is also called ground

Ground instances of a rule r are obtained by replacing all variables in
r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}
where var(r) stands for the set of all variables occurring in r and
θ is a (ground) substitution

Ground instantiation of logic program P

ground(P) =
⋃

r∈P ground(r)

Potassco (KRR@UP) Answer Set Programming 32 / 182

Ground instantiation

Ground instantiation

Let T be a set of

(

variable-free

)

terms

Let A be a set of

(

variable-free

)

atoms constructible from T
(also called alphabet)

A variable-free atom is also called ground

Ground instances of a rule r are obtained by replacing all variables in
r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r and
θ is a (ground) substitution

Ground instantiation of logic program P

ground(P) =
⋃

r∈P ground(r)

Potassco (KRR@UP) Answer Set Programming 32 / 182

Ground instantiation

Ground instantiation

Let T be a set of (variable-free) terms

Let A be a set of (variable-free) atoms constructible from T

A variable-free atom is also called ground

Ground instances of a rule r are obtained by replacing all variables in
r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r and
θ is a (ground) substitution

Ground instantiation of logic program P

ground(P) =
⋃

r∈P ground(r)

Potassco (KRR@UP) Answer Set Programming 32 / 182

Ground instantiation

Ground instantiation

Let T be a set of (variable-free) terms

Let A be a set of (variable-free) atoms constructible from T

A variable-free atom is also called ground

Ground instances of a rule r are obtained by replacing all variables in
r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r and
θ is a (ground) substitution

Ground instantiation of logic program P

ground(P) =
⋃

r∈P ground(r)

Potassco (KRR@UP) Answer Set Programming 32 / 182

Ground instantiation

Ground instantiation

Let T be a set of (variable-free) terms

Let A be a set of (variable-free) atoms constructible from T

A variable-free atom is also called ground

Ground instances of a rule r are obtained by replacing all variables in
r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r and
θ is a (ground) substitution

Ground instantiation of logic program P

ground(P) =
⋃

r∈P ground(r)

Potassco (KRR@UP) Answer Set Programming 32 / 182

Ground instantiation

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }

T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


å Grounding aims at reducing the ground instantiation

by applying semantic principles

Potassco (KRR@UP) Answer Set Programming 33 / 182

Ground instantiation

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }

T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


å Grounding aims at reducing the ground instantiation

by applying semantic principles

Potassco (KRR@UP) Answer Set Programming 33 / 182

Ground instantiation

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }

T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


å Grounding aims at reducing the ground instantiation

by applying semantic principles

Potassco (KRR@UP) Answer Set Programming 33 / 182

Ground instantiation

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }

T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


å Grounding aims at reducing the ground instantiation

by applying semantic principles

Potassco (KRR@UP) Answer Set Programming 33 / 182

Ground instantiation

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }

T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


å Grounding aims at reducing the ground instantiation

by applying semantic principles

Potassco (KRR@UP) Answer Set Programming 33 / 182

Ground instantiation

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }

T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


å Grounding aims at reducing the ground instantiation

by applying semantic principles

Potassco (KRR@UP) Answer Set Programming 33 / 182

Ground instantiation

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }

T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← , t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


å Grounding aims at reducing the ground instantiation

by applying semantic principles

Potassco (KRR@UP) Answer Set Programming 33 / 182

Ground instantiation

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }

T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← , t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


å Grounding aims at reducing the ground instantiation

by applying semantic principles

Potassco (KRR@UP) Answer Set Programming 33 / 182

Stable models

Outline

9 Ground instantiation

10 Stable models

11 Grounding safe programs

Potassco (KRR@UP) Answer Set Programming 34 / 182

Stable models

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if X is a stable model of ground(P)

Potassco (KRR@UP) Answer Set Programming 35 / 182

Stable models

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if X is a stable model of ground(P)

Potassco (KRR@UP) Answer Set Programming 35 / 182

Grounding safe programs

Outline

9 Ground instantiation

10 Stable models

11 Grounding safe programs

Potassco (KRR@UP) Answer Set Programming 36 / 182

Grounding safe programs

Safety

A normal rule is safe, if all its variables occur in its positive body

Examples

p(a)←
p(X)←
p(X)← q(X)
p(X)← ¬q(X)
p(X)← ¬q(X), r(X)

A normal program is safe, if all of its rules are safe

Potassco (KRR@UP) Answer Set Programming 37 / 182

Grounding safe programs

Safety

A normal rule is safe, if all its variables occur in its positive body

Examples

p(a)←
p(X)←
p(X)← q(X)
p(X)← ¬q(X)
p(X)← ¬q(X), r(X)

A normal program is safe, if all of its rules are safe

Potassco (KRR@UP) Answer Set Programming 37 / 182

Grounding safe programs

Safety

A normal rule is safe, if all its variables occur in its positive body

Examples

p(a)←
p(X)←
p(X)← q(X)
p(X)← ¬q(X)
p(X)← ¬q(X), r(X)

A normal program is safe, if all of its rules are safe

Potassco (KRR@UP) Answer Set Programming 37 / 182

Grounding safe programs

Safety

A normal rule is safe, if all its variables occur in its positive body

Examples

p(a)← 4
p(X)←
p(X)← q(X)
p(X)← ¬q(X)
p(X)← ¬q(X), r(X)

A normal program is safe, if all of its rules are safe

Potassco (KRR@UP) Answer Set Programming 37 / 182

Grounding safe programs

Safety

A normal rule is safe, if all its variables occur in its positive body

Examples

p(a)← 4
p(X)← 8
p(X)← q(X)
p(X)← ¬q(X)
p(X)← ¬q(X), r(X)

A normal program is safe, if all of its rules are safe

Potassco (KRR@UP) Answer Set Programming 37 / 182

Grounding safe programs

Safety

A normal rule is safe, if all its variables occur in its positive body

Examples

p(a)← 4
p(X)← 8
p(X)← q(X) 4
p(X)← ¬q(X)
p(X)← ¬q(X), r(X)

A normal program is safe, if all of its rules are safe

Potassco (KRR@UP) Answer Set Programming 37 / 182

Grounding safe programs

Safety

A normal rule is safe, if all its variables occur in its positive body

Examples

p(a)← 4
p(X)← 8
p(X)← q(X) 4
p(X)← ¬q(X) 8
p(X)← ¬q(X), r(X)

A normal program is safe, if all of its rules are safe

Potassco (KRR@UP) Answer Set Programming 37 / 182

Grounding safe programs

Safety

A normal rule is safe, if all its variables occur in its positive body

Examples

p(a)← 4
p(X)← 8
p(X)← q(X) 4
p(X)← ¬q(X) 8
p(X)← ¬q(X), r(X) 4

A normal program is safe, if all of its rules are safe

Potassco (KRR@UP) Answer Set Programming 37 / 182

Grounding safe programs

Safety

A normal rule is safe, if all its variables occur in its positive body

Examples

p(a)← 4
p(X)← 8
p(X)← q(X) 4
p(X)← ¬q(X) 8
p(X)← ¬q(X), r(X) 4

A normal program is safe, if all of its rules are safe

Potassco (KRR@UP) Answer Set Programming 37 / 182

Grounding safe programs

Grounding safe programs

P = { r(a, b)← , r(b, c)← , t(X ,Y)← r(X ,Y) }

Grounding intuitively

0 Partition program along predicate dependencies

P1 = { r(a, b)← , r(b, c)← }
P2 = { t(X ,Y)← r(X ,Y) }

1 Ground P1

Rules: { r(a, b)← , r(b, c)← }
Atoms: { r(a, b), r(b, c) }

2 Ground P2 relative to { r(a, b), r(b, c) }
Rules: { t(a, b)← r(a, b), t(b, c)← r(b, c) }
Atoms: { r(a, b), r(b, c), t(a, b), t(b, c) }

3 Resulting ground rules

{r(a, b)← , r(b, c)← } ∪ {t(a, b)← r(a, b), t(b, c)← r(b, c)}

Potassco (KRR@UP) Answer Set Programming 38 / 182

Grounding safe programs

Grounding safe programs

P = { r(a, b)← , r(b, c)← , t(X ,Y)← r(X ,Y) }

Grounding intuitively

0 Partition program along predicate dependencies

P1 = { r(a, b)← , r(b, c)← }
P2 = { t(X ,Y)← r(X ,Y) }

1 Ground P1

Rules: { r(a, b)← , r(b, c)← }
Atoms: { r(a, b), r(b, c) }

2 Ground P2 relative to { r(a, b), r(b, c) }
Rules: { t(a, b)← r(a, b), t(b, c)← r(b, c) }
Atoms: { r(a, b), r(b, c), t(a, b), t(b, c) }

3 Resulting ground rules

{r(a, b)← , r(b, c)← } ∪ {t(a, b)← r(a, b), t(b, c)← r(b, c)}

Potassco (KRR@UP) Answer Set Programming 38 / 182

Grounding safe programs

Grounding safe programs

P = { r(a, b)← , r(b, c)← , t(X ,Y)← r(X ,Y) }

Grounding intuitively

0 Partition program along predicate dependencies

P1 = { r(a, b)← , r(b, c)← }
P2 = { t(X ,Y)← r(X ,Y) }

1 Ground P1

Rules: { r(a, b)← , r(b, c)← }
Atoms: { r(a, b), r(b, c) }

2 Ground P2 relative to { r(a, b), r(b, c) }
Rules: { t(a, b)← r(a, b), t(b, c)← r(b, c) }
Atoms: { r(a, b), r(b, c), t(a, b), t(b, c) }

3 Resulting ground rules

{r(a, b)← , r(b, c)← } ∪ {t(a, b)← r(a, b), t(b, c)← r(b, c)}

Potassco (KRR@UP) Answer Set Programming 38 / 182

Grounding safe programs

Grounding safe programs

P = { r(a, b)← , r(b, c)← , t(X ,Y)← r(X ,Y) }

Grounding intuitively

0 Partition program along predicate dependencies

P1 = { r(a, b)← , r(b, c)← }
P2 = { t(X ,Y)← r(X ,Y) }

1 Ground P1

Rules: { r(a, b)← , r(b, c)← }
Atoms: { r(a, b), r(b, c) }

2 Ground P2 relative to { r(a, b), r(b, c) }
Rules: { t(a, b)← r(a, b), t(b, c)← r(b, c) }
Atoms: { r(a, b), r(b, c), t(a, b), t(b, c) }

3 Resulting ground rules

{r(a, b)← , r(b, c)← } ∪ {t(a, b)← r(a, b), t(b, c)← r(b, c)}

Potassco (KRR@UP) Answer Set Programming 38 / 182

Grounding safe programs

Grounding safe programs

P = { r(a, b)← , r(b, c)← , t(X ,Y)← r(X ,Y) }

Grounding intuitively

0 Partition program along predicate dependencies

P1 = { r(a, b)← , r(b, c)← }
P2 = { t(X ,Y)← r(X ,Y) }

1 Ground P1

Rules: { r(a, b)← , r(b, c)← }
Atoms: { r(a, b), r(b, c) }

2 Ground P2 relative to { r(a, b), r(b, c) }
Rules: { t(a, b)← r(a, b), t(b, c)← r(b, c) }
Atoms: { r(a, b), r(b, c), t(a, b), t(b, c) }

3 Resulting ground rules

{r(a, b)← , r(b, c)← } ∪ {t(a, b)← r(a, b), t(b, c)← r(b, c)}

Potassco (KRR@UP) Answer Set Programming 38 / 182

Grounding safe programs

Grounding safe programs

P = { r(a, b)← , r(b, c)← , t(X ,Y)← r(X ,Y) }

Grounding intuitively

0 Partition program along predicate dependencies

P1 = { r(a, b)← , r(b, c)← }
P2 = { t(X ,Y)← r(X ,Y) }

1 Ground P1

Rules: { r(a, b)← , r(b, c)← }
Atoms: { r(a, b), r(b, c) }

2 Ground P2 relative to { r(a, b), r(b, c) }
Rules: { t(a, b)← r(a, b), t(b, c)← r(b, c) }
Atoms: { r(a, b), r(b, c), t(a, b), t(b, c) }

3 Resulting ground rules

{r(a, b)← , r(b, c)← } ∪ {t(a, b)← r(a, b), t(b, c)← r(b, c)}

Potassco (KRR@UP) Answer Set Programming 38 / 182

Solving: Overview

12 Conflict-driven constraint learning

13 Engine

Potassco (KRR@UP) Answer Set Programming 39 / 182

Reasoning modes

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 40 / 182

Reasoning modes

Satisfiability

Enumeration†

Projection†

Intersection‡

Union‡

Optimization

and combinations of them

† without solution recording
‡ without solution enumeration

Potassco (KRR@UP) Answer Set Programming 41 / 182

Conflict-driven constraint learning

Outline

12 Conflict-driven constraint learning

13 Engine

Potassco (KRR@UP) Answer Set Programming 42 / 182

Conflict-driven constraint learning

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to

Traditional DPLL-style approach

(DPLL stands for ‘Davis-Putnam-Logemann-Loveland’)

Unit propagation
Backtracking

in ASP, eg smodels

Modern CDCL-style approach

(CDCL stands for ‘Conflict-Driven Constraint Learning’)

Unit propagation
Conflict analysis (via resolution)
Learning + Backjumping + Assertion

in ASP, eg clasp

Potassco (KRR@UP) Answer Set Programming 43 / 182

Conflict-driven constraint learning

DPLL-style solving

loop

propagate // deterministically assign literals

if no conflict then

if all variables assigned then return solution
else decide // non-deterministically assign some literal

else

if top-level conflict then return unsatisfiable
else

backtrack // unassign literals propagated after last decision
flip // assign complement of last decision literal

Potassco (KRR@UP) Answer Set Programming 44 / 182

Conflict-driven constraint learning

CDCL-style solving

loop

propagate // deterministically assign literals

if no conflict then

if all variables assigned then return solution
else decide // non-deterministically assign some literal

else

if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

Potassco (KRR@UP) Answer Set Programming 45 / 182

Engine

Outline

12 Conflict-driven constraint learning

13 Engine

Potassco (KRR@UP) Answer Set Programming 46 / 182

Engine

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Potassco (KRR@UP) Answer Set Programming 47 / 182

Engine

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Potassco (KRR@UP) Answer Set Programming 47 / 182

Engine

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Potassco (KRR@UP) Answer Set Programming 47 / 182

Engine

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Potassco (KRR@UP) Answer Set Programming 47 / 182

Engine

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Potassco (KRR@UP) Answer Set Programming 47 / 182

Engine

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Potassco (KRR@UP) Answer Set Programming 47 / 182

Modeling: Overview

14 Elaboration tolerance

15 ASP solving process

16 Methodology

17 Case studies

Potassco (KRR@UP) Answer Set Programming 48 / 182

Extended syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 49 / 182

Language constructs

Facts q(42).

