nlp

A compiler for nested logic programs

Vladimir Sarsakov Torsten Schaub Hans Tompits
Stefan Woltran

14th August 2003

1 Introduction

These pages describe a system for compiling nested logic programs into disjunctive logic
programs under answer set semantics [2]. Our system is conceived as a front-end to the
logic programming systems d1lv and (since recently) gnt.

The underlying compiler is implemented in the programming language Prolog; it has
been developed under the Logic Programming Systems SICStus and SWI; its code em-
ploys standard Prolog programming constructs so that it remains portable to other Prolog
systems.

We deal with nested logic programs under the answer set semantics [3] which is an
extension of the stable models semantics [I] for handling logic programs with classical
negation.

An excellent introduction to logic programming under these semantics is due to Vladimir
Lifschitz and can be accessed through his home-page.

This emerging subfield common to logic programming and nonmonotonic reasoning is
also referred to Answer Set Programming. Some links on the subject are given here]

2 Getting started

The best way of getting started is to consult an exemplary session under SICStus Prolog.
In these session we take the example and proceeded in the following way:

1. We start by loading the compiler (here into SICStus)
[nlp41].

(Or alternatively [n1p50].)

http://www.cs.uni-potsdam.de/~sarsakov
http://www.cs.uni-potsdam.de/~torsten
http://www.kr.tuwien.ac.at/staff/tompits/
http://www.kr.tuwien.ac.at/staff/stefan/
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.tcs.hut.fi/Software/gnt/
http://www.sics.se/sicstus/
http://www.swi.nl/
http://www.cs.utexas.edu/users/vl/
file:TEX/sicstus.txt
http://www.sics.se/sicstus/
file:SOURCE/Examples/t1.nlp
http://www.sics.se/sicstus/

. We compile an original file t1.nlp| by means of

nlp2htl (’Examples/t1’).

This results in the file t1.htl which is not readily usable by [d1vl.

Our compiler is pretty verbose and displays also intermediate versions of the compiled
program (use the flag verbose mode/no_verbose mode for switching).

. Alternatively, one may combine the two latter steps by appeal to the command

nlp2htl12dlv(’Examples/t1’).

In all, this call produces 3 files:

e t1.dic
A dictonary, provided that the appropriate flags (cf.

The “logically” resulting file of the transformation.

o t1.dlv

The dlv-specific file obtained from the “logically” resulting file of the transfor-
mation.

. We finally call d1v by issuing the commands:

dlv(’Examples/t1’).

Syntax

true/0 is a predefined fact (that is used for d1lv in order to make facts go into the
intentional database);

false/0 is a predefined symbol never to be found in any answer set (used for defining
classical negation via integrity constraints);

not/1 are prefix predicates standing for negation as failure;
,/2 is conjunction;
; /2 is disjunction;

:=/2 is used for describing rules in the usual way.

file:SOURCE/Examples/t1.nlp
file:SOURCE/Examples/t1.htl
http://www.dbai.tuwien.ac.at/proj/dlv/
file:SOURCE/Examples/t1.dic
file:SOURCE/Examples/t1.dlv
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.dbai.tuwien.ac.at/proj/dlv/

4

Command predicates

General translations:

nlp2dlp/1

Takes a Filename <filename> and compiles file <filename>.nlp into file <filename>.d1lp
according to the standard translation of nested logic programs into disjunctive logic
programs.

This may result in an exponential blow-up in the worst-case.

nlp2htl/1

Takes a Filename <filename> and compiles file <filename>.nlp into file <filename>.htl
according to the structural translation of nested logic programs into disjunctive logic
programs.

This translation is guarenteed to result in a polynomial blow-up in the worst-case.

System specific translations:

dlv/1
Takes a filename <filename> and pipes the file <filename>.d1lv into dlv.
There is a binary version dlv/2 that allows for passing options to dlv.

Try dlv(<filename>,’’).

Flags

5.1

set_labelling/1 (default: number; alternatively: simple or formula)
set_label _string/1 (default: 'I’)

do_labels beyond negation/0 and no_labels beyond negation/0 (default)
do_dictionary file/0 and no_dictionary file/0 (default)

verbose mode/0 (default) and no_verbose mode/0

The files

Source code

The compiler comes within the single file: nlp41.pl

The new version/ supporting gnt is now available!

http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.dbai.tuwien.ac.at/proj/dlv/
file:SOURCE/nlp41.pl
file:SOURCE/nlp50.pl
http://www.tcs.hut.fi/Software/gnt/

5.2 Documentation files

e Here is a dvi version of this file.
e Here is a PostScript version of this file.

. is a pdf version of this file.

6 Benchmarking

Benchmarks and experimental results are available

7 What’s new?

January 2002 A first stable version is provided.

August 2003 A new version, supporting gnt, is available. Also, it includes new com-
ments, such as n1p2d1p2gnt (Name), nlp2str2gnt (Name), nlp2ht12gnt (Name), gnt (Name),

August 2003 |[Benchmarking| examples and results are published.

THIS IS TO BE EXPANDED SOON (TS, Aug 14, 2003)!

8 Future gimmicks

e Better documentation.
e An example database.

9 Comments

...are highly welcome! Just send me emaill

References

[1] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
Proceedings of the International Conference on Logic Programming, pages 1070-1080.
The MIT Press, 1988.

[2] M. Gelfond and V. Lifschitz. Classical negation in logic programs and deductive
databases. New Generation Computing, 9:365-385, 1991.

4

file:TEX/system.dvi
file:TEX/system.ps
file:SOURCE/nlp50.pl
http://www.tcs.hut.fi/Software/gnt/
mailto:torsten@cs.uni-potsdam.de

[3] V. Lifschitz, L. Tang, and H. Turner. Nested Expressions in Logic Programs. Annals
of Mathematics and Artificial Intelligence, 25(3-4):369-389, 1999.

	Introduction
	Getting started
	Syntax
	Command predicates
	The files
	Source code
	Documentation files

	Benchmarking
	What's rednew?
	Future gimmicks
	Comments