Rules p(X) :- q(X), not r(X).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C@42]

#minimize { C@42 : q(X), p(X,C) }

Potassco (KRR@UP) Answer Set Programming 50 / 182

Language constructs

Facts q(42).

Rules p(X) :- q(X), not r(X).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C@42]

#minimize { C@42 : q(X), p(X,C) }

Potassco (KRR@UP) Answer Set Programming 50 / 182

Language constructs

Facts q(42).

Rules p(42) :- q(42), not r(42).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C@42]

#minimize { C@42 : q(X), p(X,C) }

Potassco (KRR@UP) Answer Set Programming 50 / 182

Language constructs

Facts q(42).

Rules p(X) :- q(X), not r(X).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C@42]

#minimize { C@42 : q(X), p(X,C) }

Potassco (KRR@UP) Answer Set Programming 50 / 182

Language constructs

Facts q(42).

Rules p(X) :- q(X), not r(X).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C@42]

#minimize { C@42 : q(X), p(X,C) }

Potassco (KRR@UP) Answer Set Programming 50 / 182

Language constructs

Facts q(42).

Rules p(X) :- q(X), not r(X).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C@42]

#minimize { C@42 : q(X), p(X,C) }

Potassco (KRR@UP) Answer Set Programming 50 / 182

Language constructs

Facts q(42).

Rules p(X) :- q(X), not r(X).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C@42]

#minimize { C@42 : q(X), p(X,C) }

Potassco (KRR@UP) Answer Set Programming 50 / 182

Language constructs

Facts q(42).

Rules p(X) :- q(X), not r(X).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C@42]

#minimize { C@42 : q(X), p(X,C) }

Potassco (KRR@UP) Answer Set Programming 50 / 182

Language constructs

Facts q(42).

Rules p(X) :- q(X), not r(X).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C@42]

#minimize { C@42 : q(X), p(X,C) }

Potassco (KRR@UP) Answer Set Programming 50 / 182

Language constructs

Facts q(42).

Rules p(X) :- q(X), not r(X).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C@42]

#minimize { C@42 : q(X), p(X,C) }

Potassco (KRR@UP) Answer Set Programming 50 / 182

Modeling and Interpreting

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 51 / 182

Elaboration tolerance

Outline

14 Elaboration tolerance

15 ASP solving process

16 Methodology

17 Case studies

Potassco (KRR@UP) Answer Set Programming 52 / 182

Elaboration tolerance

Guiding principle

Elaboration Tolerance (McCarthy, 1998)

“A formalism is elaboration tolerant [if] it is convenient
to modify a set of facts expressed in the formalism
to take into account new phenomena or changed circumstances.”

Uniform problem representation

For solving a problem instance I of a problem class C,

I is represented as a set of facts PI,
C is represented as a set of rules PC, and

PC can be used to solve all problem instances in C

Potassco (KRR@UP) Answer Set Programming 53 / 182

Elaboration tolerance

Guiding principle

Elaboration Tolerance (McCarthy, 1998)

“A formalism is elaboration tolerant [if] it is convenient
to modify a set of facts expressed in the formalism
to take into account new phenomena or changed circumstances.”

Uniform problem representation

For solving a problem instance I of a problem class C,

I is represented as a set of facts PI,
C is represented as a set of rules PC, and

PC can be used to solve all problem instances in C

Potassco (KRR@UP) Answer Set Programming 53 / 182

ASP solving process

Outline

14 Elaboration tolerance

15 ASP solving process

16 Methodology

17 Case studies

Potassco (KRR@UP) Answer Set Programming 54 / 182

ASP solving process

ASP workflow

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 55 / 182

ASP solving process

ASP workflow

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 55 / 182

ASP solving process

ASP workflow

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 55 / 182

ASP solving process

ASP workflow

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 55 / 182

ASP solving process

ASP workflow

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 55 / 182

ASP solving process

ASP workflow

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 55 / 182

ASP solving process

ASP workflow

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 55 / 182

ASP solving process

ASP workflow

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving6

Elaborating

Potassco (KRR@UP) Answer Set Programming 55 / 182

ASP solving process

ASP workflow

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 56 / 182

ASP solving process

ASP workflow: Problem

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 57 / 182

ASP solving process

A case-study: Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

Potassco (KRR@UP) Answer Set Programming 58 / 182

ASP solving process

A case-study: Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

Potassco (KRR@UP) Answer Set Programming 58 / 182

ASP solving process

A case-study: Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

1 2

3

4

5

6

Potassco (KRR@UP) Answer Set Programming 58 / 182

ASP solving process

A case-study: Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

1 2

3

4

5

6

Potassco (KRR@UP) Answer Set Programming 58 / 182

ASP solving process

A case-study: Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate color/1

Potassco (KRR@UP) Answer Set Programming 58 / 182

ASP solving process

A case-study: Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate color/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color

Potassco (KRR@UP) Answer Set Programming 58 / 182

ASP solving process

A case-study: Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate color/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color

In other words,

1 Each node has one color
2 Two connected nodes must not have the same color

Potassco (KRR@UP) Answer Set Programming 58 / 182

ASP solving process

ASP workflow: Problem representation

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 59 / 182

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 60 / 182

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



graph.lp

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 color.lp

Potassco (KRR@UP) Answer Set Programming 60 / 182

ASP solving process

ASP workflow: Grounding

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 61 / 182

ASP solving process

Graph coloring: Grounding
$ gringo --text graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).

edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).

edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

color(r). color(b). color(g).

{ assign(1,r); assign(1,b); assign(1,g) } = 1. { assign(4,r); assign(4,b); assign(4,g) } = 1.

{ assign(2,r); assign(2,b); assign(2,g) } = 1. { assign(5,r); assign(5,b); assign(5,g) } = 1.

{ assign(3,r); assign(3,b); assign(3,g) } = 1. { assign(6,r); assign(6,b); assign(6,g) } = 1.

:- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).

:- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). :- assign(6,b), assign(2,b).

:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,g).

:- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).

:- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). :- assign(6,b), assign(3,b).

:- assign(1,g), assign(3,g). :- assign(2,g), assign(5,g). :- assign(6,g), assign(3,g).

:- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). :- assign(6,r), assign(5,r).

:- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). :- assign(6,b), assign(5,b).

:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,g). :- assign(6,g), assign(5,g).

Potassco (KRR@UP) Answer Set Programming 62 / 182

ASP solving process

Graph coloring: Grounding
$ gringo --text graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).

edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).

edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

color(r). color(b). color(g).

{ assign(1,r); assign(1,b); assign(1,g) } = 1. { assign(4,r); assign(4,b); assign(4,g) } = 1.

{ assign(2,r); assign(2,b); assign(2,g) } = 1. { assign(5,r); assign(5,b); assign(5,g) } = 1.

{ assign(3,r); assign(3,b); assign(3,g) } = 1. { assign(6,r); assign(6,b); assign(6,g) } = 1.

:- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).

:- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). :- assign(6,b), assign(2,b).

:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,g).

:- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).

:- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). :- assign(6,b), assign(3,b).

:- assign(1,g), assign(3,g). :- assign(2,g), assign(5,g). :- assign(6,g), assign(3,g).

:- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). :- assign(6,r), assign(5,r).

:- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). :- assign(6,b), assign(5,b).

:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,g). :- assign(6,g), assign(5,g).

Potassco (KRR@UP) Answer Set Programming 62 / 182

ASP solving process

Graph coloring: Grounding
$ gringo --text graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).

edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).

edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

color(r). color(b). color(g).

{ assign(1,r); assign(1,b); assign(1,g) } = 1. { assign(4,r); assign(4,b); assign(4,g) } = 1.

{ assign(2,r); assign(2,b); assign(2,g) } = 1. { assign(5,r); assign(5,b); assign(5,g) } = 1.

{ assign(3,r); assign(3,b); assign(3,g) } = 1. { assign(6,r); assign(6,b); assign(6,g) } = 1.

:- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).

:- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). :- assign(6,b), assign(2,b).

:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,g).

:- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).

:- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). :- assign(6,b), assign(3,b).

:- assign(1,g), assign(3,g). :- assign(2,g), assign(5,g). :- assign(6,g), assign(3,g).

:- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). :- assign(6,r), assign(5,r).

:- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). :- assign(6,b), assign(5,b).

:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,g). :- assign(6,g), assign(5,g).

Potassco (KRR@UP) Answer Set Programming 62 / 182

ASP solving process

Graph coloring: Grounding
$ gringo --text graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).

edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).

edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

color(r). color(b). color(g).

{ assign(1,r); assign(1,b); assign(1,g) } = 1. { assign(4,r); assign(4,b); assign(4,g) } = 1.

{ assign(2,r); assign(2,b); assign(2,g) } = 1. { assign(5,r); assign(5,b); assign(5,g) } = 1.

{ assign(3,r); assign(3,b); assign(3,g) } = 1. { assign(6,r); assign(6,b); assign(6,g) } = 1.

:- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).

:- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). :- assign(6,b), assign(2,b).

:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,g).

:- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).

:- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). :- assign(6,b), assign(3,b).

:- assign(1,g), assign(3,g). :- assign(2,g), assign(5,g). :- assign(6,g), assign(3,g).

:- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). :- assign(6,r), assign(5,r).

:- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). :- assign(6,b), assign(5,b).

:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,g). :- assign(6,g), assign(5,g).

Potassco (KRR@UP) Answer Set Programming 62 / 182

ASP solving process

Graph coloring: Grounding
$ clingo --text graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).

edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).

edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

color(r). color(b). color(g).

{ assign(1,r); assign(1,b); assign(1,g) } = 1. { assign(4,r); assign(4,b); assign(4,g) } = 1.

{ assign(2,r); assign(2,b); assign(2,g) } = 1. { assign(5,r); assign(5,b); assign(5,g) } = 1.

{ assign(3,r); assign(3,b); assign(3,g) } = 1. { assign(6,r); assign(6,b); assign(6,g) } = 1.

:- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).

:- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). :- assign(6,b), assign(2,b).

:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,g).

:- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).

:- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). :- assign(6,b), assign(3,b).

:- assign(1,g), assign(3,g). :- assign(2,g), assign(5,g). :- assign(6,g), assign(3,g).

:- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). :- assign(6,r), assign(5,r).

:- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). :- assign(6,b), assign(5,b).

:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,g). :- assign(6,g), assign(5,g).

Potassco (KRR@UP) Answer Set Programming 62 / 182

ASP solving process

ASP workflow: Solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 63 / 182

ASP solving process

Graph coloring: Solving
$ gringo graph.lp color.lp | clasp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

node(1) [...] assign(6,b) assign(5,g) assign(4,b) assign(3,r) assign(2,r) assign(1,g)

Answer: 2

node(1) [...] assign(6,r) assign(5,g) assign(4,r) assign(3,b) assign(2,b) assign(1,g)

Answer: 3

node(1) [...] assign(6,g) assign(5,b) assign(4,g) assign(3,r) assign(2,r) assign(1,b)

Answer: 4

node(1) [...] assign(6,r) assign(5,b) assign(4,r) assign(3,g) assign(2,g) assign(1,b)

Answer: 5

node(1) [...] assign(6,g) assign(5,r) assign(4,g) assign(3,b) assign(2,b) assign(1,r)

Answer: 6

node(1) [...] assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

Potassco (KRR@UP) Answer Set Programming 64 / 182

ASP solving process

Graph coloring: Solving
$ gringo graph.lp color.lp | clasp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

node(1) [...] assign(6,b) assign(5,g) assign(4,b) assign(3,r) assign(2,r) assign(1,g)

Answer: 2

node(1) [...] assign(6,r) assign(5,g) assign(4,r) assign(3,b) assign(2,b) assign(1,g)

Answer: 3

node(1) [...] assign(6,g) assign(5,b) assign(4,g) assign(3,r) assign(2,r) assign(1,b)

Answer: 4

node(1) [...] assign(6,r) assign(5,b) assign(4,r) assign(3,g) assign(2,g) assign(1,b)

Answer: 5

node(1) [...] assign(6,g) assign(5,r) assign(4,g) assign(3,b) assign(2,b) assign(1,r)

Answer: 6

node(1) [...] assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

Potassco (KRR@UP) Answer Set Programming 64 / 182

ASP solving process

Graph coloring: Solving
$ clingo graph.lp color.lp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

node(1) [...] assign(6,b) assign(5,g) assign(4,b) assign(3,r) assign(2,r) assign(1,g)

Answer: 2

node(1) [...] assign(6,r) assign(5,g) assign(4,r) assign(3,b) assign(2,b) assign(1,g)

Answer: 3

node(1) [...] assign(6,g) assign(5,b) assign(4,g) assign(3,r) assign(2,r) assign(1,b)

Answer: 4

node(1) [...] assign(6,r) assign(5,b) assign(4,r) assign(3,g) assign(2,g) assign(1,b)

Answer: 5

node(1) [...] assign(6,g) assign(5,r) assign(4,g) assign(3,b) assign(2,b) assign(1,r)

Answer: 6

node(1) [...] assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

Potassco (KRR@UP) Answer Set Programming 64 / 182

ASP solving process

ASP workflow: Stable models

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 65 / 182

ASP solving process

A coloring

Answer: 6

node(1) [...] \

assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

1 2

3

4

5

6

Potassco (KRR@UP) Answer Set Programming 66 / 182

ASP solving process

A coloring

Answer: 6

node(1) [...] \

assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

1 2

3

4

5

6

Potassco (KRR@UP) Answer Set Programming 66 / 182

ASP solving process

ASP workflow: Solutions

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 67 / 182

Methodology

Outline

14 Elaboration tolerance

15 ASP solving process

16 Methodology

17 Case studies

Potassco (KRR@UP) Answer Set Programming 68 / 182

Methodology

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester (+ Optimizer)

Potassco (KRR@UP) Answer Set Programming 69 / 182

Methodology

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester (+ Optimizer)

Potassco (KRR@UP) Answer Set Programming 69 / 182

Methodology

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 70 / 182

Methodology

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Data

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Potassco (KRR@UP) Answer Set Programming 70 / 182

Methodology

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).



Data

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Generator

Tester

Potassco (KRR@UP) Answer Set Programming 70 / 182

Case studies

Outline

14 Elaboration tolerance

15 ASP solving process

16 Methodology

17 Case studies

Potassco (KRR@UP) Answer Set Programming 71 / 182

Case studies Satisfiability

Outline

14 Elaboration tolerance

15 ASP solving process

16 Methodology

17 Case studies
Satisfiability
Queens
Traveling salesperson
Reviewer Assignment
Planning

Potassco (KRR@UP) Answer Set Programming 72 / 182

Case studies Satisfiability

Satisfiability testing

Problem Instance A propositional formula φ in CNF

Problem Class Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program

Generator Tester Stable models

{a}.
{b}.

:- not a, b.

:- a, not b.

X1 = {a, b}
X2 = {}

Note The generator puts a and b under the open world assumption

The tester eliminates interpretations; it is expressed negatively

Potassco (KRR@UP) Answer Set Programming 73 / 182

Case studies Satisfiability

Satisfiability testing

Problem Instance A propositional formula φ in CNF

Problem Class Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program

Generator Tester Stable models

{a}.
{b}.

:- not a, b.

:- a, not b.

X1 = {a, b}
X2 = {}

Note The generator puts a and b under the open world assumption

The tester eliminates interpretations; it is expressed negatively

Potassco (KRR@UP) Answer Set Programming 73 / 182

Case studies Satisfiability

Satisfiability testing

Problem Instance A propositional formula φ in CNF

Problem Class Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program

Generator Tester Stable models

{a}.
{b}.

:- not a, b.

:- a, not b.

X1 = {a, b}
X2 = {}

Note The generator puts a and b under the open world assumption

The tester eliminates interpretations; it is expressed negatively

Potassco (KRR@UP) Answer Set Programming 73 / 182

Case studies Satisfiability

Satisfiability testing

Problem Instance A propositional formula φ in CNF

Problem Class Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program

Generator Tester Stable models

{a}.
{b}.

:- not a, b.

:- a, not b.

X1 = {a, b}
X2 = {}

Note The generator puts a and b under the open world assumption

The tester eliminates interpretations; it is expressed negatively

Potassco (KRR@UP) Answer Set Programming 73 / 182

Case studies Satisfiability

Satisfiability testing

Problem Instance A propositional formula φ in CNF

Problem Class Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example Consider formula

¬(¬a ∧ b) ∧ ¬(a ∧ ¬b)

Logic Program

Generator Tester Stable models

{a}.
{b}.

:- not a, b.

:- a, not b.

X1 = {a, b}
X2 = {}

Note The generator puts a and b under the open world assumption

The tester eliminates interpretations; it is expressed negatively

Potassco (KRR@UP) Answer Set Programming 73 / 182

Case studies Satisfiability

Satisfiability testing

Problem Instance A propositional formula φ in CNF

Problem Class Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example Consider formula

(¬a ∧ b → ⊥) ∧ (a ∧ ¬b → ⊥)

Logic Program

Generator Tester Stable models

{a}.
{b}.

:- not a, b.

:- a, not b.

X1 = {a, b}
X2 = {}

Note The generator puts a and b under the open world assumption

The tester eliminates interpretations; it is expressed negatively

Potassco (KRR@UP) Answer Set Programming 73 / 182

Case studies Queens

Outline

14 Elaboration tolerance

15 ASP solving process

16 Methodology

17 Case studies
Satisfiability
Queens
Traveling salesperson
Reviewer Assignment
Planning

Potassco (KRR@UP) Answer Set Programming 74 / 182

Case studies Queens

Defining the field

queens.lp

row (1..n).

col (1..n).

å Define the field

n rows
n columns

Potassco (KRR@UP) Answer Set Programming 75 / 182

Case studies Queens

Defining the field

queens.lp

row (1..n).

col (1..n).

å Define the field

n rows
n columns

Potassco (KRR@UP) Answer Set Programming 75 / 182

Case studies Queens

Defining the field

Running . . .

$ clingo queens.lp --const n=5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

SATISFIABLE

Models : 1

Time : 0.000

Potassco (KRR@UP) Answer Set Programming 76 / 182

Case studies Queens

Placing some queens

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

å Guess a solution candidate

by placing some queens on the board

Potassco (KRR@UP) Answer Set Programming 77 / 182

Case studies Queens

Placing some queens

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

å Guess a solution candidate

by placing some queens on the board

Potassco (KRR@UP) Answer Set Programming 77 / 182

Case studies Queens

Placing some queens

Running . . .

$ clingo queens.lp --const n=5 3

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(1,1)

Answer: 3

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(2,1)

SATISFIABLE

Models : 3+

Potassco (KRR@UP) Answer Set Programming 78 / 182

Case studies Queens

Placing some queens

Answer: 1

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

Answer: 1

row (1) row(2) row(3) row(4) row(5) \

col (1) col(2) col(3) col(4) col(5)

Potassco (KRR@UP) Answer Set Programming 79 / 182

Case studies Queens

Placing some queens

Answer: 2

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 L0Z0Z

1 2 3 4 5

Answer: 2

row (1) row(2) row(3) row(4) row(5) \

col (1) col(2) col(3) col(4) col(5) \

queen(1,1)

Potassco (KRR@UP) Answer Set Programming 80 / 182

Case studies Queens

Placing some queens

Answer: 3

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 QZ0Z0
1 Z0Z0Z

1 2 3 4 5

Answer: 3

row (1) row(2) row(3) row(4) row(5) \

col (1) col(2) col(3) col(4) col(5) \

queen(2,1)

Potassco (KRR@UP) Answer Set Programming 81 / 182

Case studies Queens

Placing n queens

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

å Place exactly n queens on the board

Potassco (KRR@UP) Answer Set Programming 82 / 182

Case studies Queens

Placing n queens

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

å Place exactly n queens on the board

Potassco (KRR@UP) Answer Set Programming 82 / 182

Case studies Queens

Placing n queens directly

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) } = n.

å Place exactly n queens on the board

Potassco (KRR@UP) Answer Set Programming 83 / 182

Case studies Queens

Placing n queens

Running . . .

$ clingo queens.lp --const n=5 2

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,1) queen(4,1) queen(3,1) queen(2,1) queen(1,1)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(1,2) queen(4,1) queen(3,1) queen(2,1) queen(1,1)

Potassco (KRR@UP) Answer Set Programming 84 / 182

Case studies Queens

Placing n queens

Answer: 1

5 L0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 L0Z0Z

1 2 3 4 5

Answer: 1

row (1) row(2) row(3) row(4) row(5) \

col (1) col(2) col(3) col(4) col(5) \

queen(5,1) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

Potassco (KRR@UP) Answer Set Programming 85 / 182

Case studies Queens

Placing n queens

Answer: 2

5 Z0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 LQZ0Z

1 2 3 4 5

Answer: 2

row (1) row(2) row(3) row(4) row(5) \

col (1) col(2) col(3) col(4) col(5) \

queen(1,2) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

Potassco (KRR@UP) Answer Set Programming 86 / 182

Case studies Queens

Horizontal and vertical attack

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

å Forbid horizontal and vertical attacks

Potassco (KRR@UP) Answer Set Programming 87 / 182

Case studies Queens

Horizontal and vertical attack

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

å Forbid horizontal and vertical attacks

Potassco (KRR@UP) Answer Set Programming 87 / 182

Case studies Queens

Horizontal and vertical attack

Running . . .

$ clingo queens.lp --const n=5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,5) queen(4,4) queen(3,3) queen(2,2) queen(1,1)

Potassco (KRR@UP) Answer Set Programming 88 / 182

Case studies Queens

Horizontal and vertical attack

Answer: 1

5 Z0Z0L
4 0Z0L0
3 Z0L0Z
2 0L0Z0
1 L0Z0Z

1 2 3 4 5

Answer: 1

row (1) row(2) row(3) row(4) row(5) \

col (1) col(2) col(3) col(4) col(5) \

queen(5,5) queen(4,4) queen(3,3) \

queen(2,2) queen(1,1)

Potassco (KRR@UP) Answer Set Programming 89 / 182

Case studies Queens

Diagonal attack

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I-J == I’-J’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I+J == I’+J’.

å Forbid diagonal attacks

Potassco (KRR@UP) Answer Set Programming 90 / 182

Case studies Queens

Diagonal attack

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I-J == I’-J’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I+J == I’+J’.

å Forbid diagonal attacks

Potassco (KRR@UP) Answer Set Programming 90 / 182

Case studies Queens

Diagonal attack

Running . . .

$ clingo queens.lp --const n=5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(4,5) queen(1,4) queen(3,3) queen(5,2) queen(2,1)

SATISFIABLE

Models : 1+

Time : 0.000

Potassco (KRR@UP) Answer Set Programming 91 / 182

Case studies Queens

Diagonal attack

Answer: 1

5 ZQZ0Z
4 0Z0ZQ
3 Z0L0Z
2 QZ0Z0
1 Z0ZQZ

1 2 3 4 5

Answer: 1

row (1) row(2) row(3) row(4) row(5) \

col (1) col(2) col(3) col(4) col(5) \

queen(4,5) queen(1,4) queen(3,3) \

queen(5,2) queen(2,1)

Potassco (KRR@UP) Answer Set Programming 92 / 182

Case studies Queens

Optimizing

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I-J == I’-J’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I+J == I’+J’.

Encoding can be optimized

Much faster to solve

Potassco (KRR@UP) Answer Set Programming 93 / 182

Case studies Queens

Optimizing

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I-J == I’-J’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I+J == I’+J’.

Encoding can be optimized

Much faster to solve

Potassco (KRR@UP) Answer Set Programming 93 / 182

Case studies Queens

Optimizing

queens-opt.lp

{ queen(I,1..n) } = 1 :- I = 1..n.

{ queen (1..n,J) } = 1 :- J = 1..n.

:- { queen(D-J,J) } > 1, D = 2..2*n.

:- { queen(D+J,J) } > 1, D = 1-n..n-1.

Encoding can be optimized

Much faster to solve

Potassco (KRR@UP) Answer Set Programming 93 / 182

Case studies Queens

And sometimes it rocks
$ clingo -c n=5000 queens-opt-diag.lp --config=jumpy -q --stats=2

clingo version 4.1.0

Solving...

SATISFIABLE

Models : 1+

Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)

CPU Time : 3758.320s

Choices : 288594554

Conflicts : 3442 (Analyzed: 3442)

Restarts : 17 (Average: 202.47 Last: 3442)

Model-Level : 7594728.0

Problems : 1 (Average Length: 0.00 Splits: 0)

Lemmas : 3442 (Deleted: 0)

Binary : 0 (Ratio: 0.00%)

Ternary : 0 (Ratio: 0.00%)

Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)

Loop : 0 (Average Length: 0.0 Ratio: 0.00%)

Other : 0 (Average Length: 0.0 Ratio: 0.00%)

Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)

Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)

Bodies : 25090103

Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: 0 Other: 75020000)

Tight : Yes

Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)

Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)

Executed : 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)

Bounded : 0 (Average: 0.00 Max: 0 Sum: 0 Ratio: 0.00%)

Potassco (KRR@UP) Answer Set Programming 94 / 182

Case studies Queens

And sometimes it rocks
$ clingo -c n=5000 queens-opt-diag.lp --config=jumpy -q --stats=2

clingo version 4.1.0

Solving...

SATISFIABLE

Models : 1+

Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)

CPU Time : 3758.320s

Choices : 288594554

Conflicts : 3442 (Analyzed: 3442)

Restarts : 17 (Average: 202.47 Last: 3442)

Model-Level : 7594728.0

Problems : 1 (Average Length: 0.00 Splits: 0)

Lemmas : 3442 (Deleted: 0)

Binary : 0 (Ratio: 0.00%)

Ternary : 0 (Ratio: 0.00%)

Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)

Loop : 0 (Average Length: 0.0 Ratio: 0.00%)

Other : 0 (Average Length: 0.0 Ratio: 0.00%)

Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)

Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)

Bodies : 25090103

Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: 0 Other: 75020000)

Tight : Yes

Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)

Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)

Executed : 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)

Bounded : 0 (Average: 0.00 Max: 0 Sum: 0 Ratio: 0.00%)

Potassco (KRR@UP) Answer Set Programming 94 / 182

Case studies Traveling salesperson

Outline

14 Elaboration tolerance

15 ASP solving process

16 Methodology

17 Case studies
Satisfiability
Queens
Traveling salesperson
Reviewer Assignment
Planning

Potassco (KRR@UP) Answer Set Programming 95 / 182

Case studies Traveling salesperson

The traveling salesperson problem (TSP)

Problem Instance A set of cities and distances among them,
or simply a weighted graph

Problem Class What is the shortest possible route visiting
each city once and returning to the city of origin?

Note

TSP extends the Hamiltonian cycle problem:
Is there a cycle in a graph visiting each node exactly once

TSP is relevant to applications in logistics, planning, chip design,
and the core of the vehicle routing problem

Potassco (KRR@UP) Answer Set Programming 96 / 182

Case studies Traveling salesperson

The traveling salesperson problem (TSP)

Problem Instance A set of cities and distances among them,
or simply a weighted graph

Problem Class What is the shortest possible route visiting
each city once and returning to the city of origin?

Note

TSP extends the Hamiltonian cycle problem:
Is there a cycle in a graph visiting each node exactly once

TSP is relevant to applications in logistics, planning, chip design,
and the core of the vehicle routing problem

Potassco (KRR@UP) Answer Set Programming 96 / 182

Case studies Traveling salesperson

Traveling salesperson
Problem instance, cities.lp

start(a).

city(a). city(b). city(c). city(d).

road(a,b ,10). road(b,c ,20). road(c,d ,25). road(d,a ,40).

road(b,d ,30). road(d,c ,25). road(c,a ,35).

Potassco (KRR@UP) Answer Set Programming 97 / 182

Case studies Traveling salesperson

Traveling salesperson
Problem encoding, tsp.lp

{ travel(X,Y) } :- road(X,Y,_).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.

:- city(X), 2 { travel(Y,X) }.

Potassco (KRR@UP) Answer Set Programming 98 / 182

Case studies Traveling salesperson

Traveling salesperson
Problem encoding, tsp.lp

{ travel(X,Y) } :- road(X,Y,_).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.

:- city(X), 2 { travel(Y,X) }.

:~ travel(X,Y), road(X,Y,D). [D,X,Y]

Potassco (KRR@UP) Answer Set Programming 98 / 182

Case studies Traveling salesperson

Traveling salesperson
Problem encoding, tsp.lp

{ travel(X,Y) } :- road(X,Y,_).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.

:- city(X), 2 { travel(Y,X) }.

#minimize { D,X,Y : travel(X,Y), road(X,Y,D) }.

Potassco (KRR@UP) Answer Set Programming 98 / 182

Case studies Traveling salesperson

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s

Potassco (KRR@UP) Answer Set Programming 99 / 182

Case studies Traveling salesperson

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s

Potassco (KRR@UP) Answer Set Programming 99 / 182

Case studies Traveling salesperson

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s

Potassco (KRR@UP) Answer Set Programming 99 / 182

Case studies Traveling salesperson

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s

Potassco (KRR@UP) Answer Set Programming 99 / 182

Case studies Traveling salesperson

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s

Potassco (KRR@UP) Answer Set Programming 99 / 182

Case studies Traveling salesperson

Traveling salesperson
Alternative problem encoding

{ travel(X,Y) : road(X,Y,_) } = 1 :- city(X).

{ travel(X,Y) : road(X,Y,_) } = 1 :- city(Y).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

#minimize { D,X,Y : travel(X,Y), road(X,Y,D) }.

Potassco (KRR@UP) Answer Set Programming 100 / 182

Case studies Reviewer Assignment

Outline

14 Elaboration tolerance

15 ASP solving process

16 Methodology

17 Case studies
Satisfiability
Queens
Traveling salesperson
Reviewer Assignment
Planning

Potassco (KRR@UP) Answer Set Programming 101 / 182

Case studies Reviewer Assignment

Reviewer Assignment

Problem Instance A set of papers and a set of reviewers along with
their first and second choices of papers and conflict of interests

Problem Class A nice assignment of three reviewers to each paper

Potassco (KRR@UP) Answer Set Programming 102 / 182

Case studies Reviewer Assignment

Reviewer Assignment

Problem Instance A set of papers and a set of reviewers along with
their first and second choices of papers and conflict of interests

Problem Class A “nice” assignment of three reviewers to each paper

Potassco (KRR@UP) Answer Set Programming 102 / 182

Case studies Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).

[...]

{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Potassco (KRR@UP) Answer Set Programming 103 / 182

Case studies Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).

[...]

{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Potassco (KRR@UP) Answer Set Programming 103 / 182

Case studies Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).

[...]

{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Potassco (KRR@UP) Answer Set Programming 103 / 182

Case studies Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).

[...]

{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Potassco (KRR@UP) Answer Set Programming 103 / 182

Case studies Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).

[...]

{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Potassco (KRR@UP) Answer Set Programming 103 / 182

Case studies Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).

[...]

#count { P,R : assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 <= #count { P,R : assigned(P,R), paper(P) } <= 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 <= #count { P,R : assignedB(P,R), paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Potassco (KRR@UP) Answer Set Programming 104 / 182

Case studies Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).

[...]

#count { P,R : assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 <= #count { P,R : assigned(P,R), paper(P) } <= 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 <= #count { P,R : assignedB(P,R), paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Potassco (KRR@UP) Answer Set Programming 104 / 182

Case studies Planning

Outline

14 Elaboration tolerance

15 ASP solving process

16 Methodology

17 Case studies
Satisfiability
Queens
Traveling salesperson
Reviewer Assignment
Planning

Potassco (KRR@UP) Answer Set Programming 105 / 182

Case studies Planning

Simplified STRIPS1 Planning

Problem Instance
set of fluents
initial and goal state
set of actions, consisting of pre- and postconditions
number k of allowed actions

Problem Class Find a plan, that is, a sequence of k actions leading
from the initial state to the goal state

Example
fluents {p, q, r}
initial state {p,¬q,¬r}
goal state {r}
actions a = ({p}, {q,¬p}) and b = ({q}, {r ,¬q})
length 2

plan 〈a, b〉 {p,¬q,¬r} a−→ {¬p, q,¬r} b−→ {¬p,¬q, r}
1Stanford Research Institute Problem Solver, 1971

Potassco (KRR@UP) Answer Set Programming 106 / 182

Case studies Planning

Simplified STRIPS Planning

Problem Instance

set of fluents
initial and goal state
set of actions, consisting of pre- and postconditions
number k of allowed actions

Problem Class Find a plan, that is, a sequence of k actions leading
from the initial state to the goal state

Example

fluents {p, q, r}
initial state {p,¬q,¬r}
goal state {r}
actions a = ({p}, {q,¬p}) and b = ({q}, {r ,¬q})
length 2

plan 〈a, b〉 {p,¬q,¬r} a−→ {¬p, q,¬r} b−→ {¬p,¬q, r}

Potassco (KRR@UP) Answer Set Programming 106 / 182

Case studies Planning

Simplified STRIPS Planning

Problem Instance

set of fluents
initial and goal state
set of actions, consisting of pre- and postconditions
number k of allowed actions

Problem Class Find a plan, that is, a sequence of k actions leading
from the initial state to the goal state

Example

fluents {p, q, r}
initial state {p,¬q,¬r}
goal state {r}
actions a = ({p}, {q,¬p}) and b = ({q}, {r ,¬q})
length 2

plan 〈a, b〉 {p,¬q,¬r} a−→ {¬p, q,¬r} b−→ {¬p,¬q, r}

Potassco (KRR@UP) Answer Set Programming 106 / 182

Case studies Planning

Simplified STRIPS Planning

Problem Instance

set of fluents
initial and goal state
set of actions, consisting of pre- and postconditions
number k of allowed actions

Problem Class Find a plan, that is, a sequence of k actions leading
from the initial state to the goal state

Example

fluents {p, q, r}
initial state {p,¬q,¬r}
goal state {r}
actions a = ({p}, {q,¬p}) and b = ({q}, {r ,¬q})
length 2

plan 〈a, b〉 {p,¬q,¬r} a−→ {¬p, q,¬r} b−→ {¬p,¬q, r}

Potassco (KRR@UP) Answer Set Programming 106 / 182

Case studies Planning

Simplistic STRIPS Planning
Problem instance

time (1..k).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

Potassco (KRR@UP) Answer Set Programming 107 / 182

Case studies Planning

Simplistic STRIPS Planning
Problem encoding

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

Potassco (KRR@UP) Answer Set Programming 108 / 182

Case studies Planning

Simplistic STRIPS Planning
Solving

$ clingo planning-encoding.lp planning-instance.lp -c k=2 0

clingo version 5.5.0

Reading from planning-encoding.lp ...

Solving...

Answer: 1

[...] occ(a,1) occ(b,2)

SATISFIABLE

Models : 1

Time : 0.001s (Solving: 0.00s)

CPU Time : 0.001s

Potassco (KRR@UP) Answer Set Programming 109 / 182

Case studies Planning

Simplistic STRIPS Planning
Solving

$ clingo planning-encoding.lp planning-instance.lp -c k=2 0

clingo version 5.5.0

Reading from planning-encoding.lp ...

Solving...

Answer: 1

[...] occ(a,1) occ(b,2)

SATISFIABLE

Models : 1

Time : 0.001s (Solving: 0.00s)

CPU Time : 0.001s

Potassco (KRR@UP) Answer Set Programming 109 / 182

Engineering: Overview

18 Meta programming

19 Controlling

20 Multi-shot solving

21 Theory solving

22 Heuristic-driven solving

Potassco (KRR@UP) Answer Set Programming 110 / 182

Do it yourself!

Roland Kaminski, Javier Romero, Torsten Schaub, Philipp Wanko:

How to build your own ASP-based system?!

CoRR abs/2008.06692 (2020)

Potassco (KRR@UP) Answer Set Programming 111 / 182

Meta programming

Outline

18 Meta programming

19 Controlling

20 Multi-shot solving

21 Theory solving

22 Heuristic-driven solving

Potassco (KRR@UP) Answer Set Programming 112 / 182

Meta programming

Meta encoding, or ASP in ASP

conjunction(B) :- literal_tuple(B),

hold(L) : literal_tuple(B, L), L > 0;

not hold(L) : literal_tuple(B,-L), L > 0.

body(normal(B)) :- rule(_,normal(B)), conjunction(B).

body(sum(B,G)) :- rule(_,sum(B,G)),

#sum { W,L : hold(L), weighted_literal_tuple(B, L,W), L > 0 ;

W,L : not hold(L), weighted_literal_tuple(B,-L,W), L > 0 } >= G.

hold(A) : atom_tuple(H,A) :- rule(disjunction(H),B), body(B).

{ hold(A) : atom_tuple(H,A) } :- rule(choice(H),B), body(B).

#show.

#show T : output(T,B), conjunction(B).

Potassco (KRR@UP) Answer Set Programming 113 / 182

Meta programming

An example, running

Logic program ezy.lp

{a}.

b :- a.

c :- not a.

Running

$ clingo ezy.lp 0

clingo version 5.5.0

Reading from ezy.lp

Solving ...

Answer: 1

c

Answer: 2

a b

SATISFIABLE

Potassco (KRR@UP) Answer Set Programming 114 / 182

Meta programming

An example, running

Logic program ezy.lp

{a}.

b :- a.

c :- not a.

Running

$ clingo ezy.lp 0

clingo version 5.5.0

Reading from ezy.lp

Solving ...

Answer: 1

c

Answer: 2

a b

SATISFIABLE

Potassco (KRR@UP) Answer Set Programming 114 / 182

Meta programming

An example, running reified

Logic program ezy.lp

{a}.

b :- a.

c :- not a.

Running reified

$ clingo --output=reify ezy.lp | clingo - meta.lp 0

clingo version 5.5.0

Reading from - ...

Solving ...

Answer: 1

c

Answer: 2

a b

SATISFIABLE

Potassco (KRR@UP) Answer Set Programming 115 / 182

Meta programming

An example, running reified

Logic program ezy.lp

{a}.

b :- a.

c :- not a.

Running reified

$ clingo --output=reify ezy.lp | clingo - meta.lp 0

clingo version 5.5.0

Reading from - ...

Solving ...

Answer: 1

c

Answer: 2

a b

SATISFIABLE

Potassco (KRR@UP) Answer Set Programming 115 / 182

Controlling

Outline

18 Meta programming

19 Controlling

20 Multi-shot solving

21 Theory solving

22 Heuristic-driven solving

Potassco (KRR@UP) Answer Set Programming 116 / 182

Controlling

Taming the ASP system, imperatively

Three alternative ways of combining ASP with other languages,
either via

embedded script
module import
application class

We use Python, although other choices exist

Potassco (KRR@UP) Answer Set Programming 117 / 182

Controlling

An example

Input program example.lp

num (3).

num (6).

div(N,@divisors(N)) :- num(N).

Resulting program

num (3).

num (6).

div (3 ,(1;3)).

div (6 ,(1;2;3;6)).

Potassco (KRR@UP) Answer Set Programming 118 / 182

Controlling

An example

Input program example.lp

num (3).

num (6).

div(N,@divisors(N)) :- num(N).

Resulting program

num (3).

num (6).

div (3 ,(1;3)).

div (6 ,(1;2;3;6)).

Potassco (KRR@UP) Answer Set Programming 118 / 182

Controlling

Embedded script (embedded.lp)

#script (python)

import clingo

def divisors(a):

a = a.number

for i in range(1, a+1):

if a % i == 0:

yield clingo.Number(i)

#end.

Potassco (KRR@UP) Answer Set Programming 119 / 182

Controlling

Embedded script, running

$ clingo example.lp embedded.lp

clingo version 5.5.0

Reading from example.lp ...

Solving ...

Answer: 1

num(3) num(6) div(3,1) div(3,3) \

div(6,1) div(6,2) div(6,3) div(6,6)

SATISFIABLE

Potassco (KRR@UP) Answer Set Programming 120 / 182

Controlling

Module import (module.py)

import clingo

class ExampleApp:

@staticmethod

def divisors(a):

a = a.number

for i in range(1, a+1):

if a % i == 0:

yield clingo.Number(i)

def run(self):

ctl = clingo.Control ()

ctl.load(" example.lp")

ctl.ground ([(" base", [])], context=self)

ctl.solve(on_model=print)

if __name__ == "__main__ ":

ExampleApp ().run()

Potassco (KRR@UP) Answer Set Programming 121 / 182

Controlling

Embedded script, running

$ python module.py

num(3) num(6) div(3,1) div(3,3) \

div(6,1) div(6,2) div(6,3) div(6,6)

Potassco (KRR@UP) Answer Set Programming 122 / 182

Controlling

Application class (app.py)

import sys

import clingo

class ExampleApp(clingo.Application):

program_name = "example"

version = "1.0"

@staticmethod

def divisors(a):

a = a.number

for i in range(1, a+1):

if a % i == 0:

yield clingo.Number(i)

def main(self , ctl , files):

for path in files: ctl.load(path)

if not files:

ctl.load ("-")

ctl.ground ([(" base", [])], context=self)

ctl.solve()

if __name__ == "__main__ ":

clingo.clingo_main(ExampleApp (), sys.argv [1:])

Potassco (KRR@UP) Answer Set Programming 123 / 182

Controlling

Application class, running

$ python app.py example.lp

example version 1.0

Reading from example.lp

Solving ...

Answer: 1

num(3) num(6) div(3,1) div(3,3) \

div(6,1) div(6,2) div(6,3) div(6,6)

SATISFIABLE

Potassco (KRR@UP) Answer Set Programming 124 / 182

Controlling

What to use when. . . ?

embedded script

suitable for small amendments to the logic program,
anything on the term level during grounding
perform calculations that are hard or inconvenient to express in ASP

module import

convenient way to use clingo as part of a larger project
provides high level functions to control grounding and solving
surrounding application is in charge of the control flow and
ASP is used to perform specific computations

application class

aims at building custom systems based on clingo
similar to module import but with more customization capabilities

+ constitutes the cornerstone of recent clingo-based systems
such as clingcon, clingo[dl], eclingo, and telingo

Potassco (KRR@UP) Answer Set Programming 125 / 182

Multi-shot solving

Outline

18 Meta programming

19 Controlling

20 Multi-shot solving

21 Theory solving

22 Heuristic-driven solving

Potassco (KRR@UP) Answer Set Programming 126 / 182

Multi-shot solving

Motivation

Multi-shot solving allows for solving continuously changing logic
programs in an operative way

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Idea clingo = ASP + Control

Extend ASP with dedicated directives

Provide powerful API (here: Python)

Potassco (KRR@UP) Answer Set Programming 127 / 182

Multi-shot solving

Motivation

Multi-shot solving allows for solving continuously changing logic
programs in an operative way

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Idea clingo = ASP + Control

Extend ASP with dedicated directives

Provide powerful API (here: Python)

Potassco (KRR@UP) Answer Set Programming 127 / 182

Multi-shot solving

Motivation

Multi-shot solving allows for solving continuously changing logic
programs in an operative way

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Idea clingo = ASP + Control

Extend ASP with dedicated directives

Provide powerful API (here: Python)

Potassco (KRR@UP) Answer Set Programming 127 / 182

Multi-shot solving

Motivation

Multi-shot solving allows for solving continuously changing logic
programs in an operative way

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Idea clingo = ASP + Control

Extend ASP with dedicated directives

Provide powerful API (here: Python)

Potassco (KRR@UP) Answer Set Programming 127 / 182

Multi-shot solving

Motivation

Multi-shot solving allows for solving continuously changing logic
programs in an operative way

Single-shot solving: ground | solve

Multi-shot solving: ground∗ | solve∗

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Idea clingo = ASP + Control

Extend ASP with dedicated directives

Provide powerful API (here: Python)

Potassco (KRR@UP) Answer Set Programming 127 / 182

Multi-shot solving

Motivation

Multi-shot solving allows for solving continuously changing logic
programs in an operative way

Single-shot solving: ground | solve

Multi-shot solving: (ground∗ | solve∗)∗

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Idea clingo = ASP + Control

Extend ASP with dedicated directives

Provide powerful API (here: Python)

Potassco (KRR@UP) Answer Set Programming 127 / 182

Multi-shot solving

Motivation

Multi-shot solving allows for solving continuously changing logic
programs in an operative way

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗)∗

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Idea clingo = ASP + Control

Extend ASP with dedicated directives

Provide powerful API (here: Python)

Potassco (KRR@UP) Answer Set Programming 127 / 182

Multi-shot solving

Motivation

Multi-shot solving allows for solving continuously changing logic
programs in an operative way

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory)∗

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Idea clingo = ASP + Control

Extend ASP with dedicated directives

Provide powerful API (here: Python)

Potassco (KRR@UP) Answer Set Programming 127 / 182

Multi-shot solving

Motivation

Multi-shot solving allows for solving continuously changing logic
programs in an operative way

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Idea clingo = ASP + Control

Extend ASP with dedicated directives

Provide powerful API (here: Python)

Potassco (KRR@UP) Answer Set Programming 127 / 182

Multi-shot solving

Motivation

Multi-shot solving allows for solving continuously changing logic
programs in an operative way

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Idea clingo = ASP + Control

Extend ASP with dedicated directives

Provide powerful API (here: Python)

Potassco (KRR@UP) Answer Set Programming 127 / 182

Multi-shot solving

Motivation

Multi-shot solving allows for solving continuously changing logic
programs in an operative way

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Idea clingo = ASP + Control

Extend ASP with dedicated directives

Provide powerful API (here: Python)

Potassco (KRR@UP) Answer Set Programming 127 / 182

Multi-shot solving

Structuring logic programs

Program directive

#program <name> [(<parameters>)]

where

<name> is a term
(<parameters>) is a tuple of terms

Example #program play(p,t).

Default #program base.

Potassco (KRR@UP) Answer Set Programming 128 / 182

Multi-shot solving

Structuring logic programs

Program directive

#program <name> [(<parameters>)]

where

<name> is a term
(<parameters>) is a tuple of terms

Example #program play(p,t).

Default #program base.

Potassco (KRR@UP) Answer Set Programming 128 / 182

Multi-shot solving

Structuring logic programs

Program directive

#program <name> [(<parameters>)]

where

<name> is a term
(<parameters>) is a tuple of terms

Example #program play(p,t).

Default #program base.

Potassco (KRR@UP) Answer Set Programming 128 / 182

Multi-shot solving

An example (chemistry.lp)

a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Potassco (KRR@UP) Answer Set Programming 129 / 182

Multi-shot solving

The example, processing
(control-base.py)

import clingo

ctl = clingo.Control ()

ctl.load("chemistry.lp")

ctl.ground ([("base", [])])

ctl.solve(on model=print)

a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

$ python control -base.py

a(1) a(2)

Potassco (KRR@UP) Answer Set Programming 130 / 182

Multi-shot solving

The example, processing
(control-base.py)

import clingo

ctl = clingo.Control ()

ctl.load("chemistry.lp")

ctl.ground ([("base", [])])

ctl.solve(on model=print)

a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

$ python control -base.py

a(1) a(2)

Potassco (KRR@UP) Answer Set Programming 130 / 182

Multi-shot solving

The example, processing
(control-base.py)

import clingo

ctl = clingo.Control ()

ctl.load("chemistry.lp")

ctl.ground ([("base", [])])

ctl.solve(on model=print)

a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

$ python control -base.py

a(1) a(2)

Potassco (KRR@UP) Answer Set Programming 130 / 182

Multi-shot solving

The example, processing
(control-acid.py)

import clingo

ctl = clingo.Control ()

ctl.load("chemistry.lp")

ctl.ground ([("acid",[42])])

ctl.solve(on model=print)

a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

$ python control -acid.py

b(42)

Potassco (KRR@UP) Answer Set Programming 131 / 182

Multi-shot solving

The example, processing
(control-acid.py)

import clingo

ctl = clingo.Control ()

ctl.load("chemistry.lp")

ctl.ground ([("acid",[42])])

ctl.solve(on model=print)

a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

$ python control -acid.py

b(42)

Potassco (KRR@UP) Answer Set Programming 131 / 182

Multi-shot solving

The example, processing
(control-acid.py)

import clingo

ctl = clingo.Control ()

ctl.load("chemistry.lp")

ctl.ground ([("acid",[42])])

ctl.solve(on model=print)

a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

$ python control -acid.py

b(42)

Potassco (KRR@UP) Answer Set Programming 131 / 182

Multi-shot solving

External atoms

External directive

#external <atom> [: <body>]

where

<atom> [: <body>] is a (conditional) literal

Example #external mark(X,Y,p,t) : field(X,Y).

Note External atoms are

protected from program simplifications
assigned truth values via API (default: false)

and can be

overwritten by adding rules defining the atom
permanently set to false

Potassco (KRR@UP) Answer Set Programming 132 / 182

Multi-shot solving

External atoms

External directive

#external <atom> [: <body>]

where

<atom> [: <body>] is a (conditional) literal

Example #external mark(X,Y,p,t) : field(X,Y).

Note External atoms are

protected from program simplifications
assigned truth values via API (default: false)

and can be

overwritten by adding rules defining the atom
permanently set to false

Potassco (KRR@UP) Answer Set Programming 132 / 182

Multi-shot solving

External atoms

External directive

#external <atom> [: <body>]

where

<atom> [: <body>] is a (conditional) literal

Example #external mark(X,Y,p,t) : field(X,Y).

Note External atoms are

protected from program simplifications
assigned truth values via API (default: false)

and can be

overwritten by adding rules defining the atom
permanently set to false

Potassco (KRR@UP) Answer Set Programming 132 / 182

Multi-shot solving

An example (chemistry-external.lp)

a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

#program acid(k).

#external d(X,k) : c(X,k).

e(X,k) :- d(X,k).

Note Grounding both base and acid(42) yields two externals

Potassco (KRR@UP) Answer Set Programming 133 / 182

Multi-shot solving

An example (chemistry-external.lp)

a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

#program acid(k).

#external d(X,k) : c(X,k).

e(X,k) :- d(X,k).

Note Grounding both base and acid(42) yields two externals

Potassco (KRR@UP) Answer Set Programming 133 / 182

Multi-shot solving

An example (chemistry-external.lp)

a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

#program acid(k).

#external d(X,k) : c(X,k).

e(X,k) :- d(X,k).

Note Grounding both base and acid(42) yields two externals

Potassco (KRR@UP) Answer Set Programming 133 / 182

Multi-shot solving

The example, processing
(control-external.py)

ctl = clingo.Control ()

ctl.load("chemistry -external.lp")

ctl.ground ([("base", []),("acid",[42])])

ctl.solve(on model=print)

ctl.assign external(Function("d", [2,42]), True)

ctl.solve(on model=print)

$ python control -external.py

a(1) a(2) c(1,42) c(2,42) b(42)

a(1) a(2) c(1,42) c(2,42) b(42) d(2,42) e(2,42)

Potassco (KRR@UP) Answer Set Programming 134 / 182

Multi-shot solving

The example, processing
(control-external.py)

ctl = clingo.Control ()

ctl.load("chemistry -external.lp")

ctl.ground ([("base", []),("acid",[42])])

ctl.solve(on model=print)

ctl.assign external(Function("d", [2,42]), True)

ctl.solve(on model=print)

$ python control -external.py

a(1) a(2) c(1,42) c(2,42) b(42)

a(1) a(2) c(1,42) c(2,42) b(42) d(2,42) e(2,42)

Potassco (KRR@UP) Answer Set Programming 134 / 182

Multi-shot solving

An example of incremental solving

#program base.

p(0).

#program step (t).

p(t) :- p(t-1).

#program check (t).

#external query(t). % added in python below

:- not p(42), query(t).

Potassco (KRR@UP) Answer Set Programming 135 / 182

Multi-shot solving

An example of incremental solving

#program base.

p(0).

#program step (t).

p(t) :- p(t-1).

#program check (t).

#external query(t). % added in python below

:- not p(42), query(t).

Potassco (KRR@UP) Answer Set Programming 135 / 182

Multi-shot solving

An example of incremental solving

#program base.

p(0).

#program step (t).

p(t) :- p(t-1).

#program check (t).

#external query(t). % added in python below

:- not p(42), query(t).

Potassco (KRR@UP) Answer Set Programming 135 / 182

Multi-shot solving

An example of incremental solving

#program base.

p(0).

#program step (t).

p(t) :- p(t-1).

#program check (t).

#external query(t). % added in python below

:- not p(42), query(t).

Potassco (KRR@UP) Answer Set Programming 135 / 182

Multi-shot solving

Incremental solving
’’’

Example implementing an iclingo -like application.

’’’

import sys

from typing import Optional, Any, Callable, Iterable, cast

from clingo import Application, ApplicationOptions, Control, SolveResult

from clingo import Function, Number, clingo main

class IncConfig:

’’’

Configuration object for incremental solving.

’’’

imin: int

imax: Optional[int]

istop: str

def init (self):

self.imin = 1

self.imax = None

self.istop = "SAT"

def parse int(conf: Any,

attr: str,

min value: Optional[int] = None,

optional: bool = False) -> Callable [[str], bool]:

’’’

Returns a parser for integers.

The parser stores its result in the ‘attr ‘ attribute (given as string) of

the ‘conf ‘ object. The parser can be configured to only accept integers

having a minimum value and also to treat value ‘"none"‘ as ‘None ‘.

’’’

def parse(sval: str) -> bool:

if optional and sval == "none":

value = None

else:

value = int(sval)

if min value is not None and value < min value:

raise RuntimeError("value too small")

setattr(conf, attr, value)

return True

return parse

def parse stop(conf: Any, attr: str) -> Callable [[str], bool]:

’’’

Returns a parser for ‘istop ‘ values.

’’’

def parse(sval: str) -> bool:

if sval not in ("SAT", "UNSAT", "UNKNOWN"):

raise RuntimeError("invalid value")

setattr(conf, attr, sval)

return True

return parse

class IncApp(Application):

’’’

The example application implemeting incremental solving.

’’’

program name: str = "inc -example"

version: str = "1.0"

conf: IncConfig

def init (self):

self. conf = IncConfig ()

def register options(self, options: ApplicationOptions):

’’’

Register program options.

’’’

group = "Inc -Example Options"

options.add(

group, "imin",

"Minimum number of steps [{}]".format(self. conf.imin),

parse int(self. conf, "imin", min value =0),

argument="<n>")

options.add(

group, "imax",

"Maximum number of steps [{}]".format(self. conf.imax),

parse int(self. conf, "imax", min value =0, optional=True),

argument="<n>")

options.add(

group, "istop",

"Stop criterion [{}]".format(self. conf.istop),

parse stop(self. conf, "istop"))

def main(self, ctl: Control, files: Iterable[str]):

’’’

The main function implementing incremental solving.

’’’

if not files:

files = ["-"]

for file in files:

ctl.load(file)

ctl.add("check", ["t"], "#external query(t).")

conf = self. conf

step = 0

ret: Optional[SolveResult] = None

while ((conf.imax is None or step < conf.imax) and

(ret is None or step < conf.imin or (

(conf.istop == "SAT" and not ret.satisfiable) or

(conf.istop == "UNSAT" and not ret.unsatisfiable) or

(conf.istop == "UNKNOWN" and not ret.unknown)))):

parts = []

parts.append (("check", [Number(step)]))

if step > 0:

ctl.release external(Function("query", [Number(step - 1)]))

parts.append (("step", [Number(step)]))

else:

parts.append (("base", []))

ctl.ground(parts)

ctl.assign external(Function("query", [Number(step)]), True)

ret, step = cast(SolveResult, ctl.solve ()), step + 1

clingo main(IncApp (), sys.argv [1:])

Potassco (KRR@UP) Answer Set Programming 136 / 182

Multi-shot solving

Incremental solving, zoom on
register options

def register options(self, options: ApplicationOptions):

’’’

Register program options.

’’’

group = "Inc -Example Options"

options.add(

group, "imin",

"Minimum number of steps [{}]".format(self. conf.imin),

parse int(self. conf, "imin", min value =0),

argument="<n>")

options.add(

group, "imax",

"Maximum number of steps [{}]".format(self. conf.imax),

parse int(self. conf, "imax", min value =0, optional=True),

argument="<n>")

options.add(

group, "istop",

"Stop criterion [{}]".format(self. conf.istop),

parse stop(self. conf, "istop"))

Potassco (KRR@UP) Answer Set Programming 137 / 182

Multi-shot solving

Check it out!

UNIX > python inc.py --help

[...]

Inc -Example Options:

--imin=<n> : Minimum number of steps [1]

--imax=<n> : Maximum number of steps [None]

--istop=<arg > : Stop criterion [SAT]

[...]

Potassco (KRR@UP) Answer Set Programming 138 / 182

Multi-shot solving

Incremental solving, zoom on main

def main(self, ctl: Control, files: Iterable[str]):

’’’

The main function implementing incremental solving.

’’’

if not files:

files = ["-"]

for file in files:

ctl.load(file)

ctl.add("check", ["t"], "#external query(t).")

conf = self. conf

step = 0

ret: Optional[SolveResult] = None

while ((conf.imax is None or step < conf.imax) and

(ret is None or step < conf.imin or (

(conf.istop == "SAT" and not ret.satisfiable) or

(conf.istop == "UNSAT" and not ret.unsatisfiable) or

(conf.istop == "UNKNOWN" and not ret.unknown)))):

parts = []

parts.append (("check", [Number(step)]))

if step > 0:

ctl.release external(Function("query", [Number(step - 1)]))

parts.append (("step", [Number(step)]))

else:

parts.append (("base", []))

ctl.ground(parts)

ctl.assign external(Function("query", [Number(step)]), True)

ret, step = cast(SolveResult, ctl.solve ()), step + 1

Potassco (KRR@UP) Answer Set Programming 139 / 182

Multi-shot solving

Let’s run it!

UNIX > python inc.py tohE.lp tohI.lp

inc -example version 1.0

Reading from tohE.lp ...

Solving ...

[...]

Solving ...

Answer: 1

move(4,b,1) move(3,c,2) move(4,c,3) move(2,b,4) \

move(4,a,5) move(3,b,6) move(4,b,7) move(1,c,8) \

move(4,c,9) move(3,a,10) move(4,a,11) move(2,c,12) \

move(4,b,13) move(3,c,14) move(4,c,15)

SATISFIABLE

Models : 1+

Calls : 16

Potassco (KRR@UP) Answer Set Programming 140 / 182

Multi-shot solving

Optimization

Imagine some Blocksworld planning problem . . .

Code snippet

ngoal(T) :- not on(B,L,T), goal on(B,L), time(T).

:- ngoal(n).

where n is a fixed horizon

Optimization

_minimize (1,T) :- ngoal(T).

Potassco (KRR@UP) Answer Set Programming 141 / 182

Multi-shot solving

Optimization

Imagine some Blocksworld planning problem . . .

Code snippet

ngoal(T) :- not on(B,L,T), goal on(B,L), time(T).

:- ngoal(n).

where n is a fixed horizon

Optimization

_minimize (1,T) :- ngoal(T).

Potassco (KRR@UP) Answer Set Programming 141 / 182

Multi-shot solving

Optimization
’’’

Example to show branch and bound based optimization using multi -shot solving.

’’’

import sys

from typing import Optional, Iterable, cast

from clingo import Model, Control, SolveResult, SymbolType, Application, Number, clingo main

class OptApp(Application):

’’’

Example application.

’’’

program name: str = "opt -example"

version: str = "1.0"

bound: Optional[int]

def init (self):

self. bound = None

def on model(self, model: Model):

self. bound = 0

for atom in model.symbols(atoms=True):

if (atom.match(" minimize", 2) and

atom.arguments [0]. type is SymbolType.Number):

self. bound += atom.arguments [0]. number

def main(self, ctl: Control, files: Iterable[str]):

’’’

Main function implementing branch and bound optimization.

’’’

if not files:

files = ["-"]

for file in files:

ctl.load(file)

ctl.add("bound", ["b"],

":- #sum { V,I: minimize(V,I) } >= b.")

ctl.ground ([("base", [])])

while cast(SolveResult, ctl.solve(on model=self. on model)). satisfiable:

print("Found new bound: {}".format(self. bound))

ctl.ground ([("bound", [Number(cast(int, self. bound))])])

if self. bound is not None:

print("Optimum found")

clingo main(OptApp (), sys.argv [1:])

Potassco (KRR@UP) Answer Set Programming 142 / 182

Multi-shot solving

Optimization, zoom on main

def main(self, ctl: Control, files: Iterable[str]):

’’’

Main function implementing branch and bound optimization.

’’’

if not files:

files = ["-"]

for file in files:

ctl.load(file)

ctl.add("bound", ["b"],

":- #sum { V,I: minimize(V,I) } >= b.")

ctl.ground ([("base", [])])

while cast(SolveResult, ctl.solve(on model=self. on model)). satisfiable:

print("Found new bound: {}".format(self. bound))

ctl.ground ([("bound", [Number(cast(int, self. bound))])])

if self. bound is not None:

print("Optimum found")

Potassco (KRR@UP) Answer Set Programming 143 / 182

Multi-shot solving

Optimization, zoom on on model

def on model(self, model: Model):

self. bound = 0

for atom in model.symbols(atoms=True):

if (atom.match(" minimize", 2) and

atom.arguments [0]. type is SymbolType.Number):

self. bound += atom.arguments [0]. number

Potassco (KRR@UP) Answer Set Programming 144 / 182

Multi-shot solving

Let’s run it!

UNIX > python opt.py tohB.lp tohI.lp -c n=17

opt -example version 1.0

Reading from tohB.lp ...

Solving ...

Answer: 1

move(4,b,1) move(3,c,2) move(4,a,3) move(4,c,4) move(2,b,5) \

move(4,a,6) move(3,b,7) move(4,c,8) move(4,b,9) move(1,c,10) \

move(4,c,11) move(3,a,12) move(4,a,13) move(2,c,14) move(4,b,15)

move(3,c,16) move(4,c,17)

Found new bound: 17

Solving ...

Answer: 1

move(4,b,1) move(3,c,2) move(4,c,3) move(2,b,4) move(4,a,5) \

move(3,b,6) move(4,c,7) move(4,b,8) move(1,c,9) move(4,c,10) \

move(3,a,11) move(4,a,12) move(2,c,13) move(4,b,14) move(3,c,15)

move(4,c,16)

Found new bound: 16

Solving ...

Answer: 1

move(4,b,1) move(3,c,2) move(4,c,3) move(2,b,4) move(4,a,5) \

move(3,b,6) move(4,b,7) move(1,c,8) move(4,c,9) move(3,a,10) \

move(4,a,11) move(2,c,12) move(4,b,13) move(3,c,14) move(4,c,15)

Found new bound: 15

Solving ...

Optimum found

UNSATISFIABLE

Potassco (KRR@UP) Answer Set Programming 145 / 182

Theory solving

Outline

18 Meta programming

19 Controlling

20 Multi-shot solving

21 Theory solving

22 Heuristic-driven solving

Potassco (KRR@UP) Answer Set Programming 146 / 182

Theory solving

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = DB+KRR+LP+S

ASP solving: ground | solve

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Potassco (KRR@UP) Answer Set Programming 147 / 182

Theory solving

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = DB+KRR+LP+S

ASP solving: ground | solve

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Potassco (KRR@UP) Answer Set Programming 147 / 182

Theory solving

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = DB+KRR+LP+SMT

ASP solving: ground | solve

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Potassco (KRR@UP) Answer Set Programming 147 / 182

Theory solving

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = DB+KRR+LP+SMT — NO!

ASP solving: ground | solve

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Potassco (KRR@UP) Answer Set Programming 147 / 182

Theory solving

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving: ground | solve

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Potassco (KRR@UP) Answer Set Programming 147 / 182

Theory solving

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving: ground | solve

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Potassco (KRR@UP) Answer Set Programming 147 / 182

Theory solving

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving modulo theories: ground % theories | solve % theories

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Potassco (KRR@UP) Answer Set Programming 147 / 182

Theory solving

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving modulo theories: ground % theories | solve % theories

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Potassco (KRR@UP) Answer Set Programming 147 / 182

Theory solving

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving modulo theories: ground % theories | solve % theories

Challenge Logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Potassco (KRR@UP) Answer Set Programming 147 / 182

Theory solving

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 148 / 182

Theory solving

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 148 / 182

Theory solving

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

�

Potassco (KRR@UP) Answer Set Programming 148 / 182

Theory solving

clingo’s approach

T-ASP
Program

gringo clasp
T T

T-ASP
Solution

-- -

Theory T
Grammar

Potassco (KRR@UP) Answer Set Programming 149 / 182

Theory solving Theory language

Outline

18 Meta programming

19 Controlling

20 Multi-shot solving

21 Theory solving
Theory language
Theory propagation

22 Heuristic-driven solving

Potassco (KRR@UP) Answer Set Programming 150 / 182

Theory solving Theory language

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 151 / 182

Theory solving Theory language

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 151 / 182

Theory solving Theory language

Linear constraints

#theory csp {

linear_term { show_term {

+ : 5, unary; / : 1, binary , left

- : 5, unary; };

* : 4, binary , left;

+ : 3, binary , left;

- : 3, binary , left minimize_term {

}; + : 5, unary;

- : 5, unary;

dom_term { * : 4, binary , left;

+ : 5, unary; + : 3, binary , left;

- : 5, unary; - : 3, binary , left;

.. : 1, binary , left @ : 0, binary , left

}; };

&dom/0 : dom_term , {=}, linear_term , any;

&sum/0 : linear_term , {<=,=,>=,<,>,!=}, linear_term , any;

&show/0 : show_term , directive;

&distinct /0 : linear_term , any;

&minimize /0 : minimize_term , directive

}.

Potassco (KRR@UP) Answer Set Programming 152 / 182

Theory solving Theory language

send+more=money

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The example has exactly
one solution

{ s 7→ 9, e 7→ 5, n 7→ 6, d 7→ 7,m 7→ 1, o 7→ 0, r 7→ 8, y 7→ 2 }

Potassco (KRR@UP) Answer Set Programming 153 / 182

Theory solving Theory language

send+more=money

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The example has exactly
one solution

{ s 7→ 9, e 7→ 5, n 7→ 6, d 7→ 7,m 7→ 1, o 7→ 0, r 7→ 8, y 7→ 2 }

Potassco (KRR@UP) Answer Set Programming 153 / 182

Theory solving Theory language

send+more=money

digit(1,3,s). digit(2,3,m). digit(sum ,4,m).

digit(1,2,e). digit(2,2,o). digit(sum ,3,o).

digit(1,1,n). digit(2,1,r). digit(sum ,2,n).

digit(1,0,d). digit(2,0,e). digit(sum ,1,e).

digit(sum ,0,y).

base (10).

exp(E) :- digit(_,E,_).

power (1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.

number(N) :- digit(N,_,_), N!= sum.

high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), number(N);

-M*D : digit(sum ,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.

Potassco (KRR@UP) Answer Set Programming 154 / 182

Theory solving Theory language

send+more=money

digit(1,3,s). digit(2,3,m). digit(sum ,4,m).

digit(1,2,e). digit(2,2,o). digit(sum ,3,o).

digit(1,1,n). digit(2,1,r). digit(sum ,2,n).

digit(1,0,d). digit(2,0,e). digit(sum ,1,e).

digit(sum ,0,y).

base (10).

exp(E) :- digit(_,E,_).

power (1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.

number(N) :- digit(N,_,_), N!= sum.

high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), number(N);

-M*D : digit(sum ,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.

Potassco (KRR@UP) Answer Set Programming 154 / 182

Theory solving Theory language

send+more=money

digit(1,3,s). digit(2,3,m). digit(sum ,4,m).

digit(1,2,e). digit(2,2,o). digit(sum ,3,o).

digit(1,1,n). digit(2,1,r). digit(sum ,2,n).

digit(1,0,d). digit(2,0,e). digit(sum ,1,e).

digit(sum ,0,y).

base (10).

exp(E) :- digit(_,E,_).

power (1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.

number(N) :- digit(N,_,_), N!= sum.

high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), number(N);

-M*D : digit(sum ,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.

Potassco (KRR@UP) Answer Set Programming 154 / 182

Theory solving Theory language

send+more=money

digit(1,3,s). digit(2,3,m). digit(sum ,4,m).

digit(1,2,e). digit(2,2,o). digit(sum ,3,o).

digit(1,1,n). digit(2,1,r). digit(sum ,2,n).

digit(1,0,d). digit(2,0,e). digit(sum ,1,e).

digit(sum ,0,y).

base (10).

exp (0). exp (1). exp (2). exp (3). exp (4).

power (1,0).

power (10 ,1). power (100 ,2). power (1000 ,3). power (10000 ,4).

number (1). number (2).

high(s). high(m).

&dom {0..9}=s. &dom {0..9}=m. &dom {0..9}=e. [...] &dom {0..9}=y.

&sum{ 1000*s; 100*e; 10*n; 1*d;

1000*m; 100*o; 10*r; 1*e;

-10000*m; -1000*o; -100*n; -10*e; -1*y } = 0.

&sum{s} > 0. &sum{m} > 0.

&distinct{s; m; e; o; n; r; d; y}.

&show{s; m; e; o; n; r; d; y}.

Potassco (KRR@UP) Answer Set Programming 155 / 182

Theory solving Theory language

send+more=money

UNIX > clingcon sendmoremoney.lp 0

clingcon version 5.0.0

Reading from smm.clp

Solving ...

Answer: 1

base (10) exp (0) exp(1) exp(2) exp(3) exp (4) \

high(m) high(s) number (1) number (2) \

power (1,0) power (10 ,1) power (100 ,2) power (1000 ,3) power (10000 ,4) \

digit(1,0,d) digit(1,1,n) digit(1,2,e) digit(1,3,s) \

digit(2,0,e) digit(2,1,r) digit(2,2,o) digit(2,3,m) \

digit(sum ,0,y) digit(sum ,1,e) [...] digit(sum ,4,m)

Assignment:

d=7 e=5 m=1 n=6 o=0 r=8 s=9 y=2

SATISFIABLE

Models : 1

Calls : 1

Time : 0.001s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.001s

Potassco (KRR@UP) Answer Set Programming 156 / 182

Theory solving Theory propagation

Outline

18 Meta programming

19 Controlling

20 Multi-shot solving

21 Theory solving
Theory language
Theory propagation

22 Heuristic-driven solving

Potassco (KRR@UP) Answer Set Programming 157 / 182

Theory solving Theory propagation

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 158 / 182

Theory solving Theory propagation

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Potassco (KRR@UP) Answer Set Programming 158 / 182

Theory solving Theory propagation

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

�

Potassco (KRR@UP) Answer Set Programming 158 / 182

Theory solving Theory propagation

Conflict-driven constraint learning
modulo theories

(I) initialize // register theory propagators and initialize watches
loop

propagate completion, loop, and recorded nogoods // deterministically assign literals
if no conflict then

if all variables assigned then
(C) if some δ ∈ ∆T is violated for T ∈ T then record δ // theory propagator’s check

else return variable assignment // T-stable model found
else

(P) propagate theories T ∈ T // theory propagators may record theory nogoods
if no nogood recorded then decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // resolve conflict and record a conflict constraint
(U) backjump // undo assignments until conflict constraint is unit

Potassco (KRR@UP) Answer Set Programming 159 / 182

Theory solving Theory propagation

Propagator interface

clingo

SymbolicAtom

+ symbol
+ literal

TheoryAtom

+ name
+ elements
+ guard
+ literal

PropagateInit

+ num threads
+ symbolic atoms
+ theory atoms

+ add watch(lit)
+ solver literal(lit)

�interface�
Propagator

+ init(init)
+ propagate(control, changes)
+ undo(thread id, assignment, changes)
+ check(control)

PropagateControl

+ thread id
+ assignment

+ add nogood(nogood, tag, lock)
+ propagate()

Assignment

+ decision level
+ has conflict

+ value(lit)
+ level(lit)
+ ...

Potassco (KRR@UP) Answer Set Programming 160 / 182

Theory solving Theory propagation

The dot propagator

#script (python)

import sys

import time

class Propagator:

def init(self , init):

self.sleep = .1

for atom in init.symbolic_atoms:

init.add_watch(init.solver_literal(atom.literal))

def propagate(self , ctl , changes):

for l in changes:

sys.stdout.write (".")

sys.stdout.flush()

time.sleep(self.sleep)

return True

def undo(self , solver_id , assign , undo):

for l in undo:

sys.stdout.write ("\b \b")

sys.stdout.flush()

time.sleep(self.sleep)

def main(prg):

prg.register_propagator(Propagator ())

prg.ground ([(" base", [])])

prg.solve()

sys.stdout.write ("\n")

#end.

Potassco (KRR@UP) Answer Set Programming 161 / 182

Heuristic-driven solving

Outline

18 Meta programming

19 Controlling

20 Multi-shot solving

21 Theory solving

22 Heuristic-driven solving

Potassco (KRR@UP) Answer Set Programming 162 / 182

Heuristic-driven solving

Motivation

Observation Sometimes it is advantageous to take a more
application-oriented approach by including domain-specific
information

domain-specific knowledge can be added
for improving propagation
domain-specific heuristics can be used
for making better choices

Idea Incorporation of domain-specific heuristics by extending

input language and/or solver options
for expressing domain-specific heuristics
solving capacities for integrating domain-specific heuristics

Potassco (KRR@UP) Answer Set Programming 163 / 182

Heuristic-driven solving

Motivation

Observation Sometimes it is advantageous to take a more
application-oriented approach by including domain-specific
information

domain-specific knowledge can be added
for improving propagation
domain-specific heuristics can be used
for making better choices

Idea Incorporation of domain-specific heuristics by extending

input language and/or solver options
for expressing domain-specific heuristics
solving capacities for integrating domain-specific heuristics

Potassco (KRR@UP) Answer Set Programming 163 / 182

Heuristic-driven solving

Motivation

Observation Sometimes it is advantageous to take a more
application-oriented approach by including domain-specific
information

domain-specific knowledge can be added
for improving propagation
domain-specific heuristics can be used
for making better choices

Idea Incorporation of domain-specific heuristics by extending

input language and/or solver options
for expressing domain-specific heuristics
solving capacities for integrating domain-specific heuristics

Potassco (KRR@UP) Answer Set Programming 163 / 182

Heuristic-driven solving

CDCL-style solving

loop

propagate // deterministically assign literals

if no conflict then

if all variables assigned then return solution
else decide // non-deterministically assign some literal

else

if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

Potassco (KRR@UP) Answer Set Programming 164 / 182

Heuristic-driven solving

Heuristic language

Heuristic directive

#heuristic a : l1, . . . , ln. [k@p,m]

where

a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier

Heuristic modifiers

init for initializing the heuristic value of a with k
factor for amplifying the heuristic value of a by factor k
level for ranking all atoms; the rank of a is k
sign for attributing the sign of k as truth value to a

Example

#heuristic occurs(A,T) : action(A), time(T). [T, factor]

Potassco (KRR@UP) Answer Set Programming 165 / 182

Heuristic-driven solving

Heuristic language

Heuristic directive

#heuristic a : l1, . . . , ln. [k@p,m]

where

a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier

Heuristic modifiers

init for initializing the heuristic value of a with k
factor for amplifying the heuristic value of a by factor k
level for ranking all atoms; the rank of a is k
sign for attributing the sign of k as truth value to a

Example

#heuristic occurs(A,T) : action(A), time(T). [T, factor]

Potassco (KRR@UP) Answer Set Programming 165 / 182

Heuristic-driven solving

Heuristic language

Heuristic directive

#heuristic a : l1, . . . , ln. [k@p,m]

where

a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier

Heuristic modifiers

init for initializing the heuristic value of a with k
factor for amplifying the heuristic value of a by factor k
level for ranking all atoms; the rank of a is k
sign for attributing the sign of k as truth value to a

true/false combine level and sign

Example

#heuristic occurs(A,T) : action(A), time(T). [T, factor]

Potassco (KRR@UP) Answer Set Programming 165 / 182

Heuristic-driven solving

Heuristic language

Heuristic directive

#heuristic a : l1, . . . , ln. [k@p,m]

where

a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier

Heuristic modifiers

init for initializing the heuristic value of a with k
factor for amplifying the heuristic value of a by factor k
level for ranking all atoms; the rank of a is k
sign for attributing the sign of k as truth value to a

Example

#heuristic occurs(A,T) : action(A), time(T). [T, factor]

Potassco (KRR@UP) Answer Set Programming 165 / 182

Heuristic-driven solving

Heuristic language

Heuristic directive

#heuristic a : l1, . . . , ln. [k@p,m]

where

a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier

Heuristic modifiers

init for initializing the heuristic value of a with k
factor for amplifying the heuristic value of a by factor k
level for ranking all atoms; the rank of a is k
sign for attributing the sign of k as truth value to a

Example

#heuristic occurs(mv,5) : action(mv), time(5). [5, factor]

Potassco (KRR@UP) Answer Set Programming 165 / 182

Heuristic-driven solving

Simple STRIPS planning

time(1..k).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

Potassco (KRR@UP) Answer Set Programming 166 / 182

Heuristic-driven solving

Simple STRIPS planning

time(1..k).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

#heuristic occurs(A,T) : action(A), time(T). [2, factor]

Potassco (KRR@UP) Answer Set Programming 166 / 182

Heuristic-driven solving

Simple STRIPS planning

time(1..k).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

#heuristic occurs(A,T) : action(A), time(T). [1, level]

Potassco (KRR@UP) Answer Set Programming 166 / 182

Heuristic-driven solving

Simple STRIPS planning

time(1..k).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

#heuristic occurs(A,T) : action(A), time(T). [T, factor]

Potassco (KRR@UP) Answer Set Programming 166 / 182

Heuristic-driven solving

Simple STRIPS planning

time(1..k).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

#heuristic holds(F,T-1) : holds(F,T). [t-T+1, true]

#heuristic holds(F,T-1) : not holds(F,T) [t-T+1, false]

fluent(F), time(T).

Potassco (KRR@UP) Answer Set Programming 166 / 182

Heuristic-driven solving

Heuristic options

Alternative for specifying structure-oriented heuristics in clasp

--dom-mod=<arg> : Default modification for

domain heuristic

<arg>: <mod>[,<pick>]

<mod> : Modifier

{1=level|2=pos|3=true|4=neg|

5=false|6=init|7=factor}

<pick> : Apply <mod> to

{0=all|1=scc|2=hcc|4=disj|

8=min|16=show} atoms

Engage heuristic modifications (in both settings!)

--heuristic=Domain

Potassco (KRR@UP) Answer Set Programming 167 / 182

Heuristic-driven solving

Heuristic options

Alternative for specifying structure-oriented heuristics in clasp

--dom-mod=<arg> : Default modification for

domain heuristic

<arg>: <mod>[,<pick>]

<mod> : Modifier

{1=level|2=pos|3=true|4=neg|

5=false|6=init|7=factor}

<pick> : Apply <mod> to

{0=all|1=scc|2=hcc|4=disj|

8=min|16=show} atoms

Engage heuristic modifications (in both settings!)

--heuristic=Domain

Potassco (KRR@UP) Answer Set Programming 167 / 182

Heuristic-driven solving

Heuristic options

Alternative for specifying structure-oriented heuristics in clasp

--dom-mod=<arg> : Default modification for

domain heuristic

<arg>: <mod>[,<pick>]

<mod> : Modifier

{1=level|2=pos|3=true|4=neg|

5=false|6=init|7=factor}

<pick> : Apply <mod> to

{0=all|1=scc|2=hcc|4=disj|

8=min|16=show} atoms

Engage heuristic modifications (in both settings!)

--heuristic=Domain

Potassco (KRR@UP) Answer Set Programming 167 / 182

Heuristic-driven solving

Inclusion-minimal stable models

Consider a logic program containing a mimimize statement of form

#minimize{a1, . . . , an}

Computing one inclusion-minimal stable model can be done either via

#heuristic ai [1,false]. for i = 1, . . . , n, or
--dom-mod=5,16

Computing all inclusion-minimal stable model can be done

by adding --enum-mod=domRec to the two options

Potassco (KRR@UP) Answer Set Programming 168 / 182

Heuristic-driven solving

Inclusion-minimal stable models

Consider a logic program containing a mimimize statement of form

#minimize{a1, . . . , an}

Computing one inclusion-minimal stable model can be done either via

#heuristic ai [1,false]. for i = 1, . . . , n, or
--dom-mod=5,16

Computing all inclusion-minimal stable model can be done

by adding --enum-mod=domRec to the two options

Potassco (KRR@UP) Answer Set Programming 168 / 182

Heuristic-driven solving

Inclusion-minimal stable models

Consider a logic program containing a mimimize statement of form

#minimize{a1, . . . , an}

Computing one inclusion-minimal stable model can be done either via

#heuristic ai [1,false]. for i = 1, . . . , n, or
--dom-mod=5,16

Computing all inclusion-minimal stable model can be done

by adding --enum-mod=domRec to the two options

Potassco (KRR@UP) Answer Set Programming 168 / 182

Applications: Overview

23 Train scheduling

24 Robotic intra-logistics

Potassco (KRR@UP) Answer Set Programming 169 / 182

Train scheduling

Outline

23 Train scheduling

24 Robotic intra-logistics

Potassco (KRR@UP) Answer Set Programming 170 / 182

Train scheduling

Motivation

Increasing railway traffic demands global and flexible ways for
scheduling trains in order to use railway networks to capacity

Difficulty arises from dependencies among trains induced by
connections and shared resources

Train scheduling combines three distinct tasks

Routing
Conflict detection and resolution
Scheduling

Solution operational at Swiss Federal Railway using clingo[dl]

ASP
Difference constraints
(Hybrid) Optimization
Heuristic directives
Multi-shot solving

Potassco (KRR@UP) Answer Set Programming 171 / 182

Train scheduling

Motivation

Increasing railway traffic demands global and flexible ways for
scheduling trains in order to use railway networks to capacity

Difficulty arises from dependencies among trains induced by
connections and shared resources

Train scheduling combines three distinct tasks

Routing
Conflict detection and resolution
Scheduling

Solution operational at Swiss Federal Railway using clingo[dl]

ASP
Difference constraints
(Hybrid) Optimization
Heuristic directives
Multi-shot solving

Potassco (KRR@UP) Answer Set Programming 171 / 182

Train scheduling

Motivation

Increasing railway traffic demands global and flexible ways for
scheduling trains in order to use railway networks to capacity

Difficulty arises from dependencies among trains induced by
connections and shared resources

Train scheduling combines three distinct tasks

Routing
Conflict detection and resolution
Scheduling

Solution operational at Swiss Federal Railway using clingo[dl]

ASP
Difference constraints
(Hybrid) Optimization
Heuristic directives
Multi-shot solving

Potassco (KRR@UP) Answer Set Programming 171 / 182

Train scheduling

Benchmark

We optimally solved the train scheduling problem on real-world railway
networks spanning about 150 km with up to 467 trains within 5 minutes

Potassco (KRR@UP) Answer Set Programming 172 / 182

Robotic intra-logistics

Outline

23 Train scheduling

24 Robotic intra-logistics

Potassco (KRR@UP) Answer Set Programming 173 / 182

Robotic intra-logistics

Motivation

Objective How to develop robust and scalable AI technology
for dealing with complex dynamic application scenarios?

What’s needed? — a fruit fly!

Robotic intra-logistics

Why?

rich multi-faceted, full of variations
scalable layout, objects, granularity
measurable makespan, energy, quality of service
integrative mapf, data, constraints, decisions
relevant industry 4.0

What for? — enabling research and teaching

Potassco (KRR@UP) Answer Set Programming 174 / 182

Robotic intra-logistics

Motivation

Objective How to develop robust and scalable KRR technology
for dealing with complex dynamic application scenarios?

What’s needed? — a fruit fly!

Robotic intra-logistics

Why?

rich multi-faceted, full of variations
scalable layout, objects, granularity
measurable makespan, energy, quality of service
integrative mapf, data, constraints, decisions
relevant industry 4.0

What for? — enabling research and teaching

Potassco (KRR@UP) Answer Set Programming 174 / 182

Robotic intra-logistics

Motivation

Objective How to develop robust and scalable KRR technology
for dealing with complex dynamic application scenarios?

What’s needed? — a fruit fly!

Robotic intra-logistics

Why?

rich multi-faceted, full of variations
scalable layout, objects, granularity
measurable makespan, energy, quality of service
integrative mapf, data, constraints, decisions
relevant industry 4.0

What for? — enabling research and teaching

Potassco (KRR@UP) Answer Set Programming 174 / 182

Robotic intra-logistics

Motivation

Objective How to develop robust and scalable KRR technology
for dealing with complex dynamic application scenarios?

What’s needed? — a model scenario

Robotic intra-logistics

Why?

rich multi-faceted, full of variations
scalable layout, objects, granularity
measurable makespan, energy, quality of service
integrative mapf, data, constraints, decisions
relevant industry 4.0

What for? — enabling research and teaching

Potassco (KRR@UP) Answer Set Programming 174 / 182

Robotic intra-logistics

Motivation

Objective How to develop robust and scalable KRR technology
for dealing with complex dynamic application scenarios?

What’s needed? — a model scenario

Robotic intra-logistics

Why?

rich multi-faceted, full of variations
scalable layout, objects, granularity
measurable makespan, energy, quality of service
integrative mapf, data, constraints, decisions
relevant industry 4.0

What for? — enabling research and teaching

Potassco (KRR@UP) Answer Set Programming 174 / 182

Robotic intra-logistics

Motivation

Objective How to develop robust and scalable KRR technology
for dealing with complex dynamic application scenarios?

What’s needed? — a model scenario

Robotic intra-logistics

Why?

rich multi-faceted, full of variations
scalable layout, objects, granularity
measurable makespan, energy, quality of service
integrative mapf, data, constraints, decisions
relevant industry 4.0

What for? — enabling research and teaching

Potassco (KRR@UP) Answer Set Programming 174 / 182

Robotic intra-logistics

Robotic intra-logistics

Robotics systems for logistics and warehouse
automation based on many

mobile robots
movable shelves

Main tasks: order fulfillment, i.e.

routing
order picking
replenishment

Many competing industry solutions:

Amazon, Dematic, Genzebach,
Gray Orange, Swisslog

https://youtu.be/TUx-ljgB-5Q

Potassco (KRR@UP) Answer Set Programming 175 / 182

https://youtu.be/TUx-ljgB-5Q

Robotic intra-logistics

What’s (not) in the picture?

Objects
floor, robots, shelves, products, people, etc.

Relations
positions, carries/d, capacity, orientation, durations, etc.

Actions
move, pickup, putdown, pick, charge, restock, etc.

Objectives
deadlines, throughput, exploitation, energy management,
human machine interaction, etc.

Potassco (KRR@UP) Answer Set Programming 176 / 182

Robotic intra-logistics

Making robots dance
via temporal and dynamic ASP

Visit https://potassco.org/asprilo

Potassco (KRR@UP) Answer Set Programming 177 / 182

https://potassco.org/asprilo

Potassco

Outline

25 Potassco

26 Take home messages

Potassco (KRR@UP) Answer Set Programming 178 / 182

Potassco

Potassco

Potassco Systems — http://potassco.org

Academic branch

Freely available systems
Open source license (MIT)

Potassco Solutions — http://potassco.com

Service branch

Consulting
Engineering

Maintenance
Training

Sites Germany (HQ@Potsdam), Australia, Austria, China,

Cyprus, Finland, France, Japan, Portugal, Spain, Turkey

Potassco (KRR@UP) Answer Set Programming 179 / 182

http://potassco.org
http://potassco.com

Potassco

Potassco

Potassco Systems — http://potassco.org

Academic branch

Freely available systems
Open source license (MIT)

Potassco Solutions — http://potassco.com

Service branch

Consulting
Engineering

Maintenance
Training

Sites Germany (HQ@Potsdam), Australia, Austria, China,

Cyprus, Finland, France, Japan, Portugal, Spain, Turkey

Potassco (KRR@UP) Answer Set Programming 179 / 182

http://potassco.org
http://potassco.com

Take home messages

Outline

25 Potassco

26 Take home messages

Potassco (KRR@UP) Answer Set Programming 180 / 182

Take home messages

The benefits of ASP

Knowledge

Solver

+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Effectiveness
+ Optimality
+ Availability

It’s yours!

ASP is a technology,
products emerge from co-operations

Potassco (KRR@UP) Answer Set Programming 181 / 182

Take home messages

The benefits of ASP

Knowledge

Solver

+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Effectiveness
+ Optimality
+ Availability

It’s yours!

ASP is a technology,
products emerge from co-operations

Potassco (KRR@UP) Answer Set Programming 181 / 182

Take home messages

The benefits of ASP

Knowledge

Solver

+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Effectiveness
+ Optimality
+ Availability

It’s yours!

ASP is a technology,
products emerge from co-operations

Potassco (KRR@UP) Answer Set Programming 181 / 182

Take home messages

Nutshell

Potassco (KRR@UP) Answer Set Programming 182 / 182

Take home messages

Nutshell

Modeling + Grounding + Solving

Potassco (KRR@UP) Answer Set Programming 182 / 182

Take home messages

Nutshell

Modeling + Grounding + Solving

ASP = DB+LP+KR+SAT

Potassco (KRR@UP) Answer Set Programming 182 / 182

Take home messages

Nutshell

Modeling + Grounding + Solving

ASP = DB+LP+KR+SMTn

Potassco (KRR@UP) Answer Set Programming 182 / 182

Take home messages

Nutshell

Modeling + Grounding + Solving

ASP = DB+LP+KR+SMTn

https://potassco.org

Potassco (KRR@UP) Answer Set Programming 182 / 182

https://potassco.org

Take home messages

Nutshell

Modeling + Grounding + Solving

ASP = DB+LP+KR+SMTn

https://potassco.org

And it’s fun !

Potassco (KRR@UP) Answer Set Programming 182 / 182

https://potassco.org

Take home messages

[1] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski,
J. Romero, T. Schaub, and S. Thiele.
Potassco User Guide.
University of Potsdam, 2 edition, 2015.

[2] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

[3] R. Kaminski, J. Romero, T. Schaub, and P. Wanko.
How to build your own ASP-based system?!
CoRR, abs/2008.06692, 2020.

[4] V. Lifschitz.
Twelve definitions of a stable model.
In M. Garcia de la Banda and E. Pontelli, editors, Proceedings of the
Twenty-fourth International Conference on Logic Programming

Potassco (KRR@UP) Answer Set Programming 182 / 182

Take home messages

(ICLP’08), volume 5366 of Lecture Notes in Computer Science, pages
37–51. Springer-Verlag, 2008.

[5] V. Lifschitz.
Thirteen definitions of a stable model.
volume 6300 of Lecture Notes in Computer Science, pages 488–503.
Springer-Verlag, 2010.

[6] V. Lifschitz and A. Razborov.
Why are there so many loop formulas?
ACM Transactions on Computational Logic, 7(2):261–268, 2006.

Potassco (KRR@UP) Answer Set Programming 182 / 182

	Introduction
	Motivation
	Nutshell
	Evolution
	Workflow
	Usage

	Foundations
	Reduct-based characterization
	Axiomatic characterization
	Logical characterization

	Grounding
	Ground instantiation
	Stable models
	Grounding safe programs

	Solving
	Conflict-driven constraint learning
	Engine

	Modeling
	Elaboration tolerance
	ASP solving process
	Methodology
	Case studies
	Satisfiability
	Queens
	Traveling salesperson
	Reviewer Assignment
	Planning

	Engineering
	Meta programming
	Controlling
	Multi-shot solving
	Theory solving
	Theory language
	Theory propagation

	Heuristic-driven solving

	Applications
	Train scheduling
	Robotic intra-logistics

	Summary
	Potassco
	Take home messages

